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Editorial

ISMB 2006

This volume contains the papers accepted for presentation at
the 2006 Intelligent Systems for Molecular Biology confer-
ence (ISMB 2006; www.iscb.org/ismb2006) held in Fortaleza,
Brazil from August 6-10, 2006. The conference is the annual
meeting of the International Society for Computational Bio-
logy (ISCB). The papers presented here are noteworthy for
several reasons. First, papers are open access and freely avail-
able to the worldwide community ahead of the conference and
subsequently form an on-line only issue of the journal Bioin-
formatics. Second, the review process was conducted slightly
differently to previous years. Finally, and most importantly,
we believe that the scientific content to be outstanding. This
indicates both the strength of the field and a desire to present
the best work in an important part of the world for the first
time, making a truly international meeting and ISCB a truly
international society.

The call for papers resulted in 404 submissions in one
of thirteen different categories (Table 1). Area Chairs were
recruited for each category and they in turn assigned review-
ers for each paper. All papers received two or three reviews.
Based on the reviews Area Chairs made recommendations
on the papers to be presented. The final program was then
decided by the Program Chairs based on these recommend-
ations and the need to provide a balanced program. As a
result 67 papers are included making for an acceptance rate
of 16.6%.

A total of 347 papers had authors from a single country, 52
from 2 countries, 4 from 3 countries and 1 from 4 countries,
respectively. Of the 347 papers from one country, 180 were
from North America, 90 were from Europe and Israel, 49 from
Asia, 16 from South America, 11 from Australia and 1 from
Africa.

The papers accepted (Table 1) were organized slightly dif-
ferently from previous years, with a category for Human
Health added. This resulted in 20 submissions indicating
strong interest from the community. Conversely, molecular
and supramolecular dynamics was added and only resulted

Table 1. ISMB 2006 Program Areas, Program Chairs and Paper Distribution

Area Area Chairs Papers Received/Accepted

Comparative Genomics Koonin, Eugene 25/4
Claverie, Jean-Michel

Databases & Data Integration Kanehisa, Minoru 31/3
Apweiler, Rolf

Evolution and Phylogeny Gouy, Manolo 21/3
Warnow, Tandy

Human Health Ofran, Yanay 20/3
Radivojac, Predrag
Kann, Maricel
Punta, Marco

Molecular and Supramolecular Dynamics Murray, Diana 5/1
Shakhnovich, Eugene

Ontologies Kumar, Anand 8/2
Stevens, Robert
Parkinson, Helen

Proteomics Zhang, Zhaolei 38/6
Troyanskaya, Olga

Sequence Analysis Grishin, Nick 59/10
Brunak, Soren

Structural Bioinformatics Thornton, Janet 51/8
Russell, Rob

Systems Biology Bader, Joel 55/11
Sander, Chris

Text Mining & Information Extraction Valencia, Alfonso 33/6
Rzhetsky, Andrey

Transcriptomics Margalit, Hanah 42/7
Zhang, Michael

Miscellaneous Bourne, Philip 16/3

© The Author 2006. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oupjournals.org e1
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in 5 submissions. Other areas remained approximately pro-
portional to 2005 submissions.

We would like to thank the Area Chairs and reviewers for
the quality they have brought to the conference, to Richard van
de Stadt for support with Cyberchair in managing the selection

process and Steven Leard for following up with many of the
loose ends needed to produce the volume in a timely manner.

Philip E. Bourne and Soren Brunak, Program Chairs
ISMB 2006
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ABSTRACT

Motivation: The complete sequencing of many genomes has made it

possible to identify orthologous genes descending from a common

ancestor. However, reconstruction of evolutionary history over long

time periods faces many challenges due to gene duplications and

losses. Identification of orthologous groups shared by multiple pro-

teomes therefore becomes a clustering problem in which an optimal

compromise between conflicting evidences needs to be found.

Results: Here we present a new proteome-scale analysis program

called MultiParanoid that can automatically find orthology relation-

ships between proteins in multiple proteomes. The software is an

extension of the InParanoid program that identifies orthologs and

inparalogs in pairwise proteome comparisons. MultiParanoid applies

a clustering algorithm to merge multiple pairwise ortholog groups from

InParanoid into multi-species ortholog groups. To avoid outparalogs in

the same cluster, MultiParanoid only combines species that share the

same last ancestor.

To validate the clustering technique, we compared the results to a

reference set obtained by manual phylogenetic analysis. We further

compared the results to ortholog groups in KOGs and OrthoMCL,

which revealed that MultiParanoid produces substantially fewer out-

paralogs than these resources.

Availability: MultiParanoid is a freely available standalone program

that enables efficient orthology analysis much needed in the post-

genomic era. A web-based service providing access to the original

datasets, the resulting groups of orthologs, and the source code of

the program can be found at http://multiparanoid.cgb.ki.se.

Contact: Erik.Sonnhammer@sbc.su.se

Supplementary information: http://multiparanoid.cgb.ki.se/

ISMB2006/

1 INTRODUCTION

The increasing availability of complete proteomes provides the

opportunity to reconstruct their evolutionary history based on

sequence data. This is particularly welcomed by functional and

comparative genomics, which is heavily dependent on orthology

analysis. Orthologous genes exist in many guises, ranging from

proteins with identical functions in identical pathways to proteins

that share a common evolutionary origin but have diverged in

function. Establishing orthology between genes is today one of

the most reliable methods to obtain functional annotation.

In this paper we consider orthologs as defined by Fitch (1970):

genes descending from a single gene in the last common ancestor of

the species. Such genes are most likely to be functional counter-

parts. On the other hand, genes arising from duplications are defined

as paralogs. Genomes of invertebrates and higher organisms are

notorious for high numbers of gene duplications and/or gene losses.

Such genomic variation has been explained as an adaptation

to different environments (Chervitz et al., 1998; Troemel et al.,
1995; Enmark and Gustafsson, 2001; Maglich et al., 2001).

Paralogs may arise from a duplication that occurred either before

or after the speciation event that gave rise to the species of interest.

If the duplication occurred first, the genes resulting from the

duplication cannot be orthologs. Such genes are called outparalogs

(Sonnhammer and Koonin, 2002). However, if the duplication

happened after the speciation, the resulting genes can be considered

co-orthologs. Such genes are called inparalogs. Given that the goal

is to identify the complete set of orthologs and avoid non-orthologs,

one wants to find all inparalogs while avoiding all outparalogs.

A simplification of the problem would be to consider only the

most similar inparalogs as true orthologs. However, there is

often no clear functional distinction between inparalogs in the

same group (Kondrashov et al., 2002).

The best orthology analysis is obtained from careful manual

inspection of phylogenetic trees, for instance as was done by

Wheelan et al., (1999) to identify human-mouse-rat-worm

orthologs. However, this is very labor-intensive, and to save time

many groups have resorted to using high-scoring global BLAST

(Altschul et al., 1997) matches to approximate orthologs (e.g. Rubin

et al., 2000). The BLAST approach can be substantially improved

by only accepting reciprocally best matching protein pairs as

orthologs (Mushegian et al., 1998). This approach works reasonably

well for the proteomes of bacteria. However, its application to

diversified eukaryotic species faces additional problems due to a

complex evolutionary past (Xie and Ding, 2000).

The COG method (Tatusov et al., 1997) extends the reciprocal

best matching method to allow incorporation of multiple species

into each ortholog group. It has the ability to include inparalogs, but

because it groups sequences of widely different evolutionary dis-

tances in a single cluster, out-paralogs are also commonplace. COGs�To whom correspondence should be addressed.
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initially contained only prokaryotic proteomes, but a version of

seven eukaryotic species—KOGs—has been released (Tatusov

et al., 2003). Lee et al. (2002) applied the COG method to

cDNA sequences of 28 eukaryotes, resulting in the EGO (formerly

TOGA) database.

OrthoMCL represents a different approach to finding multi-

species ortholog groups. It uses a Markov clustering algorithm

based on graph flow theory, and can find clusters of desired tightness

depending on the ‘‘inflation parameter’’ (Li et al., 2003). With the

parameters they used, OrthoMCL was much stricter than EGO and

KOGs with regard to the inclusion of outparalogs. The OrthoMCL

web resource initially included E. coli and nine eukaryotic pro-

teomes; the latest release contains 55 proteomes (Chen et al.,
2006). A drawback with the above methods is that they do not

provide confidence values for the predicted orthologs. They also

do not necessarily have a unique last common ancestor in each

group, which can lead to inclusion of outparalogs in the same

cluster.

The InParanoid method was specifically designed to find inpar-

alogs by a special extension of the reciprocal best matching method

in pairwise proteome comparisons (Remm et al., 2001). It provides

confidence scores for both the seed orthologs and the inparalogs.

The method was evaluated against a manually curated set of worm-

human orthologous transmembrane proteins. The latest release of

InParanoid contained 25 eukaryotic proteomes plus E. coli (O’Brien

et al., 2005).

In this paper we employ a new clustering technique to keep the

advantages of InParanoid while extending the method to include

multiple species. The new method called MultiParanoid reads the

output from InParanoid and builds multi-species clusters from these.

To benchmark the method on three-species ortholog groups, we

extended the manually curated reference dataset by also including

fly orthologs.

We then used this curated dataset as a reference in order to

estimate the quality and features of MultiParanoid. We also com-

pared the results to KOGs and OrthoMCL, and carried out a detailed

analysis of the differences. Each discrepancy was categorized to

gain insights into the particular characteristics of each method. We

also review the HomoloGene database (Wheeler et al., 2006) that

was not directly comparable to MultiParanoid clusters.

2 METHODS

2.1 Algorithm

MultiParanoid takes pairwise ortholog clusters (from e.g. InParanoid) and

merges them into multi-species clusters. While there is no formal limit on the

number of proteomes that can be processed, the following description is

given for the case of three species. The input to MultiParanoid for N species

consists of N � (N� 1) / 2 tables of InParanoid output—one for each pair of

species.

Given a list of species A, B, and C, and pairwise ortholog cluster tables

A-B, B-C, and A-C, the procedure starts by reading the list of clusters from

the A-B table. These are kept as seed clusters that may be extended to include

sequences in the other proteomes. The program next looks for the presence of

the seed orthologs from the A-B cluster in the A-C and B-C tables. If present,

all the members (inparalogs) in corresponding A-C or B-C clusters are added

to the seed cluster. This procedure is repeated until all pairwise ortholog

groups are processed.

This clustering corresponds to a single-linkage approach. We also

implemented additional cluster trimming features in order to exclude

outliers. For instance every member was required to have the confidence

value—an average of its InParanoid scores—above a cutoff. However, since

InParanoid clusters are already strict, trimming the multi-species clusters did

not improve the overall quality.

On rare occasions, a gene may be assigned to multiple MultiParanoid

clusters. To address this problem, we applied an additional procedure to

assure non-redundant presence of the analyzed genes in the clusters. If a gene

is not a seed ortholog in any of the clusters, it is assigned to the cluster where

it has a higher InParanoid score and removed from the other. If it is assigned

as the seed ortholog of a cluster, it is retained in this cluster in order to avoid

disrupting the processed cluster and deleted from the other.

2.2 Construction of the reference set

Clustering of worm proteins containing at least two transmembrane seg-

ments was originally done as described elsewhere (Remm and Sonnhammer,

2000). To retrieve homologous fly and human sequences, SWISS-PROT,

TREMBL and VTS databases were searched using specifically designed

HMMs. After a manual curation, the original dataset contained 221

group of proteins based on sequence similarities. The largest observed family

consists mainly of G-protein coupled receptors.

Putative worm—fly—human orthologs were extracted via complete

phylogenetic analysis as follows:

(i) Multiple sequence alignments were done with the HMMALIGN algo-

rithm from the HMMER package (http://hmmer.wustl.edu).

Sequences having gaps (>50%) were removed from alignments.

(ii) Phylogenetic trees were constructed implementing ClustalW with

observed distance and Kimura correction (Thompson et al., 1994).

Bootstrap values were used to estimate reliability of a given branching

order. A total of 100 bootstrap tests were run on trees. Only bootstrap

values >60% were considered to be significant.

2.3 Comparison of ortholog clusters

Ortholog clusters generated by OrthoMCL, KOG, or manually made, were

compared to the output of MultiParanoid in both directions. The comparison

program took each cluster (‘‘query’’) from the first set and searched for its

genes in the second group of clusters. If the genes were found in more than

one cluster, the query cluster was labeled as ‘‘Split’’. Query clusters with no

counterparts were labeled as ‘‘Not found’’. Otherwise (exactly one cluster

found), its congruity to the query was tested. A result for the query cluster

was classified into a number of categories (Supplementary Table 1). For each

gene clustered by only first of the compared methods, a series of possible

reasons were checked (Figure 3).

3 RESULTS

3.1 The MultiParanoid algorithm

The MultiParanoid algorithm is in its default form a simple chaining

together of overlapping pairwise ortholog groups. It thus depends

heavily on the quality of these groups—errors here will be propa-

gated to the multi-species clusters. We therefore used InParanoid

with default parameters, which are relatively strict, to generate the

pairwise groups. As MultiParanoid provides confidence scores for

the cluster members, calculated as mean InParanoid scores from the

pairwise clusters, we explored ways to tighten the multi-species

clusters by excluding orthologs of lower confidence. However,

we found that this mainly increased the false negative rate (data

not shown).

It is important to keep in mind that MultiParanoid was designed to

only handle multiple proteomes that all diverged at roughly the

same time point. If species of unequal relatedness are clustered,

e.g. yeast, human, and chimpanzee, an implicit problem is created.

A.Alexeyenko et al.
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There is no ancestral node in the species tree of these organisms that

represents the last common ancestor for all the species pairs. The

resulting clusters will therefore often contain human-chimpanzee

outparalogs, which were included because they are bona fide

inparalogs relative to yeast.

This constitutes a major principle difference between

MultiParanoid and KOGs/OrthoMCL. Both these databases

combine species at very different distances, which makes the clus-

ters less strict ortholog groups. Another difference is that only

MultiParanoid gives the user confidence values. OrthoMCL is in

many ways similar to InParanoid in its treatment of seed and

inparalogs, but the algorithm based on Markov clustering is very

different. It uses normalized E-values rather than bit scores, and

the clustering is done in one step for all proteomes. A drawback is

that the ‘‘inflation parameter’’ that governs the tightness of the

clusters needs to be set in an ad hoc fashion.

3.2 Manual construction of the reference set

When the InParanoid algorithm was originally developed, a manu-

ally curated dataset of human-worm ortholog groups was used as a

trusted standard to evaluate the accuracy of the predicted groups

(Remm et al., 2001). Here we have extended the original dataset of

human-worm orthologs by including fly orthologs to create a suit-

able 3-species reference set to test the accuracy of the MultiParanoid

algorithm. The original dataset contained 221 groups, and most of

these (202) could be extended with fly orthologs. However, in

19 cases, no fly ortholog was found, and in some cases the original

group had to be redefined in the light of the fly ortholog. In total,

the new reference set contains 221 groups (141 human-worm-fly,

19 human-worm, 28 human-fly, and 33 worm-fly). It is built from

697 human, 307 fly, and 361 worm proteins. This manually curated

dataset is available at http://multiparanoid.cgb.ki.se/stats.html and

can be used as a reference set by other developers of algorithms for

detecting ortholog groups.

3.3 Benchmarking MultiParanoid

We executed MultiParanoid on the same versions of the human, fly,

and worm proteomes that were used to create the reference set. To

characterize MultiParanoid’s ability to reconstruct the manual clus-

ters, we extracted the intersecting and non-overlapping sets between

the two clusterings, as shown in supplementary Table 1A. Both

clusterings had roughly the same number of clusters: 221 in the

reference set and 214 by MultiParanoid. Of these, 132 were ident-

ical. Another 45 clusters were almost identical in the sense that one

was a subset of the other. This leaves about 40 clusters that clearly

differed. Inspection of these cases revealed that the prevalent reason

for the disagreement is the different sequence distances obtained

by pairwise alignments used in InParanoid and those obtained by

multiple alignments used for the manual phylogenetic analyses.

Moreover, a manual curator’s perception of what constitutes a

‘‘too short’’ or ‘‘too weak’’ match may differ from the strict

InParanoid cutoffs.

3.4 Comparison to other methods

MultiParanoid was compared to two alternative methods: KOGs

(Tatusov et al., 2003) and OrthoMCL (Li et al., 2003). To ensure

a direct comparison, we ran MultiParanoid on the data used in the

KOG and OrthoMCL publications. Both KOGs and OrthoMCL

original clusters contained sequences of additional species, but to

simplify the comparison, only sequences from human, worm, and

fly were considered.

A detailed analysis was performed between MultiParanoid and

the two other databases. Corresponding clusters were identified and

their content was compared (see Methods). When the clusters dif-

fered, we categorized the differences into the following types: split,

subset, mismatch (partial overlap), and absence. The number of

clusters and genes in these categories are listed in Supplementary

Table 1.

The genes that were clustered by only one of the methods were

further analyzed to establish a plausible cause of discrepancy.

A visual inspection of selected clusters pointed to a number

of typical reasons for the observed differences. We decided to

use these main categories: tree conflict, too short match, too

weak match, outparalog, and other (reason not established). The

classification was done in this priority order.

Tree conflict describes the case when a set of inparalogs in pro-

teome A from the comparison A-B disagree with the inparalogs

from A-C. Tree conflicts typically occur when combining species at

different evolutionary distances (which thus should be avoided), or

if one species has lost the original genes. A tree conflict is illustrated

in Figure 1: the human-worm InParanoid clustering produced three

human inparalogs while human-fly produced five. This can some-

times happen although human/fly/worm descend from roughly the

same last common ancestor (of the Bilateria clade); here it was

caused by a rather arbitrary clustering of the human/worm genes

when the BLAST scores of the alternatives were very close. Tree

conflicts are relatively common, and only result in a warning. The

total number of clusters generated by MultiParanoid, run on updated

human, fly, worm proteomes, that were affected by the tree conflict

was 1026 of 6348 (16.1%).

Genes were classified as outparalogs when (1) a paralog (from

the same species) exists in the cluster, and it is found in the cor-

responding cluster of the other method, and (2) a gene from another

species is found closer to the second paralog than the paralogs are to

each other.

The most striking difference when comparing MultiParanoid to

KOGs for human/fly/worm (Supplementary Table 1A) is that

although KOGs contain fewer clusters (4543 compared to 5755

Fig. 1. Illustration of a ‘‘tree conflict’’ that may occur when merging multiple

InParanoid clusters into one MultiParanoid cluster. All the sequences of the

tree belong to a single MultiParanoid cluster 3575 (version 1.00), including

five human proteins (ENSP�), two fly proteins (CG�), and two worm proteins.

At the InParanoid 2-species level however, only ENSP00000279027,

ENSP00000194130, ENSP00000297282 were recognized as human ortho-

logs of the worm genes, yet all five were orthologous to the fly genes

(InParanoid cluster members are indicated by the labels fh: fly-human;

fw: fly-worm; hw: human-worm).

MultiParanoid
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Fig. 2. Example of differences between KOG and MultiParanoid. The sequences in the tree are all the members of KOG cluster 3030. Three subtrees were

identified as independent ortholog groups by MultiParanoid. HS�: human proteins, DM�: fly proteins, CE�: worm proteins. Labels: sm: sequence with a ‘‘short

match’’ to the tree neighbours and therefore not clustered by MultiParanoid; op: outparalog. Note that the op-labeled fly sequences DM7296548 and DM7296544

look like inparalogs in this tree built from a multiple alignment, yet they fell just outside the cluster in InParanoid. This illustrates the clustering differences that

may result from different ways of producing the sequence distance matrix.

In MP but not in KOG

04000800012000

In KOG but not in MP

0 4000 8000 12000

In MP but not in OrthoMCL

04000800012000

In OrthoMCL but not in MP

0 4000 8000 12000

Tree conflict

Tree conflict

Other

Other

Short match

Short match

Weak match

Weak match

Outparalog

Outparalog

Fig. 3. Comparison of MultiParanoid to KOG and OrthoMCL. A detailed analysis was made of features and possible reasons for observed differences of

corresponding ortholog clusters. Sequences clustered in one database but missing from the corresponding cluster in the other database were classified into the

following categories� Tree conflict: conflict when merging pairwise ortholog groups in MultiParanoid (MP); Short match: matches the other cluster proteins with

less than 50% of the length; Weak match: matches the other cluster proteins below the BLAST cutoff (50 bits); Outparalog: the protein is part of another subtree

that includes the last common ancestor; Other: none of the reasons indicated above. �In case of multiple features per protein, only one is counted in the priority of

the list above.

A.Alexeyenko et al.

e12



for MultiParanoid), they contain many more sequences (37737

compared to 23122). The average cluster size is thus twice as

large in KOGs (8.3 versus 4.0). Only 1451 clusters were identical

between KOG and MultiParanoid, while 2094 KOG clusters were

supersets of the corresponding MultiParanoid clusters. An example

of a typical situation is shown in Figure 2, in which one KOGs

cluster contains three separate MultiParanoid clusters. In most of

these cases it is clear that the MultiParanoid clusters represent more

realistic ortholog groups in which all members derive from a single

gene in the last common ancestor (of Bilateria). Similar cases

have thus been classified as outparalogs in Figure 3. Indeed, of

the 22590 KOG genes not found in the corresponding MultiPara-

noid cluster, 67.6% (15271) were classified outparalogs, which

should be seen as an error in KOGs. The second largest reason

was tree conflict (15.1%, 3411) followed by weak and short matches

(9.6% and 6.9%). The latter two discrepancies may be explained

by the fact that InParanoid does not accept matches below 50 bits

and 50% of the length. Note that although many of the genes

categorized as tree conflict probably also represent outparalogs,

we chose to not classify them as such because the tree conflict

casts some doubt about the whole cluster. In other words, our figures

underestimate the number of outparalogs in KOGs.

The high outparalog rate in KOGs is partly due to the fact that

most clusters were built with regard to a higher last common ances-

tor, e.g. the one of eukaryotes, and contain species beyond the

animal clade. Indeed, only 1147 KOG clusters (of 4852) were

animal-specific. But even when looking at 50 randomly selected

pure human/fly/worm KOG clusters, 32 contained outparalogs by

visual inspection of the gene trees. Many of the two-species KOG

clusters (TWOGs) with >2 genes also contained outparalogs. Thus,

KOGs appears to generally favor inclusion of outparalogs.

The OrthoMCL clusters were in much better agreement with the

MultiParanoid results—both produced roughly 6000 clusters con-

taining about 26000 genes. About 4000 of the clusters were ident-

ical, suggesting that these ortholog groups are very trustworthy. In

the roughly 2000 clusters with differences, a couple of trends stood

out. Outparalog inclusion was about 15 times more common among

the OrthoMCL-unique genes (2267) compared to MultiParanoid-

unique ones (145). The fact that tree conflicts are three times more

common in clusters with MultiParanoid-unique genes than

OrthoMCL-unique ones (1453 versus 518) suggests that OrthoMCL

builds slightly tighter clusters than MultiParanoid. Genes missing

due to short or weak matches were about twice as common in

OrthoMCL, indicating that MultiParanoid is stricter in these

respects.

The main difference between MultiParanoid and OrthoMCL thus

seems to be OrthoMCL’s tendency to include outparalogs. This can

be explained by the fact that the original OrthoMCL clusters

included 10 proteomes, some of which have very different last

shared ancestors. For instance, human, mouse, and E. coli are

included at the same time. Combining proteome pairs with such

different relationships inevitably leads to inclusion of outparalogs:

the eukaryotic genes underwent multiple common duplications

since the divergence from E. coli. This problem has been worsened

in the latest version of OrthoMCL, which includes 55 proteomes

(Chen et al., 2006). For example, taking the top 10 (by E-value)

OrthoMCL clusters that contained >8 genes from human, Ciona,

D. melanogaster, and C. elegans, 8 clusters (111, 1057, 489, 88,

1300, 335, 1428, 123) contained outparalogs in at least 1 species

(usually in 2-4). In the previous 10-species OrthoMCL version, only

cluster 1057 (rather its prototype, as the numbering was changed)

had outparalogs. The corresponding MultiParanoid 4-species

clusters had no outparalogs.

Another database of eukaryotic orthologs is HomoloGene

(Wheeler et al. 2006), which in addition to sequence similarity

also uses synteny and DNA substitution rates to build

ortholog groups (http://www.ncbi.nlm.nih.gov/HomoloGene/

HTML/homologene_buildproc.html). This database is however

very different in nature from MultiParanoid, OrthoMCL and

KOGs. HomoloGene is extreme in the opposite way that KOGs

is—it splits up ortholog groups into smaller groups, putting inpar-

alogs into different clusters.

For example, only 29 of 3814 HomoloGene clusters that could

include both human and yeast genes (labeled ‘‘Eukaryota’’ or

‘‘Fungi/Metazoa’’) contained more than a single human gene.

As a comparison, InParanoid had 2138 human-yeast clusters, and

816 of them contained more than one human orthologs.

Genes that are considered inparalogs by InParanoid are normally

not missing from HomoloGene but are found in other clusters,

usually with different labeling of the last common ancestor

(e.g. human inparalogs could be in clusters labeled ‘‘Eukaryota’’,

‘‘Coelomata’’, ‘‘Amniota’’) or with the same label but another

species content.

For instance, the biggest MultiParanoid cluster built from human,

Ciona, D. melanogaster, and C. elegans proteins contained more

than 400 human genes (zinc finger proteins with Pfam domain

zf-C2H2, PF00096), but only a few from other species. The

human part thus constituted a vertebrate-specific expansion accord-

ing to MultiParanoid. Yet, in HomoloGene most of the human genes

were split into 6 different clusters labeled higher than vertebrates

(‘‘Coelomata’’ and ‘‘Fungi/Metazoa’’). These clusters contained a

set of human genes plus an insect or worm gene (all from the same

MultiParanoid cluster), even though the human genes are closer to

each other than to any gene outside the vertebrate clade. Some

human genes from the MultiParanoid cluster were placed in pure

vertebrate clusters (‘‘Amniota’’, ‘‘Eutheria’’, ‘‘Euarchontoglires’’,

and human-specific expansions).

HomoloGene thus tends spread inparalogs over isolated small

clusters. This property makes the clusters very tight, practically

inparalog-free, and misleading in defining complete ortholog sets.

4 DISCUSSION

Functional genomics has driven a demand for fast and efficient

orthology analysis tools. The algorithm presented here enables

an automated orthology analysis to be performed on multiple pro-

teomes, and is therefore a welcome extension of the previously

published InParanoid (Remm et al., 2001) algorithm. We found

a satisfying high degree of congruence between the results gener-

ated by MultiParanoid and the manually curated dataset used as a

reference. The ability of the algorithm to correctly identify ortholo-

gous sequences was also evaluated by executing MultiParanoid and

similar algorithms published by other groups, namely KOGs

(Tatusov et al., 2003) and OrthoMCL (Li et al., 2003), on the

same datasets. This showed that the quality of MultiParanoid’s

clusters is high, and therefore the method should make an important

contribution to the bioinformatics tools currently available for

orthology analyses.
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Unlike KOGs where the minimal cluster consists of three genes,

one per species (‘‘triangles’’, Tatusov et al., 1997), MultiParanoid is

based on pairwise groups of orthologs. For genomes A, B, C, protein

pairs {A1, B1} and {B1, C1} can be reciprocally best hits, whereas

{A1, C1} may not be. Hence, clusters exist where a triangle is not

secured. This leads to what we call a ‘‘tree conflict’’ when merging

pairwise orthologs from three species. If the species have roughly

the same last ancestor we believe that the best action in such cases is

to combine all genes from the pairwise clusters. Still, only a minor

fraction (�15%) of MultiParanoid clusters had tree conflicts when

clustering human, fly, and worm. In very few cases (100-200 genes)

did the conflict lead to ambiguous cluster membership.

We here consider human, fly, and worm to descend from

roughly the same last ancestor. Yet, two different subgroupings

have been proposed: the ‘‘Ecdysozoa’’ (worm-fly) and ‘‘Coel-
omata’’ (fly-human) hypotheses (Blair et al., 2002; Dopazo and

Dopazo 2005; Philip et al., 2005). Neither of these gets full support

from molecular data. Looking at gene trees, the Coelomata
grouping is found in about 60% of the trees, Ecdysozoa in 25%,

and worm-human in 15%. The question is therefore probably

unresolvable and we consider the three species to be roughly equally

related. It is thus wiser to use molecular data to group species than

to use the classical taxonomy, especially since the latter can be

ambiguous or vague.

The requirement of only clustering species with shared last ances-

tor can be a drawback for MultiParanoid, as it only allows few

eukaryotic species to be included in multi-species groups. However,

a possibility is to consider several species in a clade as a ‘pseudo-

species’, e.g. mammals or arthropods. If one treats all mammalian

genes as ‘pseudo-inparalogs’ when compared to arthropods and

nematodes, it is possible to avoid outparalogs. This is done by

labeling the included outparalogs as pseudo-inparalogs, and not

transferring functional information between them. We are develop-

ing a new version of MultiParanoid with multiple species in the

same clade with precise labeling of what are orthologs and what are

not within each cluster. Using this framework, which is similar to

the HOPS database (Storm and Sonnhammer, 2003), we can build

clusters that include all completely sequenced eukaryotic species.

Even incomplete proteomes can be included, as long as one

complete proteome is part of the clade.

5 DATA

The manually curated data set of transmembrane proteins was based

on the older proteome versions:

Human: 35118 sequences from SwissProt and TREMBL.

Fly: 14100 predicted proteins sequences from FlyPep Release 1.

(http://www.fruitfly.org/sequence/download.html).

Worm: 19099 predicted proteins from WormPep 20 (ftp://ftp.

wormbase.org/pub/wormbase/).

These original protein sets and the manually curated clusters are

available at http://multiparanoid.cgb.ki.se/download.

The KOG clusters were published as a supplementary material by

Tatusov et al. (2003) and were downloaded at http://www.ncbi.nlm.

nih.gov/COG/new/. For the purpose of this work, only human, fly

and worm genes were extracted from the seven species in total. In

addition, we included the 2-species clusters (TWOGS). The version

numbers of the proteomes are not available, but the original com-

plete sets of proteins of all KOG proteomes in FASTA format can be

downloaded from the same location.

OrthoMCL clusters were gathered via queries to the Web service

http://www.cbil.upenn.edu/gene-family/. The following datasets

were downloaded: {human, fly, worm}, {human, fly}, {human,

worm}, {fly, worm}. The respective versions of complete protein

sets were obtained from the original sites listed in their article

(Li et al., 2003).

Alternative splice forms of the same gene may sometimes end up

in different clusters. We therefore only used the longest spliced form

of each gene.

MultiParanoid scripts, FASTA sequence and data files are avail-

able from the web site http://multiparanoid.cgb.ki.se/. The final

clusters generated by MultiParanoid can be downloaded as a single

text file. The web-based version 1.00 of MultiParanoid with search

by gene/protein ID and cross-links to protein/domain databases

currently includes four genomes—C. elegans, D. melanogaster,

C. intestinalis, and H. sapiens—and will be expanded.
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DynaPred: A structure and sequence based method for the

prediction of MHC class I binding peptide sequences and

conformations
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ABSTRACT

Motivation: The binding of endogenous antigenic peptides to MHC

class Imolecules is an important step during the immunologic response

of a host against a pathogen. Thus, various sequence- and structure-

based prediction methods have been proposed for this purpose.

The sequence-based methods are computationally efficient, but are

hamperedby theneedofsufficientexperimental dataanddonotprovide

a structural interpretation of their results. The structural methods are

data-independent, but are quite time-consuming and thus not suited

for screeningofwholegenomes.Here,wepresentanewmethod,which

performs sequence-based prediction by incorporating information

obtained from molecular modeling. This allows us to perform large

databasesscreeningand toprovidestructural informationof the results.

Results: We developed a SVM-trained, quantitative matrix-based

method for the prediction of MHC class I binding peptides, in which

the features of the scoring matrix are energy terms retrieved from

molecular dynamics simulations. At the same time we used the equi-

librated structures obtained from the same simulations in a simple and

efficient docking procedure.Ourmethod consists of two steps: First, we

predict potential binders from sequence data alone and second, we

construct protein-peptide complexes for the predicted binders. So

far, we tested our approach on the HLA-A0201 allele. We constructed

two prediction models, using local, position-dependent (DynaPredPOS)

and global, position-independent (DynaPred) features. The former

model outperformed the two sequence-based methods used in our

evaluation; the latter shows a much higher generalizability towards

other alleles than theposition-dependentmodels. Theconstructed pep-

tide structures can be refinedwithin seconds to structures with an aver-

age backbone RMSD of 1.53 Å from the corresponding experimental

structures.

Contact: antes@mpi-sb.mpg.de

1 INTRODUCTION

The binding of antigenic peptides originating from pathogens to the

major histocompatibility complex (MHC) class I is one of the cru-

cial steps during the intracellular immunological response against

the intruder (Paul et al., 1998). After a pathogen enters the host cell,

proteins from the invading organism are cleaved into smaller pep-

tide fragments by the proteasome. These fragments are transported

into the endoplasmic reticulum by the TAP proteins, where they

bind to MHC molecules. Afterwards the MHC-peptide complex is

translocated to the cell surface. At the surface of the cell, pathogenic

peptides are identified by T-cell receptors (TCRs) via TCR-MHC-

peptide complex formation. This step initiates the immunological

response against the pathogen. Peptides which can trigger such a

response are called epitopes. Not all peptides binding to MHC

molecules are epitopes, but all T-cell epitopes need to bind to

MHC molecules. Thus, knowing which and understanding why

certain peptides bind to a specific MHC is not only fundamental

to the understanding of the immune system, but also a crucial step

in vaccine and immunotherapeutic development. Experimental

screening of peptides with respect to their MHC binding capabilities

is very demanding due to the large number of possible peptide

sequences and the high polymorphism of the MHC molecules.

Thus there is a strong interest in computational methods for pre-

dicting the binding capabilities of peptides to MHC as a first step to

select peptides for screening.

For the prediction of MHC (class I and II) binding peptides,

sequence- and structure-based methods as well as their com-

binations were used for both classification and regression models.

Classification models distinguish binders from non-binders,

whereas regression methods try to predict the binding affinity of

peptides to MHC molecules.

Sequence based prediction methods include binding motifs

(Rammensee et al., 1999; Hammer, 1995; Reche et al., 2002; Peters

et al., 2003), quantitative matrices (Parker et al., 1994; Southwood

et al., 1998), data-derived matrices (Yu et al., 2002), and the com-

bination of a motif based approach with Gibbs sampling (Nielsen

et al., 2004). For the training, various machine learning techniques

have been applied such as artificial neural networks (Brusic et al.,
1998; Gulukota et al., 1997; Milik et al., 1998), hidden markov

models (Mamitsuka 1998), classification trees (Segal et al., 2001),

support vector machines (Dönnes and Elofsson, 2002; Zao et al.,
2003; Bhasin et al., 2004), and biosupport vector machines (Yang

and Johnson, 2005). These methods encode sequences as binary

vectors or as numerical vectors based on their physiochemical

property values. Due to the limited public availability of con-

sistent quantitative binding data, most methods are trained for clas-

sification. Still, regression was performed so far in QSAR studies
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(Doytchinova et al., 2002, 2004; Li et al., 2004) and using average

relative binding matrices (Bui et al., 2005). Structural information

has been used for prediction in the context of 3D-QSAR

(Doytchinova et al., 2002, 2004) and docking (Bordner and

Abagyan, 2006).

Most prediction methods are based on the so called ‘additive

model’. This model assumes that the overall binding affinity of a

peptide can be approximated as the sum of the properties of the

individual residues. Extensions of this model by including neighbor

interactions have led only to slight or even no improvement of the

prediction accuracy (Doytchinova et al., 2002; Peters et al., 2003).

In the context of 3D-QSAR the additive model was compared to a

model based only on ‘global’ structural features (Doytchinova et al.,
2005), which were calculated for the whole peptide and not for the

individual residues. This study showed that global features did not

perform as well as local, residue based features for binding affinity

prediction. The success of the additive model can be explained by

the structure of the MHC binding groove, which consists of nine

residue binding pockets located next to each other along the groove.

The peptide is bound in an extended conformation with one residue

of the peptide occupying exactly one binding pocket, thus the effect

of the interaction between the neighboring side chains is minimal.

Several structural search algorithms for the identification of low

energy peptide-binding conformations have been proposed. One

class of methods is based on the observation that for each MHC

allele there are certain conserved peptide ‘anchor’ residues which

bind tightly to specific MHC binding pockets. These approaches

(Rosenfeld et al., 2003, Tong et al., 2004, Logean et al., 2002)

consist of two main steps: first, placing the anchor residues in the

binding pocket and second, constructing the rest of the peptide

based on the anchor positions. A different class of methods is

based on the division of the peptides into backbone and side chains

(Ota et al., 2001, Altuvia et al., 1995, Schueler-Furman et al., 1998).

These methods use backbone conformations from experimental

structures and predict the side chain conformations either by thread-

ing or the use of rotamer libraries. Another study uses dead-end

elimination within a combinatorial build-up algorithm (Desmet

et al., 1997). The method, which is closest to our proposed method,

is a residue-based free-energy mapping approach (Sezermann et al.,
1996). Two other studies use Monte-Carlo annealing approaches to

dock peptides into the binding pocket (Liu et al., 2004) and use the

docking scores for prediction (Bordner et al., 2006).

Comparing sequence and structure-based methods, the latter have

the advantage that they are independent of the amount of experi-

mental binding data, but are too time-consuming for the screening

of large numbers of peptides. On the other hand, sequence-based

prediction methods are fast, but are strongly dependent on the

amount of binding data available for specific alleles. Thus currently

they achieve high performance only for the intensively investigated

alleles. This becomes even more serious for the quantitative pre-

diction of binding affinities because for this purpose large screening

experiments are necessary to produce comparable IC50 values for

the training of the models. Although such efforts are ongoing, they

will always be focused towards the most important alleles. Another

drawback of sequence based methods is their limited structural

interpretability, which is of crucial importance for the design of

peptide mimicking vaccines and drug like molecules.

Here we present a combined two-step structure and sequence-

based prediction method DynaPred, which allows at the same time a

fast prediction of MHC class I binders and an efficient construction

of docked peptide conformations. The prediction method uses two

feature matrices derived from structural calculations as basis for

support vector machine training: A local, position-dependent

(DynaPredPOS) and a global, position-independent (DynaPred)
matrix. The docking method is based on equilibrated, pre-calculated

structures for each amino acid in each of the binding pockets. So

far quantitative matrices used for the prediction of MHC-binding

peptides are based on sequence data, partially including biophysical

amino acid properties. Structure-based biophysical data were used

in the context of 3D-QSAR, which, however, only considers the

structural properties of the peptides, but not their interactions with

the binding pocket. We based the choice of our scoring-matrix

features on the linear energy approximation for the calculation of

binding affinities. Linear energy models (Aqvist et al., 2002) were

used in various studies and were successfully tested for predicting

the binding affinities of tri-peptides to OppA (Wang et al., 2002). In

the context of MHC-peptide binding, such approaches were applied

for the scoring of docked peptides (Logean et al., 2002, Sezermann

et al., 1996) and prediction based on docking results (Bordner

et al., 2006).

However, to our knowledge this is the first time that structure-

based interaction energy terms are used for a residue-based predic-

tion approach for peptide binding. A residue-based docking method

was presented for MHC-peptide complexes by Sezermann et al.,
1996. However, its discrete rotamer-based search algorithm leads to

many different peptide structures, all very similar in energy, and

thus extensive post-processing of these structures is necessary to

find the best conformer. We avoid this last step by the use of one

equilibrated residue side chain conformation, which was calculated

by molecular dynamics, instead of a discrete search algorithm.

We implemented and evaluated our approach for the most fre-

quently occurring allele HLA-A*0201 with 9-mer peptides.

2 METHODS

2.1 General strategy

The basic strategy behind our method is to approximate the binding free

energy of all 20 amino acids in each of the nine binding pockets of the MHC

binding groove using energetic information obtained by molecular dynamics

simulations. This information is used subsequently for the training of a

sequence-based predictive model. In addition, the structural information

obtained by the simulations is used for constructing the peptide-protein

complexes of the predicted binders. Our algorithm is based on a single

main assumption: The total binding affinity of a peptide can be approximated

as the sum of the binding affinities of its individual amino acids, neglecting

the effect of the neighboring residues (See ‘Introduction’ for the validity of

this assumption). This allows us to simulate each amino acid individually in

each binding pocket. Initial conformations of the individual residues bound

to the MHC protein are constructed from crystal structures. To stabilize the

peptide conformations, we extend the single residues to peptide-trimers and

dimers, by adding a glycine residue at both sides (for terminating residues

only on the non-terminating side). For side chains for which no bound

conformation was available, existing residues are mutated to the correspond-

ing amino acid. MD simulations are performed on the bound complexes as

well as on the individual molecules in solution. Important energy terms

reflecting the binding properties of the amino acids are calculated from

the simulation results and subsequently used for the construction of a

binding-free-energy-based scoring matrix (BFESM). This matrix contains

energy terms for each residue in each binding pocket and forms the basis for

the construction of two prediction models.

DynaPred: A structure and sequence based method
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Our approach allows us to predict MHC-binding peptides with the speed

of sequence-based methods, but on the basis of structurally derived energies.

In addition, the equilibrated MD structures serve as templates to enable fast

construction of the conformations predicted binding sequences.

Our proposed method can be summarized as follows:

(1) For a given MHC allele, the compatibility of each amino acid in each of

the nine binding pockets is examined thoroughly by MD simulations.

