SherLoc: Comprehensive Prediction of Protein Subcellular Localization by Integrating Clues from Sequence Data and the Literature

H. Shatkay¹, A. Höglund², S. Brady¹, T. Blum², P. Dönnes² and O. Kohlbacher²

¹ School of Computing, Queen's University, Kingston, Ontario, Canada
² Div. for Simulation of Biological Systems, ZBIT/WSI, University of Tübingen, Germany

Knowing the subcellular localization of a protein can elucidate its function, its role in both healthy processes and in the onset of disease, and its potential use as a drug target. Experimental methods determining subcellular localization are reliable and accurate but slow and labor-intensive. In contrast, high-throughput computational prediction tools enable proteome-wide initial "triage" and provide information that is not otherwise attainable (e.g. for proteins whose composition is deduced from a genomic sequence but are hard to isolate, produce, or locate experimentally).

Much progress in computational prediction of protein subcellular localization using sequence-based information has been reported since the early 1990's. PSORT, a nule-based expert system was introduced by Nakai and Kanehisa [1], and later improved upon using classifiers based on machine learning [2]. Other prominent systems, ChloroP [3] and TargetP [4], based on artificial neural networks, have demonstrated a high accuracy when applied to a limited set of subcellular localizations in either plant (ChloroP) or animal cells (TargetP). Other recent methods use a variety of machine learning techniques. Most of them focus on a few subcellular localizations and improve prediction accuracy, while others support many localizations, albeit with reduced performance. The best performing comprehensive systems reported so far are PLOC [5] and more recently MultiLoc [6].

We present **SherLoc**, a prediction system integrating several types of sequence-based features (using MultiLoc) with information derived from text. We test SherLoc on a variety of previously used data sets, as well as on a new set devised specifically to test its predictive power. In all these tests *SherLoc performs significantly better than any previously reported method*. From a bio-text mining perspective, SherLoc forms a landmark, as it is the first reported system to demonstrate a *significant quantitative* improvement in the performance of a biological task by introducing a text mining element.

The following tables demonstrate the overall improved performance of SherLoc compared with TargetP and PLOC on their own data sets.

SherLoc is available online at: <u>http://www-bs.informatik.uni-tuebingen.de/Services/SherLoc/</u>.

System	Plant (accuracy, sens., spec.)	Non-Plant (accuracy, sens., spec.)	System	Plant (accuracy, sens.)	Animal (accuracy, sens.)	Fungal (accuracy, sens.)
TargetP	0.85, 0. 86, 0.83	0.90, 0.91, 0.85	PLOC	0.78, 0. 58,	0.80, 0.60	0.80, 0.57
SherLoc	0.95, 0.94, 0.93	0.96, 0.97, 0.94	SherLoc	0.85, 0.84	0.86, 0.85	0.85, 0.84

 Table 1: Overall accuracy and average sensitivity

 and specificity on the TargetP data set.

Table 2: Overall accuracy and average sensitivity on the

 PLOC data set (PLOC does not report specificity).

References

- [1] Nakai K. and Kanehisa M.A. (1992). A knowledge base for predicting protein localization sites in eukaryotic cells. *Genomics* 14(4):897-911.
- [2] Horton P. and Nakai K. (1997). Better prediction of protein cellular localization sites with the k nearest neighbors classifiers. ISMB'97:147-52.
- [3] Emanuelsson O., Nielsen H., von Heijne G. (1999). ChloroP, a neural network-based method for predicting chloroplast transit peptides and their cleavage sites. *Protein Science* 8(5), 978-84.
- [4] Emanuelsson O., Nielsen H., Brunak S., and von Heijne G. (2000). Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. *J Mol Biol* 300(4):1005-16.
- [5] Park K.J. and Kanehisa M.A. (2003). Prediction of protein subcellular location by support vector machines using compositions of amino acids and amino acid pairs. *Bioinformatics* 19(13), 1656-63.
- [6] Höglund A., Dönnes P., Blum T., Adolph H.W., and Kohlbacher O. (2006). MultiLoc: prediction of protein subcellular localization using Nterminal targeting sequences, sequence motifs, and amino acid composition. *Bioinformatics (in press)*.