(2) A Binding-Free-Energy-Based Scoring Matrix (BFESM) is produced

by extracting values of energy terms important for binding from the

simulations.

(3) The position-based bound conformations are extracted from the

simulations for each amino acid type and saved in a data base.

(4) Experimental binding data together with the BFESM is used in the

training process to generate the prediction models.

Finally, prediction is a two step process: First, the query sequence is

classified as a binder or non-binder; then the bound conformation of a

predicted binder is generated.

2.2 Scoring matrix

For the construction of the Binding-Free-Energy-based Scoring Matrix

(BFESM) we use energy terms obtained by molecular dynamics simulations.

According to the linear energy model (Aqvist et al., 2002), the binding free

energy can be approximated by the difference between the interaction ener-

gies DGel and DGnp of the ligand in the protein-ligand complex (bound state)

and in solution (free state). We extend this model by adding the energy

contributions of the protein and DGint and TDSconf:

DGbind ¼ DGel þ DGnp þ DGint � TDSconf ð1Þ

(DGel ¼ electrostatic, DGnp ¼ nonpolar, DGint ¼ internal, TDSconf¼ entropic

contribution)

Thus the following energy terms are included in the BFESM:

(1) The electrostatic contribution, which consists of the electrostatic

interaction energy between the peptide and the MHC molecule and

a desolvation term:

DGel ¼ hVel
bound:p�li þ ðhVel

bound:p�soli � hVel
f ree:p�soliÞ

þ ðhVel
bound:l�soli � hVel

f ree:l�soliÞ
ð2Þ

(p ¼ protein, l ¼ ligand, sol ¼ solvent, Vel ¼ electrostatic energy)

(2) The non-polar (hydrophobic) contribution, which can be approximated

by change in the Solvent Accessible Surface area (SAS) upon binding:

DGnp / DSAS ð3Þ

A change in the surface area by 1 s
2 corresponds to approximately

10.45 kJ mol-1 (Chothia, 1974). The change in SAS can be calculated

as the difference in surface area between the complex and its

individual components in solution.

(3) Due to the restricted space in the binding pocket, the residue might be

forced to adopt a higher-energy conformation in the binding pocket

than in the solvent. This effect is accounted for by the differences in

the bond angle and torsion energies between the free and the bound

states:

DGint ¼ ðhVint
bound:pi � hVint

f ree:piÞ þ ðhVint
bound:li � hVint

f ree:liÞ ð4Þ

(4) The loss in conformational entropy, -TDSconf, can be approximated

using the empirical scale of Pickett and Sternberg (Pickett and

Sternberg, 1993). This model assumes that a solvent-exposed side

chain, whose relative accessibility (RA) is greater than 60%, can rotate

freely; whereas a buried side chain (RA < 60%) is restrained to one

rotamer. The RA is defined as:

RA ¼ SASsc
bound:l

SASsc
f ree:l

ð5Þ

The correspondence between RA and its energetic contribution was

taken from (Pickett and Sternberg, 1993).

In summary, to estimate the change in free energy, the energy values at the

right hand side of Eq. (2)—Eq. (5) are required. They are calculated for each

amino acid in each binding pocket from the MD simulations and used to

construct the BFESM.

2.3 Simulation setup

To calculate all energy contributions, simulations of all pseudo-peptide

MHC complexes and of the MHC molecule and all amino acids in solution

were performed. For the construction of the pseudo-peptides the PDB struc-

tures given in Table 1 were used. The structure of the MHC protein was

taken from PDB structure 1AKJ. Each energy value is calculated as the

ensemble average over the last 200ps of the trajectory after the system

equilibrium is reached.

2.3.1. Pseudo-peptide generation The amino acid to be investigated

(called the pivot residue) is embedded inside a short peptide (called pseudo-
peptide), which is either a 2-mer or 3-mer (see Fig. 1). 2-mers are used for

residues at the N and C-termini of the peptide, binding to the pocket 1 and 9.

In 2-mers the pivot residue has one neighboring glycine residue. For all other

binding pockets, 3-mers are used, consisting of the pivot residue and two

neighboring glycines.

For the pseudo-peptide construction all structures in Table 1 were super-

imposed with respect to the MHC backbone surrounding the binding pocket

(residue 1-180). The initial backbone conformations of the pseudo-peptides

were extracted from these structures. For this purpose the bound peptide

conformations were divided into di/trimers and the side chains of the first

and last residue of the di/trimer were replaced by hydrogen, resulting in the

two flanking GLY residues. For amino acids for which no experimental

structures were available, we mutated existing residues using the program

SCWRL3.0 (Canutescu et al., 2003).

Table 1. Crystal structures used for the initial backbone conformations of

the pseudo-peptides.

PDB Peptide Source Sequence Res. (Å)

1AKJ HIV reverse transcriptase ILKEPVHGV 2.65

1DUZ HTLV-1 TAX protein LLFGYPVYV 1.80

1HHG HIV-1 GP120 envelope protein TLTSCNTSV 2.60

1QRN Altered HTLV-1 TAX peptide P6A LLFGYAVYV 2.80

Fig. 1. Schematic representation of the pseudo-peptides used in the simula-

tions. 3-mer or 2-mer pseudo-peptides are constructed depending on the

pockets position (from p1 to pW).
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2.3.2 Simulation conditions All molecular dynamics simulations

were performed using GROMACS3.2 (Lindhal et al., 2001) and the

OPLSAA/L force field and explicit SPC water. Long range electrostatic

interactions were calculated using the Particle-Mesh Ewald method and

bond constraints were applied using LINCS, and the time step was set to

2 fs. For each simulation, first a steepest-descent energy minimization was

performed for 1000 steps. Then the system was solvated using a cubic box

with a minimum distance of 0.7 nm between the box boundaries and the

protein. The system was heated up from 0 to 300K in 100ps, before it was

equilibrated at 300K using NPT ensemble (Berendsen thermo- and barostat).

The total equilibration times were dependent on the flexibility of the side

chains (800–3000ps). After equilibrium was reached the simulations were

continued for another 200–400ps.

To approximate the constraining force of the remaining fragments of the

9-mer peptide on the pivot residue, we applied position restraints to certain

atoms of the peptide during the simulations. The restraints were chosen such

that the pseudo-peptide backbone was still able to move within a few Å to

span the space occupied by the different backbones of the structures in

Table 4 and to allow free rotation of the pivot residue. Thus, strong forces

(1000 kJ/(mol*nm)) were applied only to the heavy atoms of the flanking

glycine residues and weak forces (100 kJ/(mol*nm)) to the C- and

N-backbone atoms of the pivot residue.

2.4 Training and testing of the prediction models

2.4.1 Binding-Free-Energy-based Scoring Matrix The Binding-

Free-Energy-based Scoring Matrix (BFESM) is a quantitative matrix of

dimension 20 x (no-of-pockets) x (no-of-features). Each entry represents

one feature of a particular amino acid in a particular binding pocket. The

BFESM is used to generate the feature vectors for each given sequence in the

training set, all vectors together produce the feature matrix for model gen-

eration and prediction.

2.4.2 Prediction models Two feature matrices were constructed from

the BFESM: A local feature matrix, which uses all the residue and binding

pocket positional information from the scoring matrix and is thus called ‘the

position-dependent feature set’ (DynaPredPOS), and a global feature matrix,

for which the information from the BFESM is reduced, assuming that the

positional information can be neglected and that the same feature can be

summed up over all residues to give one value for each feature for each

peptide. This model, the ‘position-independent feature set’ (DynaPred), can

best be compared to the global features used in (Doytchinova et al., 2005;

Bordner and Abagyan, 2006). Both features sets were tested. For the training

of the support vector machines a radial kernel function were applied. The

models were implemented in R (R Devel. Core Team, 2005).

2.4.3 Data sets Two publicly available data sets were used in our

study: MHCPEP and SYFPEITHI. MHCPEP is a static database of MHC

peptide sequences (Brusic et al., 1998a). Non-binding data was obtained

from the author upon request. SYFPEITHI (Rammensee et al., 1999) is an

online database with over 4500 sequences and 250 motifs from naturally

processed peptides and T-cell epitopes. Since we have focused on binary

classification, all 9-mer binding sequences are considered as binders,

regardless of their binding specificity. Duplicated or contradicting entries

were removed. Since SYFPEITHI contains only binders, the non-binding

sequences from the MHCPEP data sets were included for prediction. The

training of the two models was performed on three data set combinations:

MHCPEP (binder + non-binder), SYFPEITHI (binder) + MHCPEP (non-

binder), and MHCPEP (binder + non-binder) + SYFPEITHI (binder).

2.4.4 Testing and Evaluation We evaluated the overall performance

of the prediction models, the robustness against data set size, and the gen-

eralizability with respect to other alleles. To evaluate the overall perfor-

mance leave-one-out cross validation was used. To test the robustness a

certain number of sequences was drawn randomly from the MHCPEP data

set and each model was tested on this data set by performing 10-fold cross

validation. In order to obtain an average accuracy that reflects the perfor-

mance of the method in that setting, we repeated the 10-fold cross validation

10 times.

To test the generalizability of the prediction models, binding sequences

were extracted for other HLA-A-type alleles than A�0201 from the

MHCPEP database. To ensure that the results are statistically reasonable,

we selected only alleles for which more than 10 unseen sequences

(sequences not in the HLA-A�0201 training set) were found in the data

base. We collected data for 12 alleles; 6 of them were not subtype-specific.

For evaluation on an independent data set, we chose the HIV-genome and

used the prediction models trained on the combined MHCPEP/SYFPEITHI

data set. For the prediction we used the complete HIV genome of the HXB2

strain (GenBank accession number K03455). The 3150 residues were

divided into MHC binding and non-binding regions according to the

HIV-Epitope map (Korber et al., 2005). Binding sequences were extracted

as indicated on the map, while the non-binding sequences were generated by

chopping 9-mer sequences (with eight overlapping positions) from the non-

binding regions, and deleting the duplicated entries. Only peptides for which

all 9 residues were located in either region (epitope or non-epitope) were

included in the performance evaluation.

2.5 Construction of peptide conformations

For the construction of the peptide conformations we calculated the average

conformations of the pivot residues from the last 200ps of the simulations.

To generate the docked conformation of the peptide, the saved conforma-

tions of each residue in the peptide sequence were linked together inside the

MHC-binding pocket of PDB structure 1AKJ (same structure as used for

the simulations). Then steepest-descent energy minimization was applied

to relax first the backbone and then side chains of the peptide. Afterwards

the potential energies of the energy-minimized peptide structures were com-

pared to the potential energies of the corresponding experimental structures

and the RMSD of the two was calculated.

3 RESULTS

3.1 Simulation results

Simulations were performed for all pseudo-peptide-MHC com-

plexes and the free molecules in solution. One major concern

about the use of molecular dynamics for the purpose of sampling

side chain conformations is that, due to the limited ability of the

MD approach to cross conformational barriers, the conformational

space of the residue might not be sampled adequately. We observed

that for cases in which the binding pocket size allowed changes in

the conformations of the side chains, these conformational changes

occurred during the equilibration period of the simulations (leading

to all-atom side chain RMSD values up to 3.01 s). This showed that

our approach is capable of sampling the conformational space of

the residues in the binding pockets. Nevertheless, after equilibrium

was reached all residues were settled at their most favorable

conformation. To examine quantitatively the stability of the final

conformations of the pseudo-peptides after equilibration, single-

linkage-clustering was performed for all pivot residue structures

Table 2. Data sets (HLA-A�0201 allele) used in this study.

Data set Binders Non-binders

MHCPEP 344 383

SYFPEITHI 243 0
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sampled within the last 200ps of the simulations. Using a cutoff of

1.0 s RMSD, only a single cluster was found for all pseudo-peptide

simulations except for three cases. However, in these cases 194 to

199 structures out of 200 belonged to the first cluster and only 1–

6 structures (0.5–3.0 %) were different. Since all additional clusters

are under-represented, it is clear that the adoption of the correspond-

ing conformations is only a rare event after the equilibrium is

reached. Still, it shows that the MD approach is capable of sampling

these conformations. Hence, we perceive that the average structure

of the last 200ps represents the most favorable conformation of a

bound pseudo-peptide in the binding pocket.

3.2 Prediction model

3.2.1 Overall performance To evaluate the performance of the

models, we used the 10-fold cross validation or LOO (leave-one-

out) techniques and calculated the Receiver Operating Character-

istics Curve (ROC) (Sing et al., 2005). We compared our models to

two models from the literature: the SVMHC model from (Dönnes

et al., 2002) and the YKW0201 model from (Yu et al., 2002). We

chose these two models for comparison, because in our method we

use the quantitative-matrix approach combined with the SVM

method. Thus it seemed sensible to compare our model to other

methods using the same techniques, but no structural information.

The SVMHC method uses SVM training of a simple binary vector

approach, whereas the YKW0201 method uses a quantitative

matrix, but no SVM. In addition, the YKW0201 model was previ-

ously compared to ANN and HMM methods and showed a com-

parable performance (Yu et al., 2002). Thus there was no need to

include these methods into our comparison as well.

Table 3 and Fig. 2 depict the overall performance of the different

methods obtained by LOO cross-validation. It can be observed that

all methods perform well (>77% accuracy and >0.85 AUC). The

SVMHC and YKW0201 methods show comparable performance

on all data sets used. Because these methods are position-

dependent—like all sequence based methods—they have to be

compared to our position-dependent model. It can be observed

that for all three data sets our position-dependent model,

DynaPredPOS, outperforms all other models. The same can be

seen in the ROC analysis as shown in Fig. 2. This shows that

energetic data derived from structural studies are well suited as

features for MHC-peptide binding prediction. The performance

of the position-independent model, DynaPred, is only slightly

lower than for the other three methods, despite the fact that no

position information is included in this model. This shows that

global structural features can be useful for binding prediction,

although they do not perform as well as position-dependent models.

Nevertheless, the position independent model is extremely robust

with respect to the data set used (differs less than 1.5% ACC). The

other methods show deviations of up to 5% accuracy (SVMHC)

between different data sets.

3.2.2 Robustness Due to the high polymorphism of MHC mole-

cules it is impossible to obtain large experimental binding data sets

for all existing alleles. Thus it is important to test the performance of

the methods with respect to their robustness against small data sets.

In Fig. 3 the performance of the four models is given for different

data set sizes. The results show that all methods except SVMHC

have a comparably stable performance if the data set has more than

50 binders and 50 non-binders. On the contrary, the SVMHC model

is highly dependent on the data volume, which is probably due to its

simple binary encoding approach. Again the position-independent

model shows the smallest variations above a data set size of 100

binders and 100 non-binders. Overall, the test shows that a data set

with at least 100 binders and 100 non-binders is necessary for

training a decent prediction model.

3.2.3 HIV-epitope prediction In the evaluation test on the HIV-

genome the following accuracies were reached: SVMHC 82.72%,

Fig. 2. ROC plots for overall performance evaluation using the MHCPEP

data set.

Table 3. Overall performance of the four prediction models using different data sets (ACC ¼ accuracy (TP + TN)/(TP + TN + FP + FN), SEN ¼ sensitivity

(TP/TP + FN), SPC ¼ specificity (TN/FP + TN), AUC ¼ area under the curve (ROC analysis), TP ¼ true positive, TN ¼ true negative, FP ¼ false positive,

FN ¼ false negative predictions).

Data set MHCPEP SYF + MHCPEP:NB MHCPEP + SYF

ACC SEN SPC AUC ACC SEN SPC AUC ACC SEN SPC AUC

SVMHC 0.78 0.81 0.76 0.86 0.81 0.84 0.79 0.90 0.83 0.91 0.73 0.88

YKW0201 0.82 0.89 0.76 0.88 0.81 0.68 0.89 0.91 0.84 0.89 0.76 0.89

DynaPred 0.77 0.77 0.78 0.87 0.78 0.67 0.84 0.85 0.79 0.88 0.66 0.85

DynaPredPOS 0.85 0.84 0.86 0.91 0.88 0.84 0.91 0.93 0.87 0.90 0.83 0.92
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YKW0201 82.11%, DynaPred 69.68%, DynaPredPOS 85.45%.

Thus, the performance of the three position-dependent models is

comparable to their performance on the training data set. The

position-independent model shows a lower performance, which

is surprising, because in all other tests it proved to be the

more robust of our two models. Overall, the data shows that our

models do perform nearly as well on independent data set as on the

training data.

3.2.4 Generalizability The last test we performed on the four

methods was a generalizability test on different HLA-A-type alle-

les. In Fig. 4 the percentage of correctly predicted binders by the

models trained on the combined data set is given for the different

alleles. It can be observed that in general the position-independent

model considerably outperforms all other models, except for A2,

which is the supertype of HLA-A*0201, and thus contains mainly

HLA-A*0201 sequences. The prediction capabilities of SVMHC,

YKW0201, and our position-dependent model are mostly between

10–30% implying that cross-allele prediction is not feasible for

them.

3.3 Construction of peptide conformations

The last step of our prediction algorithm is the construction of bound

peptide conformations for all predicted binding sequences. For test-

ing this step, we generated bound conformations for all peptide

sequences of the structures given in Table 4 by connecting the

saved residue conformations from the simulation runs and per-

forming a short energy minimization. At this point we abstained

specifically from further structural refinement, because we wanted

to evaluate two points crucial for our method: First, are we able to

construct a decent peptide backbone structure by simply ‘stitching’

together the pivot residue conformations and subsequent energy

minimization. This was not obvious at the beginning, because

the pseudo-peptide backbone was still able to move within a few

Å even with the restraints applied. Second, if we were able to do so,

is the overall energy of the constructed peptides comparable to the

energies of the experimental peptide structures. This would be a

prove for the validity of our additive single residue approach and in

addition, is a prerequisite for a possible use of the constructed

peptides for further refinement and the calculation of binding affini-

ties from the complex structures.

For this evaluation, we calculated the backbone RMSD and the

differences in the potential energies between the constructed pep-

tides in the binding groove and the peptides in the experimental

structures. The RMSD values are given in Table 4. RMSD1AKJ

provides a measure for the difference between the backbones of

the experimental structures and the backbone of 1AKJ. RMSDGen

compares the backbone of the constructed peptides to the crystal

structures. Comparing the data shows that the deviation of our

constructed backbone structures from the experimental structures

is comparable to the variation between the experimental structures.

This proves that even with this rather simple approach we can

generate decent backbone peptide structures based on our residue

conformations.

To investigate the correlation between the energies of the con-

structed and experimental structures, we compared the potential

energies of the bound peptide structures for both sets. The correla-

tion plot is shown in Fig. 5. A correlation of 0.81 was found between

the energies, validating that the energies derived from our single

residue conformations are suited for prediction and ranking pur-

poses. However, a general energy setoff can be observed in the plot.

This is due to two reasons: First, a rather high average RMSD value

(3.8 s, data not shown) for the solvent exposed side chains was

observed. The treatment of these residues posed also a problem for

all previously reported structural studies, due to the lack of solvent.

Thus in most studies the RMSD of the solvent exposed residues is

either in the same range as reported here or these residues are placed

according to known X-ray structure conformations. Second, during

the minimization of the peptide backbone, the side chain confor-

mations are distorted. Due to the simple refinement strategy used,

the side chains might not re-equilibrate into their global, minimum

conformation, but rather a local minimum. However, the average

RMSD for the buried anchor side chains is only 1.1 s. Thus, both

RMSD values—backbone and buried side chains—are in the same

range as in other docking approaches.

4 DISCUSSION

We present a new combined structure- and sequence-based method

for the prediction of MHC-binding peptides, in which residue-based

energy terms from MD simulations are used as features to train a

position-dependent (DynaPredPOS) and a position-independent

(DynaPred) prediction model for peptide-MHC class I binding

using SVMs. The performance of the prediction models was tested

successfully on the HIV genome as an independent test set. Our

position-dependent model outperforms the two other sequence-

based models in our evaluation, validating that structure based

energies are well suited as features for binding prediction. The

position-independent model showed a lower performance (�5%

accuracy) than the position-dependent models, but had a much

higher generalizability towards other HLA-A-type alleles. This is

in agreement with the performance of other prediction models based

only on global features (Doytchinova et al., 2005; Bordner and

Abagyan, 2006). The high generalizability of methods based on

global features can be explained by the fact that for HLA-subtypes

Fig. 3. Accuracy (%) of the 10-fold cross validation results for the training of

the four models given in Table 3 using different data set sizes. The numbers

correspond to the size of each of the two sets (binders (non-binders)).

DynaPred: A structure and sequence based method

e21



often only one or two of the nine binding pockets have different

binding site residues. These local differences do strongly affect

position-dependent methods, but are averaged out by the use of

global features. The generalizability of prediction methods is highly

desirable because of the polymorphism of the MHC molecules and

the need of ‘supertype’ MHC binders for purposes like vaccine

design. In addition, there is still a severe lack of experimental

binding data for less common HLA-types, thus preventing the

training of prediction models for these types. This makes highly

generalizable models, which also work for these HLA-types, an

alternative. However, the generalizability comes at the price of

lower accuracy (about 5% less). Thus our prediction approach,

which uses the same features for position-dependent and position-

independent prediction models, and thus allows using either

model depending on the allele and purpose of the study, may be

an attractive choice.

We showed that with our molecular-dynamics-based approach

it is possible to sample the residues conformational space within

each binding pocket adequately. Based on these simulations, we are

able to construct decent conformations of bound peptides, which

have RMSD values that are comparable with the results of other

docking studies. In addition, the correlation between the potential

energies of the constructed peptides and the potential energies

for the corresponding experimental structures is as high as 0.81.

This validates the use of our equilibrated residue structures for

prediction as well as for peptide construction and is in agreement

with a former study, in which a linear energy approach based on

MD simulations performed very well for the calculation of free

energies of binding of small peptides to OppA (Wang et al.,
2002). The low RMSD values and high energy correlation obtained

Fig. 4. Correctly predicted binders (%) by the four prediction models from Table 3 trained on the combined data set (MHCPEP + SYF) on various HLA-A-type

alleles. The alleles are ordered according to the number of peptide sequences available for the specific allele.

Table 4. Backbone-RMSD (Å) between the generated peptides and the crys-

tal structures (RMSDGen) and between the experimental structures and 1AKJ

(RMSD1AKJ).

PDB Resolution Sequences RMSD1AKJ RMSDGen

1AKJ 2.65 ILKEPVHGV 0.00 1.18

1AO7 2.60 LLFGYPVYV 1.22 1.58

1B0G 2.50 ALWGFFPVL 1.23 1.41

1BD2 2.50 LLFGYPVYV 1.24 1.59

1DUZ 1.80 LLFGYPVYV 1.33 1.68

1HHG 2.60 TLTSCNTSV 1.67 1.38

1HHI 2.50 GILGFVFTL 1.38 1.67

1HHJ 2.50 ILKEPVHGV 0.52 1.29

1HHK 2.50 LLFGYPVYV 1.29 1.69

1I1F 2.80 FLKEPVHGV 0.50 1.32

1I1Y 2.20 YLKEPVHGV 0.66 1.41

1I7R 2.20 FAPGFFPYL 1.32 1.57

1I7T 2.80 ALWGVFPVL 1.17 1.62

1I7U 1.80 ALWGVFPVL 1.26 1.76

1IM3 2.20 LLFGYPVYV 1.29 1.61

1JHT 2.15 ALGIGILTV 1.46 1.32

1OGA 1.40 GILGFVFTL 1.62 1.67

1QRN 2.80 LLFGYAVYV 1.29 1.84

1QSE 2.80 LLFGYPRYV 1.17 1.33

1QSF 2.80 LLFGYPVAV 1.10 1.63

Average RMSD 1.14 1.53

Fig. 5. Correlation between the potential energy of the constructed structures

and the crystal structures (kJ/mol).

I. Antes et al.

e22



for the constructed peptides are very promising, especially con-

sidering that only a simple approach of concatenation and energy

minimization was used. Due to the pre-calculation of the residue

structures, the concatenation and minimization is extremely fast,

compared with other docking methods. Thus our method provides

a fast alternative to generate the initial docked structure which can

be refined subsequently for binding affinity prediction. However,

the efficiency of our method comes at a price, which is the necessity

to pre-calculate the bound conformations of the single residues for

each binding pocket. Thus to use our method for other protein

targets these conformations must first be calculated for this target.

This distinguishes our method considerably from other docking

methods such as Liu et al. 2004 and Bordner et al. 2006. However,

the purpose of this work was not to develop a general protein-

peptide docking method, but to improve MHC/peptide binding pre-

diction by the use of structural features. For this purpose the higher

compute-time efficiency of our approach is more important than

transferability. In addition, it is still an open question to what extend

new simulations need to be performed to compute bound peptide

conformations for other MHC alleles, especially if the allele-

specific binding pocket mutations are conservative or only one

or two side chains differ in the binding pocket. There are several

other interesting topics to be investigated in the future: For example,

like all other structural approaches, we are experiencing problems

with the treatment of the solvent-exposed residues. To solve this

problem, further refinement strategies should be investigated. In

addition, the performance of our method for regression should be

evaluated and it would be interesting to try to further improve the

accuracy of the structure based position-independent model.
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ABSTRACT

Motivation: Carbohydrate sugar chains, or glycans, are considered

the third major class of biomolecules after DNA and proteins. They

consist of branching monosaccharides, starting from a single mono-

saccharide. They are extremely vital to the development and func-

tioning of multicellular organisms because they are recognized by

various proteins to allow them to perform specific functions. Our

motivation is to study this recognition mechanism using informatics

techniques from the data available. Previously, we introduced a

probabilistic sibling-dependent tree Markov model (PSTMM), which

we showed could be efficiently trained on sibling-dependent tree

structures and return the most likely state paths. However, it had

some limitations in that the extra dependency between siblings caused

overfitting problems. The retrieval of the patterns from the trained

model also involved manually extracting the patterns from the most

likely state paths. Thus we introduce a profilePSTMM model which

avoids these problems, incorporating a novel concept of different

types of state transitions to handle parent-child and sibling dependen-

cies differently.

Results:Our new algorithms are more efficient and able to extract the

patterns more easily. We tested the profilePSTMMmodel on both syn-

thetic (controlled) data as well as glycan data from the KEGGGLYCAN

database. Additionally, we tested it on glycans which are known to be

recognized and bound to proteins at various binding affinities, and we

show that our results correlate with results published in the literature.

Contact: kkiyoko@t.soka.ac.jp

1 INTRODUCTION

Carbohydrate sugar chains, or glycans, are considered the third major

class of biomolecules after DNA and proteins. They consist of

branching monosaccharides, starting from a single monosaccharide,

usually bound to a protein on the cell surface. They are extremely

vital to the development and functioning of multicellular organisms

because they are recognized by various proteins to allow them to

perform specific functions. Oftentimes, these functions change

depending on the different glycans that are bound to the protein.

Although these glycans are known to be vital, due to their

structural complexity, they are not as well understood as DNA

or protein sequences. Within the last few years, however, a

major movement to advance bioinformatics for glycans has been

underway. Thanks to the data left by the CarbBank project [8],

resources such as KEGG (Kyoto Encyclopedia of Genes and

Genomes) [14,18], CFG (Consortium for Functional Glycomics),

glycosciences.de [20], and now the EuroCarbDB resource, have

been able to compile information on glycans quickly. These

resources enable informatics techniques to be directly applied to

glycan data to aid researchers to better understand the functions and

structures of these complicated molecules. In the past couple of

years, this field which we dub glycome informatics has taken off,

with the development of glycan structure comparison [3] and score

matrix [1] algorithms, a Composite Structure Map (CSM) [15] for

delineating all possible carbohydrate structures, and mass spectra

prediction algorithms [11].

It is generally understood that glycans are recognized by various

proteins (lectins), which allow them to take on a variety of functions.

This recognition mechanism is still currently being investigated

by many glycobiologists [17,19,24] for various carbohydrate-

binding proteins. Our aim is to study this mechanism using

informatics techniques from the data available. Towards this aim,

we presented our first work on capturing patterns in glycan struc-

ture data in the form of a probabilistic model containing sibling-

dependencies, called PSTMM for probabilistic sibling-dependent

tree Markov model [2,22]. We added an additional dependency

to the hidden tree Markov model [7] between consecutive siblings

in order to capture the ordering of children, and we were able to

develop sufficiently efficient algorithms to train this model.

PSTMM utilized a set of states that output a distribution of a set

of labels, where any state could transition to any other state.

This provided flexibility such that any pattern in any arrangement

could be learned. However, there were several drawbacks. First,

by allowing all states to transition between all states, the computation

time was cubic on the order of states. Although this was still within

the practical maximal bounds for a probabilistic model, it is still

rather expensive. Second, although an algorithm to extract the

most likely state paths was provided, we still required the manual

extraction of patterns from these paths. That is, we were left with the

most likely paths, but the interpretation of what patterns from the data

these corresponded to required some manual efforts. Third, the

increased dependency between siblings added the risk of overfitting

to the data unless sufficiently large amounts of data were examined.

In this work, we introduce a model that overcomes these draw-

backs. Considering how profile hidden Markov models [10]

improved on hidden Markov models [9] simply by incorporating

new types of states whose positions were fixed, we could consider a

similar improvement to PSTMM. However, this is insufficient (and

uninteresting) as a new model. Our new model is in fact signifi-

cantly different because not only did we add new types of states, we

needed to consider the sibling relationships and parent-child
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relationships differently. We needed to be able to distinguish

between these two types of transitions in this new model because

of the fixed positions of the states. This novel technique of utilizing

different types of state transitions completed our new model. We

could then replace the original algorithms with new ones, making

them more efficient and able to extract patterns more easily.

Because the states are fixed in this model, it can also avoid over-

fitting problems that may occur when many dependencies exist.

Here, we present this new model called profilePSTMM and

provide the new algorithms used to train it. We also tested this

model on both synthetic (controlled) data as well as glycan data

from the KEGG GLYCAN database. Additionally, we tested it on

glycans which are known to be recognized and bound to proteins at

various binding affinities, and we show that our results correlate

with results published in the literature. Furthermore, we evaluated

how well profilePSTMM can distinguish between different classes

of glycans. We discuss these drastic improvements in performance.

Finally, we discuss how this new model may be applied to other

problems in glycobiology.

2 BACKGROUND

Before introducing our new model, it is necessary to clarify the

motivation behind our work as well as the notation used in our

model. So we will briefly describe glycan structures and our

previous PSTMM model in this section.

2.1 Notation and terminology

The following terminology will be used throughout this paper. We

refer to a tree as an acyclic connected graph with vertices of the tree

defined as nodes. A tree is rooted if it branches off from a single

node, called the root. Any node x on a unique path from the root to

y is called the ancestor of y, making y a descendant of x. Any

descendant y that is connected to x by a single edge is a child of

x, making x the parent of y. Children of the same parent are siblings
and a node with no children is a leaf. A subtree of tree T is a tree

whose nodes and edges are a connected subset of T, and an ordered
tree is the rooted tree where the children of each node are ordered. A

labeled tree is a tree in which a label is attached to each node. All

trees in this paper are considered ordered, labeled and rooted trees.

The level of a node in a tree is defined as the distance of the node

from the root. Thus the root is at level 0, its children are at level 1,

whose children are at level 2, and so on.

The following notation for equations given later to describe our

model will be used. Let T ¼ fT1‚ . . . ‚TjTjg be a set of labeled

ordered trees, where Tu ¼ ðVu‚EuÞ, Vuð¼fxu
1‚ . . . ‚xu

jVujgÞ is a set

of nodes, and Eu is a set of edges. For a node xi, we may simply use

the notation i when it is clear from the context. xu
1 is the root of tree

Tu, jVj ¼ maxujVuj, tuðiÞ is a subtree of Tu, having xu
i as the root of

tuðiÞ, and CuðpÞ � f1‚ . . . ‚ jCuðpÞjg is a set of indices of children

of xu
p in Tu. Let jCj ¼ maxu‚ pjCuðpÞj. Let xu

 ðpÞ and xu
!ðpÞ be the

eldest and youngest child of node p, respectively. Each node xu
j has

label ou
j 2 S, where S ¼ fs1‚ . . . ‚sjSjg is the set of labels (i.e., the

alphabet) applied to the nodes. For node j, we will use i, k and p to

refer to the immediately elder sibling, the immediately younger

sibling, and the parent, respectively. Also note that the superscript

u in our notations (such as node xu and label ou
j ) referring to a

variable in tree u will often be ommitted in the text when understood

from the context.

2.2 Glycans and glycobiology

A basic overview of glycobiology can be found in a book by Varki

et al. [24], so we will only review the basic structures and classes of

glycans which we refer to in this work.

2.2.1 Glycan structures The Consortium for Functional

Glycomics (CFG) is an international consortium of research

institutes and universities worldwide, focusing on providing a

central and freely available resource of glycan-related data includ-

ing mass spectroscopy data and glycan array expression data. The

CFG has established a standard notation for common mono-

saccharides, as given in Figure 1. We will be using this notation

in the text.

Each monosaccharide is connected to one or more monosaccha-

rides, forming a branched structure that as a whole is considered a

glycan. Glycans are usually drawn from right to left, with the root

located at the right, and children branching out to the left. Thus when

referring to linkages in a glycan drawn in this way, we will specify

them from left-to-right (as if reading them in English), towards the

root. Monosaccharides are linked to one another in various confor-

mations, indicated by the anomer (a or b) and hydroxyl group to

which they are linked. Oftentimes these detailed conformations are

unknown, thus necessitating a probabilistic model for capturing

patterns as opposed to algorithms that require the details to be

known in advance. Note that in this paper, since sequences are

usually read left to right, we will draw our model from top-down

with the root at the top so that siblings can be read left-to-right, while

glycans and profiles will be drawn from right to left.

2.2.2 Glycan classes Glycans are currently classified according

to their core structure, which is the subset of common structures

around the root monosaccharide. The most commonly studied class

is the N-Glycan class, which is characterized by a Manp3-GlcpNAc2

structure as its core. The O-Glycan class is characterized by a smaller

core structure which is also subdivided into several subtypes.

The list of glycan classes and their sizes are given in Table 1.

We make note here that classifications are mainly determined

manually by an expert, especially for those that do not involve a

core structure. Thus, these classifications are not ‘‘perfect’’ mean-

ing that there may be many discrepancies due to human error. The

classifications in KEGG GLYCAN are also hierarchical, so for

example GPI anchors are a subclass of Glycoproteins. However

not all Glycoproteins could be subclassified, so the most detailed

class names were counted, and some glycans can also be classified

into more than one class, so they are multiply-counted in this table.

2.3 PSTMM

The probabilistic sibling-dependent tree Markov model was shown

to be able to capture patterns in tree structures, especially glycans

Fig. 1. A list of the standard symbols for monosaccharides, as defined by the

CFG (see text for details).
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[2,22]. Algorithms were also developed which could estimate the

parameters and find the most likely paths within the practical

bounds of the maximum known limits. In comparison to tree Mar-

kov models, PSTMM included dependencies between siblings such

that the order between them could be maintained, as illustrated in

Figure 2. In addition to the classic forward and backward parameters

of Baum-Welch, upward and downward parameters were incorpo-

rated to efficiently estimate the parameters. A tree’s parameters

would be estimated starting from the leaves and traveling up the

parents, and forward and backward between siblings, up to the root.

Then the downward parameter would be estimated in a breadth-first

fashion from the root going back down. These four parameters were

used to calculate the expectation values for the state transition

probability, output label probability and initial state probability

values. The maximum likelihood value would then be estimated,

the probability parameters updated using the expectation values,

and the process would be repeated until the maximum likelihood

converged. Finally, most likely state paths could be estimated by

finding the states providing the highest probability values.

Experiments using PSTMM were performed on both syntheti-

cally generated tree structures and glycan structures, and it was

shown that patterns could indeed be captured better than previous

models. In fact, the model was trained on the most popular classes of

glycans called N-Glycans, and PSTMM found the three known

subclasses of N-Glycans: hybrid, high-mannose, and complex

type, which are characterized by patterns at their leaves. Thus

the utility of this model in bioinformatics was illustrated.

3 METHOD

Although PSTMM could find the subclasses of N-Glycans from within the

data, it was a tenuous procedure to extract these patterns. Additionally, the

algorithm to estimate the parameters iterated through all possible state tran-

sitions, which resulted in very long computation times especially as more

states were added. Thus, we rebuilt the model into a new model which we

introduce in this section.

3.1 ProfilePSTMM structure

In order to describe the structure of profilePSTMM, it would help to describe

the simpler profileHMM structure first. Figure 3 illustrates the profileHMM

structure using our notation combining the match and delete states at the

same positions. There is a Begin and End state from which the model begins

and ends, respectively. Insert states loop back to themselves to handle con-

secutive gaps in the sequence.

Our new model called profilePSTMM also incorporates new insert

and delete states in addition to the existing match states, whose positions

are fixed in the state model. These three states make up a set, which is fixed

at a specific position in the state model. We use Mi, Ii, and Xi to indicate

match, insert and delete states, respectively, at position i. The challenge that

we were then faced with was how to distinguish between transitions from

parent to child and between siblings between the fixed positions. So we came

upon the idea to introduce different types of state transitions. Figure 4

illustrates our new model. These new state transitions are called Down

for parent-child transitions and Right for sibling-sibling transitions. We

can consider the Right transitions as the siblings of one family, correspond-

ing to one profileHMM. When a child node i is not a leaf, when CðiÞ > 0, it

would have Down transitions as if it were state q in the figure. These state

transitions are differentiated in the figure according to color, and the black

lines indicate that both transitions occur between the indicated states. A

Begin state transitions down to the root node n1. In fact, the Begin state

also serves as an End state in our model since the parameters are calculated

and accumulated there.

3.2 Parameters and auxiliary probabilities

ProfilePSTMM has three probability parameters, p, a and b. The initial state

probability p½sl� ð¼ Pðzu
1 ¼ sl; �ÞÞ is the probability that state (zu

1) of

root node xu
1 is sl, the state transition probability a½fsq‚slg‚sm� ð¼ Pðzu

j ¼
smjzu

p ¼ sq‚zu
i ¼ sl; �ÞÞ is the conditional probability that the state of a node

xu
j is sm given that the states of its parent (xu

p) and immediately elder sibling

(xu
i ) are sq and sl, respectively, and the label output probability b½sl‚sh�
ð¼ Pðou

j ¼ shjzu
j ¼ sl; �ÞÞ is the conditional probability that the output

label of node xu
j is sh given that the state of xu

j is sl.

These probability parameters are estimated using the same forward,

backward, upward and downward probabilities as PSTMM, except now

taking into consideration the state position and the different types of states

and state transitions. The forward probability Fjðsq‚slÞ is the probability

that for node j, all labels of the subtrees of each of the elder siblings

are generated, the state of node j is sl, and the state of parent p is sq.

The following forward probability equations are now defined as follows

Table 1. Glycan classes in KEGG Glycan as of Feb. 2, 2006. Only the lowest

level class names were used to calculate the statistics

Class Total Num. Avg. Num. Nodes

N-Glycans 2173 11.0

Sphingolipid 931 6.8

Glycoside 878 3.4

O-Glycan 778 6.1

LPS 767 6.7

Glycosaminoglycan 580 7.6

Polysaccharide 473 6.6

Glycolipid 163 4.0

GPI anchor 134 6.4

Glycoprotein 106 4.4

Oligosaccharide 77 5.1

Neoglycoconjugate 54 5.1

Glycerolipid 20 3.6

Fig. 2. PSTMM model where dependencies exist between consecutive

siblings.

Fig. 3. ProfileHMM structure where match and delete states are combined.
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depending on the state type.

Fjðsq‚MlÞ ¼

If xj ¼ x ðpÞ then a½fsq‚�g‚Ml�‚
o:w:

Fiðsq‚MkÞUiðMkÞa½fsq‚Mkg‚Ml� þ
Fiðsq‚ IkÞUiðIkÞa½fsq‚ Ikg‚Ml� þ
Fiðsq‚XkÞUiðXkÞa½fsq‚Xkg‚Ml�

8>>>><>>>>:
where xi is the older brother of xj and sk is the state of xi.When sl is an insert

state, we need to take into consideration the self-loop. Thus the formula

becomes

Fjðsq‚IlÞ ¼

If xj ¼ x ðpÞ then a½fsq‚�g‚Il�‚
o:w:

Fiðsq‚MlÞUiðMlÞa½fsq‚Mlg‚Il� þ
Fiðsq‚IlÞUiðIlÞa½fsq‚ Ilg‚ Il� þ
Fiðsq‚XlÞUiðXlÞa½fsq‚Xlg‚Il�

8>>>><>>>>:
where xi is the older brother of xj. The forward parameter when sl is a delete

state is the same as for when it is a match state.

The backward probability Bjðsq‚smÞ is the probability that for node j, all

labels of the subtrees of each of the younger siblings and node j are gen-

erated, sm is the state of j, and sq is the state of its parent. For the backward

probability, the same equation can be used for any type of state sk , as follows:

Biðsq‚skÞ ¼

If xu
i ¼ xu

!ðpÞ then UiðskÞ‚
o:w:

UiðMkÞa½fsq‚skg‚Ml�Bjðsq‚MlÞ þ
UiðIkÞa½fsq‚skg‚Ik�Bjðsq‚IkÞ þ
UiðXkÞa½fsq‚skg‚Xl�Bjðsq‚XlÞÞ

8>>>><>>>>:
where xj is the younger brother of xi and sl is the state of xj.

The upward probability UpðsqÞ is the probability that all labels of subtree

tðpÞ are generated and that the state of node p is sq. The upward probability is

also different for different state types. Here we combined the different

options into a single equation. The label output probability when state sq

is a delete state is set to 1 (0 in log values).

UpðsqÞ ¼

If CuðpÞ ¼ ; then

if sq is a delete state then 1

else b½sq‚op�‚
o:w:

if sq is a match or insert state then

b½sq‚op�ðFjðsq‚MmÞBjðsq‚MmÞ þ
Fjðsq‚ImÞBjðsq‚ ImÞ þ
Fjðsq‚XmÞBjðsq‚XmÞÞ

else if sq is a delete state then

ðFjðsq‚MmÞBjðsq‚MmÞ þ
Fjðsq‚ImÞBjðsq‚ ImÞ þ
Fjðsq‚XmÞBjðsq‚XmÞÞ

8>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>:
where sm is the state of child xj 2 CuðpÞ.

Finally, the downward probability DjðslÞ is the probability that all labels

of a tree except for those of subtree tðjÞ are generated and that the state of

node xj is sl. The downward probability parameter is defined as follows.

DjðslÞ ¼

If j is the root then p½sl�‚
else if j ¼ x!ðpÞ then

DpðMqÞb½Mq‚op�FjðMq‚slÞ þ
DpðIqÞb½Iq‚op�FjðIq‚slÞ þ
DpðXqÞFjðXq‚slÞ:

o:w:
DpðMqÞb½Mq‚op�FjðMq‚slÞ
fa½fMq‚slg‚Mm�BkðMq‚MmÞ þ
a½fMq‚slg‚ Il�BkðMq‚IlÞ þ
a½fMq‚slg‚Xm�BkðMq‚XmÞg þ

DpðIlÞb½Il‚op�FjðIl‚±slÞ
fa½fIl‚slg‚Mm�BkðIl‚MmÞ þ
a½fIq‚slg‚±Il�BkðIq‚ IlÞ þ
a½fIq‚slg‚Xm�BkðIq‚XmÞg þ

DpðXqÞFjðXq‚slÞ
fa½fXq‚slg‚Mm�BkðXq‚MmÞ þ
a½fXq‚slg‚ Il�BkðXq‚ IlÞ þ
a½fXq‚slg‚Xm�BkðXq‚XmÞg:

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:
where xk is the younger brother of xj and sm is the younger brother state of sl.

As in PSTMM, the profilePSTMM probability parameters can be

calculated in a backward-breadth-first fashion from leaves to root for

upward, forward and backward, and then the downward probability para-

meter can be calculated from the root back down to the leaves. Thus a similar

Expectation-Maximization (EM) algorithm [6] to calculate the maximum

likelihood is used. The pseudocode for parameter estimation is given in

Figure 5.

Each parameter is calculated not only through the given tree structure but

also via the structure of the state model. The pseudocode is simplified and

does not specify the details for self-loop transition parameter calculations,

but the basic idea is that for insertion states, the state position in the state

model does not change. Note that compared to the algorithm for PSTMM,

in our new algorithm, we do not need to traverse all states to call the find F,

find B, find U, or find D functions since the state to evaluate is given in the

arguments. The fixed state positions allow us to specify the states according

to position directly. From these changes, it should be apparent that the

computation time is drastically decreased.

3.3 Likelihood estimation

The likelihood for a given tree can then be calculated from a set of parame-

ters using the Begin (which can be set as a match state) and insert states at

position 0 and the upward probability for the root node:

LðT; �Þ ¼
XM‚ I

s

p½s0�U1ðs0Þ:

Accordingly, the likelihood of a set of trees is the product of the likelihood of

each tree: LðT; �Þ ¼
Q

u LðTu; �Þ.

3.4 EM algorithm

The expectation values for p, a, and b are then computed, with which the

original values can be updated using the EM algorithm [6]. We illustrate how

these expectation values are calculated with one example for gðsq‚sm‚slÞ,
which is the expectation value that the state of a node is sl and that the states

of its parent and immediately elder sibling are sq and sm, respectively. Let us

define Hjðsq‚sm‚slÞ ¼ Fjðsq‚smÞUjðsmÞa½fsq‚smg‚sl�Bkðsq‚slÞ. Then for each

state type, the calculations are as follows:

gðfsq‚smg‚MlÞ ¼
P

p:CðpÞ DpðsqÞb½sq‚op�
P

j2CðpÞ\j ðpÞ Hjðsq‚sm‚MlÞ
LðT; �Þ ‚

where xk is the younger brother of xj.

Fig. 4. New profilePSTMM state model with match, insert and delete states.

New state transitions are called Down for parent-child transitions and Right

for sibling-sibling transitions. These state transitions are differentiated

according to blue and red color, and the black lines indicate that both tran-

sitions occur between the indicated states. Because match and delete states

are always found together, they have also been combined for clarity. This

figure represents just one downward step for one parent and its children.
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Similarly, for the insertion state type:

gðfsq‚smg‚ImÞ ¼
P

p:CðpÞ DpðsqÞb½sq‚op�
P

j2CðpÞ\j ðpÞ Hjðsq‚sm‚ ImÞ
LðT; �Þ

and for deletion:

gðfsq‚smg‚DlÞ ¼
P

p:CðpÞ DpðsqÞ
P

j2CðpÞ\j ðpÞ Hjðsq‚sm‚±DlÞ
LðT; �Þ :

In the maximization step, we update âa as follows:

âa½fsq‚smg‚sl� ¼
P

u guðfsq‚smg‚slÞP
u

P
l
0 guðfsq‚smg‚sl0 Þ

:

The procedure for computing the expectation values also traverses the state

model, so the computation time does not need to iterate through all

combinations of states as before.

4 RESULTS

We tested our new model on both synthetically generated data and

real glycan data from the KEGG GLYCAN database. Profiles are

retrieved by reading the label output probabilities for all labels in the

alphabet at each match position.

4.1 Synthetic data

In order to clearly evaluate the performance of profilePSTMM,

we generated a controlled data set of tree structures containing a

specific profile. We tested this on three different profiles, each of

varying complexity. We then retrieved the learned profiles to see

how well they compared with the original profiles. Accuracy,

precision and AUC were also calculated by comparing the log

likelihood values of the positive dataset with the negative dataset,

which was generated based on the parent-child label distributions of

the positive dataset. Accuracy is the threshold at which the positive

and negative test scores are best discriminated, and precision is the

proportion of the correctly predicted examples to the number of

examples predicted to be positive. AUC, or the area under the ROC

(Receiver Operator Characteristic) curve [12,13], is calculated by

first sorting the examples by their computed likelihoods and then by

Equation 1.

AUC ¼
Rn � nn · ðnnþ1Þ

2

nn · np
‚

where nnðnpÞ is the number of negative (positive) examples and

Rn is the sum of the ranks of the negative examples. We note that

nn ¼ np in our experiments. Figure 6 illustrates the profiles we

tested.

4.1.1 Synthetic Experiment Setup For each profile, 50 trees were

generated by the following procedure. Take the profile as a tree

and randomly generate zero to two levels between the second

and third levels, labeling them randomly with symbols from the

set s ¼ f0‚1‚ . . . ‚sg where s ¼ 7 for Profile1 and s ¼ 5 for Profile2

and Profile3. Additionally, random siblings are added between the

leaves up to three children. Taking these 50 trees as the positive data

set, we also generated 50 trees for the negative data set with which

to compare performance. These trees in the negative set were gen-

erated based on the parent-child label distributions of the positive

set.

We also fixed the shape of the state model, as in Figure 7 (without

the Begin state). For each node at the first and second levels,

Fig. 5. Pseudocode for calculating F, B, U and D.

Fig. 6. Synthetic data profiles tested.
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CðiÞ ¼ 2. For the third level nodes, CðiÞ ¼ 1, and the leaves are of

course CðiÞ ¼ 0. This would be sufficient to account for the extra

levels in the positive dataset.

4.1.2 Resulting Synthetic Profiles Learned As a result, the pro-

files that were learned from these three data sets are given in

Figure 8. It is evident from these profiles that the eldest child

most strongly learns the data and probably controls the amount

of data learned. For example, the profile learned from Profile1

emphasizes 3 and 5 at the eldest leaves of both main branches.

Similarly, the profile of Profile2 is learned in the elder main branch,

as the younger main branch is basically random. The same can be

said for Profile3.

Finally, the accuracy, precision (at sensitivity of 0.3), and AUC

values of these data sets are given in Table 2. The reason that

Profile2 has the worst performance may be due to the two 1  
0 linkages that appear in the original profile. This causes the nega-

tive dataset to contain this linkage more frequently, thus decreasing

the discrimination performance.

4.1.3 Computation Time In order to assess the efficiency of our

new model, we compared the computation time of profilePSTMM

with different state model sizes against PSTMM. This was

performed on a Linux machine with 16GB of memory and dual

processor AMD Opteron� 250. The plot of the computation time

compared with PSTMM using the same number of states is given in

Figure 9. ProfilePSTMM scales much better because of the fixed

structure of the state model, while PSTMM does not because of the

need to traverse all pairs of states.

4.2 Glycan data

The glycan data set originated from KEGG GLYCAN, taken on

February 2, 2006. Because of the variety of monosaccharide names

and variations possible, a translation table was created to map

variations of basic monosaccharides to the basic name for simplic-

ity. The over 200 different names were mapped to the eight high-

lighted in Figure 1. Those that did not correspond well with any of

these basic monosaccharides were labeled as ‘‘Other.’’

4.2.1 Initial output label probabilities In our training methodo-

logy, we initialized the label output probabilities not to random

values but to those that are most often found. That is, we counted

the labels appearing at the first and second levels as one set, and the

labels appearing at the leaves as a second set. Based on these label

distributions, we initialized the output label probabilities of our state

model at the first and second levels with the first set and the leaves

with the second set (with slight variations to add variability). This

technique allows the model to learn from the data more easily.

4.2.2 N-Glycan subclass profiles We first manually extracted the

N-Glycans from KEGG (note the word of caution in Section 2.2.2

regarding glycan classifications) and further took those that could be

classified as one of the three basic subtypes: high-mannose, hybrid,

and complex type N-Glycans. Figure 10 illustrates the differences

between these structures. High-mannose type (left) is dominated by

Fig. 7. State model structure for all experiments presented in this work.

The Begin state has been omitted. For each node at the first and second

levels, C(i) ¼ 2. For the third level nodes, C(i) ¼ 1, and the leaves are of

course Ci ¼ 0.

Fig. 8. Profiles learned from synthetic data. In order from left to right:

Profile1, Profile2, and Profile3. Probability values below .20 were omitted.

Table 2. Accuracy, precision and AUC values for synthetic data and

N-Glycan subtype experiments. P1, P2, and P3 represent Profile1, Profile2

and Profile3, respectively

P1 P2 P3 High-mannose Hybrid Complex

Accuracy .914 .788 .892 .978 .982 .970

Precision .843 .974 .926 .882 .904 .882

AUC .910 .868 .903 .959 .966 .954

Fig. 9. Plot of computation times comparing profilePSTMM with PSTMM

based on number of states. ProfilePSTMM scales much better because of

the fixed structure of the state model, while PSTMM needs to traverse all

combinations of states.
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mannoses at the leaves. Complex type (right) is a combination of

GlcpNAc and Galp at the leaves. Hybrid type (center) branches off

with mannose on one branch and GlcpNAc and Galp structures on

the other. Doing a search using KCaM [4] with these basic structures

resulted in 64 high-mannose structures, 16 hybrid structures and

351 complex structures (after manual curation for those that con-

tained only the full N-Glycan core structure, and nothing else such

as amino acids). For each subtype, we generated a dataset of 50 posi-

tive and 50 negative structures. The positive set was generated by

randomly selecting a tree 50 times from the glycan subset, and the

negative set would be generated using the parent-child distribution

of monosaccharides from the complete positive set. This was

repeated five times to set up the five-fold cross validation test.

Note that in this experiment we neglected to account for the binding

conformations to reduce the size of the variables, but these can be

added by modifying the labels accordingly.

The performance for each of the subtypes is given in Table 2,

from which it is clear that the performance is comparable to

PSTMM with AUC scores in the mid-90% range. We can also

easily retrieve the profiles learned, as shown in Figure 11, for

each dataset by extracting the label output probabilities from the

match states at each position. The legend for these structures is

given in Figure 1. The label ‘‘X’’ refers to ‘‘Other’’ monosaccha-

rides. Also note that output labels having low probabilities are

omitted for clarity.

The profiles obtained again indicate the strength of the eldest

child state capturing the data most confidently. The high-mannose

profile does indeed capture the mannoses at the leaves, and the

core GlcpNAc pair is found at the root end. The ‘‘Other’’ mono-

saccharides also accumulate in the lower branch. For the hybrid

profile, the mannoses are well-captured by the upper branch, and

the extra GlcpNAc in the bottom branch of the core corresponds

well with the hybrid-type characteristic of the GlcpNAc after

the core mannose. The rest of the subtree after this GlcpNAc reflects

the variety of sub-structures that are found in this subclass.

For the complex profile, the root end seems to have captured the

GlcpNAcs that are in both the core as well as in the leaves that

alternate with Gals. Indeed, we see the Gals appearing at the leaves,

in addition to sialic acids (NeupAc) which are usually only found

at the leaves.

4.2.3 Lectin binding glycans The purpose of this work was to

analyze the glycan binding affinity of lectins. In particular, it was

preferable to find sialic-acid binding affinity data. However,

although sialic-acid binding lectin arrays for glycans have been

developed and used for experiments [5,21] on glycan binding affin-

ity, we found that the glycans spotted on these arrays were basically

trimers, which would not be interesting enough for our purposes.

Therefore, we used the data for glycan binding affinities of galectins

that was published in a review by Hirabayashi et al. [16]. Galectins

are carbohydrate-binding proteins that bind to galactose (Galp) resi-

dues. We then took those galectins that bound to larger and more

varied glycans with higher affinity: galectin-3 and galectin-9N. We

weighted the data set according to binding affinity by proportionately

adding more of the glycans that had higher affinity. The binding

affinities and corresponding weights of glycans for these two types of

galectins are given in Table 3. These affinities are the normalized and

inverted values from the original disassociation constants so that

higher values indicate higher affinity. 30 trees were then randomly

selected from the distribution of glycans in this data set. Negative

data sets of the same size were also generated based on the parent-

child label distribution of the trees in the positive set.

Fig. 10. The basic N-Glycan subtypes are differentiated by these structures. High-mannose type (left) is dominated by mannoses at the leaves. Complex type

(right) is a combination of GlcpNAc and Galp at the leaves. Hybrid type (center) branches off with mannose on one branch and GlcpNAc and Galp structures on

the other.

Fig. 11. Trained state models for N-Glycan subtype data. Label output probabilities <.15 are omitted. In order from left to right: high-mannose, hybrid, and

complex. Just as for the synthetic data experiment, the eldest child has the tendency to learn the data and correspondingly captures the profiles of each of these

subtypes.
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The resulting profiles are given in Figure 12. It was not surprising

that Galp appeared strongly at the leaves as the nature of galectins is

to bind to Galp. We could also confirm that the Galp-GlcpNAc

linkage appeared in several of the branches at the leaves, confirming

the results in the literature. We can also explain that the Galp-Manp

linkage is due to the core structure of the N-Glycans in the data set

because of the GlcpNAc-GlcpNAc linkages at the root. Further-

more, it is noted that the Fucp appearing near the root with 100%

probability accounts for the fucosylated core structures of the

N-Glycans, and that it usually does not have children. When looking

at the state transitions, indeed we find that the transitions out of this

state have higher delete transitions compared with the rest of the

trained state model (data not shown). Ignoring the descendants of

this state, we find that our profiles capture both the N-Glycan core

structures as well as the highly recognized Galp-GlcpNAc linkages

at the leaves.

The summary of the accuracy, precision and AUC values for

these two models are also presented in Table 4, where we can

see that the discrimination of galectin-binding glycans against

the negative data set is very high. Thus, we claim that there are

indeed patterns that are sibling-dependent in the data which can be

captured by our model. Plus we can see the profiles directly from the

model.

4.2.4 Glycan class differentiation As our final test of profile

PSTMM, we tested the ability of our model to distinguish between

different classes of glycans. Our results up to now indicated the

strong influence of N-Glycan core structures appearing in the pro-

files. Thus we took different classes of glycans to compare their

profiles with one another. In consideration of space constraints, we

present the comparison between O-Glycans and sphingolipids here.

Figure 13 is a plot of the log likelihood values for glycans in the

O-Glycan and Sphingolipid classes. The number of glycans in each

class is given in Table 1. A model was trained for each class of

glycans, and the models were tested on both classes. The dotted line

represents y ¼ x, to differentiate the line between the two classes.

We find that the majority of glycans can be classified into the right

class, except for a few in the center. Examining the cluster of

glycans in the center, we found that these are glycans that can

actually be classified into both classes.

The contingency matrix for these clusters as divided by the diago-

nal is given in Table 5. The total number of glycans that could be

distinguished accurately were 923 out of the total 968 structures,

resulting in a 95.4% rate of discrimination accuracy. Other pairs of

classes were also tested, and similar results were obtained (data not

shown).

5 DISCUSSION

We have developed a new model that performs more efficiently and

conveniently for finding patterns in sibling-dependent tree struc-

tures. We integrated new types of state transitions to take into

consideration the differences between the parent dependencies of

children and the elder sibling dependencies of younger siblings.

The fixed positions of the states also reduced the computational

complexity by a factor of OðjSjÞ. We also found that the com-

putation times decreased accordingly with fewer iterations of

the EM algorithm.

To better improve the performance when training this model,

we set the initial label output probability parameters to those

that would be most likely found at specific positions. In particular,

we set those at the root and second levels to the same distribution

of labels as found in the root and second levels of the training set,

and we set the leaves to the distribution of the leaves of the

training set. The distributions were varied slightly at each position

for variability. This procedure can be improved even more by

initializing the state model to a structure that better suits the

data at hand. In fact, we had configured our state model differently

to test various sizes that were both more and less complex than the

one presented here. We obtained similar results, capturing various

Fig. 12. Lectin binding glycan profiles. Label output probabilities <.20 are

omitted. It was not surprising that the galectins appeared strongly at the leaves

as the nature of galectins is to bind to galectins. We could also confirm that the

Galp-GlcpNAc linkage appeared in several of the branches at the leaves,

confirming the results in the literature.

Table 3. Binding affinities and weights for Galectin-3 and Galectin-9N.

Affinity values are normalized and inverted from the original data by

Hirabayashi [16] such that higher values indicate higher affinity.

Abbreviations: NA3: triantennary N-Glycan; fuc. NA3: core-fucosylated

NA3; NA4: tetraantennary N-Glycan; fuc. NA4: core-fucosylated NA4;

penta.: pentasaccharide; A-hexa: A-hexasaccharide; LN3: LAcNAc;

LN5: (LacNAc)5

Gal-3 affinity (weight) Gal-9N affinity (weight)

NA3 1.28205 (1) 2.6316 (2)

fuc. NA3 1.21951 (1) 2.2222 (2)

NA3 type1 1.08696 (1) 1.6949 (0)

NA4 1.44928 (1) 5.5556 (5)

fuc. NA4 1.40845 (1) 4.3478 (4)

Galili penta. 1.47059 (1) 0.2273 (0)

Forssman penta. 0.16129 (0) 11.111 (11)

A-hexa 1.5873 (1) 3.8462 (3)

LN3 2.85714 (2) 1.2346 (0)

LN5 5.26316 (5) 8.3333 (8)

Table 4. Performance of lectin binding glycans for Galectin-3 and

Galectin-9N

Gal-3 Gal-9N

Acc .847 .91

Prec 1.0 .918

AUC .93 .931
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smaller patterns with smaller state models, and capturing extrane-

ous profiles with models that were more complex. So depending

on the input data, the state model should be configured appropri-

ately. That is, the trees can first be multiply aligned by performing

pairwise alignments such as with KCaM [4] and obtaining a

‘generalized tree’ for the aligned trees. These trees can be hier-

archically aligned with one another to obtain an overall tree struc-

ture which can be used to specify the structure of the state model.

This process may be more cumbersome compared to the free states

in the PSTMM model, but improvement in performance is gained

as a tradeoff. The label output probabilities can also be initialized

based on the distribution of labels reflected in the alignment.

In our results, the profile for the galectin binding glycans captured

the most common linkage that were found to be indicators of higher

affinity in the literature. Although we did not consider the linkage

conformations (for simplicity and for reducing the variables in the

training set), these results imply that with more data, the same

results can be obtained. Future work should focus on analyzing

sialic-acid binding proteins once sufficiently large glycan structures

and binding affinity data are accumulated. Our new model allows

for a quick interpretation of such abundant data very efficiently.

Finally, it is important that future work not only focus on struc-

tural data, but also annotation and interaction data such as with

proteins. As more microarray data for glycan-related enzymes

such as glycosyltransferases accumulate, it should be possible to

analyze the biosynthetic and degradation processes of glycans using

probabilistic techniques. ProfilePSTMM is just one step towards the

future of glycome informatics.

6 CONCLUDING REMARKS

Our new profile PSTMM model is a significant remodeling of the

PSTMM model. The novel idea to incorporate different types of

state transitions gave this model the final touch it needed. With our

new algorithms for parameter estimation, not only did we decrease

the computational expense of the original model, but profile extrac-

tion is now extremely straightforward. The performance of the

original model is still maintained, such that long-range sibling

dependencies that exist in the data can be found accurately. The

trained models could also distinguish between different classes.

Thus as the field of glycome informatics continues to grow and

resources continue to develop, our model will surely become an

important tool in analyzing these complex structures.
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ABSTRACT

Motivation: We introduce the iRMSD, a new type of RMSD, indepen-

dent from any structure superposition and suitable for evaluating

sequence alignments of proteins with known structures.

Results:Wedemonstrate that the iRMSD is equivalent to the standard

RMSD although much simpler to compute and we also show that it is

suitable for comparing sequence alignments and benchmarking multi-

ple sequence alignment methods. We tested the iRMSD score on 6

established multiple sequence alignment packages and found the

results to be consistent with those obtained using an established ref-

erence alignment collection like Prefab.

Availability: The iRMSD is part of the T-Coffee package and is dis-

tributed as an open source freeware (http://www.tcoffee.org/).

Contact: cedric.notredame@europe.com; cedric.notredame@igs.

cnrs-mrs.fr

1 INTRODUCTION

The computation of accurate sequence alignments constitutes a

pre-requisite for an ever increasing number of biological analyses.

These include phylogenetic reconstruction, structure prediction,

domain based analysis, function prediction and comparative

genomics. In all these cases, the purpose of the alignment is to

exploit evolutionary variations in order to reveal biologically mean-

ingful patterns. The discovery and the proper analysis of these

patterns depend entirely on the alignment correctness.

In many cases, an alignment is considered to be biologically

correct when it accurately reflects the structural relationship

between the considered sequences. This result is achieved by match-

ing structurally equivalent residues. Assembling such an alignment

is trivial when the sequences are highly similar but becomes

harder for remote homologues. When considering alignments of

sequences with less than 25% identity (the so-called twilight

zone), standard scoring schemes like substitution matrices become

uninformative and it can be difficult to determine the alignment

accuracy, or even whether the sequences are truly related or not. So

far, the most satisfying way of aligning remote homologues has

been to use structural information whenever possible (Huang and

Bystroff, 2006; Lesk and Chothia, 1980).

The use of structural information, however, carries its own peril,

and while the sequence analysis community tends to consider struc-

ture based alignments as unambiguous and unquestionable gold

standards, a closer look reveals a much less clear cut situation.

More than 20 structure alignment packages have been developed

(Goldsmith-Fischman and Honig, 2003). All these packages tend to

produce different alignments because of their different underlying

optimization algorithms. Furthermore, the lack of a universally

accepted criterion for describing the quality of a structural align-

ment makes it difficult to determine the relative merits of all these

packages (Kolodny, et al., 2005). The most common procedure to

evaluate structure superpositions is to use the root mean square

distance deviation (RMSD) of superposed atoms. This measure

estimates the mean square distance between the equivalent alpha

carbons of the two superposed structures. It can be ambiguous

because of its dependence on two critical parameters: the minim-

ization method and the procedure used to exclude structurally non

equivalent regions (loops for instance).

Having several methods that deliver structure based sequence

alignments and not knowing which one does best is a major

issue in a context where structure-based alignments are routinely

used to improve and guide the development of sequence alignment

methods (Wallace, et al., 2005). A direct consequence of this situ-

ation has been the development of at least five collections of ref-

erence structure based sequence alignments (Edgar, 2004;

Mizuguchi, et al., 1998; O’Sullivan, et al., 2004; Raghava, et al.,
2003; Thompson, et al., 2005; Van Walle, et al., 2005). These

collections are all used for a similar purpose: the benchmark of

sequence alignment algorithms. Since it is virtually impossible to

compare these datasets and decide whether some are more infor-

mative than others, the most common practice is to use them all, and

look for common trends in the global results (Katoh, et al., 2005).

While results measured on these reference collections tend to

agree for datasets with more than 30% identity, variations appear

when considering sets of remote homologues (Katoh, et al., 2005).

Aside from potential accuracy problems, the simplest explanation

for these discrepancies is the possibility for alternative sequence

alignments to be structurally equivalent, especially when consider-

ing remote homologues (Lackner, et al., 2000). In this context,

setting one specific alignment as a reference becomes an arbitrary

choice and therefore a bias toward specific alignment methods. In

practice, the authors try to minimize that effect by specifying the

core regions that should be used for the comparison, but this choice

is also difficult and somehow arbitrary. We suggest in this paper that

replacing the reference alignments with an RMSD measure would�To whom correspondence should be addressed.
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be a more objective way to evaluate the sequence alignments of

proteins. The RMSD has two advantages over standard methods: no

dependence on a reference alignment and the possibility to quantify

the structural correctness of any protein sequence alignments (pro-

vided the protein structures are known). The main drawback, how-

ever, is the reliance of the RMSD on a structure superposition

strategy. This key step affords many alternative solutions whose

relative merits are difficult to estimate (Kolodny, et al., 2005).

We redesigned the RMSD measure to make it independent from

any structure superposition procedure. We named this measure

iRMSD because it is an RMSD based on intra-molecular distance

comparisons. The iRMSD is a follow up of the APDB measure

(O’Sullivan, et al., 2003), designed to evaluate alignments for

their compatibility with the structural superposition they imply.

While APDB was a complex measure depending on three semi

arbitrary parameters, the new iRMSD algorithm only requires

one parameter. We show here that the iRMSD behaves just like

a standard RMSD both numerically (values range) and structurally

(similar structural meaning). We finally show that a straightforward

normalization makes the iRMSD perfectly suitable for evaluating

and comparing sequence alignment methods without the need of

pre-established reference alignment collections.

2 METHODS

2.1 The iRMD measure

The iRMSD measure follows the underlying principle of APDB: given a

correct alignment of two protein sequences A and B (Figure 1), if X is

aligned with Y and Z with W, then the XZ distance (d(XZ)) must be similar

to d(YW). The better the alignment of A and B, the smaller the average

difference between all possible pairs d(XZ) and d(YW). The iRMSD asso-

ciated with the aligned pair X and Y is estimated by considering every

aligned pair Z and W within a sphere of radius (r) centered on X and Y

that verifies the equation:

dðXWÞ< r AND dðYZÞ< r ð1Þ

The ensemble of pairs ZW that verify equation 1 is named the neighborhood

and noted N(XY). The default value of r is 10 s (O’Sullivan, et al., 2003),

which corresponds to a neighborhood size of 20-40 residues. The local

iRMSD can be estimated as follows:

iRMSDðXYÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ZWðdðXZÞ�dðYWÞÞ2

NðXYÞ

s
ð2Þ

The summation is made over all the aligned ZW pairs within the

neighborhood (Equation 1). Pairs XY with an empty neighborhood have

their local iRMSD undefined. The global measure is obtained by summing

on every pair XY and dividing by the number of pairs with a non empty

neighborhood (N):

iRMSD ¼
P

XY iRMSdðXYÞ
N

ð3Þ

The iRMSD thus defined is not suitable for comparing alternative align-

ments, as it tends to give a better score to alignments with long gaps and few

well aligned residues. In order to simultaneously take into account the

superposition accuracy and the extent of the alignment (i.e. the number

of matched residues), we adapted the CI formula of Kleywegt and Jones

(Kleywegt and Jones, 1994) to turn the iRMSD into a Normalized iRMSD

(NiRMSD):

NiRMSd ¼ iRMSD�MINðL1‚L2Þ
N

ð4Þ

L1 and L2 are the respective lengths of the two sequences, and N the number

of residue pairs with a non empty neighborhood. This formula amounts to

incorporating a gap penalty that deals with indels and aligned pairs whose

neighborhood is empty.

2.2 Validation procedure using Prefab

We used the Prefab (Edgar, 2004) collection of reference alignments to

analyze the iRMSD. Prefab is an extensive collection of 1682 pairwise

structural alignments obtained by combining the output of two structure

alignment programs: CE (Shindyalov and Bourne, 1998) and DALI

(Holm and Sander, 1993). In each of these alignments the authors have

defined core regions where the DALI and the CE methods agree and

have used these regions for evaluation purpose. Given one Prefab reference

alignment and an alternative target alignment of the same sequences, the

Qscore is defined as the fraction of core columns in the reference align-

ment found aligned identically in the target. In order to evaluate multiple

sequence alignment packages, Prefab also includes in each dataset a collec-

tion of about 48 sequences homologous to the two structures. When evalu-

ating an MSA package, the large dataset is aligned and the Qscore is

measured on the core regions of the induced alignment of the two structures.

We evaluated the RMSD and the iRMSD of Prefab alignments. However,

because of various inconsistencies between the ATOM, the SEQRES

fields of the PDB entries and the sequences of the Prefab alignments,

LSQMAN could only handle 587 of the original Prefab entries. This sample

had roughly the same identity distribution as the entire Prefab (243 dataset

having with than 20% identity (on the reference Prefab alignment), 172

between 20 and 40% identity and 171 with more than 40% identity). We

believe it to be representative and large enough for the purpose of the

present analysis.

2.3 Evaluation of the standard RMSD

We used the LSQMAN package (Kleywegt and Jones, 1999) to estimate

the standard RMSD associated with the Prefab alignments. The local RMSD

was estimated by superposing the residues contained in a window of size

21 (2�10+1) centered on a pair of aligned residues. The superposition was

Fig 1. Basic principle of the iRMSD. Equivalences implied by the sequence

alignment are tested on the structure. The assumption is that if XY and ZW are

correctly aligned, then the distance between residues XZ and YW must be

similar. ZW pairs are only considered if they are within a sphere of radius R,

centered on X and Y.
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made using the Xalignment function of the LSQMAN package. The overall

RMSD was obtained by sliding the window and averaging over all the

windows.

2.4 Multiple sequence alignment methods

We benchmarked the iRMSD measure on the alignments produced using

the public distributions of six multiple sequence alignment packages:

ClustalW (Version 1.83) (Thompson, et al., 1994), DialignII (Version

2.2.1) (Morgenstern, 1999), Muscle (Version 3.6) (Edgar, 2004), Mafft

(Version 5.6) (Katoh, et al., 2005), ProbCons (Version 1.10) (Do, et al.,

2005) and T-Coffee (Version 3.75) (Notredame, et al., 2000).

2.5 Availability

The iRMSD package is part of the t_coffee package. It is an open source

freeware that can be downloaded on http://www.tcoffee.org/. It comes along

with an extensive documentation.

3 RESULTS

We started by comparing the iRMSD with the standard RMSD. We

did so by measuring the scores associated with the 587 Prefab

alignments. The measurements were either made on core regions

(Figure 2a) or on the entire Prefab Alignments (Figure 2b). Both

figures indicate a very strong correlation between the two measures.

The core analysis gave an r2 correlation coefficient of 0.92 while

the measure on the entire alignments gave an r2 of 0.93. As

expected, the dispersion increases with the RMSD values. The

Prefab alignments are high quality structure based alignments,

but we also checked the behavior of the methods when analyzing

alignments of lower quality (Figure 2c). We selected the Dialign

method whose alignments have an average Prefab Qscore of 0.65 on

the entire dataset (0.32 in the [0-20] identity range). Figure 2c shows

that the two measures remain correlated up to an RMSD of 2.5 s

(r2 ¼ 0.75), indicating a saturation of the iRMSD measure for

values above 1.6 s. This apparent saturation is a consequence of

the different local substructures compared by each method (win-

dows for the RMSD and sphere for the iRMSD) and it does not

occur when measuring the standard RMSD on spheres of radius

10 s rather than on windows. When doing so the correlation is very

good (r2 ¼ 0.91 over the full range, data not shown).

We further checked the local aspect of the measures by plotting

both the local iRMSD and the local RMSD against several Prefab

alignments. The 1aoh_1anu example is displayed on Figure 3 and

clearly shows that both measures are well coordinated all along the

alignment. While the iRMSD indicates two narrow peaks not

found in the RMSD, both methods agree on the final series of

peaks. We used LSQMAN to superpose the two structures and

were satisfied to find that the peaks showing in the iRMSD curve

effectively correspond to regions poorly superposed. Although the

iRMSD seems to reveal more sharply these locations, it is fair to say

that the standard RMSD could probably be parameterized to yield

similar results (for instance by lowering the window size).

Having established that the iRMSD behaves like a standard

RMSD measure we then estimated whether that measure is suitable

for evaluating the relative accuracy of multiple sequence alignment

packages. For that purpose, we aligned the Prefab datasets with six

MSA methods and for each of these methods we evaluated the

Qscore, the Normalized iRMSD (NiRMSD, Equation 3) and esti-

mated the fraction of alignments having a NiRMSD better or

Fig 2. Correlation between the iRMSD and a standard LSQMAN RMSD. 1a)

RMSD versus iRMSD of 587 of Prefab reference Alignments. The (i)RMSDs

were only measured on the regions annotated as core in Prefab. The iRMSD is

on the vertical axis and the regular RMSD, as obtained from LSQMAN, is on

the horizontal axis. Each dot corresponds to one dataset. 2a) RMSD versus

iRMSD on 587 Prefab reference Alignments. The (i)RMSDs were measured

on the entire alignments. 2c) RMSD versus iRMSD on 587 Prefab datasets,

aligned by Dialign. The dataset is the same as before and the (i)RMSDs were

measured on the entire alignments.
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equal to the Prefab reference (Best NiRMD fraction), as measured

on the core regions.

The results (Table 1a,b and c) are unambiguous and clearly show

a high correlation between the Qscore, the average NiRMSD and the

Best NiRMSD fraction. As expected, the Prefab reference align-

ments outperform every other method (Table1b, Prefab), with a

NiRMSD always lower than the rest, especially in the distant

homologue category (Table 1b, Prefab, [0-20]). The rankings sug-

gested by each score are in broad agreement when considering

equivalent lines in each table. We looked at the statistical signifi-

Fig 3. Local Comparison of the iRMSD against a standard LSQMAN RMSD. The comparison was made on the Prefab reference alignment of 1aohA_1anu. The

two structures were superposed by LSQMAN (1aohA: violet, 1anu:blue). The alignment was then evaluated locally using either LSQMAN to measure the RMSD

(Blue line) or T-Coffee/iRMSD to measure the local iRMSD. The (i)RMSDs values were plotted on the vertical axis against the alignment positions. Portion of the

superposition corresponding to the peak were extracted and encapsulated.

Table 1. Average Qscore

jRange N Dialign Clustal Muscle TCoffee ProbC. MAFFT PREFAB

0-20 243 0.32 0.34 0.43 0.44 0.48 0.49 ----

20-40 171 0.80 0.83 0.86 0.87 0.88 0.88 ----

40-100 173 0.96 0.96 0.97 0.98 0.97 0.98 ----

Total 587 0.65 0.67 0.71 0.73 0.74 0.75 ----

a) Average Qscore: Range is the range of identity of the considered Prefab datasets,

as measured on the reference alignments. N is the number of Prefab datasets in each

range. Dialign, ClustalW, Muscle, TCoffee, ProbCons and Mafft are the average

Qscores as measured on the alignments produced by these packages. The entries corre-

sponding to the best performance for each category are underlined and in bold. The best

Qscore are the highest.

jRange N Dialign Clustal Muscle TCoffee ProbC. MAFFT PREFAB

0-20 243 3.46 2.10 1.82 2.16 1.85 1.76 0.85

20-40 171 0.91 0.82 0.80 0.79 0.77 0.77 0.67

40-100 173 0.44 0.58 0.44 0.44 0.44 0.43 0.43

Total 587 1.83 1.28 1.11 1.25 1.12 1.08 0.67

b) Average NiRMSD: The labels are the same. The measure is the average NiRMSD as

measured on the core regions of the alignments. The Prefab column corresponds to the

evaluation of the Prefab reference alignments. The best NiRMSD scores are the lowest.

jRange N Dialign Clustal Muscle TCoffee ProbC. MAFFT PREFAB

0-20 243 0.02 0.10 0.05 0.09 0.06 0.10 ----

20-40 171 0.36 0.36 0.46 0.56 0.57 0.54 ----

40-100 173 0.86 0.89 0.89 0.92 0.89 0.91 ----

Total 587 0.36 0.40 0.42 0.47 0.45 0.47 ----

the Prefab reference as measured on the core regions. The labels are the same.

c) Best NirRMSD Fraction: fraction of alignments having a NiRMSD better or equal to

Table 2. Consistency between the NiRMSD and the Qscore

jRange Npair Consistent Inconsistent

0-20 7290 0.86� 0.14�

20-40 5130 0.90� 0.10�

40-100 5190 0.94� 0.06�

Total 17610 0.90� 0.10�

a) Core Regions: Range is the range of identity of the considered Prefab datasets, as

measured on the reference alignments, Np is the number of pairs on which the comparison

was carried out. Consistent is the fraction of pairs for which the Qscore and the NiRMSD

score were consistent. For the purpose of this table, two pairs were considered consistent

whenever their Qscore differed by less than 1 point percent and their NiRMSD by less

than 0.05 s. A binomial test was carried out on the results and entries marked with
�

indicate results whose p-value is lower than 0.000001.

jRange Npair Consistent Inconsistent

0-20 7290 0.79� 0.21�

20-40 5130 0.84� 0.16�

40-100 5190 0.84� 0.16�

Total 17610 0.82� 0.18�

b) Same as a) but with the NiRMSDs measured on the entire alignments.
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cance of all these analyses. For doing so we considered every

dataset individually and estimated the consistency between the

Qscore and the NiRMSD measured on two alternative alignments.

For instance, given a dataset and two alignments (aln1 and aln2)

generated by two different methods, the Qscore and the NiRMSD

are consistent if they indicate the same relationship between the two

alignments (e.g. aln1 better than aln2 according to Qscore AND

NiRMSD).

This measure was used to analyze every possible pair of

methods (Table 2a,b). The results show that Qscore and NiRMSD

are highly correlated with 90% consistency between the two mea-

sures on core regions and 82% when considering entire alignments.

The correlation is not affected by the level of identity between

the considered sequences. These figures were measured on more

than 17000 pairs of alignments. We checked these results for sta-

tistical significance, using a binomial test and assuming an equal

probability of 0.5 for consistency and inconsistency. The results

are highly significant on each category, with P-Values systemati-

cally lower than 10-6. These results confirm that the NiRMSD

measure is at least as discriminative as Prefab.

CONCLUSION

We describe the iRMSD, a measure with all the advantages

and properties of a standard RMSD without requiring any structure

superposition. A simple normalization makes it possible to use

the iRMSD for evaluating the accuracy of structure based sequence

alignments. This measure, named NiRMSD, was applied on the

alignments produced by 6 popular multiple sequence alignment

packages. In 90 % of the cases the NiRMSD measure was in agree-

ment with the Prefab ranking (Qscore). These findings, highly

significant from a statistical point of view, suggest the suitability

of this new measure for evaluating sequence alignments accuracy

whenever structural information is available. We also expect that

the method can easily be extended to sequences having a close

homologue with a known structure.

Future developments will involve applying the iRMSD to

Multiple Structure Alignment analysis. We are also planning to

use the NiRMSD measure to compare structure alignment

packages and check whether some methods clearly outperform

the others or whether some structure alignment meta-method should

be designed instead. Further refinement could also involve explor-

ing the capacity of the iRMSD measure to automatically identify

and exclude unalignable positions.
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ABSTRACT

Motivation: Membrane proteins are known to play crucial roles in

various cellular functions. Information about their function can be

derived from their structure, but knowledge of these proteins is limited,

as their structures are difficult to obtain. Crystallization has proved to be

an essential step in the determination of macromolecular structure.

Unfortunately, the bottleneck is that the crystallization process is

quite complex and extremely sensitive to experimental conditions,

the selection of which is largely a matter of trial and error. Even

under the best conditions, it can take a large amount of time, from

weeks to years, to obtain diffraction-quality crystals. Other issues

include the time and cost involved in taking multiple trials and the

presence of very few positive samples in a wide and largely undeter-

mined parameter space. Therefore, any help in directing scientists’

attention to the hot spots in the conceptual crystallization space

would lead to increased efficiency in crystallization trials.

Results: This work is an application case study on mining membrane

protein crystallization trials to predict novel conditions that have a high

likelihood of leading to crystallization. We use suitable supervised

learning algorithms to model the data-space and predict a novel set

of crystallization conditions. Our preliminary wet laboratory results are

very encouraging and we believe this work shows great promise. We

conclude with a view of the crystallization space that is based on our

results, which should prove useful for future studies in this area.

Contact: Srinivasan Parthasarathy, 693 Dreese Lab, 2015 Neil Ave,

Columbus, OH-43210, USA, Email: srini@cse.ohio-state.edu

1 INTRODUCTION

The study of membrane proteins is one of prime importance in all

branches of proteomics. Membrane proteins are integral to all cel-

lular functions acting as mediators between the cell and its envi-

ronment. These remarkable proteins play important roles in energy

transduction, cell signaling, and maintaining the integrity of the

cells’ internal environment. However, there is still very little

known about their function since many of their structures remain

unknown. Since structure leads to function, discovering the struc-

ture of these proteins will help lead to understanding their function

and will aid in creating drugs for a host of diseases. However,

compared to soluble proteins, there is a dearth of membrane proteins

with known structure. In order to obtain the structure of a protein

with high resolution, many scientists rely on the powerful technique

of X-ray diffraction, which requires a protein crystal. However,

obtaining good quality crystals of membrane proteins is an arduous

task when compared to water soluble proteins. This is due to the fact

that membrane proteins typically get trapped as an intractable

aggregate during the crystallization process, limiting access to

their structure (Caffrey, 2003).

The science of crystallization is still quite preliminary and there is

very limited knowledge on what actually causes crystallization to

occur. Hence, crystallographers are forced to systematically sift

through a wide parameter space (for example, physio-chemical,

biophysical, biological parameters) to grow crystals with good

diffraction characteristics. This trial-and-error approach (not unlike

searching for needles in a haystack) has been shown to be difficult

due to the phenomenally large cost and time requirements to

perform the crystallization experiments.

As a consequence, the set of conditions currently employed is

based almost entirely on earlier experimental successes (Rupp,

2003). These conditions, while not random, are not specifically

designed for a particular protein. From a statistical perspective,

this amounts to over-sampling certain regions in the multi-

dimensional crystallization space. Such screens represent what is

known as a sparse matrix. These sparse matrices assume that

different proteins will crystallize under the same conditions. This

assumption is not completely valid (Rupp, 2003). Therefore,

researchers have attempted to vary one or two of the chemical

components from successful combinations to obtain new favorable

conditions. Unfortunately, this has met with mixed success,

requiring many trials to get a few good crystals.

The process of protein crystallization involves using a protein/

lipid membrane that is mechanically mixed and brought to correct

water content and temperature. At this stage, suitable chemical

reagents are added and protein crystals are then allowed to form.

The reagents can be grouped into classes such as precipitant, addi-

tive, buffer, and detergent. The temperature, type and concentration

of the lipid and reagents are of utmost importance in protein crys-

tallization. These physio-chemical conditions and reagents together

form the crystallization screen. Additionally, the current hypothesis

is that the optimum conditions (those that cause the best resolution

crystals) are protein-specific. Overall, it is fairly difficult to obtain

crystals of any quality. With this in mind, it stands to reason that if

we can produce a greater number of conditions that do in fact bring�To whom correspondence should be adderessed.
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about crystals, we can assume some percentage of them will have

crystals of good diffraction quality. Obtaining multiple crystals is

also good since this adds to robustness and reliability of the results.

Specifically, the end goal is to develop a screen (with different

crystallization conditions) that is optimal for a particular protein

and maximizes the number of high-resolution crystals.

In this case study, we consider the crystallization space to be

broadly classified into three areas, mapped to classes 0, 1 and 2.

These are analogous to the three levels, clear, precipitate and

crystalline, proposed by Kimber et al. (2003). The ‘hot spots’

are the areas that yield protein crystals (class 2). A large part of

the space consists of clear or ‘no-hit’ areas that are not conducive for

the production of crystals (class 0). There are also areas that do not

yield crystals but produce protein precipitates (class 1).

Some researchers (Rupp, 2003; Segelke, 2001) discuss the virtues

of random sampling on the crystallization space. We believe a more

structured and intelligently designed approach will lead to success.

In this work, we examine the use of suitable supervised learning

algorithms to examine relationships or correlations between the

input parameters (protein properties, crystallization conditions)

and model the response output (crystals, precipitates or no crystals)

for existing trials and then close the loop to identify interesting ‘hot

spots’ (areas with high potential for yielding good quality crystals)

in the space for future trials. We use the model learnt to predict the

outcomes for a randomly sampled set of conditions. We then

perform stratified sampling based on our model, incorporating

physio-chemical constraints, to obtain new sets of conditions to

test in the wet laboratory. Our premise is that this method is

more structured and a more profitable option than random sampling.

Preliminary wet lab experiments seem to validate this premise. Our

results also allow us to hypothesize a view of the crystallization

space. We provide details of this hypothesis at the end of the paper.

To summarize, the main contributions of this paper are:

� Application of supervised learning algorithms to model the

protein crystallization space.

� Model-based prediction and stratified sampling to obtain novel

conditions with high probability of yielding crystals.

� A hypothetical view of the crystallization space based on our

results.

2 BACKGROUND ON PROTEIN
CRYSTALLIZATION

In this section, we provide some background on the crystallization

process and discuss some related work in this area.

2.1 Cubic phase (In meso) crystallization

Crystallization is essentially a phase separation technique in a ther-

modynamically stable system, with the favorable outcome being the

formation of a crystal. There are a host of techniques currently

employed to crystallize proteins. The basis of this project rests

on the laurels of a relatively new technique for membrane protein

crystallization known as the Cubic Phase or in meso method

(Caffrey, 2003). This is the technique from which all our data is

derived. The cubic phase technique is based on the assumption that

the protein to be crystallized is initially reconstituted into the lipid

bilayer of the cubic phase (Caffrey, 2003). The essential steps

involved in this technique are adding a protein/lipid membrane that

is mechanically mixed and brought to correct water content and

temperature to form the cubic phase. At this stage, additives and

precipitants are added and protein crystals can then form in a time

span that extends from hours to months. This can be done manually

or with the aid of a robot for high throughput crystallization. While

the technique itself seems straightforward, the way in which the

in meso method crystallizes proteins is still not well understood.

There is a great deal of speculation as to how this method works.

The crux of the method rests on the understanding of the peculiar

phase behavior of lipids. Lipids have two standard phases, liquid

and solid. However, they also possess a third set of phases known as

liquid-crystalline phases. These phases represent configurations of

the lipid molecules in aqueous medium that arise due to the amphi-

pathic nature of lipids and the hydrophobic effect. A set of lipid

phases is shown in Figure 1.

The lipid phases change with the water content and temperature

and this is plotted out in a Temperature/Composition (T/C) diagram.

An understanding of these phases is of utmost importance since in

this method one must achieve the cubic phase, hence utilizing the

right proportion of water (to the protein/lipid blend) and the right

Fig. 1. Lipid Phases—Cubic (Pn3m, Ia3d, Im3m), lamellar liquid-crystal

(L), and inverted hexagonal (HII) phases are the liquid crystalline phases.

Fluid isotropic (FI) is a liquid phase and lamellar crystal (Lc) is a solid phase

(Caffrey, 2003).
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temperature is key in order to get to the appropriate phase. The idea

is that during the mixing process, the proteins start off solubilized in

detergent micelles but then reconstruct into the lipid bilayer with the

introduction of dry lipid. The lipidic phase they are thrust into is the

cubic phase. These phases (Pn3m, Ia3d, and lm3m) are shown in

Figure 1. With the addition of salt the curvature of this phase

increases, which in turn causes the protein to leave and associate

in a transient lamellar phase, also shown in the figure. The belief is

that as proteins leave the lamellar phase, they arrange in a highly

ordered fashion and form crystals.

There exist a large number of variables in this technique such as

additive structure, additive concentration, detergent type, protein

structure, etc. It is not known which of these parameters are

instrumental in obtaining a favorable outcome, realizing a crystal.

Furthermore, researchers have varying, inconsistent and largely

incomplete information as to why proteins crystallize in the first

place. As a consequence, the set of conditions scientists currently

employ is based almost entirely on earlier successes and the

chemicals readily available currently. These conditions, while

not random, are not specifically designed for a particular protein.

Therefore, the likelihood of getting crystals from these screens for

novel proteins is incredibly small.

2.2 Related work

The work by Samudzi et al. (1994) postulates that the response

surface was composed of a set of disjoint clusters, rather than a

single coherent cluster. Subsequently, they apply a clustering algo-

rithm on the Biological Macromolecule Crystallization Database,

which is a large collection of successful crystallization trial condi-

tions. Their initial attempt revealed interesting qualitative relation-

ships between recorded parameters but did not yield how this

information could be used in the design of future experiments. A

limitation of these experiments (along with others at the time), is

that the data used consisted of only successful trials.

Several researchers (Jurisica et al., 2001; Kimber et al., 2003;

Rupp, 2003), argue convincingly that a comprehensive information

repository for crystal growth experiments (both positive and

negative trials) is fundamental to the computational analysis of

trials. This stored information is necessary to discover general

rules or principles underlying the growth process for crystals, as

well as to guide the reasoning algorithm for planning experiments.

As noted by the above researchers, the application of data

mining and knowledge discovery algorithms to such datasets is

still in its infancy. Carter and Carter (1979) were one of the first

to propose the use of statistical sampling techniques for this

problem. Segelke (2001) assesses crystallization screens in terms

of sampling and shows the advantages of random sampling. We

believe that random sampling may not be the best solution since it

does not use the available prior knowledge effectively. Currently,

most approaches taken by crystallographers rely on either random or

stratified sampling of the crystallization space. Rupp (2003) also

argues that in a high throughput environment, with a large number

of data points and limited prior knowledge, a semi-automated

machine learning/data mining driven approach is absolutely essen-

tial. In spite of these works discussing the use of data mining

algorithms, to the best of our knowledge there has been no prior

work in this direction.

3 OVERVIEW OF OUR APPROACH

The protein crystallization space has been conceptualized as a high-

dimensional hypercube (Rupp, 2003) with axes represented by the

chemical components and other parameters. The various crystal-

lization condition trials are obtained by sampling this space. Our

strategy for mining the protein crystallization space is a closed loop

consisting of four stages, represented in the flowchart in Figure 2.

� Experimental Data: The data obtained from prior experiments

is used as training data. This data consists of sets of conditions

that have been employed before in crystallization trials. An issue

with using prior data is that it has been obtained almost com-

pletely from the same regions in the crystallization space. These

regions have been over-sampled repeatedly. Another issue is the

large bias present in the dataset, with a significant majority of the

samples resulting in failures. We discuss the characteristics of

the dataset in detail in the next section.

� Modeling the space: The empirical training data is used to build

supervised models on the protein crystallization space. We

believe that supervised learning algorithms such as classifiers

are useful for this problem as they can use the training data and

known class values to partition the space efficiently. Hence, we

apply traditional classifiers and build an ensemble using the best

classifiers to increase the precision of prediction. It is important

to note that this approach will initially be limited since the

empirical data currently available represents only a few regions.

A large amount of the space is presently unknown. However, our

strategy is dynamic and incremental. As we iterate, more regions

of the space will be added into our training data for modeling. We

present details of our modeling technique in Section 5.

� Model-based Stratified sampling with constraints of the

condition space: We use the model of the data-space to lead

us to the right regions for sampling, and the classifiers that

we trained to predict class values of novel conditions. We

perform stratified sampling on the predicted conditions to over-

come the over-sampling issue. The objective is to discover new

regions in the space that have not been visited earlier and that

have high potential for yielding crystals. Our approach is itera-

tive and incremental. At each iteration, we broaden our search

space. We use stratified sampling on our results in order to

maintain balance. We also need to minimize the number of

Fig. 2. Mining the Protein Crystallization space.

S.Asur et al.

e42



conditions to be tested and ensure a high success-rate (reduce

false positives). We leverage this by using a relatively strict

metric for prediction.

At the same time, we need to consider constraints (physio-

chemical, physical and biological) of the crystallization space.

These constraints may be a factor of the conditions or internal

parameters such as temperature and solubility. We present details

of our sampling scheme in Section 6.

� Experimental Wet lab Validation of novel conditions:

Once novel conditions have been discovered, we need to test

them experimentally. One of the issues with experimentation is

the expense, in terms of time and effort, for each crystallization

trial. We validate the sampled conditions, again considering

constraints of the crystallization process. The results from

this step feeds back into the first step of the next loop. Our

experimental validation results are presented in Section 7.

4 DATASET PROPERTIES

The initial data that was used to build the models for prediction was

a set of screens of 3 proteins—vitamin B12 receptor (BtuB), bac-

teriorhodopsin (bR) and light-harvesting complex II (LH2) with a

set of 3 monoacylglycerol(MAG) lipids—9.9 MAG, 7.7 MAG, and

9.7 MAG and a set of 480 standard conditions that originate from

Hampton research, a company that specializes in developing prod-

ucts for biological macromolecular crystallization (http://www.

hamptonresearch.com/). We used the Hampton kit for this work,

since it has been shown to crystallize proteins in the past. Further-

more, members of the Caffrey lab have performed experiments to

evaluate the compatibility of the Hampton screens with the cubic

phase (Cherezov et al., 2001). This is better than using new kits

which would require more extensive testing to evaluate their

compatibility to the cubic phase.

The data corresponds to crystallization trials for 5 protein/lipid

combinations. Each protein/lipid combination consists of 5 screens,

each consisting of 96 conditions and their corresponding scores.

There are 99 conditions overall with no scores, which we ignored.

Hence, the data we considered finally consisted of 2301 trial con-

ditions (5 protein/lipid combinations · 5 screens · 96 conditions

each—99 elements where no data taken) with various protein, lipid,

buffer, additive, precipitant combinations. Some sample conditions

are illustrated in Table 1. Each protein/lipid mix was put through

these conditions on a set of five 96 well plates. Each plate was then

manually scored with a number from 0-9, indicating the phase/

protein condition. This designation is referred to as the crystal

rating.

The chemical conditions include a main buffer, a precipitant and

one or more additives. The purpose of the buffer component in a

screen is to cover a certain pH range (and thus charge distribution)

on the protein, independent of the other components and the pH

of the original protein solution’. Buffers with different pH values

can thus be considered different. There are two major types of

precipitants, high molecular weight poly-alcohols (like PEGs)

and salts. The additives used may be buffers, precipitants or any

chemical that might help crystallization. Each sample in the dataset

contains a crystal rating. The crystal ratings are formulated as fol-

lows, 0-2 means lamellar or dispersed phase, 3-5 indicates protein

precipitate, and 6-9 indicates the formation of crystals. The number

of 0’s in the dataset are very high and as the rating increases, the

number of samples having that value decreases. The number of

samples rated 9 is very low. To perform adequate classification,

we require a better distribution. Hence, values between 0 and 2 are

assigned to class 0, between 3 and 5 are assigned to class 1, and

values between 6 and 9 are assigned to class 2. Class 2 is the desired

class indicating the formation of crystals.

The percentages of the three discretized ratings in the dataset are

given in Table 2. It can be seen that data is significantly biased with

around 87% of the samples classified as 0. In this work, we treat the

data samples as normal categorical data. This is a safe assumption

since in this application, two buffers with different pH values can be

expected to behave differently. Each sample is a feature vector of

size 6 consisting of:

� Protein—Btub, bR or LH2

� Lipid—9.9 MAG, 7.7 MAG or 9.7 MAG

� Buffer—Eg. 0.1 M Na Acetate pH 4.6

� Main Precipitant—Eg. 0.5 M Magnesium Formate

� Additive—Eg. 2 M Na Chloride

� Class Value—0, 1 or 2

5 MODELING THE PROTEIN
CRYSTALLIZATION SPACE

As we mentioned earlier, the protein crystallization space can been

represented as an n-dimensional hypercube with axes represented

by the chemical components and other parameters. The regions in

this space that yield crystals are called ‘hot spots’. For a given

protein, there exist a large number of conditions which do not

lead to precipitates. In some conditions, proteins precipitate but

do not form crystals. We use supervised learning (classification)

to model the protein crystallization space using the empirical data.

We believe that classification is a good method to partition the data

space and predict class values for new samples.

5.1 Supervised learning algorithms

In this section, we present details of the supervised learning algo-

rithms we use.

Table 1. Sample chemical conditions

0.1 M Tris HCl pH 8.5,15% iso-Propanol,0.2 M Ammonium Acetate

0.1 M Cacodylate pH 6.5,20% (wv) PEG-1000,0.2 M MgCl2

0.1 M Hepes pH 7.5,22% wv Polyacrylic Acid 5100,0.02 M Mg Chloride

0.1 M Tris Hydrochloride pH 8.5,25% wv PEG 3350,0.2 M Mg Chloride

Table 2. Crystal class percentages in the dataset

Crystal classes Number of samples Percentage

0 1995 86.7

1 170 7.3

2 136 6
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Naive Bayes Classifiers. Naive Bayes classifiers are based on

Bayes’ rule of conditional probability. It uses all attributes and

allows them to make contributions to the decision as if they

were all equally important and independent of one another. The

classifier can be formally defined as

CðFÞ ¼ argmaxcpðC ¼ cÞ
Yn
i¼1

pðFi ¼ f i jC ¼ cÞ ð1Þ

where c is the class and fi are the features(attributes).

Decision Tables. Decision table classifiers are rule-based

classifiers that are typically used not only for prediction but visu-

alization of the attribute space (Kohavi, 1995). A decision table

generally has two components, a scheme and a body. The scheme is

the list of attributes that are used to predict the class variable. The

body consists of a set of assigned values for each attribute in the

scheme. The class variables that are of the same type fall into a

broad category called cells. The dataset is sorted by the broadest

possible field (or field with the least number of attribute types).

From here, the set of rows with the same type in each attribute are

grouped together in a cell. Generally, the rules of constructing a

decision table involve mapping all possible combinations of the

attribute space to class values. This ensures that every single

input vector will have been assigned some designation. The pro-

gram then simply runs through the table with the input vector to

determine which class variable is appropriate.

Random Forests. A Random Forest is an ensemble classifica-

tion technique which is popular due to its high accuracy. In this

method, several classification trees are constructed by sampling

with replacement from the original training data. In order to find

the best split at a node in the tree, m random attributes are chosen

and the one with the best split among them is used. Furthermore, the

trees that are constructed are not pruned. Classification is done using

each tree to separately classify the test data. Finally, the majority of

the votes from each tree is chosen to be the prediction on the test

sample.

Classification Based on Associations. This is a technique based

on association rule-based classification (Liu et al., 1998), which can

be used effectively on discrete datasets. Association rules identify

collections of data attributes that are statistically related in the

underlying data. An association rule is of the form X ! Y where

X and Y are disjoint conjunctions of attribute-value pairs. The sup-

port of the rule is the observed frequency of X and Y, Pr(X, Y). The

confidence of the rule is the observed frequency of Y given X,

Pr(Y jX). Given a database of transactions, a minimal confidence

threshold, and a minimal support threshold, the goal of association

rule mining is to find all association rules whose confidences and

supports are above the corresponding thresholds. In this case, each

row of the dataset can be considered to be a separate transaction,

with the values in each column being the items for that transaction.

The Apriori algorithm (Agrawal and Srikant, 2000) is a commonly

used algorithm for mining association rules. The algorithm dis-

covers rules for dependencies between the elements that are

frequent, i.e., satisfy some minimum support and minimum

confidence constraints. We then use these frequent rules to perform

classification. We have tried different values of minimum support

and confidence thresholds. We find that using low support (5%)

and high confidence (60%) thresholds are adequate for discovering

association rules even for large datasets.

Nearest Neighbor Voting. In this technique, we build separate

nearest-neighbor classifiers for each attribute. For each attribute i
with value vi, we identify the k rows in the dataset that contain a

value closest to the value vi. Then we use the class values predicted

by these k rows to compute a single vote value. We take the mode of

the k classifications as the single vote value. This process is repeated

for each attribute (vi) resulting in several single vote values. To tally

the vote values, we once again use the mode to predict the class of

that sample.

Support Vector Machines. Support Vector Machines (SVMs)

(Joachims, 1999; Vapnik, 1995) are based on the concept of deci-

sion planes that define decision boundaries. A decision plane sepa-

rates a set of objects having different class memberships. Support

Vector Machines are particularly suited to handling classification

tasks that involve complex decision planes, as opposed to linear

classification. They work by constructing hyperplanes in a multi-

dimensional space. The classifier maps the input vectors to a higher

dimensional space, after which it finds a linear separating hyper-

plane with the maximal margin in the high-dimensional space.

For our experiments, we used two popular SVM packages,

SVMLight (Joachims, 1999) and BSVM (Hsu and Lin, 2002).

SVMLight works efficiently for two-class problems while BSVM

performs well for multi-class classification problems. We used the

default linear kernel function in our experiments.

PNRule. PNRule, proposed by Joshi et al. (Joshi et al., 2001), is

a rule-based classifier designed to handle skewed class distributions.

PNRule works in two phases. In the P phase, it discovers positive

rules that cover the target class. In the N phase, it generates rules on

the negative class to eliminate false positives from the samples

covered in the P phase. The rules are based on single attribute

values. The test samples are run through the positive and negative

rules. Accordingly, a test sample is classified positive only if it is

found to satisfy a positive rule and no negative rules.

5.2 Metric

Since our goal is to discover novel trial conditions using clas-

sification, we are really interested in measuring how many of the

positively predicted samples are actually positive. In other words,

the precision of prediction is the key. If pospred are the samples that

are predicted to be positive and posactual are the samples that are

actually positive, the precision is given by

Precision ¼
k pospred \ posactual k

k pospred k
ð2Þ

We would like to point out that the accuracy of classification in

this case is not particularly useful. This is due to the fact that a naive

classifier that predicts class 0 for every sample will yield a high

accuracy of 87% (due to the significant bias in the dataset).

5.3 Classification results

5.3.1 The bias problem: We split up the crystallization dataset

randomly into training and test sets. As we mentioned earlier, the

crystallization dataset consists of a large majority (87%) of negative

samples. This causes significant bias and affects classifiers such as

CBA and Nearest Neighbor and causes all the predictions to be of

class 0.
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The problem of learning with biased data has been addressed in

several works in the data mining literature. As we mentioned earlier,

PNRule, the rule-based classifier was proposed to handle skewed

class distributions. We have implemented PNRule but find that for

our dataset, the negative rules we discover cover all the samples.

Hence, we cannot obtain any positive predictions. We have tried

varying the negative rules based on recall, as was suggested, but do

not obtain any improvement in the results.

The main methods suggested for balancing skewed training data

include downsampling the non-target class, upsampling the target

class and generating new samples of the target class. SMOTE

(Chawla et al., 2002) is a technique that generates new samples

of the target class using existing positive samples that are close to

each other. This is possible only if there is a valid distance metric to

find nearest neighbors in the set of samples, which is not true for our

data. Also, in our data, the minority class is very sparse with respect

to the majority class. Hence, the application of SMOTE results in a

mixture of the classes (over-generalization) which is very hard to

separate. Batista et al. (2004) evaluated different techniques for

balancing training data and found that random over-sampling of

the target class performs well in most cases. Using this notion, we

develop an ensemble approach to eliminate the bias problem. We

generate several random sub-samples of the negative class and

merge each of them with over-sampled positive examples. This

results in several balanced subsets of the original data. We then

train our classifiers on each sub-dataset separately and use each of

them to predict the class values of the test data. Finally, we use

majority vote decision fusion to combine the predictions of each of

the individual classifiers. We obtain much better results using

this approach, although it does not completely eliminate the bias

problem.

5.3.2 3-class prediction: We predict class values using all the

classifiers we reviewed earlier. We perform 5-fold cross-validation.

The best individual classifier is the Decision Table Classifier with a

precision of 58%. The other classifiers mis-classified several sam-

ples of class 1 as class 2. The results are presented in Table 3.

5.3.3 2-class prediction: Although, we obtain a precision of

58% for the Decision Table Classifier, most of the classifiers had

trouble separating the samples in the 3-class case. An interesting

observation we made with the results is that a large number of

samples belonging to class 1 were falsely identified as class 2.

We leverage this observation as follows. In the training phase,

we consider all samples of class 1 to be of class 2. Although this

does not remove the bias, it increases the percentage of samples

belonging to class 2 from 6% to 13%. We believe that this leads to

better partitioning by the classifiers. We therefore predict once again

on the test sets, using this assumption.

We find the improvement in precision to be substantial. Every

individual classifier is found to predict more accurately under this

scenario. The results of 5-fold cross-validation by all the classifiers

are presented in the 3rd column in Table 3. CBA produced dramatic

improvement (15% to 65%). The Naive Bayes technique also

improved phenomenally (although its performance is still below

par). The three best classifiers are, in order, Decision Table,

CBA and Support Vector Machines.

5.3.4 Ensemble classification: We constructed an ensemble

classifier using these three individual classifiers to improve the

precision of prediction. If xi is the test sample, and pj where j¼1..3

are the predictions from the three individual classifiers, the ensem-

ble prediction is given by

Ensðxi±‚p1‚p2‚p3Þ ¼
2 if p1 ¼ p2 ¼ p3 ¼ 2;
0 if p1 ¼ 0 [ p2 ¼ 0 [ p3 ¼ 0:

�
ð3Þ

When we use the ensemble classifier to predict values for the

test-sets we obtain a precision close to 100%. However, the number

of positively predicted samples is very low (5–10). This is due to

our constraint that all three individual classifiers need to predict a

positive result for a sample to be classified positive. This assumption

can be relaxed. Accordingly, we proceed to choose samples which

any two of the classifiers predicted as positive. This gives us a larger

number of positive samples (20–30) and a precision of 86% on the

test data after cross validation.

6 MODEL-BASED STRATIFIED SAMPLING

As mentioned earlier, our goal in this work is not only to model the

crystallization space but to discover novel regions to sample for

positive conditions. Earlier works focused entirely on randomly

sampling the crystallization space. Random sampling alone does

not ensure success. We believe a more intelligently designed

approach can yield better performance. Random sampling maxi-

mizes the variance of the data space. We propose a more principled

approach, applying domain knowledge to sampling, similar to ideas

proposed by Bailey-Kellogg and Ramakrishnan (2001).

We employ a two-stage stratified sampling technique in this

regard. In the first step, we generate a large number of random

samples. We ensure that these samples are sufficiently different

from the samples in the training data. The samples are then pruned

using the help of a domain expert, to enforce physio-chemical

constraints such as compatibility between chemicals. We use the

classifiers with the best performance to predict the class values of

these samples based on the training data. The classifiers partition the

samples into regions of class 0, 1 and 2. In the second step, we

perform stratified sampling on the results of the classifiers. We

propose two schemes that can be used for stratified sampling,

depending on the context:

� In the 2-class scheme, we over-sample regions that are predicted

to be class 2 or class 1 and under-sample the region that is

predicted to be class 0.

Table 3. Individual Classifier Results for 3-class and 2-class cases

Algorithm Precision Precision Percentage

(3-class) (2-class) improvement

Naive Bayes 4% 44% 1000%

Decision Table 58% 72% 24.14%

Random Forest 35% 48% 37.14%

Bagging 52% 60% 15.38%

CBA 15% 65% 333.33%

NNV 12% 21% 75%

SVM 39.5% 65% 64.5%
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� In the 3-class scheme, we over-sample regions predicted to be

class 2 and under-sample the other two classes. The proportion of

samples chosen that are of class 0 is less than the proportion of

samples chosen that belong to class 1.

The sampled conditions are then fed to an automated robot that

conducts the experiments using these conditions. During this pro-

cess, constraints on internal parameters, such as temperature and

solubility (Ksp values), are applied. Currently, this process is manu-

ally done by domain experts. We use two kinds of filters in the

process, one to remove incompatible chemical combinations and

improbable factor levels (excessive precipitant concentrations, high

PEG concentrations etc) and the other to remove conditions that are

not very novel.

7 EXPERIMENTAL WET LAB VALIDATION

We proceeded to generate a large set of random samples using the

conditions from the Hampton kit. Since the time for experimenta-

tion is a major bottleneck in the crystallization technique, we chose

to perform some preliminary experiments using a single protein/

lipid combination and using the predictions of a single classifier. We

used the protein Btub, which is an integral membrane protein

(Chimento et al., 2003), and the lipid was 7.7 MAG. The rest of

the conditions were randomly generated from the data, i.e., a

random buffer, precipitant, and additive were chosen from the

set of unique elements in the Hampton kits. Each vector was com-

pared with the 480 Hampton kit conditions to ensure there were no

duplicates.

We chose the decision table classifier, since it outperformed all

the others for 3-class classification. The set of feature vectors was

run through the algorithm and each sample was assigned a crystal

rating. Samples were chosen for experimental validation using the

3-class scheme.

We obtained 96 conditions and conducted crystallization experi-

ments in our laboratory using these. We used the buffers, precipi-

tants, and salts available in the Hampton Research kit. The rest of

the required reagents were prepared to specified concentrations and

pH (when applicable) in house. The protein was combined with the

lipid to form the cubic phase using mechanical mixing. A robot was

then used to mix the reagents and dispense both the well conditions

and the protein/lipid combination. All screens were set in 96 well

plates which were scanned at various time intervals for crystals

using a light microscope.

We found that 37 conditions, out of the 96 we tested for, produced

crystals. This was close to our expectation, considering the decision

table classifier yielded a precision of 58% for the 3-class problem

and the presence of experimental errors. Among the hits, the crystals

ranged in size from 50 microns to 90 microns (Figures 3 and 4).

Interestingly, a large number of the negative trials yielded protein

precipitates (class 1).

We tested our ensemble 2-class classifier on this set of experi-

mentally determined samples. When we used the ensemble on the

96 conditions, we obtained 13 positive predictions. Since the

precision of the ensemble classifier was 86%, once again con-

sidering experimental errors, we expected to get crystals in at

most 8 or 9 of these trials. We were pleased to get crystals in

8 of the 13 trials. Furthermore, we were pleasantly surprised to

obtain precipitates (class 1) in the negative trials. This is equivalent

to a 100% precision in the 2-class scenario. Given that the number

of crystals generally obtained from crystallization screens are very

few and the trials typically consume a large amount of time, our

results are useful. To illustrate this, we compare the average number

of positive samples from each of the 5 Hampton protein-lipid

combinations with our results using the samples predicted by the

Decision Table classifier. The difference can be observed in

Figure 5. H1-H5 represent the 5 protein-lipid combinations in

the Hampton screen kit. The average number of positive samples/

96 wells for all 5 Hampton screens is around 5, whereas we obtain

37 crystals using just one screen of 96 conditions. We would also

like to point out that the conditions we obtained were adequately

novel when compared to the conditions in the Hampton kit which

over-sampled the same space.

Fig. 3. BtuB crystals produced from decision table crystallization. Crystals

are circled in white.

Fig. 4. More BtuB crystals produced from decision table crystallization.

Crystals are circled in white.
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To follow-up, we plan to conduct experiments on a larger scale,

generating a large set of random vectors and using our ensemble

classifier to obtain predictions. We will then set up trials on these

conditions in our wet laboratory. We expect to obtain favorable

results as before.

7.1 Discussion

Our preliminary results are encouraging. However, it is important to

note some limitations to this study. While applying data mining

algorithms to build models for crystallization conditions prediction

is a good approach and provides many benefits, we are limiting

ourselves by using a single crystallization dataset which does not

represent a truly random or evenly distributed sample of the

crystallization space.

For instance, the Hampton kit contains crystallization trials

information for three proteins. Using this information, we can pre-

dict conditions for only these three proteins. Since different proteins

react differently to the same condition, it may not practical to make

predictions for other proteins. The same holds true for the chemicals

that have been used. We can create new combinations of these

chemicals and predict for them. However, it is impossible to predict

for sets of chemicals that have not been used in the dataset. Thus, to

accurately sample it is important to develop a screen that covers the

entire space. In this work, we advocate an incremental approach to

this problem, with each iteration of the loop leading us slowly

towards greener pastures for sampling.

A related issue is the large amount of time required for experi-

mentation. Despite refinements over the years, this still remains the

greatest bottleneck in the crystallization process. This minimizes the

amount of experimental validation that can be performed. In our

work, we have tried to minimize the number of conditions to be

tested and decrease the false positive rate.

An important observation we have made from this study is that

conventional distance metrics cannot adequately capture the dis-

tance between similar conditions in the protein crystallization space.

This is supported indirectly by the poor performance of the Nearest

Neighbor algorithm. This demonstrates a need for distance metrics

that are sensitive to the domain, as suggested by Aggarwal (2003). A

suitable distance function, in this case, would need to consider the

physio-chemical characteristics of the reagents used as well as

correlations between them.

The difference in precision between the 2-class classification and

3-class classification indicates that regions that yield precipitates

(class 1) are close to hot spots. This was supported by the fact that

the 3-class classifiers mis-classified a large number of samples

belonging to class 1 as class 2 samples. Even in the wet lab experi-

ments, we were surprised to find that a large number of samples

predicted to be class 2 belonged to class 1. Our observations suggest

the following view on the protein crystallization space:

� Areas fertile for crystallization (hot spots—class 2) are often

well separated. This is somewhat evidenced by the poor perfor-

mance of the nearest neighbor classifier.

� These areas are surrounded by areas which are not good enough

to produce crystals but yield precipitates (class 1). A large part of

the space comprises of no-hit areas which do not yield any crystal

(class 0).

We can therefore hypothesize that the crystallization space is of

a continuous nature with 2’s turning into 1’s and then 0’s. This

representation should prove to be useful for future studies.

8 CONCLUSION

In this paper, we utilize supervised learning techniques to explore

the properties of the protein crystallization space and to identify

potential hot spots of protein crystallization. This problem has baf-

fled scientists for many years due to a limited understanding of the

crystallization space, and the cost of performing crystallization

experiments. In this work, we presented an incremental, closed-

loop approach using stratified sampling and constraints to mine

the crystallization space effectively for novel conditions. Our

hypothesis that the crystallization space is conducive to the use

of supervised learning is borne out by our classification results.

Our wet lab experimental results, although preliminary, show

great promise. In the future, we plan to conduct more experiments

on a larger scale. We also plan to develop alternative distance

metrics for the crystallization space to increase the quality of our

classification techniques in hopes of refining our preliminary map of

this space and finding more hot spots.
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ABSTRACT

Motivation: Many problems in data integration in bioinformatics can

be posed as one common question: Are two sets of observations

generated by the same distribution? We propose a kernel-based

statistical test for this problem, based on the fact that two distributions

aredifferent ifandonly if thereexistsat leastonefunctionhavingdifferent

expectationonthetwodistributions.Consequentlyweusethemaximum

discrepancy between function means as the basis of a test statistic.

The Maximum Mean Discrepancy (MMD) can take advantage of

the kernel trick, which allows us to apply it not only to vectors, but

strings, sequences, graphs, and other common structured data types

arising in molecular biology.

Results: We study the practical feasibility of an MMD-based test

on three central data integration tasks: Testing cross-platform com-

parability of microarray data, cancer diagnosis, and data-content

based schemamatching for two different protein function classification

schemas. In all of these experiments, including high-dimensional ones,

MMD is very accurate in finding samples that were generated from the

same distribution, and outperforms its best competitors.

Conclusions: We have defined a novel statistical test of whether two

samples are from the same distribution, compatible with both multivari-

ate and structured data, that is fast, easy to implement, and works well,

as confirmed by our experiments.

Availability: http://www.dbs.ifi.lmu.de/�borgward/MMD

Contact: kb@dbs.ifi.lmu.de

1 INTRODUCTION

1.1 Data integration in bioinformatics

The ultimate need for bioinformatics is founded on the wealth of

data generated by modern molecular biology. The purpose of bioin-

formatics is to structure and analyze this data. A central prepro-

cessing step is the integration of datasets that were generated by

different laboratories and techniques. If we know how to combine

data produced in different labs, we can exploit the results jointly, not

only individually. In some cases, the larger datasets thus constructed

may support biologically relevant conclusions which were not pos-

sible using the original smaller datasets, a hypothetical example

being the problem of reliable gene selection from high-dimensional

small microarray datasets.

1.2. Distribution testing in data integration

The questions arising in data integration essentially boil down

to the following problem of distribution testing: Were two samples

X and Y generated by the same distribution? In data integration terms,

are these two samples part of the same larger dataset, or should these

data be treated as originating from two different sources?

This is a fundamental question when two laboratories are study-

ing the same biological subject. If they use identical techniques

on identical subjects but obtain results that are not generated by

the same distribution, then this might indicate that there is a dif-

ference in the way they generate data, and that their results should

not be integrated directly. If the data were integrated without recal-

ibration, differences or patterns within the joint data might be

caused by experimental discrepancies between laboratories, rather

than by biological processes.

As microarray data are produced by a multitude of different

platforms, techniques and laboratories, they are the most prominent

data source in bioinformatics for which distribution testing is indis-

pensable. Recently, Marshall (2004) gave an extremely negative

picture of cross-platform comparability—and hence the reliability

and reproducibility—of microarray results, due to the various plat-

forms and data analysis methods employed (Shi et al., 2005). It is

therefore crucial for bioinformatics to develop computational meth-

ods that allow us to determine whether results achieved across

platforms are comparable. In this article, we present a novel stat-

istical test to tackle this problem.

Whatdistinguishesbioinformatics is that ithasproducedawealthof

complexdata, fromproteinsequences toprotein interactionnetworks,

i.e. from strings to graphs. Consequently any practically relevant

distribution test needs to be easily applicable in all these cases. To

the best of our knowledge, the statistical test proposed in our paper is

the first method that can handle this wide range of different domains.

To summarize our goals, we will present a novel statistical test

for differences in distribution, based on the Maximum Mean

Discrepancy (MMD). We will show that it can take advantage of

the kernel trick. Hence it is applicable to all data types, from

high-dimensional vectors to strings and graphs, arising in bioin-

formatics. In experiments, we will apply this test to microarray

cross-platform comparability testing and cancer diagnosis. Further-

more, we will show how to perform schema matching on complex

data by considering a data integration problem on two molecular

graph datasets.�To whom correspondence should be addressed.
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Outline of this article In Section 2, we present MMD and its

properties. In Section 3, we test the applicability of MMD in cross-

platform microarray comparability analysis and cancer diagnosis,

and evaluate it on a schema matching problem. We discuss our

findings in Section 4.

2 MMD AND THE TWO-SAMPLE PROBLEM

In statistics, the central question of data integration described above

is often referred to as the two-sample or homogeneity problem. The

principle underlying the maximum mean discrepancy is that we

want to find a function that assumes different expectations on

two different distributions. The hope then is that if we evaluate

this function on empirical samples from the distributions, it will

tell us whether the distributions they have been drawn from are

likely to differ. This leads to the following statistic, which is closely

related to a proposal by [Fortet and Mourier (1953)]. Here and

below, X denotes our input domain and is assumed to be a nonempty

compact set.

DEFINITION 2.1. Let F be a class of functions f:X!R. Let p and
q be Borel probability distributions, and let X ¼ (x1, . . . , xm) and
Y ¼ (y1, . . . , yn) be samples composed of independent and identic-
ally distributed observations drawn from p and q, respectively. We
define the maximum mean discrepancy (MMD) and its empirical
estimate as

MMD½F‚p‚q� :¼ sup
f2F

ðEp½f ðxÞ� � Eq½f ðyÞ�Þ

MMD½F‚X‚Y� :¼ sup
f2F

�
1

m

Xm

i¼1

f ðxiÞ �
1

n

Xn

i¼1

f ðyiÞ
�

Intuitively it is clear that if F is ‘rich enough’, MMD [F, p, q] will

vanish if and only if p ¼ q. Too rich an F, however, will result in a

statistic that differs significantly from zero for most finite samples X,

Y. For instance, if F is the class of all real valued functions on X, and

if X and Y are disjoint, then it is trivial to construct arbitrarily large

values of MMD[F, X, Y], for instance by ensuring that f j X is large

and f j Y ¼ 0. This phenomenon of overfitting can be avoided by

placing restrictions on the function class. That said, these restric-

tions ought not to prevent the MMD from detecting differences

between p and q when these are legitimately to be found. As we

shall see, one way to accomplish this tradeoff is by choosing F to be

the unit ball in a universal reproducing kernel Hilbert space, RKHS

for short.

We will propose a test of p ¼ q, based on an unbiased variant of

MMD [F, X, Y]1 which relies on the asymptotic Gaussianity of this

test statistic and on the guaranteed rapid convergence to this asymp-

totic regime. Thus, the performance guarantees provided by the test

apply in the case of a large sample size. The test has a computational

cost of O((m + n)2), although randomization techniques could be

employed to reduce the cost to essentially linear time-complexity (at

the expense of a somewhat reduced sensitivity).

2.1 MMD for kernel function classes

We now introduce a class of functions for which MMD may easily

be computed, while retaining the ability to detect all discrepancies

between p and q without making any simplifying assumptions. To

this end, let H be a complete inner product space (i.e., a Hilbert

space) of functions f:X ! R, where X is a nonempty compact set.

Then H is termed a reproducing kernel Hilbert space if for all x 2 X,

the linear point evaluation functional mapping f! f(x) exists and is

continuous. In this case, f(x) can be expressed as an inner product via

f ðxÞ ¼ h ffðxÞiH ð1Þ

where f:X ! H is known as the feature space map from x to H.

Moreover, the inner product between two feature maps is called

the (positive definite) kernel, k(x, x0):¼hf(x), f(x0)iH. Of particular

interest are cases where we have an analytic expression for k that can

be computed quickly, despite H being high- or even infinite-

dimensional. An example of an infinite-dimensional H is that cor-

responding to the Gaussian kernel k(x, x0) ¼ exp(�kx � x0k2/(2s2)).

We will consider universal reproducing kernel Hilbert spaces in the

sense defined by Steinwart (2002). Although we do not go into tech-

nical detail here, we are guaranteed that RKHSs based on Gaussian

kernels are universal, as are string kernels (Section 2.3). See also

(Schölkopf et al., 2004) for an extensive list of further kernels.

When F is the unit ball in a universal RKHS, the following

theorem (Smola et al., 2006) guarantees that MMD[F, p, q] will

detect any discrepancy between p and q.

THEOREM 2.2. Let p, q be Borel probability measures on X a
compact subset of a metric space, and let H be a universal repro-
ducing kernel Hilbert space with unit ball F. Then MMD[F, p, q]¼
0 if and only if p ¼ q.

Moreover, denote by mp :¼ Ep[f(x)] the expectation of f(x)
in feature space (assuming that it exists).2 Then one may rewrite
MMD as

MMD½F‚p‚q� ¼ kmp�mqkH:
The main ideas for the proof can be summarized as follows. It is

known from probability theory (Dudley, 2002, Lemma 9.3.2) that

under the stated conditions, a sufficient condition for p¼ q is that for

all continuous functions f, we have
R

f dp¼
R

f dq. Such functions f,
however, can be arbitrarily well approximated using functions in a

universal RKHS (Steinwart, 2002). For the second part of the result,

observe that due to (1), we may rewrite the MMD as

MMD½F‚p‚q� ¼ sup
kf kH�1

Ep½ f ðxÞ� � Eq½ f ðyÞ�

¼ sup
kf kH�1

Ep½hfðxÞ‚ f iH� � Eq½hfðyÞ‚ f iH�

¼ sup
kf kH�1

hmp�mq‚ f iH ¼ kmp�mqkH:

The finite sample computation of MMD is greatly simplified by (2),

as shown in the corollary below:

COROLLARY 2.3. Under the assumptions of theorem 2.2 the fol-
lowing is an unbiased estimator of MMD2[F, p,q]:

MMD2½F‚X‚Y� ¼ 1

mðm � 1Þ
Xm
i6¼j

kðxi‚xjÞ

þ 1

nðn � 1Þ
Xn

i6¼j

kðyi‚yjÞ �
2

mn

Xm‚ n

i‚ j¼1

kðxi‚yjÞ:

1Note that MMD[F, X, Y] as defined above is biased: even when p¼ q, it will

tend to give strictly positive results for finite sample sizes.

2A sufficient condition for this is kmpk2
H < 1, which is rearranged as

Ep[k (x, x0)] < 1, where x and x0 are independent random variables

drawn according to p.
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Proof

We compute

MMD2½F‚p‚q� :¼hmp�mq‚mp�mqiH
¼ hmp‚mpiH þ hmq‚mqiH � 2hmp‚mqiH
¼ EphfðxÞ‚fðx0ÞiH þ EqhfðyÞ‚fðy0ÞiH
� 2Ep‚ qhfðxÞ‚fðyÞiH‚

where x0 is a random variable independent of x with distribution

p, and y0 is a random variable independent of y with distribution q.

The proof is completed by applying hf(x), f(x0)iH ¼ k(x, x0), and

replacing the expectations with their empirical counterparts.

We illustrate the behavior of MMD in Figure 1 using a

one-dimensional example: the data X and Y are generated from

distributions p and q with equal means and variances, however p
is Gaussian and q is Laplacian. For the application of MMD we pick

H to be an RKHS using the Gaussian kernel. We observe that the

function f that witnesses the MMD (in other words, the function

maximizing the mean discrepancy) is smooth, positive where the

Laplace density exceeds the Gaussian density (at the center and

tails), and negative where the Gaussian density is larger. Moreover,

the magnitude of f is a direct reflection of the amount by which one

density exceeds the other, insofar as the smoothness constraint

permits it.3

Although the expression of MMD2(F, X, Y) in Corollary 2.3

is the minimum variance unbiased estimate (Serfling, 1980), a

more tractable unbiased expression can be found in the case

where m ¼ n, with a slightly higher variance (the distinction is

in practice irrelevant, since the terms that differ decay much

faster than the variance). It is obtained by dropping the cross-

terms i ¼ j from the sum over k(xi, yi):

LEMMA 2.4. Assuming the samples X and Y both have size m,

define zi ¼ (xi, yj), and let

hðzi‚zjÞ :¼ kðxi‚xjÞ þ kðyi‚yjÞ � kðxi‚yjÞ � kðxj‚yiÞ:

An unbiased estimate of MMD2[F, p, q] is given by

MMD2½F‚X‚Y� :¼ 1

mðm � 1Þ
Xm
i6¼j

hðzi‚zjÞ:

Note that with some abuse of notation we used the same symbol as

in Corollary 2.3 for a slightly different estimator. However there

should be no ambiguity in that we use only the present version for

the remainder of the paper.

An important property of the new statistic is that its kernel h(zi, zj)

is a positive definite kernel in its own right, since

hðzi‚zjÞ ¼ hfðxiÞ � fðyiÞ‚fðxjÞ � fðyjÞi:

Thus z ¼ (x, y) ! f(x) � f(y) is a valid feature map for h. This

gives another interpretation of MMD: it is the expected inner pro-

duct between vectors obtained by connecting a point from one

distribution to a point from the other. For detailed discussions of

the problem of defining kernels between distributions and sets, see

(Cuturi et al., 2005; Hein and Bousquet, 2005).

2.2 MMD tests

We now propose a two-sample test based on the asymptotic distri-

bution of an unbiased estimate of MMD2, which applies in the case

where F is a unit ball in a RKHS, and m¼ n. This uses the following

theorem, due to Hoeffding (1948). See also Serfling (1980, Section

5.5.1). For a proof and further details see Smola et al. (2006).

THEOREM 2.5. Let zi and h(zi, zj) be specified as in Definition 2.4
and assume that Ep,q [MMD4[F, X, Y]] <1. Then for m!1, the
statistic MMD2(F, X, Y) converges in distribution to a Gaussian
with mean MMD2[F, p, q] and variance

s2
MMD ¼

22

m
ðEz½ðEz0hðz‚z

0 ÞÞ2� � ½Ez‚ z0 ðhðz‚z
0 ÞÞ�2Þ:

The convergence to the normal occurs rapidly: according to

Serfling (1980, Theorem B,p. 193), the CDF of the U-statistic con-

verges uniformly to the asymptotic CDF at rate1/
ffiffiffiffi
m
p

.

Our goal is to test whether the above normal distribution has zero

mean (the null hypothesis), as opposed to a mean that is positive.

Since we need not concern ourselves with negative deviations from

the mean (MMD[F, p, q] � 0 may never become negative), it

suffices to test whether MMD2[F, X, Y] � « for some threshold

«. Thus, we obtain the two-sample test below as a corollary to

Theorem 2.5, following the principles outlined by Casella and

Berger (2002, Section 10.3.2).
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Fig. 1. Illustration of the function maximizing the mean discrepancy in the

case where a Gaussian is being compared with a Laplace distribution. Both

distributions have zero mean and unit variance. The maximizer of the MMD

has been scaled for plotting purposes, and was computed empirically on the

basis of 2 · 104 samples, using a Gaussian kernel with s ¼ 0.5.

3One may show that the maximizer of MMD[F, p, q] is given by f(x) ¼
hmp � mq, f(x)i. The same holds true for the maximizer of the empirical

quantity, with the means being replaced by empirical means. See (Smola

et al., 2006) for further details and a proof.
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COROLLARY 2.6. A test of the null hypothesis p ¼ q with
asymptotic size4 a, and asymptotic Type II error zero, has the
acceptance region

MMD2½F‚X‚Y� � ŝsMMDza

where

ŝs2
MMD ¼

4

m2ðm�1Þ2
Xm
i¼1

ð
Xm
j6¼i

hðzi‚zjÞÞ2 �
4

m
MMD4½F‚X‚Y�

or any empirical estimate of sMMD that converges in probability.
Here za satisfies Prðz > zaÞ ¼ a when z � N(0,1).

It is also of interest to estimate the p-value of the test. We

first describe a sample-based heuristic. We draw randomly without

replacement from the aggregated data Z ¼ fX‚Yg to get two new

m-samples X� and Y�, and compute the test statistic

MMD2
�ðF‚X�‚Y�Þ between these new samples (bear in mind that

under the null hypothesis p ¼ q, this aggregation is over data drawn

from a single distribution). We repeat this procedure t times to

obtain a set of test statistics under the null hypothesis (conditioned

on the observations). We then add the original statistic MMD2(F, X,

Y) to this set, and sort the set in ascending order. Define as r the rank

of the original test statistic within this ordering. Then our estimated

p-value is p¼ (t + 1� r)/(t + 1). Alternatively, we can find an upper

bound on p using the distribution-free large deviation result of

Hoeffding (1963, p. 25) (see Smola et al., 2006, Section 6),

which is exact at finite sample sizes. This bound is only tight

when m is large, however, and may be too conservative at small

sample sizes.

We give the complete pseudocode for the above MMD-based

test in Algorithm 1. We emphasize that the computational cost is

O(m2), and that the method is easily parallelized (the kernel matrix

can be broken up into submatrices, and the relevant sums computed

independently before being combined). In addition, the kernel

matrix needs never be stored in memory, but only a running sum

must be kept, which makes the analysis of very large data sets

feasible. Randomized methods could also be used to speed up

the double-loop required for evaluating Algorithm 6, by only com-

puting parts of the sum. This procedure would reduce the quality of

the test, however.

Finally, we note that other approaches are also possible in determ-

ining the acceptance region of the test. For instance, Smola et al.
(2006) describe two tests based on large deviation bounds: the first

uses Rademacher averages to obtain a bound that explicitly

accounts for the variation in the test statistic, the second uses a

distribution-independent upper bound on the test statistic variation

due to Hoeffding (1963, p. 25). These approaches have the advant-

age of giving an exact, distribution-free test of level a that holds for

finite samples, and not just in the asymptotic regime. In addition,

they provide a finite sample upper bound on the p-value, which is

again distribution-free. A disadvantage of these approaches is that

they require a larger sample size than the test in Corollary 6 before

they can detect a given disparity between the distributions p and q,

i.e. they have a higher Type II error. For this reason, we do not use

these tests in Section 3.

2.3 Universal kernels for discrete data

While many examples of universal kernels on compact subsets of

Rd are known (Steinwart, 2002), little attention has been given to

finite domains. It turns out that the issue is considerably easier in this

case: the weaker notion of strict positive definiteness (kernels indu-

cing nonsingular Gram matrices (k(xi, xj))ij for arbitrary sets of

distinct points xi) ensures that every function on a discrete domain

x ¼ fx1‚ . . . ‚xng lies in the corresponding RKHS (and hence that

the kernel is universal). To see this, let f 2 Rn be an arbitrary

function on X. Then a ¼ K�1f ensures that the function f ¼
P

j

k(.,xj) satisfies f(xi) ¼ fi for all i.
It turns out that string kernels fall in this class:

THEOREM 2.7. Let X be a finite set of strings, and let #s (x) denote
the number of times substring s occurs in x. Then any string kernel of
the form kðx‚ x

0 Þ ¼
P

s2X ws#sðxÞ#sðx
0 Þ with ws > 0 for all s 2 X is

strictly positive definite.

Proof. We will show that the vectors ffðxÞ j x 2 Xg obtained by

the feature map are linearly independent, implying that all Gram

matrices are nonsingular. The feature map is given by fðxÞ ¼
ð ffiffiffiffiffiws
p

#sðxÞ‚
ffiffiffiffiffiffi
ws0
p

#s0 ðxÞ‚ . . . Þ where we assume for the purpose of

the proof that all substrings s are ordered by nondecreasing length.

Now for a given set X of size m consider the matrix with columns

fðx1Þ‚ . . . ‚fðxmÞ, where the entries in X are assumed to be ordered

in the same manner as the substrings (i.e. by nondecreasing length).

By construction, the upper triangle of this matrix is zero, with the

highest nonzero entry of each row being
ffiffiffiffiffi
wx
p

, which implies linear

independence of its rows.

For graphs unfortunately no strictly positive definite kernels exist

which are efficiently computable. Note first that it is necessary for

strict positive definiteness that fðxÞ be injective, for otherwise we

would have fðxÞ ¼ fðx0 Þ for some x 6¼ x
0
, implying that the

kernel matrix obtained from X ¼ fx‚x
0 g is singular. However, as

Gärtner et al. (2003) show, an injective f(x) allows one to match

graphs by computing kfðxÞ � fðx0 Þk2 ¼ kðx‚xÞ þ kðx0 ‚x
0 Þ

� 2kðx‚x
0 Þ. Graph matching, however, is NP-hard, hence no such

Algorithm 1 MMD test using asymptotic normality

Input: positive definite kernel k, level of test a2 (0, 1), samples X
and Y of size m drawn from p and q respectively

MMD2  0 and s2  0

for i ¼ 1 to m do

t  0

for j ¼ 1 to m do

if j 6¼ i then

t  t + k(xi, xj) + k(yi, yj) � k(xi, yj) � k(xi, yi)

end if

end for

MMD2  MMD2 + 1
mðm � 1Þ t and s2  s2 + t2

end for

s2  4

ðm2ðm�1Þ2Þs
2 � 4

m ðMMD2Þ2

� 
ffiffiffiffiffi
2�2
p

erfinv ð1�2�Þ
Output: If MMD2 � e return p ¼ q accepted. Otherwise return

p ¼ q rejected.

4 Size and level are defined following Casella and Berger (2002, Section 8.3).
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kernel can exist. That said, there exists a number of useful graph

kernels. See e.g. (Borgwardt et al., 2005) for further details.

2.4 Kernel choice

So far, we have focused on the case of universal kernels. These

kernels have various favorable properties, including that

� universal kernels are strictly positive definite, making the kernel

matrix invertible and avoiding non-uniqueness in the dual

solutions of SVMs,

� Continuous functions on X can be arbitrarily well approxima-

ted (in the k·k1-norm) using an expansion in terms of

universal kernels, and SVMs using universal kernels are

consistent in the sense that (subject to certain conditions)

their solutions converge to the Bayes optimal solution

(Steinwart, 2002).

� MMD using universal kernels is a test for identity of arbitrary

Borel probability distributions.

However, note that for instance in pattern recognition, there

might well be situations where the best kernel for a given problem

is not universal. In fact, the kernel corresponds to the choice of a

prior, and thus using a kernel which does not afford approximations

of arbitrary continuous functions can be very useful—provided that

the functions it does approximate are known to be solutions of the

given problem.

The situation is similar for MMD. Consider the following

example: suppose we knew that the two distributions we are testing

are both Gaussians (with unknown mean vectors and covariance

matrices). Since the empirical means of products of input variables

up to order two are sufficient statistics for the family of Gaussians,

we should thus work in an RKHS spanned by products of order up

to two—any higher order products contain no information about the

underlying Gaussians and can therefore mislead us. It is straight-

forward to see that for c > 0, the polynomial kernel

kðx‚x
0 Þ ¼ ðhx‚x

0 þ cÞ2, with c > 0, does the job: it equalsXd

i‚ j¼1

xixjx
0
ix
0
j þ 2c

Xd

i¼1

xix
0
i þ c2 ¼ hfðxÞ‚fðx0 Þi‚

where fðxÞ ¼ ðc‚
ffiffiffiffiffi
2c
p

x1‚ . . . ‚±
ffiffiffiffiffi
2c
p

xd‚xixj j i‚ j ¼ 1‚ . . . ‚dÞ>: If we

want to test for differences in higher order moments, we use a higher

order kernel5 kðx‚x
0 Þ ¼ ðhx‚xi þ cÞp.

Note, however, that this does not tell us how to choose c.

With additional prior knowledge, we could further improve the

odds of our test working well on small sample sizes. For instance,

if we knew that the Gaussians differ mainly in their covariance

structures, then we could incorporate this by choosing a small c.

If the available prior knowledge is less specific, we could also sum

up several MMDs by using summed kernels.

2.5 Related methods

Various empirical methods have been proposed to determine

whether two distributions are different. The first test we consider,

and the simplest, is a multivariate generalization of the t-test

(Hotelling, 1951), which assumes both distributions are multivariate

Gaussian with unknown, identical covariance structure. This test is

not model-free in the sense of MMD (and the tests described

below)—indeed, it is easy to construct examples in which it fails

completely (Figure 1).

Two well-established model-free univariate tests are the

Kolmogorov-Smirnov statistic and the Wald-Wolfowitz runs test.

Both tests are powerful in that the distribution of the test statistic is

known independently of p and q for finite sample sizes, under the

null hypothesis p¼ q. A generalization of the Wald-Wolfowitz runs

test to the multivariate domain was proposed by Friedman and

Rafsky (1979). It involves counting the number of edges in the

minimum spanning tree over the aggregated data that connect points

in X to points in Y. The resulting test relies on the asymptotic

normality of the test statistic. The computational cost of this method

using Kruskal’s algorithm is Oððmþ nÞ2logðmþ nÞÞ, although

more modern methods improve on the log(m + n) term. Two

possible generalizations of the Kolmogorov-Smirnov test to the

multivariate case were studied by Bickel (1969); Friedman and

Rafsky (1979). The approach of Friedman and Rafsky in this

case again requires a minimal spanning tree, and thus has a similar

cost to their multivariate runs test.

Hall and Tajvidi (2002) propose to aggregate the data as

Z ¼ fX‚Yg, find the j points in Z closest to each point in X for

all j 2 f1‚ . . . ‚mg, count how many of these are from Y, and

compare this with the number of points expected under the null

hypothesis (the procedure is repeated for each point in Y wrt points

in X). The test statistic is costly to compute; Hall and Tajvidi (2002)

consider only tens of points in their experiments.

Another approach is to use some distance (e.g. L1 or L2)

between estimates of the densities as a test statistic (Anderson

et al., 1994; Biau and Gyorfi, 2005), based on the asymptotic dis-

tribution of this distance given p ¼ q. One problem with the

approach of Biau and Gyorfi (2005), however, is that it requires

the space to be partitioned into a grid of bins, which becomes

difficult or impossible for high dimensional problems (such as

those in Section 3).

We now illustrate these tests with a simple example. In Figure 2,

we compare several alternatives to the MMD-based test in

distinguishing 100 samples taken from each of two normal distri-

butions with unit variance. Results are averaged over a series of

Euclidean distances between the means of both distributions, and

plotted as a function of increasing dimensionality. The t-test has the

highest chance of correctly rejecting the null hypothesis for low

dimensions. However, for high dimensions the estimation of the

sample covariance matrices is poor due to the limited sample sizes.

Note that we do not apply the Biau & Györfi test for high dimen-

sionalities, since memory requirements force the number of parti-

tions per dimension to be too low.

MMD performs very well and outperforms all other model-free

approaches, namely the multivariate Kolmogorov-Smirnov test (FR

Smirnov), the multivariate Wald-Wolfowitz runs test (FR Wolf),

and the Biau & Györfi test (Biau). The comparison becomes harder

for increasing dimensionality, since the sample size is fixed to 100

random vectors per distribution for all dimensions. Moreover,

MMD also yields a very low rejection rate of the null hypothesis,

when it is true (see figure legend).

Finally, we mention that the connection between means in

RKHSs and distributions has, in a less general setting, been

observed before in the field of kernel machines. Schölkopf and

Smola (2002) point out that the empirical mean of a set of points

5 Kernels with infinite-dimensional RKHS can be viewed as a nonparametric

generalization where we have infinitely many sufficient statistics.
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in an RKHS can be viewed as a Parzen windows estimate of the

density underlying the data; and Shawe-Taylor and Cristianini

(2004) propose to use the distance to the mean as a novelty detection

criterion, and provide a statistical analysis.

3 EXPERIMENTS

In this section, we present applications of MMD in data

integration for bioinformatics, namely microarray cross-platform

comparability, cancer (subtype) diagnosis, and schema matching

for enzyme protein structures.

3.1 Microarray cross-platform comparability

Experimental scenario Microarrays as a large-scale gene expres-

sion observation tool offer a unique possibility for molecular bio-

logists to study gene activity at a cellular level. In recent years, there

have been a great number of developments in different microarray

platforms, techniques and protocols, advances in these techniques,

and biological and medical studies making use of these approaches.

As a result, microarray data for a given problem, and the results

derived from it (e.g. marker genes for a certain subtype of cancer),

may vary greatly (Carter et al., 2005), both between labs and plat-

forms. Even for the subsequent step of data processing, e.g. missing

value imputation, a large battery of different techniques is available.

Consequently, despite an avalanche of microarray data being

generated nowadays, it remains to be determined if and how to

combine microarray data from different studies on the same biolo-

gical subject.

Therefore, it is necessary to establish a statistical test of whether

two microarray measurements on the same subject, obtained by two

different labs or on two different platforms, can be regarded as

comparable and can be used for joint data analysis. We define

such a test using MMD as a statistic: if an MMD-based test rejects

the null hypothesis that the microarray measurements are generated

from the same distribution, then we deem them not comparable.

We test this approach on published microarray datasets from two

different platforms. If our criterion is useful in practice and able to

detect the limited cross-platform comparability of microarray data,

then MMD should judge microarray data achieved on different

platforms as being less often comparable than those found on the

same platform.

Data For our first experiment, we obtained 2 datasets from

Warnat et al. (2005), from two studies on breast cancer by Gruvber-

ger et al. (2001) and West et al. (2001). Both comprise gene expres-

sion levels for a common set of 2,166 genes. Different microarray

platforms were used in these studies: while Gruvberger et al. (2001)

achieved their results on a c-DNA platform, West et al. (2001)

utilized oligonucleotide microarrays.

We tried to find out via MMD if there is any statistically signi-

ficant difference between the microarray results achieved on these

different platforms. Samples were scaled to zero mean and unit

variance beforehand, although not for the t-test. We compared
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Fig. 2. Test of samples from two normal distributions with different means and unit variance, based on a significance level a¼ 0.05. The cumulative percentage

of times the null hypothesis was correctly rejected over the set (0.1,0.2,0.25,0.3,0.4,0.5,0.6,0.7,0.8,1,2,5,10,15) of Euclidean distances between the distribution

means, was computed as a function of the dimensionality of the normal distributions. Its average and standard error in 333 repetitions is shown for each of the five

tests employed. The sample size was 100 for each distribution. The MMD used a Gaussian kernel, with kernel sizes obtained by maximizing MMD (fors values

within 0.25 and 20) to get the most conservative test. In case of the t-test, a ridge was added to the covariance estimate, to avoid singularity (the ridge was

incremented in steps of 0.01 until the 2-norm condition number was below 10). For the Biau test, equal partitions per dimension were used, although this becomes

intractable for high dimensions. When samples from distributions with equal mean were compared, the tests wrongly rejected the null hypothesis in the following

number of trials out of 8991 (summed over all dimensions in the plot, with 333 runs each): 112 (MMD), 960 (t-test), 379 (FR Wolf), 441 (FR Smirnov). For the

Biau test: 4 out of 1665 trials.
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the MMD results to the multivariate t-test and the Friedman-Rafsky

multivariate Kolmogorov-Smirnov and Wald-Wolfowitz tests

(denoted Smirnov and Wolf, respectively). The high dimensionality

of this problem, as well as of the experiments below, prevents a

comparison with the Biau-Györfi test.

We chose a ¼ 0.05 as the level of significance for all tests. A

Gaussian kernel was employed for MMD, with s¼ 20. We obtained

an average performance over 100 distribution tests using 50 microar-

ray measurements from different platforms (X being 25 cDNA

measurements and Y being 25 oligonucleotide measurements),

and 100 distribution tests with data from 50 microarray measure-

ments taken from only one of the two platforms. For each test, the

studies were randomly selected without replacement from the rel-

evant measurement pools. We repeated this experiment for MMD

and each of the competing methods.

Results Results are reported in Table 1 , showing the number of

times MMD and the other three methods deemed two samples as

originating from the same distribution, on data from both identical

and dissimilar platforms. In the majority of repetitions, both MMD

and the Friedman-Rafsky tests recognize correctly whether two

samples were generated on the same platform or not. However

MMD is the only test that makes no Type I or Type II errors in

all repeats of the experiment. While the FR Wolf test has no false

negatives when the samples are from different platforms, it finds

occasional false positives when the samples arise from the same

platform. The FR Smirnov test has a slightly reduced Type I error

rate compared with the FR Wolf test, but at the expense of a much

larger Type II rate. Finally, the t-test appears unable to distinguish

differences in platform, which is unsurprising given the high dimen-

sionality of the data. As inter-platform comparability of microarray

data is reported to be modest in many recent publications (van

Ruissen et al., 2005; Carter et al., 2005; Stec et al., 2005),

MMD is very successful in detecting these differences in our experi-

ments. We also note that our sample sizes are relatively small,

which makes problematic the assumption of both the MMD and

Friedman-Rafsky tests that the associated statistic has an asymptotic

distribution (this remark also holds for the experiments in the next

section). That said, this approximation appears reasonable for the

tasks we address, in the light of our results.

3.2 Cancer and tumor subtype diagnosis

Experimental scenario Besides microarray cross-platform com-

parability, it is interesting to examine whether MMD can distinguish

between the gene expression profiles of groups of people who are

respectively healthy or ill, or who suffer from different subtypes of a

particular cancer. Alternatively, as in the previous experiment,

MMD can be employed to determine whether we should integrate

two sets of observations (which might arise from different subtypes

of a cancer) into one joint set, or if we should treat them as distinct

classes.

When using MMD for cancer diagnosis, we test whether the

microarray data at hand contain a significant level of difference

between ill and healthy patients. Conversely, when looking at

cancer (or tumor) subtypes, MMD indicates whether two subtypes

of cancer should be considered independently when designing a

computational predictor of cancer, or if they can be assigned

to one common super-class. In terms of classification methods,

MMD can be used to choose whether binary (cancer/healthy) or

multi-class (healthy, cancer subtype 1, . . . , cancer subtype n) clas-

sification will be more accurate when developing a diagnosis tool.

Data For our second microarray experiment, we obtained data-

sets from two cancer microarray studies. The first, by Singh et al.
(2002), is a dataset of gene expression profiles from 52 prostate

tumor and 50 normal, non-tumor samples. The second, by Monti

et al. (2005), consists of microarray data from diffuse large B-cell

lymphoma samples. In particular, we are interested in cancer dia-

gnosis on the data of Singh et al. (2002), and tumor subtype dia-

gnosis on the data of Monti et al. (2005). We again normalized each

data sample to zero mean and unit variance, besides for the t-test.

Cancer diagnosis

We examine whether MMD can distinguish between normal and

tumor tissues, using the microarray data from the prostate cancer

study by Singh et al. (2002). Again, a was set to 0.05. Randomly

choosing 100 pairs of 25 healthy and 25 cancer patients’ gene

expression profiles, we used MMD to test the null hypothesis

that both samples were generated by the same distribution. We

then did the same test for 100 randomly chosen pairs of samples

of size 25, both drawn from the same tissue type (healthy or tumor).

For all 200 pairs of samples, we compared our results to those of

the multivariate t-test and both Friedman-Rafsky tests (Wolf and

Smirnov).

Results Results are reported in Table 2. Both MMD and the

Friedman-Rafsky tests are in agreement that there is a large differ-

ence between samples from cancer patients and healthy patients,

and little difference within a particular class. We again see that both

MMD and FR Wolf make no Type II errors, but that only MMD

makes no Type I errors; and that FR Smirnov has a much higher

Type II error rate than FR Wolf (while making one fewer Type I

errors).

Table 1. Microarray cross-platform comparability

Platforms H0 MMD t-test FR FR

Wolf Smirnov

Same accepted 100 100 93 95

Same rejected 0 0 7 5

Different accepted 0 95 0 29

Different rejected 100 5 100 71

Cross-platform comparability tests on microarray level for cDNA and oligonucleotide

platforms. Repetitions 100, sample size (each) 25, dimension of sample vectors: 2,116

Table 2. Cancer diagnosis

Health status H0 MMD t-test FR FR

Wolf Smirnov

Same accepted 100 100 97 98

Same rejected 0 0 3 2

Different accepted 0 100 0 38

Different rejected 100 0 100 62

Comparing samples from normal and prostate tumor tissues (Singh et al., 2002). H0 is

hypothesis that p ¼ q. Repetitions 100, sample size (each) 25, dimension of sample

vectors: 12,600
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Tumor subtype diagnosis

We performed the same experiment as above for tumor subtype

diagnosis on data from Monti et al. (2005). We are interested in

whether MMD is able to distinguish betweeen lymphoma of two

subtypes: ‘‘oxidative phosphorylation’’ and ‘‘B-cell receptor/

proliferation’’.

Results We report results in Table 3. As in the previous

experiment, both MMD and the Friedman-Rafsky tests prefer to

reject the null hypothesis that both samples are generated by the

same distribution, when the lymphoma subtypes are different. In

other words, all three tests succeed in finding discrepancies between

samples from different tumor subtypes in this case. This is consist-

ent with previous results by Monti et al. (2005) who discovered

these different lymphoma subtypes by using a combination of sev-

eral clustering algorithms. Hence MMD confirms the existence of

these subtypes in our experiment. Comparing the performance of

the various tests gives results consistent with the previous two

experiments: MMD and FR Wolf do not make any Type II errors,

but only MMD has no Type I errors; and FR Smirnov has a much

worse Type II error rate than FR Wolf, but makes one fewer Type I

errors.

3.3 Schema matching on molecular graph data

Experimental scenario Classifying biological data into ontologies

or taxonomies is the central step in structuring and organizing the

data. However, different studies may use different ontologies, res-

ulting in the need to find correspondences between two ontologies.

We employ MMD to discover matching terms in two ontologies

using the data entries associated with these terms.

We study the following scenario: Two researchers have each

dealt with 300 enzyme protein structures. These two sets of 300

proteins are disjunct, i.e. there is no protein studied by both

researchers. They have assigned the proteins to six different classes

according to their enzyme activity. However, both have used dif-

ferent protein function classification schemas for these six classes,

and are not sure which pairs of classes correspond.

To find corresponding classes, the MMD can be employed. We

obtained 600 proteins modeled as graphs from Borgwardt et al.
(2005), and randomly split these into two subsets A and B of

300 proteins each, such that 50 enzymes in each subset belong

to each one of the six EC top level classes. We then computed

MMD for all pairs of EC classes from subset A and subset B to

check if the null hypothesis is rejected or accepted. To compute the

MMD, we employed the protein random walk kernel for protein

graphs, following Borgwardt et al. (2005). We compared all pairs of

classes via MMD, and repeated the experiment 50 times.

Results For a significance level of a ¼ 0.05, MMD rejected the

null hypothesis that both samples are from the same distribution

whenever enzymes from two different EC classes were compared.

When enzymes from the same EC classes were compared, MMD

accepted the null hypothesis. MMD thus achieves error-free data-

based schema matching here.

We checked whether the same good results were found for a

higher significance level of a ¼ 0.01. We report results in

Table 4. This time, in 7 comparisons out of 1800 comparisons

the null hypothesis is incorrectly accepted, whereas in all other

cases, the correct decision is taken. Hence even for the high signi-

ficance level of a ¼ 0.01 MMD is very accurate.

In addition to these promising results, note that although we

consider the basic case of 1:1 correspondence between classes in

our experiment, the fact that MMD uses the kernel trick allows for

even more powerful approaches to data-content based schema

matching. As kernels are closed under addition and pointwise mul-

tiplication, we can test complex correspondences between different

classes as well, where one class in schema A corresponds to a

combination of classes in schema B. Schema matching for complex

correspondences via MMD is a topic of current research.

4 DISCUSSION AND CONCLUSIONS

In this paper, we have presented, to the best of our knowledge, the

first principled statistical test for distribution testing and data integ-

ration of structured objects, using the Maximum Mean Discrepancy

(MMD) as a test statistic. MMD makes use of kernels, and hence is

not limited to vector data. As a consequence, MMD is not only

applicable to a wide range of problems in molecular biology, but

also to common data types in bioinformatics, such as strings and

graphs. Kernels for biological data, which have previously been

used in classification tasks, can now be employed for distribution

testing. Amongst others, these include kernels on protein sequences,

protein structures, and microarray time series (Schölkopf et al.,
2004).

MMD is easy to implement, memory-efficient, and fast to

compute. In all of our experiments, it outperformed competing

methods (provided the latter were applicable at all, i.e., on vectorial

data). We applied our MMD-based test to microarray cross-platform

comparability, cancer diagnosis, and data-content based schema

matching.

Table 3. Tumor subtype tests

Subtype H0 MMD t-test FR FR

Wolf Smirnov

Same accepted 100 100 95 96

Same rejected 0 0 5 4

Different accepted 0 100 0 22

Different rejected 100 0 100 78

Comparing samples from different and identical tumor subtypes of lymphoma (Monti

et al., 2005). H0 is hypothesis that p ¼ q. Repetitions 100, sample size (each) 25,

dimension of sample vectors: 2,118.

Table 4. Data-content based schema matching

Test EC 1 EC 2 EC 3 EC 4 EC 5 EC 6

EC 1 0 50 45 50 50 50

EC 2 50 0 50 50 50 50

EC 3 48 50 0 50 50 50

EC 4 50 50 50 0 50 50

EC 5 50 50 50 50 0 50

EC 6 50 50 50 50 50 0

Data-content based schema matching for a ¼ 0.01. Numbers indicate how often null

hypothesis (p ¼ q) was rejected.
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We believe that MMD could also be employed to validate

computational simulations of biological processes. If wetlab exp-

eriments and simulations generate results and predictions that

MMD deems comparable, it is likely that the simulator has pro-

duced realistic predictions. This validation procedure will become

increasingly relevant as more model-based simulations of microar-

ray data become available (den Bulcke et al., 2006).

MMD could also be used for keyplayer gene selection from

microarray data. This type of feature selection could be employed

to find genes that are involved in a cancer outbreak when looking at

gene expression profiles from healthy and cancer patients. MMD

would be applied to subsets of genes from two classes of microar-

rays to find the subset that maximizes the probability that the two

classes arise from different distributions. These genes should be

studied experimentally in more detail. If, however, MMD cannot

find any subset of genes that results in significant differences

between healthy and cancer patients, then this might serve as an

indicator that the microarrays did not contain the essential genes

involved in cancer progress.
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ABSTRACT

Motivation: Sampling the conformational space is a fundamental

step for both ligand- and structure-based drug design. However, the

rational organization of different molecular conformations still remains

a challenge. In fact, for drug design applications, the sampling process

provides a redundant conformation set whose thorough analysis can

be intensive, or even prohibitive. We propose a statistical approach

based on cluster analysis aimed at rationalizing the output of methods

such as Monte Carlo, genetic, and reconstruction algorithms. Although

somesoftware already implements clustering procedures, at present, a

universally accepted protocol is still missing.

Results: We integrated hierarchical agglomerative cluster analysis

with a clusterability assessment method and a user independent

cutting rule, to form a global protocol that we implemented in a

MATLAB metalanguage program (AClAP). We tested it on the confor-

mational space of a quite diverse set of drugs generated via Metropolis

Monte Carlo simulation, and on the poses we obtained by reiterated

docking runs performed by four widespread programs. In our tests,

AClAP proved to remarkably reduce the dimensionality of the original

datasets at a negligible computational cost. Moreover, when applied

to the outcomes of many docking programs together, it was able to

point to the crystallographic pose.

Availability: AClAP is available at the ‘‘AClAP’’ section of the website

http://www.scfarm.unibo.it.

Contact: E-mail: andrea.cavalli@unibo.it.

Supplementary Information: The complete series of AClAP results

is available in the ‘‘services’’ section of the website http://www.scfarm.

unibo.it.

1 INTRODUCTION

The physicochemical and biological properties of a molecule

critically depend upon conformations the molecule can adopt.

Therefore, carrying out exhaustive and meaningful conformational

analysis is pivotal for deeply investigating any molecular feature.

For instance, any three-dimensional ligand-based approach in drug

design can’t help using a complete analysis of the conformational

space. Monte Carlo simulation is just one of the methods available

to achieve this sampling (Chang, et al., 1989). In a Monte Carlo

study, the conformational space of a molecule is sampled by

randomly changing dihedral angle rotations or atom Cartesian coor-

dinates. If the currently drawn sample is lower in energy than its

predecessor, then it is retained as a starting point for the successive

iteration. Conversely, when the new conformation is higher in

energy, it can be retained according to two alternative criteria:

either its energy belongs to a predefined window or the ‘‘move’’

can be accepted with a probability related to the Boltzmann factor,

following the Metropolis method (Metropolis, et al., 1953).

Two fields that make a great use of conformational sampling

are docking and virtual screening, both of them holding a prominent

position in the modern structure-based drug design (Taylor, et al.,
2002). In a limited computational time, they have to face a hard

two-fold problem: generating a sensible conformational ensemble

and then ranking its members. Besides Monte Carlo sampling,

the ligand conformational space can be explored by genetic and

incremental algorithms.

Apparently, sampling is an easier job to do than scoring. In fact,

reiterated docking runs usually provide at least one pose close to the

crystallographic one. In contrast, due to different heuristics and

approximation levels, scoring functions do not always succeed in

including the crystallographic pose among the most favorable ones.

On top of it, it is not unusual to see quite different rankings by some

among the most widespread docking tools. In general, it cannot be

said that one method outperforms the others, since different target

and compound classes can lead to different performances. A number

of different possibilities rather than a single binding mode can be

obtained also as a result of reiterated runs of the same algorithm,

when it adopts a random based approach. Due to the computational

cost of the sampling process and of the evaluation of the binding

free energy, it would be definitely useful to have a restricted, but still

representative, set of conformations to be processed with more

thorough techniques.

Cluster Analysis (CA) is a discipline that encompasses a

number of different algorithms to partition samples in homogeneous

classes without any a priori knowledge. It is already used to analyze

the large amount of data generated by molecular modeling

software, such as the outcomes of conformational analysis and

docking outputs (Chema, et al., 2004).

In principle, there does not exist a unique ‘‘correct’’ method to

cluster a dataset, and a large number of variations have been

devised, from which one has to choose the most appropriate one.

As an example, X-cluster, developed in 1994 by Shenkin and

McDonald (Shenkin and McDonald, 1994) and implemented in the

MacroModel software package (Mohamadi, et al., 1990) is one of

the most widely exploited algorithms for organizing the output of

conformational sampling. X-cluster employs a hierarchical agglom-

erative approach with the single linkage rule (see the Algorithm

Description section for further details). As a major drawback for any�To whom correspondence should be addressed.
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automated procedure, X-cluster leaves to the user the choice of the

most suitable clustering level.

In docking and virtual screening simulations, some programs

(such as AutoDock and GOLD) implement CA to better rationalize

their outcomes. In particular, AutoDock sorts conformations by

increasing energy and then implements a nonhierarchical clustering

method with single linkage rule to partition the poses. The cluster-

ing process always starts from the best scoring pose, and, due to the

peculiarity of the single linkage rule, first clusters tend to be the

more numerous. The process is iterated through conformations,

grouping together the elements whose Root Mean Square

Deviations (RMSDs) are within a user-defined threshold value.

In turn, GOLD has a dedicated utility (rms_analysis) to perform

CA on the docked poses with a hierarchical agglomerative approach

based on the complete linkage rule. This is known to be a non

space-conservative linkage criterion that tends to create compact

clusters of similar dimension. Moreover, no cutting rule is

implemented in the CA of the GOLD program.

A suitable CA protocol should be able to provide a functional

classification, i.e., to identify few conformations worthy to be

further studied. Moreover, the protocol should be ‘‘information’’

driven and should not, in general, necessitate of any preexisting

knowledge about the specificities of the target. Recently, we carried

out a comparative study (Bottegoni, et al., 2006) about the use of

different hierarchical agglomerative clustering rules associated

with a user-independent cutting function applied to the outcomes

of four different docking programs. From that study, we learned that

the combination of an a priori clusterability assessment with the

average linkage rule, and with a stopping criterion based on the

Kelley-Gardner-Sutcliffe (KGS) penalty function (Kelley, et al.,
1997) provides a good basis to achieve a sensible partitioning of

conformational datasets.

In this work, we describe the implementation of our novel

protocol in a MATLAB (The MathWorks, Inc.) metalanguage pro-

gram, named AClAP (Autonomous hierarchical agglomerative

Cluster Analysis based Protocol), and we discuss its performance

vs. commonly available CA-based methods. AClAP design benefits

from the understanding we gained from a conformational analysis

we made over a set of ten marketed drugs with the aid of

MacroModel (Mohamadi, et al., 1990) and over the above men-

tioned docking results, which concern a quite diverse set of ligands

co-crystallized with different biological counterparts. Docking

simulations were carried out by means of four programs, namely

Dock (Ewing, et al., 2001), AutoDock (Morris, et al., 1998), GOLD

(Jones, et al., 1997), and FlexX (Rarey, et al., 1996). Moreover, we

statistically analyze the whole set of obtained conformations, and

finally we discuss the behavior of the KGS penalty function.

Summarizing, AClAP turned out to meet all of the criteria

required for a robust clustering protocol at a very limited com-

putational cost. Therefore, we propose it as an innovative and

user-friendly tool, which can be of great help to molecular modelers

dealing with both ligand- and target-based drug design.

2 METHODS

AClAP is an interactive MATLAB metalanguage program that can take data

from the widespread mol2 file format. AClAP can also take in input the

torsion angles either in raw or csv (comma separated values) formats. It is

able to automatically identify the number of poses and the set of nonhydro-

gen atoms.

Each conformation is considered as an observation in a d-dimensional

space, and it is stored in an n by d matrix M, where n is the number of

the sampled conformations and d is the number of degrees of freedom of

the molecule (Figure 1). These latter include dihedral angle values of all

rotatable bonds and the Cartesian coordinates of three atoms (limited to

the clustering of docking poses), which account for global rotation

and translation. Each column of M is z-standardized for subsequent

Fig. 1. Example of construction of matrix M for Pimozide. a) The nonhy-

drogen atom numbering and the acyclic torsion angles are reported. b) Pi-

mozide chemical structure. The parameters reported in the table give rise to n

by d matrix M, where n is the number of the sampled conformations (in the

present example, 121) and d is the number of degrees of freedom of the

molecule (in the present example, the 7 acyclic torsion angles of Pimozide).

ACIAP, Autonomous hierarchical agglomerative Cluster Analysis
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processing. The M matrix is exploited within the clusterability assessment,

whereas, for CA, the full Cartesian coordinate set is used. In Figure 2, a

typical dialog box of AClAP is shown.

2.1 Clusterability assessment

To assess whether conformations show a natural tendency to group

into clusters, we implemented a modified version of a test originally

developed by Hopkins (Hopkins, 1954): the H� test.

This test is aimed at distinguishing between three main possibilities

for the distribution of the members of the dataset: uniformly scattered,

regularly spaced or naturally grouping. Only in the last case, CA is

really justified. The H� test is implemented as follows: first, a Principal

Component Analysis is performed over the z-standardized matrix M; in

order to lower the dimensionality of the problem, the original dataset is

projected onto the reduced space L induced by the first three principal

components. Then, a small number s of random points in L is generated.

These points are normally distributed, with zero means, and their projection

over each principal component direction has the same standard deviation as

the corresponding principal component of the dataset. In our test, s¼ n/20.

Now, s poses are randomly drawn and for each of them, as well as for

each random point, the minimum distance to the members of the dataset

is calculated, and named Di for the poses, and Vi for the points. This pro-

cedure is repeated n times and the H� value is calculated as the following

average:

H� ¼
Xs

i¼1

Vi

,�Xs

i¼1

Vi þ
Xs

i¼1

Di

�* +
dataset

‚ ð1Þ

Three cases can occur:

0.5�H�� 0.6 the poses are homogenously distributed

H�! 0 the poses are regularly spaced

H�! 1 the poses show a natural tendency to cluster

A cluster analysis should be carried out only in the last one. The absence of

regular or repetitive patterns in the outcomes of conformational analysis and

docking simulations makes unlikely the occurrence of the second case.

2.2 Cluster Analysis

AClAP implements a hierarchical agglomerative clustering algorithm.

‘‘Hierarchical’’ means that clusters at a higher level are union of clusters

at lower levels, while ‘‘agglomerative’’ means that clusters never break apart

during the formation process. The global hierarchy can be represented by

means of a dendrogram, a tree showing different clustering levels, spanning

from 1 to n. RMSD is taken as a measure of conformation-to-conformation

distance. Therefore, the clustering algorithm starts with n unary clusters; at

each step, the two closest clusters are merged, until only one cluster

containing all the poses is reached. The way the inter-cluster distance is

evaluated is called linkage rule. In AClAP, we implemented three among the

most widely used linkage rules: single linkage, average linkage, and the

Ward method. Single linkage (Everitt, et al., 2001), also known as nearest-

neighbor distance method, defines distance as the one of the closest pair of

conformations:

DM‚Q ¼ minm2f1‚ ... ‚xMg‚ q2f1‚ ... ‚xQgðdm‚ qÞ‚ ð2Þ

where uppercase roman letters indicate clusters, d is the RMSD-based con-

formation distance, D is the inter-cluster distance, x is the cardinality of a

cluster.

A well-known drawback of single linkage rule is the so-called ‘‘chaining’’

phenomenon: first clusters naturally tend to incorporate the nearby confor-

mations, therefore forming a ‘‘chain’’; as a consequence, there is a strong

bias towards the first clusters to being more populated than others.

In the average linkage (Everitt, et al., 2001) method, the mean distance

between all pairs of conformations is taken:

DM‚Q ¼
1

xMxQ

XxM

m¼1

XxQ

q¼1

dm‚q: ð3Þ

According to this definition no conformation/cluster is preferred with

respect to the others, preventing ‘‘chaining’’ effect to occur.

Finally, in AClAP, the Ward method can also be selected. This method

uses a distance definition based on the analysis of variance (Ward and Hook,

1963). It attempts to minimize the Sum of Squares of any two potential

clusters that can be formed at each step. This method tends to create

a consistent number of small clusters. Our previous comparative study

(Bottegoni, et al., 2006) led us to prefer the average linkage rule with respect

to both single linkage and the Ward method.

When clustering is finished, the complete dendrogram is obtained and, for

each cluster at each level, the so-called centroid can be calculated. The

centroid is a ‘‘hypothetical’’ conformer whose coordinates are the average

coordinates of all the cluster members. The representative conformer for a

cluster is chosen as the conformation closest to the centroid. If the homo-

geneity requirement for the current cluster is fulfilled, the choice of the

representative conformer is not expected to be critical.

Fig. 2. The dialog box of AClAP.
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2.3 Cutting rule

Once the dendrogram is formed, the crucial decision is to fix the level of

clustering more suitable to represent the conformational space of interest. As

it is natural for a hierarchical agglomerative approach, a tradeoff must be

found between the overall number of clusters and the diversity among the

conformations that belong to each cluster. AClAP adopts the KGS penalty

function. The method is thoroughly described in the paper by Kelley et al.

(1997) and here summarized and discussed (see Results and Discussion for

further details).

An average spread value is calculated for each clustering level of the

dendrogram, for simplicity of representation, it is numbered with respect to

the number of clusters of the level:

AvSw ¼
1

w

Xw
M¼1

SM‚ ð4Þ

where w is the number of clusters at a fixed clustering level and SM is the

spread of the M-th cluster, defined as follows:

SM ¼
2

xMðxM � 1Þ
XxM

m¼1

XxM

q¼mþ1

dm‚q: ð5Þ

When all average spread values are collected, they need to be normalized so

that they lie between 1 and n�1. The penalty Pw is therefore calculated as:

Pw ¼
ðn � 2Þ½AvSw � minv2f1‚ ... ‚ ng ðAvSvÞ�

Maxv2f1‚ ... ‚ ngðAvSvÞ � minv2f1‚ ... ‚ ng ðAvSvÞ
þ wþ 1: ð6Þ

As expected, this penalty function is a balance between the cardinality of

the level and the intra-cluster mean distance. The minimum value of the

KGS function can be chosen as an autonomous way (as opposite to a user

driven way) to prune the dendrogram. AClAP also provides a detailed

description of all local minima occurring before the global minimum is

reached; this allows the user to adopt other cutting levels, in the search

of more homogeneous clusters.

2.4 Cluster significance

The Chauvenet criterion is often used to determine whether the population

of a cluster is statistically significant. According to it, a cluster is signifi-

cantly populated if its cardinality is more than twice the standard deviation

apart from the average population value for that level of clustering. Our

rationale for the use of this criterion is to assess whether or not there is

evidence that significantly populated clusters deserve particular attention in

the conformational analysis and docking contexts.

3 RESULTS AND DISCUSSION

AClAP resulted both in an innovative protocol to autonomously

partition conformational datasets, and in a program that accom-

plishes it in a negligible computational time as compared to that

needed to generate the dataset itself. On an Intel PentiumIV

(2.4 GHz) processor with 512 MB of RAM, AClAP performed

CA over 520 conformations of the drug Fexofenadine in

260 sec. In Figure 3, an example of a typical AClAP report is

shown. The program provides the overall number of clusters and

how many of them are non singleton. For each cluster, the centroid

and the representative conformation, as above defined, are calcu-

lated. If a reference conformation, such as a crystallographic pose, is

available, AClAP allows a comparison of all the representative

poses with it (on an RMSD basis).

3.1 KGS penalty function

With standard options, AClAP uses the global minimum of the

penalty function as a cutting criterion of the dendrogram. It is

interesting to comment about the behavior of this function and

about the information it provides. We observe that the function P

is the sum of two terms: there is a constant slope term that accounts

for the increase of the number of clusters and a term that is pro-

portional to AvSw. One property that would be of interest for the

penalty function is a unique minimum. This property would be

guaranteed if the average spreads were monotonically decreasing

and concave functions. To this aim, let’s consider a single step

increment of the average spread, which can be reformulated in

the following way:

ð7Þ

Here, we called A and B the clusters merged at the current clus-

tering step. One can see that the increment is given by the sum of four

terms, the first one is always negative, but supposedly small, and is

related to the average spread of the clusters non involved in the

current step. The second one, again negative, is the average spread

given by the inter-cluster (A and B) conformations. Third and fourth

terms have no fixed sign but it can be assumed that most of the times

they are positive. Given the way the clustering algorithm works,

monotonicity and concavity would be implied by a second term

being always prevalent over the last two. In general, this is not

true. But we gain an interpretation clue from this: any time we

see a definite decreasing behavior of the penalty function; it

Fig. 3. Excerpt from an AClAP report. Columns refer to: cluster number,

cardinality and representative conformation; the distance from this latter to

the centroid; the RMSD from a reference conformation and whether the

cluster is significantly populated.
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means that the clustering process has merged two clusters that were

well separated. In other words, if one is very much concerned about

intra-cluster homogeneity, one has to stop the clustering process at

the first pronounced local minimum (which is the rightmost in the

plot versus w). Going further on means privileging synthetic rep-

resentation with respect to intra-cluster homogeneity (see Figures 4a

and 6a as typical examples of the KGS behavior).

In what follows, we report the observations we were able to

make on the conformational space sampling made both by

Metropolis Monte Carlo simulations, and by four docking tools,

pointing out how and where they could benefit from the new clus-

tering method.

3.2 Monte Carlo conformational analysis

Metropolis Monte Carlo method (T ¼ 300 K) as implemented in

the MacroModel software package was used to perform a confor-

mational analysis on ten marketed drugs. We approximately could

split them in conformationally ‘‘easy’’ and ‘‘hard’’ ones: drugs with

up to seven rotatable bonds for which Monte Carlo search provi-

ded less than 150 conformers were assigned to the ‘‘easy’’ set,

whereas the others (with up to 10 rotatable bonds and more than

150 conformers) were defined as ‘‘hard’’ compounds.

In the following, we compare the clustering outcomes of

AClAP to those of X-cluster (Shenkin and McDonald, 1994),

a commonly used clustering procedure implemented in the

MacroModel software package. X-cluster is a hierarchical agglom-

erative clustering method that adopts the single linkage rule. It

provides the user with the Minimum Separation Ratio (MSR),

which is a function aimed at suggesting a clustering level where

all the clusters are well separated. If the MSR is less than 1,

the partitioning is expected to be poor. In contrast, an MSR

value greater or equal to 2 is an indication of a good partitioning.

The final choice of the clustering level is however left to the user.

Preliminarily to our comparison, we adopted the Corrected

Rand Index (Hubert and Arabie, 1985) in order to evaluate the

similarity of their results. This index is a common measure of

the difference between partitionings of the same data set, and it

ranges between 0, indicating a strong divergence, and 1, indicating

partitioning coincidence.

For the conformationally ‘‘easy’’ drugs of the series, Prazosin,

Amsacrine, Citalopram, Mizolastine, Fentanyl, and Pimozide,

AClAP was able to indicate a functional partitioning, while

X-cluster had success in 5 out of 6 cases. AClAP decided for the

best clustering level according to the minimum of the KGS penalty

function. In Table 1, overall results of AClAP are reported, while

Figure 4 shows the AClAP (Figure 4a) and X-cluster (Figure 4b)

outcomes applied to the 121 conformers of Pimozide, taken as a

representative example for the set of ‘‘easy’’ drugs. Figure 4b

clearly indicates that, in the reported example, MSR was able to

point to a plausible partitioning.

Partitioning obtained by X-cluster applied to conformationally

‘‘easy’’ drugs is summarized in Table 2. In particular, for

Prazosin, Citalopram, and Pimozide, the MSR values pointed uni-

vocally to a cutting level for the hierarchical tree. The partitionings

strongly agree with those obtained by AClAP, the Corrected Rand

Index values being 0.74, 0.79, and 0.79, for the three molecules,

respectively (see the last column of Table 2). Conversely, for

Fentanyl, the MSR value provided no clear indication of a cutting

level. The H� value for Fentanyl provided by AClAP was 0.53 (see

Fig. 4. Cutting rule indicators as implemented in AClAP and X-cluster, they

are applied to a member of the ‘‘easy’’ drug set: Pimozide (121 conformers).

a) The KGS penalty function is plotted vs. the overall cluster number. Stan-

dardly, AClAP adopts the minimum of the KGS penalty function as cutting

level. b) The MSR value is plotted vs. the overall number of clusters. X-cluster

uses the MSR as an indication of different cutting levels. The complete set of

clustering results is available as Supplementary Information. These plots

show that both algorithms point at a well-defined partitioning.

Table 1. AClAP results for the drug conformations generated via Monte

Carlo simulations. For Fentanyl, H� was 0.53 indicating that CA was not

justified. This rule holds more strictly when docking simulations are con-

cerned, whereas drug conformers might still benefit from a CA. Rot. stands

for rotatable, NS for NonSingleton and Sign. for significantly populated

according to the Chauvenet criterion.

Drug # confs Rot.

bonds

Max

RMSD

H� # clusters NS

clusters

Sign.

clusters

Conformationally ‘‘easy’’ drugs

Prazosin 24 4 3.24 0.83 5 5 1

Amsacrine 33 5 5.20 0.67 12 11 0

Citalopram 37 4 2.80 0.80 19 14 2

Mizolastine 47 5 4.10 0.65 14 13 0

Fentanyl 49 7 4.26 0.53 12 9 0

Pimozide 121 7 7.30 0.62 39 29 1

Conformationally ‘‘hard’’ drugs

Astemizole 235 8 6.44 0.63 24 24 0

Bepridil 285 9 5.90 0.80 40 35 2

Dofetilide 414 10 10.86 0.77 44 30 3

Fexofenadine 520 9 8.59 0.84 74 58 4

Astemizole 235 8 6.44 0.63 24 24 0
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Table 1), suggesting that conformations did not display a natural

tendency to aggregate into groups. It should be mentioned that,

when H� is less than 0.6, unlike structure-based drug design, ligand-

based drug design might still benefit from CA applied to drug

conformers. Consistently, AClAP applied on Fentanyl provided a

quite good partitioning, as reported in Table 1. In the case of another

‘‘easy’’ drug, Amsacrine, a significant MSR value led to a partition

with only two clusters. Conversely, the partition provided by

AClAP afforded 12 clusters. The Corrected Rand Index was

as low as 0.03, indicating that the two partitionings were markedly

different (see Figures 5a and 5b). As it can be seen in Figure 5b,

the internal homogeneity of the partitioning provided by X-cluster

was rather poor. One possible reason could be the chaining

effect induced by the single linkage rule. Finally, in the analysis

of Mizolastine, two clustering levels worthy to be selected

were identified, showing MSR values of 2 and 1.93, respectively

(Mizolastine 1 and Mizolastine 2 in Table 2). The clustering of

Mizolastine 1 (MSR ¼ 2) corresponded to a partition with only

two clusters, lacking internal homogeneity and displaying an evi-

dent chaining effect (data not shown). The second partitioning

(Mizolastine 2, 18 clusters, 14 nonsingletons) provided more homo-

genous clusters and a strong agreement with the partition obtained

by AClAP (Corrected Rand Index ¼ 0.90).

When processing the conformationally ‘‘hard’’ drug set (com-

posed by Astemizole, Bepridil, Dofetilide, and Fexofenadine),

whose conformers were generated via Metropolis Monte Carlo

simulations, X-cluster did not provide any clue about the cutting

level for the conformations, demonstrating that a protocol based

on the single linkage rule in combination with MSR fails when

dealing with conformationally complex molecules. In Figure 6,

as an example, the 520 conformers of Fexofenadine treated with

AClAP (Figure 6a) and X-cluster (Figure 6b) are shown. As

reported in Table 1, in these cases H� test showed a natural grouping

tendency, and AClAP, a protocol based on the average linkage rule

in combination with the KGS penalty function was actually able to

univocally provide a good partitioning for all the drug conformers

(see Figure 6a and Table 1). We can conclude that, for the drugs here

investigated, AClAP definitely outperformed X-cluster.

3.3 Docking simulations

We studied the conformational sampling done by four among the

most widespread docking programs, namely, Dock, AutoDock,

GOLD, and FlexX, together with the action of our clustering

protocol over their output. We ran the programs over a set of

16 crystallographic complexes belonging to the following protein

families: kinases, hormone receptors, and proteases (both serine and

aspartic proteases). As a figure of merit, we took the RMSD of the

generated poses from the crystallographic one. For a detailed

description of docking simulations and comparative analysis the

reader is referred to the work of Bottegoni et al. (Bottegoni,

et al., 2006). In what follows, we summarize some conclusions

we drew from that experience. The present comments encompass

only 15 cases, since one of the original ones (Propidium

co-crystallized with AChE, PDB code 1N5R) has been demon-

strated to bind to the surface of its biological counterpart in at

least two different modes (Bourne, et al., 2003; Cavalli, et al.,
2004).

About conformational sampling, and having defined a ‘‘good’’

pose as the one which is less than 2.5 s far away (in terms of RMSD

Table 2. X-cluster results for 5 ‘‘easy’’ drugs, whose conformations were

generated via Monte Carlo simulations. X-cluster did not provide any sig-

nificant cutting point for Fentanyl.

Drug #

conformers

MSR #

clusters

NS

Cluster

Corrected

Rand

Index

Prazosin 24 1.90 4 4 0.74

Amsacrine 33 4.42 2 2 0.03

Citalopram 37 19.40 21 16 0.79

Mizolastine 1 47 2.00 2 2 0.15

Mizolastine 2 47 1.93 18 14 0.90

Pimozide 121 2.58 47 33 0.79

Fig. 5. The partitioning of 33 conformers of Amsacrine. a) The partitioning

provided by AClAP. A protocol based on the average linkage rule and the

KGS cutting function generated 12 groups bearing high intra-cluster homo-

geneity. b) The partitioning provided by X-cluster. A protocol based on the

single linkage rule and a user-dependent cutting function generated 2 groups

bearing scarce intra-cluster homogeneity.
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between nonhydrogen atoms) from the crystallographic one, we can

comment as follows:

� at least one among the docking tools was always able to generate

a pose sufficiently close to the experimental one, being of 89%

the average success rate among docking programs; in particular,

AutoDock and GOLD were always able to provide at least one

‘‘good’’ pose, whereas Dock and FlexX had a success rate

of 80% and 73%, respectively;

� however, in terms of conformational sampling, no docking

tool significantly outperformed the others, with a chi-square

value of 0.67, corresponding to a 88% of probability that fluc-

tuations in the results are random.

Comments about clustering features, shown in more detail

in Table 3, follow:

� the best pose was found within a singleton cluster with a very

low frequency, ranging from 0.2% to 0.7%;

� when a single docking tool was used, the assertion that ‘‘good’’

poses are to be found only, or mainly, in the most populated

clusters did not find any clear evidence;

� when a ‘‘holistic’’ approach was adopted, i.e., the clustering

was performed over the poses generated by all of the

docking tools, the probability of finding at least one ‘‘good’’

pose among the representative conformations of the most

populated clusters, whose number was always between 1 and

3, reached roughly 93%;

� in the holistic approach, as compared with the single tool

approach, the presence of ‘‘good’’ poses decreases in

scarcely populated clusters in favor of very highly populated

ones.

A comment is due about the performance of AClAP in the so-

called holistic approach. No scoring process was used to support the

provided results. Nevertheless, their performance can be compared

to that of the widely used consensus scoring method, which well

overcomes the main limitation of scoring functions. Indeed, also in

our investigation, the scoring functions sometimes failed to rank

correctly the best poses: roughly in the 50% of the cases. We found

of particular interest the data shown in the last two columns of

Table 3: they indicate that, at least for the molecules we examined,

there is a high chance to find a ‘‘good’’ pose among the represen-

tative conformations of the most populated clusters. According to

our arrangement procedure in bins, and similarly to what obtained

with the Chauvenet criterion, those conformations are usually less

than two. This procedure seems to point at a few, but still very

promising, candidates that can be successively examined with

more accurate tools, providing a really remarkable dimensionality

reduction.

4 CONCLUSIONS

In this paper, we have described a new clustering protocol as well

as its implementation in a MATLAB program. The new software,

named AClAP, turned out to be well suited to cluster both con-

formations generated via Metropolis Monte Carlo simulations of

drugs, and poses obtained by reiterated docking runs. In a consistent

fashion, AClAP prompts the user to assess the clusterability of a

conformational dataset by means of what we named the H� test. The

subsequent step is a hierarchical agglomerative cluster analysis

based on the average linkage rule. The choice of this rule with

respect to others was already discussed elsewhere (Bottegoni,

et al., 2006), and here reinforced. Once the hierarchical tree is

built, an autonomous method to prune it is needed to define the

best clustering level. Here, we have shown that the KGS penalty

function is an unbiased approach very well suited to achieve that

goal. AClAP outperforms standard CA-based protocols as they are

implemented in the most commonly used docking programs. In

this context, the AClAP method manages to greatly reduce con-

formational space dimensionality, proving to be fruitful, for

instance, for the successive application of computationally intensive

energy estimation techniques to be applied to cluster representa-

tives. On top of it, in what we called the holistic approach, AClAP

allowed us to identify some one among the closest poses to the

experimental one, and placed it within a statistically significant

cluster with a very promising hit rate. Finally, when applied to

the output of Metropolis Monte Carlo searches, AClAP proved

to be more robust than the long-time exploited and commonly

used X-cluster routine. Encouraged by the present results, we pro-

pose AClAP as a new and user-friendly tool to help molecular

modelers facing issues related to both ligand- and target-based

drug design. Our efforts are currently devoted to extend the appli-

Fig. 6. The cutting rule as implemented in AClAP and X-cluster. As an

example of complex, ‘‘hard’’, compound, the CA was performed over

520 conformers of Fexofenadine. a) The KGS penalty function is plotted

vs. the overall number of clusters. Standardly, AClAP adopts the minimum of

the KGS penalty function as cutting level. b) The MSR value is plotted vs. the

overall number of clusters. X-cluster uses the MSR as an indication of pos-

sible cutting levels. These plots show that only the KGS score was able to

point at a well-defined partitioning. The complete set of clustering results is

available as Supplementary Information.
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cability of this approach to rationalize the outcomes of protein-

protein docking.
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number is shown. As one can see, the ‘‘good’’ poses tend to be distributed among very highly and very scarcely populated clusters, with a prevalence of the

formers. The holistic approach seems to make this prevalence maximally marked.

Class A

(least

populated

clusters) %

Class B % Class C % Class D % Class E

(most

populated

clusters) %

Good poses

in singleton

clusters %

Frequency of

at least one ‘‘good’’

pose in a signif.

populated cluster %.

Frequency that

at least one

representative

pose of a cluster

in E bin is

‘‘good’’ %

Average number

of clusters

in E bin

AutoDock 12.6 (86.6) 9.0 ( 5.7) 6.4 (1.6) 7.6 (1.5) 64.4 ( 4.6) 0.3 80.0 80.0 1.1

FlexX � 33.0 (72.0) 23.8 (14.1) 5.5 (6.2) 0.8 (2.2) 36.9 ( 5.5) 0.2 33.3 40.0 1.3

Dock � 31.2 (83.4) 10.8 ( 4.4) 5.9 (1.1) 2.2 (1.0) 49.9 (10.1) 0.7 53.3 50.0 1.1

GOLD 14.9 (76.1) 7.3 ( 7.1) 18.3 (5.0) 1.8 (0.2) 57.7 (11.6) 0.5 40.0 78.6 1.2

Average 22.9 (79.5) 12.7 ( 7.8) 9.0 (3.5) 3.1 (1.2) 52.2 ( 8.0) 0.4 51.7 62.1 1.2

Holistic 14.3 (94.3) 6.8 (2.3) 11.1 (1.2) 2.3 (0.4) 65.5 ( 1.8) 0.2 100.0 93.3 1.1

�In one case, these programs weren’t able to find any pose closer than 2.5 s to the crystallographic one.
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ABSTRACT

Motivation: A clear understanding of functions in biology is a

key component in accurate modelling of molecular, cellular and organ-

ismal biology. Using the existing biomedical ontologies it has been

impossible to capture the complexity of the community’s knowledge

about biological functions.

Results: We present here a top-level ontological framework for

representing knowledge about biological functions. This framework

lends greater accuracy, power and expressiveness to biomedical

ontologies by providing a means to capture existing functional

knowledge in a more formal manner. An initial major application of

the ontology of functions is the provision of a principled way in which

to curate functional knowledge and annotations in biomedical ontolo-

gies. Further potential applications include the facilitation of ontology

interoperability and automated reasoning. A major advantage of

the proposed implementation is that it is an extension to existing

biomedical ontologies, and can be applied without substantial

changes to these domain ontologies.

Availability: The Ontology of Functions (OF) can be downloaded

inOWL format fromhttp://onto.eva.mpg.de/. Additionally, aUMLprofile

and supplementary information and guides for using the OF can be

accessed from the same website.

Contact: bioonto@lists.informatik.uni-leipzig.de

1 INTRODUCTION

Ontologies play an increasingly important role in modern biology.

Recent years have seen a significant expansion in the number of

biomedical ontologies and controlled vocabularies. The Open

Biomedical Ontologies (OBO)1 project serves as an umbrella

organization providing some basic criteria and guidelines for the

standardization of biomedical ontologies.

The OBO project includes a large number of domain-specific

ontologies such as the Gene Ontology (GO) (Ashburner et al.,
2000)—which provides information about processes, molecular

functions and sub-cellular locations of genes and gene products—

and anatomical and developmental ontologies available for specific

species.

Recently, several methodological approaches were discussed

which aim to provide an ontological foundation for medical

and biomedical domains by means of top-level ontologies

(Heller and Herre, 2004b; Smith et al., 2005). A top-level ontology

explicitly provides domain-independent notions. According to

the principles of ontological foundation as expounded in (Heller

et al., 2004; Heller and Herre, 2004b) and applied in (Herre and

Heller, 2005), we pursue the idea of adding top-level layers to

existing biomedical ontologies. These layers analyze and formalize

general aspects of concepts occurring in these ontologies. The use

of a top-level ontology potentially leads to fewer errors in the

curation and creation of domain ontologies, a better understanding

of the biological concepts and the means for data and ontology

integration.

A number of top-level concepts used frequently in various OBO

ontologies remain unanalyzed and undefined. Concepts like ‘‘role’’

(such as ‘‘oxygen accumulator’’) or ‘‘function’’ (such as ‘‘to accu-

mulate oxygen’’) serve as examples of unanalyzed top-level

categories in the OBO ontologies.

Nevertheless, the notion of function is widely used in biomedical

ontologies. Most commonly, one of the three hierarchies in the GO

is the molecular functions taxonomy. Although the GO provides a

short definition for its notion of molecular function, an in-depth

analysis is not provided. Further uses of the notion of function

appear in the Chemical Entities of Biological Interest (ChEBI)

Ontology (Brooksbank et al., 2005) and in the Celltype (CL) Ontol-

ogy (Bard et al., 2005), equally without a strong theoretical basis

concerning functions.

We believe that a theory of functions is useful for the develop-

ment and application of biomedical ontologies. To date, criticisms

of the use of the concept of function in biomedical ontologies either

proposed no solution or implied extensive changes, or a complete

refactoring of existing structures (Smith et al., 2003). Considering

the GO’s molecular function taxonomy, for example, we realize that

this poses problems for a resource under constant usage by the

community. Therefore we propose to address this problem in

another way.
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We describe here a proposal for a top-level ontology of biological

functions. This proposal introduces functions as an additional layer

to the existing biomedical ontologies. We consider this ontology

orthogonal to those currently in use. Although concepts relating to

functions exist in biomedical ontologies, they are not yet adequately

presented in an explicit, formal manner. Using our framework, this

missing knowledge can be introduced in the existing biomedical

ontologies while preserving their original structure.

For this purpose we introduce new relations such as Has Function
and IsRealization in order to relate concepts of existing biomedical

ontologies to functions as modelled in our approach. These relations

and the specification of the structure of functions capture, in a

separate ontology, information which is present at the stage of

annotation.

We demonstrate the application of the proposed Ontology of

Functions by showing how it can be used to systematically add

explicit links between molecular functions and biological processes

in the GO. We will further apply the formalism to the Celltype

Ontology (CL), and will show how our proposal can serve to make

definitions in CL precise, identify entities which are not yet covered

by CL, and thereby contribute to CL’s completeness.

Finally, we discuss advantages of our approach. In particular, we

focus on the extent to which it may aid automated reasoning and

data integration.

2 RESULTS

2.1 Introduction to the Ontology of Functions

We introduce here selected concepts of the Ontology of Functions
(OF), which are presented in detail in (Burek, 2006). The OF will be

included as a module in the General Formal Ontology
(GFO; cf.(Heller and Herre, 2004a; Herre et al., 2006)), a top-

level ontology developed and maintained by the research group

Ontologies in Medicine (Onto-Med)2. The OF aims to provide a

domain-independent, conceptual framework for the representation

of knowledge about functions. An overview of the main concepts

and relations introduced by the OF is given in Figure 1.

In an adaption of (Searle, 1995; Sasajima et al., 1995), we

consider functions as the abstraction of biological processes or

other entities towards a goal: when X has the function Y with

the goal Z, then X is supposed to cause or otherwise bring about

the state of the world Z, thus realizing Y.

For example, it may be the case that a red blood cell transports

oxygen. But the statement that ‘‘the function of the red blood cell is

to transport oxygen’’ adds a goal or purpose to this description: the

red blood cell is supposed to transport oxygen – even if the red blood

cell is in a condition where it cannot perform this transport, i.e., it is

malfunctioning.

The OF addresses three major issues concerning functions:

(1) function structure: how to represent and determine functions

independently of their realizations

(2) realization: the conditions under which a given entity realizes

a function

(3) has-function relation: the determination of the notion of an

entity having a function

Two main assumptions underlie the OF: the separation of func-

tional knowledge from non-functional and the top-level orientation.

Fig. 1. A schematic representation of the concepts used and introduced by the OF (using the Unified Modeling Language (OMG, 2006)). Unlabelled relations

indicate generalizations, where large arrowheads point at the more general concept. Functions (the orange box) are determined by entities indicated in yellow: a

goal, requirements, and a functional item. A biological category may be related to a function in two ways (cf. the green boxes which provide labels for those

relations connected to them by a dashed line): its instances may realize the function or they may have the function. A biological entity (such as a process) is a

realization of a function if it mediates between two states of the world, one satisfying the requirements, the other satisfying the goal. A realizer in the OF, presented

in blue, is the role played by an entity in a realization. In the function this role is determined by the functional item, hence realizer is generalized by functional item.

Biological categories whose instances can play the role defined by the functional item have the function. The HasFunction relation relates biological categories

with functions if every instance of this category has the actual or dispositional function.

2http://www.onto-med.de
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Concerning the first, in the literature functional knowledge is often

considered as providing information about what an entity does or

what goal it serves, whereas non-functional knowledge describes

the structure or behavior of entities and thus answers the question

how an entity behaves, exists, or realizes functions (Iwasaki and

Chandrasekaran, 1992; Rosenman and Gero, 1998). We consider

these kinds of knowledge as highly independent, i.e., a function can

be described independently of its realization and vice versa. Regard-

ing the second aspect, we view the notions of function, realization,

and the has-function relation as common to various domains. The

OF therefore qualifies as a top-level ontology rather than a domain

ontology.

These two aspects impact further on the application of the Ontol-

ogy of Functions. The separation of functional and non-functional

knowledge permits the application of the OF to domain ontologies

without significant changes to them. The top-level orientation, on

the other hand, allows for the reuse of the OF across various

domains.

2.2 The structure of functions

The OF provides a formal way to represent functions independently

of their realizations. The corresponding representation scheme is

called a function structure. It consists of a set of labels, a set of

requirements, a goal, and a functional item. Except for the labels,

these form the function determinants.

Labels are natural language expressions which name the function.

Most commonly, phrases of the form ‘‘to do something’’ serve as

labels, e.g. ‘‘to transport oxygen’’.

The requirements of the function contain all the necessary pre-

conditions which must be met whenever the function is to be real-

ized. For example, in case of the function ‘‘to transport oxygen from

A to B’’, oxygen must exist at location A.

Functions are goal-oriented entities—specifying a function

requires providing the goal it serves. The goal of the function is

a state or part of the world—temporally extended or not—which is

intended to be achieved by any realization of the function. In the

case of transporting oxygen, the location of the oxygen at B is the

goal.

The goal specifies only the part of the world directly affected by

the function. Often a goal is embedded in a wider context, called

final state. A final state of a function contains the goal plus

an environment for the goal, therefore making the goal more

comprehensible.

Functions are dependent entities, in the sense that a function is

always the function of some other entity. The functional item is a

role played by this entity in any realization of the function. In the

case of ‘‘to transport oxygen’’, it would be an oxygen transporter.

The notion of roles is required to explain the nature of a functional

item more comprehensively.

We adopt the theory of roles developed in (Loebe, 2003, 2005)

and incorporated into the GFO. Accordingly, roles are entities

played by a role player in a role context. For example, ‘‘oxygen

transporter’’ refers to a role in the role context of ‘‘oxygen trans-

port’’, and this role may be played by a red blood cell. This example

can further be used to illustrate the dependence relationships of

roles. Generally, roles and their role contexts are mutually depen-

dent, i.e., one cannot exist without the other. In contrast, the depen-

dence of roles on their players is one-sided because the player could

exist without playing a particular role. In our example, an oxygen

transport necessarily involves a oxygen transporter and vice versa.

A red blood cell may or may not transport oxygen, thus be playing or

not playing the role of oxygen transporter. If it does not play that

role, the cell still remains a red blood cell due to other properties

such as its histology.

In OF, functional items are special roles which appear in the

realization of functions. Note that usually there are more roles

involved in the realization of a function than a single role given

by the functional item. In a transport process, for example, in

addition to the role ‘‘transporter’’ there is a ‘‘cargo’’ role, refer-

ring to that which is transported. Hence, the functional item

singles out a particular role whose player is the entity having the

function.

2.3 Realization and realizer

After introducing the structure of functions, their realization forms

the second issue addressed in OF. The notion of realization refers to

the question of how the goal of the function is to be accomplished.

The realization is an entity which provides a transition from the

state of the world in which the requirements of the function are

fulfilled, to the state in which the goal of the function is fulfilled.

This will usually be a process such as an—observed or measured—

oxygen transport, but could be another kind of entity such as an

instantaneous change.3

It is important to understand the difference between a function

and a realization, in particular regarding their specification: to spec-

ify a function and its structure one has to state what is to be

achieved; representing a realization usually means to specify

how something is achieved.

Apart from individuals, it is even more relevant for biomedical

ontologies to relate categories directly, such as the process category

‘‘transport’’ to the function ‘‘to transport’’. The relation IsRealiza-
tion is introduced for this purpose. If a process category stands in the

IsRealization relation to some function, then all instances of this

category are realizations of the function. For example, the category

‘‘oxygen transport’’ (a process) stands in the IsRealization relation

to the function ‘‘to transport oxygen’’.

Next, there is a counterpart of functional items on the level of

realizations. A functional item is defined as a special role in every

realization of a function. It is, in every case, a category (similarly to

roles as discussed in (Guarino and Welty, 2000)). In the example of

‘‘to transport oxygen’’, the role ‘‘oxygen transporter’’ is the func-

tional item. Now consider an individual transport process, i.e., a

realization, involving a single red blood cell. That cell has the role

‘‘oxygen transporter’’ within this realization. This fact gives rise to

a new entity which mediates between the realization and the cell

itself, namely the cell as an ‘‘oxygen transporter’’ (cell-qua-oxygen

transporter). Such an entity is called the realizer of the function.

Moving to the terminology of roles, we consider realizers to be qua-

individuals, i.e., instances of roles (Masolo et al., 2005, 2004;

Loebe, 2005).

3The full framework of OF distinguishes two types of realizations, actual and

dispositional. Realizations as introduced here would be called ‘‘actual’’ in

OF. Dispositional realizations are structurally similar to actual realizations in

that they instantiate the same category. For a full discussion, see (Burek,

2006).
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In summary, a realization corresponds to a function as a whole,

whereas a realizer corresponds to the functional item of that func-

tion. The realizer is a qua-individual played by the entity which has
the function. This leads us to the third major concept of the OF, the

HasFunction relation.

2.4 Has-function

We address here the question under which conditions a function

can be ascribed to an entity. In order to represent function ascrip-

tion, a ternary relation has-function is introduced. This relation

takes an individual, a function and a context as arguments. The

connection between the first two arguments is such that the indi-

vidual is involved in a realization of the function as the realizer (e.g.,

the red blood cell in an oxygen transport process realizing ‘‘to

transport oxygen’’.)

The context argument reflects the intuition that a function is

always ascribed in some context. That means, an individual does

not necessarily have a given function in all contexts. For example, a

hammer on a pile of papers on a desk may have the function of

holding paper, while in the context involving a nail and a wall the

function is different. It is out of scope of this paper to investigate the

nature of contexts (McCarthy and Buvać, 1998; Akman and Surav,

1996) and we will not include it in this proposal but rather use the

has-function relation as if it were a binary relation. However, the

background theory surrounding the OF (Burek, 2006) allows for the

use of a context argument in the function ascription.

The has-function relation appears in two versions: actual has-
function and dispositional has-function. An entity has an actual

function, if it is the role player of the realizer in a realization of

the function. If an individual red blood cell is currently transporting

oxygen, it has an actual function. If that red blood cell is not

transporting oxygen, yet is structurally similar to red blood cells

which have that function (by means of being an instance of the same

category ‘‘red blood cell’’), the non-transporting blood cell is said to

have the dispositional function ‘‘to transport oxygen’’.

Further, a relation between categories is derived from the has-

function relation. A category stands in the HasFunction relation to a

function, if every instance of the category has that function, actually

or dispositionally. For example, ‘‘red blood cell’’ is in the

HasFunction relation to the function ‘‘to transport oxygen’’.

Having dealt with the three major issues in the OF—function

(structure), realization, and function bearers—let us briefly return to

the notion of a realizer, which is considered as a qua-individual.

Entities of this kind are not present in the current biomedical ontolo-

gies, but they are required in order to link entities which can have

functions to realizations. In order to remain consistent with already

existing categories of biomedical ontologies we introduce a ternary

relation among categories. Realizes(E, F, R) represents the fact that

entities of the category E can play the role of the realizer of the

function F in realizations of type R. For instance, Realizes("red

blood cell", ‘‘to transport oxygen’’, ‘‘oxygen transport’’) means

that, intuitively speaking, red blood cells can realize the function

‘‘to transport oxygen’’ in an ‘‘oxygen transport’’ process.

The introduction of a ternary relation—Realizes—offers the

highest degree of coherence and precision. Realizes(E,F,R) entails

IsRealization(R, F) as well as HasF unction(E, F), while one cannot

conclude Realizes(E,F,R) from IsRealization(R, F), HasFunction
(E,F), and the fact that E can participate in R. To see why this is

the case, consider the general function ‘‘to transport’’ (F). Red

blood cells (E) can be said to have this function if we think of

an oxygen transport. However, consider a process in which red

blood cells are transported, e.g. in the context of some experiment.

This transport R is a realization of the function and red blood cells

are involved in it. However, here they play the role of the cargo

rather than that of the transporter. Accordingly, Realizes(E, F, R)
does not hold in this context and cannot be inferred, even given all

other facts.

2.5 Relations between functions

Based on the framework developed in (Burek, 2006) we can

introduce relations between functions. Some of the relations intro-

duced are common ontological relations such as subsumption,

instantiation, or the part-of relation. For example, the subsumption

of functions is defined in terms of the subsumption between the

appropriate function determinants.

We can also define new relations which are characteristic only for

functions:

� Support – one function supports the other if its goal fulfills

partially the second function’s requirements (the goal of the

first function is a proper part of the requirements of the second

function).

� Enable – one function enables the other if its goal fulfills all of

the second function’s requirements (the requirements of the

second function are a part of the goal of the first function).

� Prevent – one function prevents the other if its goal excludes the

requirements of the second.

In (Burek, 2006), more relations between functions are defined,

which affect the realizations of functions. For example, one function

may trigger or improve the realization of other functions.

2.6 Application to OBO’s ontologies

We explore here potential applications of the Ontology of Func-

tions, and investigate when and where it may be beneficial to use its

framework.

2.6.1 Identifying links between processes and functions Our

first application is the identification and explanation of relations

between processes and functions. The Gene Ontology (Ashburner

et al., 2000) provides a prime example in this respect. There

has been some controversy and discussion about whether the

‘‘Molecular Function’’ taxonomy of the Gene Ontology describes

functions or activities, and how functions are related to processes

(Smith et al., 2003). To our knowledge, no practical or theoretical

solution has yet been proposed. Functions and activities are usually

considered different entities, and actions or activities may realize

certain functions. Therefore, while the function of an enzyme may

be ‘‘to catalyze’’ a reaction, the activity performed by the enzyme is

the catalysis itself, which may be embedded in another process.

We assume that at least parts of the Molecular Function taxonomy

refer to genuine functions in the sense of the OF, and the annotation

relation for some of the gene products annotated to these terms

corresponds to the HasFunction relation.

A general example is GO:0005215 (transporter activity), which

we understand as referring to the function ‘‘to transport’’. A more

specific example is GO:0051119 (sugar transporter activity), which

can be understood as the function ‘‘to transport sugar’’.
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So let us investigate how the function ‘‘to transport sugar’’ can be

modelled in the framework of the OF.

� As requirements, we assume that a sugar-molecule

(CHEBI:25407 or CHEBI:25679) is located at some location.

� The goal is the location of the sugar molecule at a different location.

� The functional item is a role which we call ‘‘sugar transporter’’.

We find that many of the gene products annotated with the ‘‘sugar

transporter activity’’ in GO’s Molecular Function taxonomy are

also annotated with some sub-category of the ‘‘transport’’

(GO:0006810) or ‘‘carbohydrate transport’’ (GO:0008643) cate-

gories in GO’s Biological Process taxonomy.

Also the names of the categories indicate a link, and of course

there is an obvious one: gene products which have the function ‘‘to

transport’’ may participate in a ‘‘transport’’ process. With the help

of OF, we can make explicit some links between categories in GO’s

Molecular Function and Biological Process taxonomies: Processes

of type ‘‘carbohydrate transport’’ (GO:0008643) are realizations of

the function ‘‘to transport sugar’’; many of the gene products anno-

tated with either carbohydrate transport or sugar transporter activity,

such as MAL21 (maltose permease), can stand in the HasFunction
relation to ‘‘to transport sugar’’; new categories appear, namely

gene products acting as (or ‘‘qua") transporter, e.g. MAL21 qua
transporter.

The left-hand side of Figure 2 demonstrates the full interconnec-

tions of this example by means of OF. In terms of the relations we

introduced this is captured by Realizes(MAL21, GO:0051119,

GO:0008643). What could be directly added to the GO are links

of IsRealization and HasFunction: IsRealization(GO:0008643,

GO:0051119) and HasFunction(MAL21, GO:0051119).

However, considering the GO’s definition of ‘‘sugar transporter

activity’’ Enables the directed movement of a sugar into, out of,

within or between cells. A sugar is any member of a class of

sweet, water-soluble, crystallizable carbohydrates, which are the

monosaccharides and smaller oligosaccharides.

It is possible to interpret this function differently: as the function

‘‘to enable F’’ or ‘‘to support F’’, where F is the function ‘‘to

transport sugar’’.

Now the function ‘‘to support F’’ with F being ‘‘to transport

sugar’’ would simply be a function where the goal of ‘‘to support

F’’ would be part of the requirements of ‘‘to transport sugar". So

every realization of ‘‘to support F’’ would be a transition from a

state of the world where some of the requirements for ‘‘to transport

sugar’’ (the presence of a sugar molecule or its location) are not

satisfied to a state where they are satisfied.

Many more relations between functions can be modelled and may

be relevant in GO, such as ‘‘to trigger’’ or ‘‘to prevent". Separating

Fig. 2. Two exemplary models employing OF, instantiating the general model in Figure 1 (correspondences indicated by the coloring). On the left-hand side, a

schematic version of the function ‘‘to transport sugar’’ together with its realization is shown. Processes of type ‘‘carbohydrate transport’’ realize this function, and

an entity, in this case MAL21, has the function ‘‘to transport sugar’’. Whenever applicable, the identifiers from the GO are used (for the function and process).

MAL21 is currently annotated to the function and the process in the GO. In this model, the annotation relation is replaced by the HasFunction relation. On the

right-hand side, the function "to accumulate oxygen" is modelled. This is a function taken from the Celltype Ontology. Except for erythrocyte, the entities

involved in this model are not present in any of the OBO ontologies.
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these functions, which is made possible using OF, could lead to

more accurate and comprehensive definitions.

2.6.2 Identifying implicit functions and processes The Ontology

of Functions can be applied to existing taxonomies in order to make

explicit functions and processes which are currently implied but not

separately defined.

This kind of use of the concept of function occurs in the Celltype

Ontology (Bard et al., 2005) (CL) and the Ontology of Chemical

Entities of Biological Interest (Brooksbank et al., 2005) (ChEBI).

We will only explore the Celltype Ontology, but the same argument

can be applied to ChEBI.

CL uses the term function in the subtree ‘‘cell by function’’ which

classifies cell types by the functions which they perform. A general

example is ‘‘stuff accumulating cell’’ (CL:0000325), and more

specifically ‘‘oxygen accumulating cell’’ (CL:0000329), of

which a red blood cell or erythrocyte (CL:0000232) is a sub-

category. The function ‘‘to accumulate oxygen (by a cell)’’

would be modelled as shown in the right-hand side of Figure 2:

� The presence of oxygen (ChEBI:25805) outside of a cell

(CL:0000000) is the requirement of the function.

� The goal of the function is the cell’s accumulation of oxygen:

The oxygen is contained in the cell.

� The functional item is called ‘‘oxygen accumulator’’.

The subsumption of erythrocyte under oxygen accumulating cell

in CL reflects the fact that erythrocytes have the function ‘‘to

accumulate oxygen’’, HasFunction(CL:0000232, ‘‘to accumulate

oxygen’’). Further, they may act as oxygen accumulators, a new

category for CL, in the process of ‘‘oxygen accumulation’’,

IsRealization (‘‘oxygen accumulation’’, ‘‘to accumulate oxygen’’).

Again, the Realizes relation captures all these new relations appro-

priately: Realizes(CL:0000232, ‘‘to accumulate oxygen’’, ‘‘oxygen

accumulation’’).

The analysis of erythrocyte in CL has led to the discovery of

entities which are not yet part of CL or any other OBO ontology, but

which contribute to the understanding of interactions among ontolo-

gies in cellular biology. Additionally, we can now define ‘‘oxygen

accumulating cell’’ as a cell which has the function ‘‘to accumulate

oxygen’’.

3 DISCUSSION

3.1 Adding information systematically

The framework developed here and fully described in (Burek, 2006)

can be used to provide additional information for existing biomedi-

cal ontologies such as the Gene Ontology (GO), without the need for

modification of the existing structure of these ontologies. In general,

we provide a methodology for defining functions and relating them

to various other entities, such as processes, roles and even genes and

gene products. This methodology may benefit the annotation and

curation process and lead to improved definitions and completeness.

The advantage of the Ontology of Functions (OF) is enhanced
expressivity. For example, the curators of the GO when annotating a

gene product with the appropriate terms from the GO will have the

information available that a certain protein is involved in some

process and how it is related to a certain molecular function.

They may also have more information about the protein, for exam-

ple the conditions under which it operates and other requirements

which need to be satisfied for the protein to be active. By means of

the OF, this information can be made explicit, and will not be lost as

is currently the case.

The OF further allows for a refinement or replacement of the
annotation relation in a number of cases by means of the Has
Function relation. Note that the latter is an ontological relation,

in contrast to the annotation relation, which is currently an arbitrary

association relation introduced to link genes and gene products to

the concepts of an ontology. Refined annotations do not only pro-

vide more information within ontologies themselves, but also with

respect to the relation between categories of biomedical ontologies

and genomic knowledge about biological reality.

Both, additional information due to enhanced expressivity as well

as refined annotations may prove useful for the various statistical

methods which have been applied to biomedical ontologies in order

to detect biological correlations, such as (Subramanian et al., 2005;

Beissbarth and Speed, 2004; Berriz et al., 2003).

It is interesting to consider to what extent and how the addition of

information to existing biomedical ontologies can be automated. At

present, we do not have an implemented solution for this issue.

However, we expect that approaches to finding associations

between categories using lexical and statistical analysis like

(Bodenreider et al., 2005; Burgun et al., 2004) can be exploited

and combined with the OF, in order to add categories and relations

between them automatically. These could further be verified by

existing natural language processing techniques (Mungall, 2004).

However, the rich formalism of the OF introduces another kind of

new information which is less likely to be added automatically:

roles and qua-individuals, the instances of roles. These concepts

have mostly been neglected in the bio-ontology community, but

ontological research has dealt with roles for a long time and rich

theories of roles exist (Guarino andWelty, 2000, 2004; Masolo

et al., 2004, 2005; Poli, 1998; Loebe, 2003, 2005). We believe

that they can prove useful in the explanation of biological phenom-

ena. Making them explicit in biomedical ontologies can therefore

serve to complete the coverage of these ontologies and enhance their

conceptual modelling capabilities.

However, ontological theories must be applied cautiously. For

instance, the theory of roles as proposed in (Guarino and Welty,

2004) defines constraints on the subsumption relation. Applied to an

example from the Celltype Ontology, the subsumption link between

‘‘red blood cell’’ and ‘‘circulating cell’’ violates that constraint, if

‘‘circulating cell’’ is understood as a role. In this case ‘‘circulating

cell’’ would refer to the role played by a red blood cell in the actual

process of circulation. We, on the other hand, analyze ‘‘circulating

cell’’ as a cell which has the actual or dispositional function ‘‘to

circulate’’, which would not violate a subsumption constraint in

(Guarino and Welty, 2004).. This said, we want to emphasize that

the application of formal ontological theories to domain ontologies

must be done cautiously, and preferably in collaboration with

domain experts.

3.2 Automated reasoning

The relation of our proposal to automated reasoning is highly rele-

vant in the context of biomedical ontologies. Automated reasoning

on biological data has been a goal of the bioinformatics and the bio-

ontology community for some time (Wroe et al., 2003). We believe
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that much benefit can be gained from automated reasoning if a rich

set of axioms is provided. The Ontology of Functions is equipped

with a rich axiomatization (see (Burek, 2006)), which can be—for

reasons of efficiency—adapted to description logic and used in

conjunction with an automated reasoner such as FaCT (Horrocks

et al., 1999).

Therefore, the OF can be seen as a formal and unambiguous

specification framework for biological functions whose consistency

can be verified, and in which implicit knowledge can be deduced.

3.3 Related work

To our knowledge, the only approach which in its aim is strictly

similar to our proposal is that of Karp (2000). This proposal, how-

ever, is limited to a molecular granularity. Biological functions on

the cellular, organismal or population level of granularity are not

included. Moreover, functions are explicitly not context-dependent,

while in the OF the has-function relation can, in principle, be

dependent on a context. Furthermore, (Karp, 2000) attempted to

create an ontology of functions as a module for EcoCyc4. The OF,

on the other hand, is a top-level ontology of functions, and is

therefore domain-independent and general. However, the view

which (Karp, 2000) takes on functions is compatible with the OF.

The Gene Ontology (Ashburner et al., 2000) also provides a

definition for a molecular function:

Molecular function describes activities, such as catalytic or bind-

ing activities, at the molecular level. GO molecular function terms

represent activities rather than the entities (molecules or com-

plexes) that perform the actions, and do not specify where or

when, or in what context, the action takes place.

However, this definition does not separate activities and func-

tions, as is the case in the OF which distinguishes functions and their

realizations. Adding this distinction allows the capture of more

information in the GO, while retaining GO’s current structure.

In philosophy and ontology, many theories about biological

functions have been developed (Searle, 1995; Johansson, 2004;

Johansson et al., 2005; Kumar and Smith; Millikan, 1987;

Melander, 1997). However, while these discussions provide valu-

able theoretical insight, they do not provide an immediate practical

solution to the problem of conceptual modelling of functions in

biology. We tried to learn from these discussions and develop

the means for modelling function.

Many attempts to integrate the taxonomies of the GO have been

made (Hill et al., 2002; Kumar et al., 2004; Aranguren, 2004; Wroe

et al., 2003; Aranguren, 2005). However, none of these are based on

a thorough ontological analysis of functions and their relation to

other relevant biological entities such as processes.

4 CONCLUSION

The Ontology of Functions provides a framework for representing

arbitrary functional knowledge in every domain of biology. This

framework is used to define and specify functions, and relate them

to other entities in biology. This helps to prevent errors, to clarify

definitions and to support the integration of biological data and

knowledge. We have shown how to use the OF to represent the

relation between biological processes and functions in the Gene

Ontology, for which no ontologically founded representation for-

malism is currently available.

The introduced formalism requires no changes to the existing

structure of the Gene Ontology, and could therefore be adopted

gradually. Moreover, we have demonstrated how to analyze the

annotation relation in the OF. Based on such analyses, the relation

between genes or gene products and categories to which they are

annotated can be made more precise. We have further shown how

the OF framework can be used to identify and define functions of

cells or chemicals.

The OF is a top-level ontology of functions which will be

extended by including biological domain concepts. Statistical meth-

ods or text mining methods such as (Bodenreider et al., 2005;

Burgun et al., 2004) could be used to extract the skeleton of a

functional domain ontology from the existing ontologies. The OF

can also be used to support the construction of a biological core

ontology, which is a top-level ontology for the domain of biology

(cf. also (Rector et al., 2006)) for an initial proposal of such an

ontology).

Moreover, we are working on an implementation of this frame-

work in the form of an annotation and curation tool, which will

effectively guide the annotation and curation process by implement-

ing the methodology defined by the OF to represent functional

knowledge. We plan to integrate an automated reasoner with this

tool in order to assist in maintaining consistency and to enable

automated deduction.
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R. J. van Glabbeek, and D. Westerståhl, editors, Computing Natural Language,

volume 81 of CSLI Lecture Notes, pages 13–50. Center for the Study of Language

and Information (CSLI), Stanford University, Stanford, 1998.

P. Melander. Analyzing Functions. An Essay on a Fundamental Notion in Biology.

Almqvist and Wiksell, 1997.

R. G. Millikan. Language, Thought, and Other Biological Categories: New Founda-

tions for Realism. The MIT Press, 1987.

C. J. Mungall. Obol: integrating language and meaning in bio-ontologies. Comp Funct

Genomics, 5:509–520, 2004.

OMG. Unified Modeling Language: Infrastructure. Specification v2.0, Object Man-

agement Group (OMG), Needham (Massachusetts), Mar 2006. http://www.

omg.org/docs/formal/05-07-05.pdf.

R. Poli. Qua-theories. In L. Albertazzi, editor, Shapes of Forms, pages 245–256.

Kluwer, 1998.

A. Rector, R. Stevens, and J. Rogers. Simple bio upper ontology. http://

www.cs.man.ac.uk/�rector/ontologies/simple-top-bio/, 2006.

M. A. Rosenman and J. S. Gero. Purpose and function in design. Design Studies, 2:161–

186, 1998.

M. Sasajima, Y. Kitamura, M. Ikeda, and R. Mizoguchi. FBRL: A function and

behavior representation language. In Proceedings of the Fourteenth International

Joint Conference on Artificial Intelligence (IJCAI’95), Montréal, Québec, Canada,
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ABSTRACT

Motivation: Comparative modelling is a computational method

used to tackle a variety of problems in molecular biology and bio-

technology. Traditionally it has been applied to model the structure of

proteins on their own or bound to small ligands, althoughmore recently

it has also been used to model protein-protein interfaces. This work is

the first to systematically analyze whether comparative models of

protein-DNA complexes could be built and be useful for predicting

DNA binding sites.

Results: First, we describe the structural and evolutionary con-

servation of protein-DNA interfaces, and the limits they impose on

modelling accuracy. Second, we find that side-chains from contacting

residues can be reasonably modeled and therefore used to identify

contacting nucleotides. Third, the DNASITE protocol is implemen-

ted and different parameters are benchmarked on a set of 85

regulators from Escherichia coli. Results show that comparative foot-

printing can make useful predictions based solely on structural data,

depending primarily on the interface identity with respect to the

template used.

Availability: DNASITE code available on request from the authors

Contact: contrera@ccg.unam.mx

Supplementary information: http://www.ccg.unam.mx/

Computational_Genomics/supplementary/ismb2006

1 INTRODUCTION

Comparative modelling is now a mature technology that predicts

the three-dimensional arrangement of a protein sequence given an

alignment to one or more template proteins of known structure. The

use of protein models may range from site-directed mutagenesis and

molecular replacement to molecular docking and protein design

and engineering (Baker and Sali, 2001; Contreras-Moreira et al.,
2002). The actual use of a protein model will depend on its

expected accuracy, dictated primarily by the sequence similarity

to the templates used (Contreras-Moreira et al., 2005; Chothia and

Lesk, 1986). Together with sequence alignment errors, this is a

main factor affecting model quality (Tramontano et al., 2001).

This factor has also been found to be critical when recon-

structing protein-protein interfaces (Aloy et al., 2003); the more

similar the sequences, the more predictable the details of the

interface.

In this paper we ask these questions to a different system, the

interface between proteins and nucleic acids. There has been great

interest in understanding these interactions, given the biological

relevance of genetic regulation (Sarai and Kono, 2005). For this

reason a good amount of experimental work has been dedicated to

this problem, most of it now part of the Protein Data Bank (PDB)

(Berman et al., 2000). This work takes all this experimental data,

i.e. crystallographic and NMR structures, in order to:

(1) determine if there are any evolutionary trends which might

explain the divergence of protein-nucleic acid interfaces

and therefore support comparative modelling of these

complexes

(2) assess if footprinting predictions can be made by comparative

modelling of protein-DNA complexes

The motivation for this analysis stems from a variety of

approaches recently tested on experimentally determined com-

plexes, that isolate and characterize the preferred recognised

sequences of transcription factors by using physical (Aloy

et al., 1998; Gromiha et al., 2005; Kono and Sarai 1999; Lus-

combe et al., 2001; Morozov et al., 2005; Nadassy et al., 1999;

Pabo and Nekludova 2000; Paillard and Lavery 2004; Selvaraj

et al., 2002; Siggers et al., 2005; Steffen et al., 2002) and evolu-

tionary metrics (Kaplan et al., 2005; Raviscioni et al., 2005).

Here we demonstrate that comparative modelling can help

explain or predict the repertoire of known binding sites of a

given regulator, annotated in resources such as RegulonDB (Sal-

gado et al., 2006), for proteins for which no structural description

is available, provided that we know the structure of homologous

proteins.

This work presents the first systematic benchmark of comparative

modelling protein-DNA complexes with the aim of predicting

DNA operator sites. First we compile a non-redundant set of

protein-DNA complexes to assess the conservation of their inter-

faces. The results show that comparative modelling of these com-

plexes is possible with one restriction: as sequence similarity

diminishes protein-DNA interfaces diverge exponentially. Second

we implement a protocol that we call DNASITE that builds com-

parative models of protein-DNA interfaces using tools and datasets

widely used by the structural bioinformatics community. Finally we

choose the appropriate parameters and test the performance of

DNASITE on a set of 85 Escherichia coli regulator proteins for

which RegulonDB contains known binding-sites with experimental

evidence.�To whom correspondence should be addressed.
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2 METHODS

Collecting protein-DNA complexes

We retrieved all PDB entries (as of August 9, 2005) containing both protein

and DNA coordinates, and selected all protein chains less than 12s away

from any DNA segment. This list of chains was pruned using a 95%

sequence identity cut-off to get a non-redundant set, using the web server

PISCES (Wang and Dunbrack, 2003). We then put every selected chain

together with the contacting nucleic acid molecules and called that a PN

complex, where P stands for protein and N for nucleic acid. The resulting

library contained 273 crystallographic and NMR structures and is available

as supplementary material.

Comparing complexes by means of protein structural

alignments

The next step of our procedure was to compare the protein chains of all

complexes using structural alignments, as a way of minimizing possible

alignment errors. For this we used the program MAMMOTH (Ortiz

et al., 2002) and considered only pairs of complexes that yielded –ln(E)

values over 4.5 and had at least 10% of sequence identity, to eliminate non

statistically significant matches. From more than 37000 comparisons,

442 passed this filter and were used to plot the conservation of protein-

nucleic acid interfaces as sequence similarity changed. Each of these pairs

resulted in a structural superposition with an associated sequence alignment.

Eight folds from the Structural Classification of Proteins (SCOP) (Murzin

et al., 1995) dominate this dataset, as shown in Results.

Calculating interface agreement between

superposed complexes

For each complex pair (A,B) we calculated three numbers: the sequence

identity (IDab) between protein chains Pa and Pb; the structural agreement of

the amino acid residues participating in the interface (P-RMSDab); and the

structural agreement of the interface nucleotides (N-RMSDab). Calculating

IDab is simple, matches in the sequence alignment divided by the total

number of aligned residues. The other two numbers are calculated from

the structural superposition of PNa over PNb in six steps:

(1) Pa residues contacting Na nucleotides are put in set Pac.

(2) Pb residues aligned to those in Pac are put in Pbc.

(3) Residues in Pac and Pbc are taken in pairs to calculate their root-

median-square deviation. We call this number P-RMSDab.

(4) For each residue in Pac: closest nucleotide in Na is put in set Nac.

(5) For each residue in Pbc: closest nucleotide in Nb is put in set Nbc.

(6) Nucleotides in Nac and Nbc are taken in pairs to calculate their root-

median-square deviation. We call this number N-RMSDab.

Protein residues were represented by their Ca atoms, while for nucleotide

bases we took N9 (purines) and N1 (pyrimidines) atoms. For step 1, a

protein-nucleic acid contact is defined as a pair of atoms placed less than

12s away from each other, following the work of Aloy et al. (Aloy et al.,
1998). For step 2 we require aligned protein residues to be within 4s from

each other after superposition.

Calculating side-chain modelling accuracy

1477 H-bonding residues from our library of superposed complexes were

modelled with the program SCWRL2.7 (Dunbrack and Karplus, 1993) and

RMSD values were calculated for each model-experimental pair of side-

chains. For each pair(A,B), first A was used as template to predict B side-

chains and then B was chosen as template.

Implementation of DNASITE

The DNASITE protocol was programmed in Perl and C and is conceptually

very simple. The input is a protein sequence and these are the steps that

follow:

(1) Search for homologous protein-DNA complexes with three

iterations of PSI-BLAST (Altschul et al., 1997), using a sequence

library made of the proteins in our non-redundant set of complexes

plus the sequences in SWISSPROT (Sep, 2005) (Bairoch and

Apweiler, 2000).

(2) Use local PSI-BLAST alignments to build the protein backbone of

the modelled complex, using the template’s coordinates. Accept only

models that align residues known to be contacting nucleotides in the

template.

(3) Add SCWRL side-chains keeping the template DNA in frame. We can

choose to model only mutated side-chains.

(4) Identify binding residues as those less than 4.5s away from any atom in

the purine/pyrimidine ring, a similar distance to that used previously by

Mandel-Gutfreund (Mandel-Gutfreund and Margalit, 1998). These

residues are used to calculate the % interface identity (IID).

(5) Thread DNA sequences into the modelled complex and evaluate

the matching using logarithmical protein-DNA 20x4 recognition

matrices, such as those derived by Mandel-Gutfreund (Mandel-

Gutfreund et al., 2001). The scoring function (Equation 1) is additive,

assuming that each residue in the interface contributes equally to the

matching score. A family-specific correction might be applied, calcu-

lating a correction term derived from the background substitution

frequencies contained in the PSI-BLAST position-specific scoring

matrices (PSSM) and the protein-DNA matrix used, as described in

Equation 2. The idea is that amino acid substitutions might be indicat-

ing which nucleotide bases are preferred at each position, somehow

capturing context-dependent preferences. DNA deformation for each

Table 1. Protein-DNA recognition matrix compiled by the authors

(CM parameter set) from a set of 273 95% non-redundant complexes.

Contacts were identified using a distance threshold of 4s (from any

side-chain atom to any atom in the purine/pyrimidine ring). Each value is

a log-odd calculated as in (Mandel-Gutfreund, et al., 2001)

C G A T

D +0.26 �0.49 �1.79 �1.11

P �1.31 �1.81 �0.73 �0.15

I �1.06 �1.64 �0.53 �0.99

K �0.54 +1.05 �0.75 +0.35

W +0.44 +0.34 �0.47 +0.07

C �0.74 �1.83 �0.85 �0.36

G �2.57 �2.57 �2.57 �2.57

F �0.76 +0.01 +0.06 +0.30

Q +0.21 +0.49 +0.63 +0.25

S �0.40 +0.42 �0.50 +0.62

N +0.41 +0.46 +0.98 +0.65

L �1.76 �1.29 �1.03 �0.65

V �0.97 �2.57 �0.43 �0.06

E +0.53 �1.65 �1.62 �1.09

Y +0.55 +0.60 +0.36 +0.88

R +0.76 +1.96 +0.56 +1.09

T +0.26 �0.35 �0.41 +0.44

M �0.40 +0.31 +0.10 +0.39

A �1.10 �1.31 �1.21 �0.27

H �0.39 +1.01 �0.49 +0.54
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threaded sequence is approximately estimated using the X3DNA pack-

age (Lu and Olson, 2003), in order to consider also indirect readout

mechanisms (Gromiha et al., 2005). Briefly, DNA parameters (step,

shift, slide, rise, tilt, roll, twist) are calculated from the template DNA

molecule and then used to approximate deformation energies based on

sequence-dependent parameters (Olson et al., 1998) (Marc Parisien,

personal communication). The native DNA molecule is used as a

reference and an arbitrary cut-off is set to skip sequences with large

deformation energies. To ensure fast computation times, shortcuts are

applied when the number of possible DNA sequences is greater than 49.

Only the top fraction of sequences is selected to build a footprinting

matrix. If the number of selected sequences is less that 50 the DNA

sequence of the template complex is added.

Given a PN complex, with L interface nucleotides contacting C protein

residues and a scoring matrix, the scoring function is calculated as follows:

ScoreðPNÞ ¼
XL

i¼1

XC

j¼1

match ðPi, Nj, matrixÞ ð1Þ

To calculate the family correction for a given residue Pj in contact with

nucleotide base Ni, each of the 20 possible aminoacid (aa) substitution

frequencies in a PSSM are considered:

CorrðPj, NiÞ ¼
X20

x¼1

freqðaaðxÞÞmatchðaaðxÞ, Ni, matrixÞ ð2Þ

DNASITE benchmark

The set of known and putative regulator proteins in E.coli was taken as a test

set, including 3 SCOP folds. Each of those sequences was used as input for

DNASITE and 85 comparative models were obtained (IHF was excluded

from this test as it was considered to be non-sequence specific). Each of these

85 models was built using different parameters that will be referred to using

these codes:

� Def: default parameters, using a 2001 Mandel-Gutfreund matrix, up to

three contacts per residue and a DNA deformation cut-off of 1.6 kcal/mol.

� CM: uses a matrix built by the authors from the non-redundant set of

complexes, based only on distance cut-offs (see Table 1).

� Sc3: uses SCWRL3.0 (Canutescu et al., 2003), instead of version 2.7, to

compare the performance.

� Df1: uses a DNA deformation energy cut-off of 1 kcal/mol.

� Df2: uses a DNA deformation energy cut-off of 2 kcal/mol.

� Df3: uses a DNA deformation energy cut-off of 3 kcal/mol.

� C1: only one contact per residue is considered, the closest one.

� M: conservative, models only mutated side-chains, the rest are taken as in

the template complex.

� F: uses family-specific correction.

� P: P-value cut-off for selecting threaded sequences.

The footprint matrices generated by DNASITE were aligned against the

corresponding set of known binding sites extracted from RegulonDB (Jan,

2006) using the program PATSER (Hertz and Stormo, 1999). Each site is

flanked by segments of 10 nucleotides. Alignments yielding significant

scores, over the cut-off estimated by PATSER for each matrix, were con-

sidered as recovered sites and for those the average ln(P-value) was calcu-

lated. Finally, the aligned sites were used to build a sequence logo with

WebLogo (Crooks et al., 2004).

3 RESULTS

3.1 Protein-DNA interface conservation

Figure 1 shows N-RMSD and P-RMSD values obtained from a total

of 442 non-redundant complex superpositions plotted against %ID.

Individual N-RMSD and P-RMSD data points are depicted and

logarithmic regression lines are added to help interpretation.

Note that interface nucleotides accumulate larger deviations

when superposed than their contacting residues. Furthermore,

both N-RMSD and P-RMSD are significantly correlated to %ID,

with correlation coefficients of�0.43 and�0.52 respectively. Nuc-

leotide median deviations for complexes with at least 30% of

sequence identity tend to be close to 2s, more precisely within

the 1.4 ± 1.2s interval.

As mentioned earlier, 8 SCOP folds are over-represented in our

dataset, the most common being the DNA/RNA binding 3-helical

Fig. 1. Interface conservation in terms of P-RMSD and N-RMSD. 442 pairs of protein-nucleic acid complexes were superposed and the conservation of their

interfaces plotted against their protein sequence identity. Two measures are reported: P-RMSD, the median deviation of the protein residues taking part in the

interface; N-RMSD, the median deviation of the nucleotides of the interface. Logarithmical regression lines are added to assist in the interpretation.
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bundle. Figure 2 shows the same analysis performed on these most

abundant SCOP folds, showing more specific trends, as also noticed

by Siggers (Siggers et al., 2005).

These results are encouraging as they indicate that interfaces are

structurally and evolutionary related and their sequence similarity is

a reasonable estimator of the degree of conservation. However,

before we can build comparative models of these complexes we

need to previously identify which modelled amino acid residues are

contacting DNA bases.

3.2 Side-chain modelling accuracy

In order to identify which residues are contacting nucleotides in

a complex we first need to model the residue side-chains. As

explained in Materials and Methods, we used the program

SCWRL2.7 for this task and found that 77% of H-bonding modelled

side chains deviate less than 2.0Å in average with respect to the

experimental coordinates, excluding pairs of complexes with less

than 30% sequence identity. We concluded that we can reasonably

predict side-chain rotamers and therefore which residues are likely

contacting nucleotides.

3.3 Footprinting of comparative protein-DNA

complexes

Table 2 shows the performance of the DNASITE protocol using our

test set of 85 E.coli regulators, comprising three folds: DNA/RNA-

binding 3-helical bundles, lambda repressors and Met repressors.

Three measurements are taken for each run: the percentage of

recovered sites, the mean alignment score and the mean significance

of alignment scores. This benchmark highlights some parameters

settings, those that perform well in recovering RegulonDB sites

with significant scores. Three of them were selected, P0.0001,

MF and FP0.0001, and a few representative examples of footprint-

ing predictions are shown in Figure 3. What do these parameters

Fig. 2. Interface conservation for 8 representative SCOP folds. Same analysis as in Figure 1, splitting the data corresponding to the most abundant SCOP folds in

our dataset. For all panels X-axis is %ID and Y-axis is RMSD measured in Å, with N-RMSD plotted in black and P-RMSD in grey. A majority of E.coli

transcription factors contain helix-turn-helix motifs and can be classified as DNA/RNA-binding 3-helical bundle folds.
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Fig. 3. Representative examples of footprint predictions using the DNASITE protocol. Binding site predictions based on comparative models for 5 E.coli

regulators. Each row shows the results for a protein-DNA complex and the numbers in parenthesis indicate the corresponding %ID and %IID. The first three

columns show the results for the P0.0001, MF and FP0.0001 parameter sets, including the % of recovered sites and the average alignment site score; the fourth

shows the consensus matrix calculated by CONSENSUS/WCONSENSUS (Hertz and Stormo, 1999) on the RegulonDB sequences, as an independent control.

Two independent predictions for SoxS are displayed here, using two different template complexes, one of them (55, 80) spanning only one of the DNA-contacting

domains. The FP0.0001 (55, 80) prediction recovers 100% of sites, but includes false positives, as can be seen in the logo. Note that the MF (55, 80) correct

prediction is also included into the ( 41, 86 ), whilst P0.0001 and FP0.0001 (41, 86) predictions do not recover all known binding sites and obtain incorrect

sequence logos. SoxS is an example of split site, composed of two subsites. Our current benchmark methodology often cannot recover split sites.
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mean? They suggest that keeping the conserved part of the interface

from the template is a good idea (M), in agreement with previous

observations (Sandelin and Wasserman, 2004), and that applying

family-specific corrections helps in many cases (F). In addition, it

seems to be a good choice to select only threaded sequences with

low ln(P) values. The different solutions provided by each strategy

might not be identical, but perhaps looking for consensus predic-

tions may help discriminate between right and wrong predictions.

73 of these 85 predictions correspond to regulators that have more

than 5 annotated binding sites in RegulonDB.

Figure 4 shows that the % interface identity (IID) correlates

negatively with the obtained PATSER scores in our benchmark.

The correlation coefficient ranges from �0.24 (C1) to �0.57

(FP0.0001). A linear regression line is also plotted, showing a

poor R2 value, due to the large variability of the data. A much

weaker correlation is observed when % sequence identity is used

instead (data not shown). This suggests that IID is really the impor-

tant number when comparing different complexes, since mutations

in the interface will probably mean changes in the recognised set of

nucleotide sequences.

4 DISCUSSION

The assumption behind comparative modelling is that similar

sequences will have very similar structures. However, similar pro-

tein structures need not have the same biological or molecular

function. In our modelling problem two questions need to be

answered. The first is whether a homologous protein really binds

to DNA. The second is what nucleotide sequences are being

recognised by this protein. We might try to answer the first question

by calculating the net charge of the suspected binding protein, as

suggested by Ahmad (Ahmad and Sarai, 2004), or using any related

experimental evidence. However, in this work we focused on the

second question.

The reported results suggest that template complexes can be used

to estimate the nucleotide preferences of related proteins, as already

anticipated (Morozov et al., 2005). These results also support the

choice of FP0.0001 parameters if score significance is to be maxi-

mized. Another lesson learned here is that a conservative approach

when predicting footprints is useful, keeping unchanged as much of

the template complex as possible (M parameters). This could be

saying that we are not very good at predicting preferred DNA

sequences from scratch, perhaps because we have only tested

generic recognition matrices (Pabo and Nekludova, 2000). Our

results also suggest that family-specific DNA preferences can be

estimated from protein sequence profiles, improving the observed

alignment scores. This might help overcome the limitations of

generic recognition matrices, as protein-DNA preferences might

be context-specific (Kaplan et al., 2005). Besides family correc-

tions, DNASITE could benefit from using tailor-made protein-DNA

recognition matrices, were family-specific associations could be

encoded. For instance, a homeodomain-like matrix could be

derived. Preliminary work suggests that these matrices can signifi-

cantly improve results but further exploration is needed.

This computational tool can generate different solutions that

might be used to build a consensus. If no consensus is reached

then probably the wise thing to do is to ignore these predictions.

Along with the set of binding sequences selected, DNASITE also

produces the motif length, a variable that non-structural footprinting

methods need to estimate by other means.

DNASITE can be applied to regulators for which no experimental

evidence is available at all, for instance cases where no footprint

experiments have been performed. For this reason this tool can

potentially be useful for the purpose of curating DNA-binding

sites. Furthermore, the algorithm has been implemented using a

collection of widely used tools (PSI-BLAST, SCWRL and

X3DNA).

This approach makes a simplified use of interface geometry and

does not explicitly distinguish H-bond interactions from Van der

Waals contacts, allowing fast but perhaps less accurate predictions.

Water-mediated H-bonds are also ignored as they don not seem to

contribute much to specific protein-DNA recognition (Luscombe

et al., 2001). Perhaps considering these questions would improve

the method, but this remains to be tested.

Table 2. Performance of different DNASITE parameter sets tested on a total

of 85 E.coli DNA-binding proteins with mean % sequence identity of 35 and

% interface identity of 46. The first column labels each parameter set,

encoded as mentioned in Materials and Methods. The second column

shows the mean % of RegulonDB sites aligned with a significant score

by PATSER. The third column shows the mean -ln(P) score for each

DNA-binding protein, as reported by PATSER. The last column shows

the mean significance of recovered sites, calculated as ln(P) – significance

threshold

Parameter set % Sites recovered Mean –ln(P) Mean significance

Def 94 4.7 1.5

CM 90 4.5 1.3

Sc3 94 4.6 1.7

Df1 95 4.7 1.9

Df2 94 4.6 1.5

Df3 94 4.6 1.4

C1 98 4.3 2.1

M 97 4.6 2.4

F 93 4.8 1.8

P0.01 93 4.5 1.6

P0.001 94 4.4 2.0

P0.0001 94 4.2 2.5

MF 96 4.6 2.5

FP0.001 93 4.5 2.2

FP0.0001 97 4.4 2.9

Fig. 4. Interface identity as quality predictor for DNASITE. FP0.0001 scores

for 85 modelled complexes are plotted against % interface identity. The

observed correlation coefficient is �0.57. This means that high IID values

predict better DNASITE footprints.
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A weakness of this method is that it depends on the availability

of related protein-DNA complexes. For the set of approximately

300 regulators in E.coli, less than a third can be studied with this

protocol. Probably more regulators could be modelled using more

sophisticated protein alignment algorithms, but those cases would

need to be benchmarked as well.

It should be remarked that a more realistic benchmark still needs

to be done, using DNASITE footprints to blindly predict binding

sites in the context of a genome. It is anticipated that these footprints

may have relatively large false positive rates in comparison with

more traditional approaches since they tend to be shorter, therefore

allowing more random hits to be aligned. Therefore, future users

should benefit by combining DNASITE with other structural and

non-structural methods.
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ABSTRACT

Oneparticularly time-consuming step in protein crystallography is inter-

preting the electron density map; that is, fitting a complete molecular

model of the protein into a 3D image of the protein produced by the

crystallographic process. In poor-quality electron density maps, the

interpretation may require a significant amount of a crystallographer’s

time.Ourwork investigatesautomating the time-consuming initial back-

bone trace in poor-quality densitymaps.We describe ACMI (Automatic

Crystallographic Map Interpreter), which uses a probabilistic model

knownasaMarkov field to represent theprotein.Residuesof theprotein

aremodeled as nodes in a graph,while edgesmodel pairwise structural

interactions. Modeling the protein in this manner allows themodel to be

flexible, considering an almost infinite number of possible conforma-

tions, while rejecting any that are physically impossible. Using an effi-

cient algorithm for approximate inference—belief propagation—allows

the most probable trace of the protein’s backbone through the density

maptobedetermined.WetestACMIonasetof tenproteindensitymaps

(at 2.5 to 4.0 Å resolution), and compare our results to alternative

approaches. At these resolutions, ACMI offers a more accurate back-

bone trace than current approaches.

Contact: dimaio@cs.wisc.edu

1 INTRODUCTION

Determining the folding of a protein—that is, the three-dimensional

spatial configuration of the atoms in a protein—has long been an

important problem in biochemistry. With some exceptions, a pro-

tein’s structure is uniquely determined from its linear amino-acid

sequence. Unfortunately, no known algorithm can determine this

unique structure from sequence, and scientists are forced to rely

upon laboratory methods in order to determine protein structures.

Several experimental methods exist, the most popular of which—

accounting for about 80% of protein structures determined to

date—is x-ray crystallography.

There has been significant recent interest in high-throughput

structure determination [1]. One particularly time-consuming step

in crystallography is interpretation of the electron map, that is,

finding the location of all the protein’s atoms in a three-dimensional

image of the protein. In this paper, we describe ACMI (Automatic

Crystallographic Map Interpreter), an algorithm that automates the

process of tracing the backbone in electron density maps.

ACMI consists of two main components: a local matching
component that locates individual amino acids in the density

map, and a global constraint component that uses prior knowledge

of the protein’s structure to eliminating false positives from the local

matching. ACMI combines these two with an efficient inference

algorithm that can infer the protein’s backbone in an electron den-

sity map. ACMI’s model is probabilistic: throughout the interpreta-

tion it represents each residue as a probability distribution over the

electron density map. This property—not being contrained to force

each residue to a single location—is advantageous as it naturally

handles noise in the map, errors in the input sequence, and disor-

dered regions in the protein.

2 CRYSTALLOGRAPHY BACKGROUND

Protein crystallography is a very labor-intensive undertaking. First,

the protein must be produced in large quantities and purified. Protein

crystals then have to be grown, which usually requires testing a

significant number of crystallization conditions and solvents. Once

the crystals are finally available, a beam of x-rays is fired through

the crystal. The lattice of protein molecules that comprise the crystal

diffracts this x-ray beam, and produces a pattern of spots on a plate.

These spots represent the intensities of a Fourier-transformed pic-

ture of the protein. Further laboratory experiments are used to

determine the phases corresponding to these intensities. Finally,

a Fourier transform converts these intensities into an electron
density map: a three-dimensional image of the protein.

The final step in x-ray crystallography is interpreting this electron

density map, converting it into a representation that is usable by

biologists. During interpretation, the crystallographer must locate—

given the amino-acid sequence of the protein—the coordinates of

the centers of all the protein’s atoms. This interpretation can be

extremely time-intensive; a crystallographer may spend weeks

(even months!) interpreting a poor-quality electron density map.

The electron density map is defined on a 3D lattice of points

covering the unit cell, or basic repeating unit in the protein crystal.

The crystal’s unit cell may contain multiple copies of the protein

related by crystallographic symmetry, one of the 65 regular ways a

protein can pack into the unit cell. Rotation/translation operators

relate one region in the unit cell (the asymmetric unit) to all other

symmetric copies. Furthermore, the protein may form a multimeric

complex (e.g. a dimer, tetramer, etc.) within the asymmetric unit. In

all these cases is up to the crystallographer to isolate and interpret a

single copy of the protein.

An overview of the interpretation task is illustrated in Figures 1

and 2. In both figures, the electron density map—a 3D function over

the unit cell—is illustrated as an isocontoured surface. Figure 1a�To whom correspondence should be addressed.
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illustrates a small portion of the electron density map. The sticks in

Figure 1b show the location of bonds between atoms. Figure 1c

shows only the lines between adjacent Ca atoms of the protein. This

Ca trace (or backbone trace) is the main concern of this paper.

Finally, Figure 2 shows the scale of the problem, illustrating a

complete unit cell’s electron density. This map contains two crys-

tallographically symmetric copies of a protein.

One measure of overall quality of an electron density map is the

resolution of the map. When placed in an x-ray beam, some protein

crystals diffract the beam better than others. In general, the more the

crystal diffracts the beam, the better quality the map. This is illus-

trated in Figure 3, which shows a short protein’s electron density at a

variety of resolutions (lower values of resolution mean a higher-

quality electron density map). At high resolutions (2s or better

resolution) individual atoms are visible, and automated interpreta-

tion is straightforward [2]. However, above about 2.5s, details of

individual atoms are smeared, and atom-based methods tend to fail.

Several approaches have attempted automatically interpreting these

maps [3,4] and have met with some success. However, interpreta-

tions produced by these methods are often messy and require sig-

nificant crystallographer effort to ‘‘fill in the gaps.’’

3 OVERVIEW OF THE ALGORITHM

A high-level overview of ACMI’s two main components is illus-

trated in Table 1. ACMI includes a local matching component,

where individual residues are probabilistically located in the

map, independent of all other residues, and a global constraint

component, where the backbone chain is built up, also probabilis-

tically, from the local matches, taking into account the chemical

laws governing the physical structure of proteins.

The local-matching component of our algorithm makes use of a

library of existing sequence-specific 5-mer templates. That is, when

searching for an individual residue, we actually look for all common

conformations of the 5-mer centered at that residue. The local

search has high sensitivity, usually matching well to the residue’s

correct location. However, it suffers from low specificity, producing

a significant number of false positives.

ACMI’s global-constraint component probabilistically refines

these local search results to takes into account prior knowledge

of protein structure. Using this prior knowledge, it adjusts the

local-match probabilities based on the local match probabilities

of other residues. It produces a physically feasible interpretation

that maximizes the probabilities from the local matching.

ACMI models this physical feasibility with a pairwise Markov

field, which represents the probability of a conformation as the

product of probabilities between pairs of residues. This pairwise

potential is analogous to the pairwise potential energy calculations

used in molecular dynamics [5] (although our model does not

optimize physical energy but rather statistical ‘‘energy’’).

4 LOCAL MATCHING

Local matching in ACMI is used to locate individual protein resi-

dues in an electron density map. In the poor-quality maps for which

ACMI is designed, simple atom-based-refinement methods [2] per-

form poorly. Empirically, methods using rotamer searching [6],

skeletonization [7], or critical points [8] also perform poorly in

Fig. 3. The electron density map for the same protein fragment at (a) 2s, (b)

3s, and (c) 4s map resolution.

Fig. 1. An over view of electron density map interpretation. Given the amino acid sequence of the protein and a density map (a), the crystallographer’s goal is to

find the positions of all the proteins atoms (b). Alternatively, a backbone trace (c), reduces each residue to a single point. ACMI automates determination of the

backbone trace.

Fig. 2. The electron density map over an entire unit cell. One copy of the

protein is indicated. This unit cell contains two symmetric copies, which wrap

around the map boundary.
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these low-resolution maps. The methods that have had the most

success in low-resolution maps are those based upon finding large

fragments of protein electron density [9]. Thus, we use sequence-
specific 5-mer search to locate individual residues in the electron

density map.

Our method is divided into two basic parts, illustrated in Figures 4

and 5. First, we use previously solved structures from the Protein

Data Bank to construct a basis set of sequence-specific 5-mer tem-

plates. We then perform a 6D (rotation + translation) search in the

map for each of the 5-mers in our basis set. The output of this local

search is—for each residue—an estimated probability distribution

of that residue’s presence over the unit cell.

Constructing a Sequence-Specific 5-mer Basis Set. ACMI begins

this step—illustrated in Figure 4—by walking along the one-

dimensional protein sequence, considering a 5-mer centered at

each residue. Given this 5-mer, we search a non-redundant subset
of the PDB [10] (restricted to have less than 25% sequence simi-

larity) for three-dimensional instances of that 5-mer. If there are less

than 50 such instances then we search for near neighbors to the 5-mer

using increasing PAM distance [11] until we have 50 structures.

It is infeasible to search for all 50+ conformations in the electron

density map, so we instead cluster the structures and represent each

cluster as a centroid fragment and a weight. When clustering the

fragments, we use rotationally-aligned all-atom RMS deviation

between fragments as a distance metric (quickly computed as an

optimization problem [12]). We use complete-linkage hierarchical

Fig. 5. An overview of the 5-mer template matching process. After we have

extracted a representative et of 5-mers for each residue i, we perform a 6D

(rotation + translation) search for the fragment in the density map. By also

matching the fragment to a tuning set of known structures, we can use Bayes’

rule (see Equation 3) to determine the probability distribution of the residue

over the density map.

Table 1. A pseudocode overview of ACMI’s algorithm

Procedure ACMI

Given: sequence ‘seq’ and electron density map ‘M’

Find: putative backbone trace W¼{ wi }

foreach residue i do

P(Mjwi)  doLocalMatch(seqi, M)

P(W)  enforceGlobalConstraints(P(Mjwi))

optimal_trace  {wi
�j 8i wi

� ¼ argmax (P(wi))

Procedure doLocalMatch(seq, M)

Given: sequence ‘seq’ and electron density map ‘M’

Find: prob. dist. P(Mjwi) of each residue over map

� Consider 5-mer centered at each residue

� Extract instances of 5-mer from PDB, cluster to characterize 5-mer’s

conformational space

� Perform a 6D search for 5-mer over density map

� Use a tuning set to convert squared density differences to probabilities

P(Mjwi) for each residue i

Procedure enforceGlobalConstraints(P(Mjwi))
Given: individual residue probability distributions

Find: marginal probabilities given structure constraints

� Model protein backbone structure as a graph
* Nodes model a-carbon positions
* Edges enforce structural constraints

� Probability of an interpretation W ¼ fwig given as the product of node

potentials and edge potentials

PðW jMÞ /
Y

residues i‚ j

Pðwi‚wjÞ
Y

residues i

PðM jwiÞ

� Infer marginal probs. given structural constraints

Fig. 4. The 5-mer clustering process. Walking along the amino-acid

sequence, we consider a 5-mer centered at each position. We search the

database for instances of that 5-mer, and cluster them. Finally, we extract

a representative member from each cluster. This characterizes the con-

formational space of the 5-mer sequence.
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clustering, limiting clusters to have a maximum diameter of 3s.

Any cluster with under 10% representation is thrown out (to limit

CPU time in the next step); in all remaining clusters we find a

centroid (i.e. representative) fragment. We also record the cluster

weight with each centroid fragment, that is, the percent of structures

that fell into that cluster. Depending on the ‘‘sequence structural

entropy’’ of the 5-mer [13], anywhere from 1 to 7 clusters (and

resultant centroid fragments) are produced.

The cluster centroids and the weights determined by ACMI rep-

resent the conformational space of each specific 5-mer fragment.

Using fragments of length five is our way of balancing the trade-off

between template size and template specificity. Larger fragments

are preferred for recognition in poor-quality maps, but larger frag-

ments have lower representation in the set of already-solved struc-

tures. Our non-redundant PDB subset contains about 20% of the

3.2 · 106 possible 5-mers.

Searching for 5-mer centroid fragments. Once the clustering is

complete and the cluster centroids have been extracted, we search

for instances of the centroids in the electron density map. This

process is illustrated in Figure 5. Given a fragment and a target

resolution, we can build a map corresponding to what we would

expect to see, given the fragment. Then, at each map location, we

can compute the mean squared electron density difference tð*xÞ
between the map and the fragment. We compute this difference

over all points *x ¼ < xi‚yi‚zi > in the electron density map within

some distance of the fragment,

tð*xÞ¼
X

y

«f ð*yÞ r0f ð*yÞ�
1

srð*xÞ
½rð*y�*xÞ��rrð*xÞ�

� �2

ð1Þ

where rð*xÞ is the map in which we are searching, r0f ð*xÞ is

the standardized fragment electron density, «ð*xÞ is a masking

function that is nonzero only for points near the fragment, and

srð*xÞ scales the standard deviations of the fragment and map

densities,

s2
rð*xÞ¼

X
y

«f ð*yÞ½rð*y�*xÞ��rrð*yÞ�2
�X

y

«f ð*yÞ ð2Þ

We need to perform the fragment search as a 6D search over all

rotations plus all translations; fortunately, we can compute tð*xÞ
quickly at a single rotation using FFTs [14]. Additionally, at

each position we store the best-matching 5-mer fragment, and

the corresponding rotation, for later use.

The electron density difference function tð*xÞ is a good measure of

similarity between regions of density, but we need a way to convert

these scores into probability distributions, that is, the probability

Pð*xi j scoreiÞ that there is an instance of a specific 5-mer cluster i at

location *xi given match score scorei. ACMI computes this using a

tuning set and the application of Bayes’ rule. Bayes’ rule states that

this probability is given as

Pð*xi j scoreiÞ ¼ Pðscorei j*xiÞ ·
Pð*xiÞ

PðscoreiÞ
ð3Þ

The terms on the right-hand side are computed or estimated as

follows. The probability distribution of match scores over the

map, PðscoreiÞ, is derived from the actual distribution of match

scores over the (unsolved) map. The prior probability on a residue’s

location over the map, Pð*xiÞ, is simply a normalization term: we

already know (by knowing the protein’s sequence) the number of

copies of the 5-mer in the electron density map, and we normalize

probabilities over the map to sum to this value. However, the first

term—the distribution of scores when the 5-mer matches the map—

is trickier to compute. ACMI estimates this term using a tuning set

derived from different protein structures from the PDB. This tuning

set contains other instances from the 5-mer cluster for which we are

searching. We match each cluster centroid’s density map with each

tuneset density map in that centroid’s cluster to estimate the dis-

tribution of scores given a 5-mer match.

At the end of the local matching procedure, ACMI has

computed—for each residue—a probability distribution over the

unit cell. That is, for each point in 3D space, we have a probability

that each specific 5-mer is positioned at that location. The remainder

of the paper describes how our algorithm uses prior knowledge

about the structure of the protein to estimate the most probable

backbone trace given these probability distributions. Run times

for the local matching are significant: for each fragment we have

to search �1900 rotations (20-degree discretization) over the entire

electron density map. The total compute time is on the order of

CPU-weeks; however, 5-mer matching is trivially parallelized [15].

5 GLOBAL CONSTRAINTS

In Section 4, we computed—for each residue i—the probability

distribution over every position x in the unit cell. We can think

of this probability as the probability that this map was generated by

residue i at location and rotation *wi, that is, PðM j*wiÞ. One could

presumably select, for each residue, the *wi that maximized this

probability. However, the resultant trace would likely look like

that in Figure 6a. ACMI somehow needs to account for the struc-
tural probability on the model. That is, it needs to ensure that the

proposed structure is a physically feasible protein molecule. What

we ultimately want to find—given map M—is the configuration of

Fig. 6. Two possible backbone traces. The trace (a) maximizes the product of

5-mer match probabilities; however, the resultant protein is physically im-

possible. We would prefer trace (b) with a lower 5-mer match probability, but

which corresponds to a physically-possible structure.
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all residues W ¼ f*w1‚ . . .‚*wNg, such that

arg max
W¼f*w1‚ ...‚*wNg

PðW jMÞ / PðWÞ ·
Y

i¼1...N

PðM j*wiÞ ð4Þ

The first term accounts for this physical feasibility, in which a

proposed structure like that of Figure 6b would have a much higher

probability of configuration than Figure 6a.

5.1 Markov field model

To model this "global constraint" probability ACMI uses a pairwise
Markov field model [16]. A pairwise Markov field model G ¼ ðV‚EÞ
consists of a set of nodes i 2 V connected by edges ði‚ jÞ 2 E. Each

node in the graph is associated with a (hidden) random variable
*wi 2W. The graph is conditioned on observation variables M. Each

vertex has a corresponding observation potential cið*wi‚MÞ, and

each edge is associated with a conformational potential cijð*wi‚
*wjÞ.

We can represent the full joint probability as

pðW jMÞ ¼
Y
ði‚ jÞ2E

cijð*wi‚
*wjÞ ·

Y
i2V

cið*wi‚MÞ ð5Þ

We are concerned with finding the *wi 2W maximizing this proba-

bility, given some M.

Figure 7 shows how we encode a protein in a Markov field model.

Each node i represents an amino-acid residue in the protein. The

label *wi ¼ h*xi‚
*qii for each amino-acid residue consists of seven

terms: the 3D Cartesian coordinates *xi of the residue’s alpha
Carbon (Ca), and four internal parameters *qi (an alternate parame-

terization of three rotational parameters plus the ‘‘bend’’ angle

formed by three consecutive residues). The observation potential
cið*wi‚yÞ associated with each residue is the 5-mer probability

PðM j*wiÞ computed in Section 4.

The conformation potentials cijð*wi‚
*wjÞ, which model the proba-

bility of a particular conformation of the residues in the protein, are

further divided into two basic types. Following Suddereth et al.’s
hand-tracking model [17], ACMI defines adjacency potentials asso-

ciated with each edge connecting neighboring residues (Figure 7b).

These potentials ensure that adjacent residues maintain the proper

3.8s spacing and the proper Ca—Ca—Ca angle. ACMI also defines

occupancy potentials between non-adjacent residues (Figure 7c),

which prevent two residues from occupying the same region in

three-dimensional space. Thus, our joint probability is now defined

pðW‚MÞ ¼
Y

*wi‚
*wj2W

i‚ j adjacent

cadjð*wi‚
*wjÞ ·

Y
*wi‚

*wj2W

i‚ j nonadjacent

coccð*wi‚
*wjÞ

·
Y

*wi2W

PðM j*wiÞ
ð6Þ

Because residues distant on the protein chain are not necessarily

distant in space, the graph must be fully connected; that is, every

pair of residues is joined by an edge in the Markov field model.

5.1.1 Adjacency potentials The adjacency potentials, which

connect every adjacent pair of residues, are further broken down

into the product of two constraining functions, a distance constraint

function and a rotational constraint function

cadjð*wi‚
*wjÞ ¼ pxðk*xi � *xjkÞ · p�ð*wi‚

*wjÞ ð7Þ

The distance constraint is based on the physical fact that, in proteins,

the Ca—Ca distance is a nearly invariant 3.8s. Thus, the potential

px takes the form of a tight Gaussian around this ideal value.

The internal parameters *qi model the 3D rotation of each

residue and the angle formed by the residue triple centered at

residue i. To simplify the definition of p� , we choose to para-

meterize these four degrees of freedom as two pairs of �-w spherical

coordinates: the most likely direction of the forward (i + 1) residue

and the backward (i � 1) residue. Our local 5-mer matching of

Section 4—in addition to computing the probability at a specific

location—also remembers the most likely 5-mer centroid and

rotation of that centroid. At each location in the map, we store

four values—�f, wf, �b, and wb—indicating the direction of both

adjacent residues, based on the direction of these residues in this

rotated, best-matching 5-mer.

The angular constraint function p�, illustrated in Figure 8, is

then—at each position xi in the map—just a fixed-width Gaussian

on a sphere, centered on this preferred orientation. That is, given

residue i at the center of the sphere, the highest potential p� is when

residue i+1 is located on the lightest points on the sphere, at h�f ‚wf i.

5.1.2 Occupancy potentials Occupancy potentials are in place to

ensure that two residues do not occupy the same location in space.

They are defined independently of orientation, and are merely a step

function that constrains two (nonadjacent) Ca’s be at least 3.0s

apart (the closest distance two nonadjacent residues may get),

coccðwi‚wjÞ ¼
1 kxi � xjk � 3:0
0 otherwise

�
ð8Þ

It is in this structural potential function that ACMI deals with

crystallographic symmetry. We can slightly modify our potential

function so that—given symmetric operators K ¼ {Kn}—two

residues may not occupy the same space, nor may any of their

Fig. 7. The structure of our graphical model. The joint probability of a con-

formation of residues is the product of (a) an observation potential at each

node, (b) an adjacency potential between adjacent residues, and (c) an occu-

pancy potential between all pairs of non-adjacent residues.
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symmetric copies:

coccðwi‚wjÞ ¼ 1 min
symmetric

transforms K

kxi � KnðxjÞk
 !

� 3:0

0 otherwise

8><>: ð9Þ

Multiple chains in the asymmetric unit are also handled by ACMI:

separate chains are fully connected by edges enforcing occupancy

constraints.

5.2 ACMI’s inference algorithm: finding the most

probable backbone trace

The ultimate goal of ACMI is producing a backbone trace: finding

the labels W ¼ {wi} that maximize the probability of the local

observational potentials and the global conformational potentials,

arg max
W¼fwig

Y
residues i‚ j

cijðwi‚wjÞ ·
Y

residue i

ciðwi‚MÞ ð10Þ

However, solving this exactly for arbitrary graphs is infeasible

(dynamic programming can solve this in quadratic time for tree-

structured graphs). As an alternative, ACMI uses belief propagation

(BP) to compute an approximation to the marginal probability

P(wi jM) for each residue i, then chooses the maximum marginal

label for each residue as the final trace.

Belief propagation is an inference algorithm—based on Pearl’s

polytree algorithm [18]—that computes marginal probabilities

using a series of local messages. At each iteration, a node (i.e.,

residue) computes an estimate of its marginal distribution (i.e.,

an estimate of the residue’s location in the unit cell) as the product

of all incoming messages. The residue then passes a convolution of

this product with the corresponding edge potential along each out-

going edge.

mn
i!jðwjÞ /

Z
unitcell

cijðwi‚wjÞ ·
p̂pn

i ðwiÞ
mn�1

j!i ðwiÞ
dwi ð11Þ

Above, p̂pn
i denotes the estimation of i’s marginal at iteration n,

that is,

p̂pn
i ðwiÞ / ciðwi‚MÞ ·

Y
k2GðiÞ

mn
k!iðwiÞ ð12Þ

Figure 9 illustrates the message-passing with a simple two-

dimensional example. In this example, two residues’ prior proba-

bilities have their probability mass split among several peaks. Our

structural knowledge tells us that residue i must be next to residue j.
In the first iteration, residue i passes a message to residue j, that

indicates where residue i expects to find residue j (essentially, in a

ring around residue i’s peaks). Messages in BP are probability

distributions marginalized to the message recipient’s random vari-

ables; that is, this message from residue i to residue j is a function

over residue j’s position in the unit cell. Residue j passes a message

back to residue i indicating where j expects to find i. This example

shows that in just two iterations, BP is able to reduce the number of

peaks through the use of structural priors.

In graphs without cycles, BP is exact. In graphs with arbitrary

topologies, such as ACMI’s protein model, there are no guarantees

of convergence or correctness; however, empirical results show that

loopy BP often produces a good approximation to the true marginal

[19,20].

5.3 Technical challenges

Even with the computational savings afforded by BP, the size and

complexity of both the graph and the space of labels presented

ACMI with a number of implementation challenges. Though

f f

Fig. 8. The angular component p�(wi, wj) of ACMI’s adjacency potential.

When performing our 5-mer matching, ACMI remembers the positions of the

adjacent residues in the most-likely match. The potential p� is a Gaussian on

the sphere’s surface centered on this most likely location of each adjacent

residue. This figure shows p� at a single location xi in the unit cell.

Fig. 9. A simple example of message passing using belief propagation. Given

prior probabilities b̂b0
i and b̂b0

j , at each iteration, a node i passes a message to a

node j indicating i’s belief of j’s position. For example, a residue knows that an

adjacent residue must be 3.8s away; residue i’s message to j consists of these

3.8 s "bubbles" around its peaks. As BP iterates, the matches that are struc-

turally supported by other residues begin to emerge.
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beyond the scope of this paper, the modifications necessary to BP in

order to scale to this problem are discussed in another paper by the

authors [21]. This section will briefly discuss some of these scaling

issues.

5.3.1 Representation of potentials The label associated with

each residue is a continuously-valued, 7-dimensional variable.

Nonparametric belief propagation (NBP) [17] is a variant of BP

that can handle continuous-valued labels; previous work repre-

sented the belief as the sum-of-Gaussians. Our work introduces

Fourier-Series NBP, a variant of NBP which represents messages

and belief as a set of 3D Fourier coefficients in Cartesian space,

which offer a number of benefits for this problem domain. These

benefits include natural treatment of periodic boundary conditions

and symmetry, no explicit initialization required (as is required

with the sum-of-Gaussians), and an efficient message-passing

implementation.

5.3.2 Efficient message passing Each message passed requires

integrating over the entire unit cell, which naı̈vely takes running

time of the order O(K2), where K is the number of Fourier coeffi-

cients. Unfortunately, for a typical protein, K may be 106 to 107! For

adjacency messages, it is not too much of a problem, as we only

need to integrate over a thin spherical shell where cadj is nonzero.

However, for occupancy messages, this message computation

time is significant. Fortunately, because the occupancy potential

is only a function of the distance between the two connected

residues, we can pass the message in O(K log K) as a multiplication

in Fourier-space.

5.3.3 Structural message aggregation Because our graph is

fully connected, in each iteration O(N2) messages need to be com-

puted and stored, where N is the number of amino-acid residues in

the protein. As each message is a probability distribution over the

entire unit cell, this is demanding computationally and storage-wise.

However, the outgoing structural messages (see Equation 11) at a

given node are all quite similar: they only differ in the denominator,

which serves to avoid double-counting, making the method exact in

tree-structured graphs [19]. However, in loopy graphs, this double-

counting is unavoidable. Furthermore, the structural potentials are

very diffuse, high-entropy potentials. Other authors have suggested

[22] that approximation errors in graphs with this type of potential

tend to stabilize.

We can save a significant amount of work if we aggregate all the

non-bonded residues, sending them a single structural message (that

is, dropping the denominator). ACMI does this, only sending O(N)

messages per iteration. Combined, these BP optimizations allow

ACMI to handle large proteins with large unit cells. Typical run

times (for the BP inference) vary from several hours to a day.

6 EXPERIMENTS

We obtained a set of ten model-phased electron density maps from

the Center for Eukaryotic Genomics at the University of Wisconsin-

Madison. The maps are all of fairly good resolution—natively 1.5 to

2.5s—and all have crystallographer-determined solutions. To test

ACMI’s performance on poor-quality (2.5+ Å) data, we down-

sampled these maps by smoothly diminishing the intensities of

higher-resolution reflections. To avoid truncation effects, and

give a more realistic model of low-resolution data, we scaled

structure factors by exp ð � K/R2Þ, where R is the resolution of

the structure factor and K is a scaling constant chosen based on

the desired resolution (higher values of K smooth the map more).

We down-sampled each of our maps to 2.5, 3.0, 3.5, and 4.0 s

resolutions, giving us a total of 32 maps on which to test. We chose

K ¼ R2
0, so the signal strength was weakened by 1/e at the point of

truncation.

We compared the performance of ACMI on these maps to two

other automated techniques specialized to low-resolution maps:

Ioerger’s TEXTAL [4], and Terwilliger’s Resolve [3,6]. These

two approaches have had the most success handling interpretation

in poor-quality maps.

TEXTAL is based on ideas from pattern recognition. Ioerger

constructs a set of 15 rotation-invariant density features. Using

these features at several radii, TEXTAL trains a neural network

to identify Ca atoms. Sidechains are identified by looking at the

electron density around each putative alpha carbon, efficiently find-

ing the most similar region in a database, and laying down the

corresponding sidechain.

Terwilliger takes a different approach with Resolve. Resolve first

looks for large secondary-structure elements, places them into the

map, and extends them. A rotamer search places sidechains,

aligning sequence to backbone. Both methods have some success

in 2.5 to 3.5 s maps.

After running all three algorithms on the test set, we measured the

results using three different metrics:

(1) Ca RMS error between predicted and true structure

(2) percent of the chain solved

(3) percent correct residue identity

Ideally, a method would find a trace with low RMS error, high

percent of the chain solved, and high residue identity.

The results at each resolution are summarized in Figure 10. TEX-

TAL was unable to run on one protein’s density maps (at any

resolution)—rather than including a terrible score for this map,

we gave the benefit of the doubt to TEXTAL and only report results

on the nine maps on which it ran. In terms of RMS error

(Figure 10a), our algorithm consistently out performs TEXTAL

at all resolutions tested. Using a two-tailed pair t test, ACMI out-

performs TEXTAL with p values of 0.091, 0.057, 0.012 and 0.11 at

2.5, 3, 3.5, and 4s, respectively. Resolve performs roughly equiva-

lent to ACMI at 2.5s resolution; however, at 3, 3.5 and 4 s,

ACMI’s performance is much better: a two-tailed t test yields p
values of 0.0068, 0.00002 and 0.00004, respectively (both of these t
tests only take into account RMS error and not chain coverage).

Figure 10b shows that the percent of the chain covered was

roughly equivalent for the three approaches. However,

Figure 10c shows that our approach is much better than the others

at identifying the proper residue type at a particular location. How-

ever, it is important to point out that these related methods are not

optimizing residue-identification accuracy. Resolve, for example,

will often return a long chain of alanine residues if it cannot identify

sidechains, but still gives the correct backbone structure overall.

This illustrates a significant difference between ACMI and these

alternate approaches: TEXTAL and Resolve build a backbone

model, then attempt to align the protein sequence to it. ACMI,

alternatively, uses the sequence of the protein to construct the
model. The result is better identification of amino acids in the map.

A probabilistic approach to protein backbone tracing in electron density maps

e87



Additionally, Figure 11 shows scatterplots in which each indi-

vidually solved electron density map is a point. The x-axis indicates

ACMI’s error; the y-axis indicates TEXTAL’s (or Resolve’s). All

points above the diagonal line correspond to maps where ACMI

outperformed TEXTAL (or Resolve). On the majority of structures,

our interpretation has a lower RMS error then both of the other

algorithms. ACMI is outperformed by Resolve on some high-

resolution maps, however, ACMI currently does not perform any

post-processing on predicted backbones (e.g. real-space refinement,

energy minimization); also, residues are restricted on a grid, lim-

iting accuracy to the grid spacing.

One advantage of ACMI’s probabilistic framework is that, in

addition to returning a putative trace, ACMI also returns a

confidence (i.e. probability) level of each predicted residue.

This confidence informs the crystallographer what areas in the

map need improvement; alternatively, a high confidence partial

trace could be used to improve phasing. Figure 12 illustrates this

in an example trace at 3.5 s resolution, on an structure consisting

of two chains of 124 residues each. This is our sixth-best (of ten)

traces at this resolution: ACMI finds nine segments with a Ca

RMS deviation of 2.3 s, covering 94% of the backbone. The trace’s

color indicates the likelihood of its prediction for each residue’s

location.

Fig. 10. Graphs showing a comparison of the three algorithms’ average

interpretation in terms of (a) RMS Error, (b) percent of the chain located,

and (c) percent of residues correctly identified.

Fig. 11. A scatterplot showing the performance on a protein-by-protein basis,

of ACMI versus (a) TEXTAL and (b) Resolve. Each mark is an interpreted

map; points above the diagonal are cases where ACMI provided a more-

accurate backbone trace.
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7 CONCLUSIONS AND FUTURE WORK

We describe ACMI, a tool for automatically tracing protein back-

bones especially designed for poor-quality electron density maps.

ACMI combines a local matching procedure and a global constraint

procedure in a probabilistic framework that can efficiently infer the

locations of backbone atoms in an electron density map. The algo-

rithm provides accurate traces even in poor resolution electron

density maps, outperforming both TEXTAL and Resolve above

3 s map resolution.

One major shortcoming of ACMI is the significant compute time

required by its local (5-mer) matching procedure. We need to search

for approximately three 5-mer fragments per residue; for each frag-

ment we consider �1900 rotations. Even for medium-sized unit

cells, this takes on the order of CPU-weeks; larger proteins take

months. ACMI exploits parallelism, running overnight, using the

spare cycles from desktop computers [15]. However, we would like

to investigate the use of machine learning algorithms, such as sup-

port vector machines or neural networks, to quickly match a 5-mer

into the density map. We also would like to explore alternative

feature representations.

Additionally, as a post-processing step, we would like to augment

ACMI with a refinement and sidechain tracing algorithm. In our

previous work, we used pictorial structures to place sidechain

atoms, given a Ca trace [23]: combining this tool with ACMI

would produce a complete molecular model.

Finally, we would like to explore the use of our probabilistic

model for phase improvement. In some maps, initial phasing is

quite poor. In these maps, a partial structure can be used to signifi-

cantly improve the initial phasing, revealing previously blurred-out

regions in the electron density. Using a high-confidence trace to

iteratively improve phasing is a future research direction of ACMI.

By providing accurate interpretations from lower-resolution

maps, ACMI reduces the burden on crystallographers when only

poor-quality density map data is available. Even when obtaining

higher-resolution electron density map data is possible, ACMI

allows significant cost savings by making do with poorer-quality

maps, speeding up the process of high-throughput protein structure

determination.
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ABSTRACT

Motivation: For several decades, free energy minimization methods

have been the dominant strategy for single sequence RNA secondary

structure prediction. More recently, stochastic context-free grammars

(SCFGs) have emerged as an alternative probabilistic methodology for

modeling RNA structure. Unlike physics-based methods, which rely on

thousands of experimentally-measured thermodynamic parameters,

SCFGs use fully-automated statistical learning algorithms to derive

model parameters. Despite this advantage, however, probabilistic

methods have not replaced free energy minimization methods as the

toolof choice for secondarystructureprediction,as theaccuraciesof the

best current SCFGs have yet to match those of the best physics-based

models.

Results: In this paper, we present CONTRAfold, a novel secondary

structure prediction method based on conditional log-linear models

(CLLMs), a flexible class of probabilistic models which generalize

upon SCFGs by using discriminative training and feature-rich scoring.

In a series of cross-validation experiments, we show that grammar-

based secondary structure prediction methods formulated as CLLMs

consistently outperform their SCFG analogs. Furthermore,

CONTRAfold, a CLLM incorporating most of the features found in

typical thermodynamic models, achieves the highest single sequence

prediction accuracies to date, outperforming currently available

probabilistic and physics-based techniques. Our result thus closes

the gap between probabilistic and thermodynamic models, demon-

strating that statistical learning procedures provide an effective

alternative to empirical measurement of thermodynamic parameters

for RNA secondary structure prediction.

Availability:Source code for CONTRAfold is available at http://contra.

stanford.edu/contrafold/.

Contact: chuongdo@cs.stanford.edu

1 INTRODUCTION

In many RNA-related studies—ranging from noncoding RNA

detection [13] to folding dynamics simulations [24] to hybridization

stability assessment for microarray oligo probe selection [19]—

knowing the secondary structure of an RNA sequence reveals

important constraints governing the molecule’s physical properties

and function. To date, experimental assays for base-pairing in

RNA sequences constitute the most reliable method for secondary

structure determination [3]; however, their difficulty and expense

are often prohibitive, especially for high-throughput applications.

For this reason, computational prediction provides an attractive

alternative to empirical discovery of RNA secondary structure [4].

Traditionally, the most successful techniques for single sequence

computational secondary structure prediction have relied on physics

models of RNA structure. Methods belonging to this category

identify candidate structures for an RNA sequence by free energy

minimization [22] through dynamic programming (e.g., Mfold [26]

and ViennaRNA [7]) or alternative optimization schemes (e.g.,

RDfolder [25]).

Parameters used in energy-based methods typically come from

empirical studies of RNA structural energetics. For example, parame-

ters for nearest neighbor interactions in stacking base pairs are

derived from melting curves of synthesized oligonucleotides [23].

In some cases, however, the difficulty of experimental procedures

places severe restrictions on what parameters are measurable, and

hence, the scoring models used. For instance, most secondary struc-

ture programs ignore the sequence dependence of hairpin, bulge,

internal, and multi-branch loop energies due to the inability to

quantify these effects experimentally. Similarly, the energies of

multi-branch loops in modern secondary structure prediction

programs rely on ad hoc scoring rules due to the lack of experimental

techniques for assessing their free energy contribution [11].

Recently, stochastic context-free grammars (SCFGs) have

emerged as an alternative probabilistic methodology for modeling

RNA structure [2,8,9]. These models specify formal grammar rules

that induce a joint probability distribution over possible RNA struc-

tures and sequences. In particular, the parameters of SCFG models

specify probability distributions over possible transformations

that may be applied to a ‘‘nonterminal’’ symbol, and thus are

subject to the standard mathematical constraints of probability

distributions (i.e. parameters may not be negative, and certain sets

of parameters must sum to one). Though these parameters do not

have direct physical interpretations, they are easily learned from

collections of RNA sequences annotated with known secondary

structures, without the need for external laboratory experiments [1].

While fairly simple SCFGs achieve respectable prediction accu-

racies, attempts in recent years to improve their performance using

more sophisticated models have thus far yielded only modest gains.

As a result, a significant performance separation still remains

between the best physics-based methods and the best SCFGs [1].

Consequently, one might assume that such a gap is the inevitable

price to be paid for using easily learnable probabilistic models, which

are unable to provide an adequate representation of the physics under-

lying RNA structural stability. We assert that this is not the case.

In this paper, we present CONTRAfold, a new secondary struc-

ture prediction tool based on a flexible probabilistic model called a

conditional log-linear model (CLLM). CLLMs generalize upon

SCFGs in the sense that any SCFG has an equivalent representation�To whom correspondence should be addressed.
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as an appropriately parameterized CLLM. Like SCFGs, CLLMs

enjoy the ease of computationally-driven parameter learning.

Unlike vanilla SCFGs, however, CLLMs also have the generality

to represent complex scoring schemes, such as those used in modern

energy-based secondary structure predictors such as Mfold.

CONTRAfold, a CLLM based on a simplified Mfold-like scoring

scheme, not only achieves the highest single sequence prediction

accuracies to date but also provides users with a new mechanism for

controlling the sensitivity and specificity of the prediction algorithm.

2 METHODS

In this section, we motivate the use of CLLMs for RNA secondary structure

prediction by showing how they arise as a natural extension of SCFGs. We

then describe the CONTRAfold secondary structure model, which extends

and simplifies traditional energy-based scoring schemes while retaining the

parameter learning ease of common probabilistic methods. Finally, we

describe a maximum expected accuracy decoding algorithm for secondary

structure prediction which allows the user to adjust the desired sensitivity/

specificity of the returned predictions via a single parameter g.

2.1 Modeling secondary structure with SCFGs

In the RNA secondary structure prediction problem, we are given an input

sequence x, and our goal is to predict the best structure y. For probabilistic

parsing techniques, this requires a way to calculate the conditional proba-

bility P(y j x) of the structure y given the sequence x.

2.1.1 Representation Stochastic context-free grammars (SCFGs)

provide a compact representation of a joint probability distribution over

RNA sequences and their secondary structures. An SCFG for secondary

structure prediction defines (1) a set of transformation rules, (2) a probability

distribution over the transformation rules applicable to each nonterminal

symbol, and (3) a mapping from parses (derivations) to secondary structures.

For example, consider the following simple unambiguous SCFG for a

restricted class of RNA secondary structures:

(1) Transformation rules.

S! aSu juSa jcSg jgSc jgSu juSg j aS jcS jgS juS j e:

(2) Rule probabilities. The probability of transforming a nonterminal

S into aSu is pS!aSu, and similarly for the other transformation rules.

(3) Mapping from parses to structures. The secondary structure y
corresponding to a parse s contains a base pairing between two letters

if and only if the two letters were generated in the same step of the

derivation for s.

For a sequence x ¼ agucu with secondary structure1 y ¼ ((.)), the

unique parse s corresponding to y is

S! aSu! agScu! aguScu! agucu: ð1Þ
The SCFG models the joint probability of generating the parse s and the

sequence x as

Pðx‚sÞ ¼ pS!aSu · pS!gSc · pS!uS · pS!e: ð2Þ
It follows that2

Pðy j xÞ ¼
X
s2y

Pðs j xÞ ¼
P

s2y Pðx‚sÞP
s02WðxÞ Pðx‚s0Þ ‚ ð3Þ

where W(x) is the space of all possible parses of x.

2.1.2 Parameter estimation One of the chief advantages of SCFGs

as a language for describing RNA secondary structure is the existence of

well-understood algorithms for parameter estimation. Given a set D ¼
fðxð1Þ‚yð1ÞÞ‚ . . . ‚ðxðmÞ‚yðmÞÞg of m pairs of RNA sequences x(i) with

experimentally-validated secondary structures y(i), the training task involves

finding the set of parameters u ¼ {p1, . . . , pn} (i.e., the probabilities for

each of the n transformation rules) that maximize some specified objective

function.

In the popular maximum likelihood approach, u is chosen to maximize the

joint likelihood of the training sequences and their structures,

‘MLðu : DÞ ¼
Ym
i¼1

PðxðiÞ‚yðiÞ; uÞ‚ ð4Þ

subject to the contraints that all parameters must be nonnegative, and certain

group of parameters must sum to one. For unambiguous grammars, the

solution uML to this constrained optimization problem exists in closed

form. Consequently, the maximum likelihood technique is by far the

most commonly used method for SCFG parameter estimation in practice.

2.2 From SCFGs to CLLMs

Like SCFGs, conditional log-linear models (CLLMs) are probabilistic

models which have the goal of defining the conditional probability of an

RNA secondary structure y given a sequence x. Here, we motivate the

CLLM framework by comparison to SCFGs.

2.2.1 Representation To understand how CLLMs generalize upon the

representation of conditional probabilities for SCFGs, we first consider a

feature-based representation of SCFGs that highlights several important

assumptions made when modeling with SCFGs. Removing these assump-

tions leads directly to the CLLM framework.

For a particular parse s of a sequence x, let Fðx‚sÞ 2 Rn be an

n-dimensional feature vector (where n is the number of rules in the grammar)

whose ith dimension, Fi(x,s), indicates the number of times the ith trans-

formation rule is used in parse s. Furthermore, let pi denote the probability

for the ith transformation rule. We rewrite the joint likelihood of the

sequence x and its parse s in log-linear form as

Pðx‚sÞ ¼
Yn
i¼1

p
Fiðx‚sÞ
i ¼ exp ln

Yn
i¼1

p
Fiðx‚sÞ
i

 ! !

¼ exp
Xn

i¼1

Fiðx‚sÞln pi

 !
¼ expðwTFðx‚sÞÞ‚ ð5Þ

where wi ¼ ln pi. Substituting this form into equation 3,

Pðy j xÞ ¼
P

s2y expðwTFðx‚sÞÞP
s02WðxÞ expðwTFðx‚s0ÞÞ : ð6Þ

In this alternate form, we see that SCFGs are actually log-linear models

with the restrictions that

(1) the parameters w1, . . . , wn correspond to log probabilities and hence

obey a number of constraints (e.g., all parameters must be negative), and

(2) the features F1(x,s), . . . , Fn(x,s) derive directly from the grammar;

thus the types of features are restricted by the complexity of the

grammar.

In both cases, the imposed restriction is unnecessary if we simply wish

to ensure that the conditional probability in equation 6 is well-defined.

Removing these restrictions, thus, is the basis for the CLLM framework.

More generally, CLLMs are probabilistic models defined by equation 6,

in the case that the parameters w1, . . . , wn may take on any real values,

and the feature vectors are similarly unrestricted.3

1The secondary structure of a sequence can be represented in nested

parenthesis format, in which pairs of matching parentheses represent

base pairings in the sequence.
2Here, we regard y as a ‘‘set’’ of parses s sharing the same secondary

structure. Note that in ambiguous grammars, the mapping from parses to

secondary structures may be many-to-one.

3Note that conditional random fields (CRFs) are a specialized class of

CLLMs whose probability distributions are defined in terms of graphical

models [10].
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2.2.2 Parameter estimation By definition, CLLMs parameterize the

conditional probability P(y j x) as a log linear function of the model’s

features F(x, s), but they provide no manner for calculating P(x, y). As a

side effect, straight maximum likelihood techniques, which optimize this

joint probability, do not apply to CLLMs.

Instead, CLLM training relies on the conditional maximum likelihood

principle, in which one finds the parameters wCML 2 Rn that maximize

the conditional likelihood4 of the structures given the sequences,

‘CMLðw : DÞ ¼
Ym
i¼1

PðyðiÞ j xðiÞ; wÞ: ð7Þ

Arguably, for prediction problems, conditional likelihood (or discriminative)

training is more natural than joint likelihood (or generative) training as it

focuses on finding parameters that give good predictive performance without

attempting to model the distribution over input sequences x.

The mechanics of performing the probabilistic inference tasks required in

the optimization of equation 7 follow closely the traditional inside and

outside algorithms for SCFGs [2].

2.3 From energy-based models to CLLMs

Converting an SCFG to a CLLM by removing restrictions on the parameter

vector w and training via conditional likelihood allows SCFGs to obtain

many of the benefits of the discriminative learning approach. Straightfor-

ward conversions of this sort are routine in the machine learning literature

and have recently been applied to RNA secondary structure alignment [21].

Such conversions, however, do not take full advantage of the expressivity of

CLLMs. In particular, the ability of CLLMs to use generic feature repre-

sentations means that in some cases, CLLMs can conveniently represent

models which do not have compact parameterizations as SCFGs.

For example, the QRNA algorithm [18] attempts to capture the salient

properties of standard thermodynamic models for RNA secondary structure,

such as loop lengths and base-stacking, via an SCFG. This conversion,

however, is only approximate. In particular, the usual energy rules [23,11]

contain terminal mismatch terms describing the interaction between closing

base pairs of helices and nucleotides in the adjacent loop. These interactions

are ignored in QRNA, and more generally, are difficult to incorporate in

SCFG models without considerably increasing grammar complexity. As the

authors themselves note, QRNA underperforms compared to standard fold-

ers, highlighting the difficulty of building SCFGs on par with energy-based

methods [18].

Contrastingly, the complex scoring terms of thermodynamic models trans-

fer to CLLMs with no difficulties. In the standard model, the energy of a

folding s decomposes as the sum of energies for hairpin, interior, bulge,

stacking pair, and multi-branch loops. In turn, the energy of each type of loop

further decomposes as the sum of interaction energies over individual features

of the sequence x and its parse s. Thus, in the CLLM equivalent of standard

thermodynamic scoring, the parameters w1, . . . , wn replace the interaction

energy contributions for various secondary elements, and the features

F1ðx‚sÞ‚ . . . ‚Fnðx‚sÞ count the number of times a particular interaction

term appears in the parse s. This procedure is illustrated in Figures 1 and 2.

2.4 The CONTRAfold model

The CONTRAfold program implements a CLLM for RNA secondary struc-

ture prediction, following the general strategy for model construction out-

lined in the previous section. The features in CONTRAfold (see Figure 3)

include:

(1) base pairs,

(2) helix closing base pairs,

(3) hairpin lengths,

(4) helix lengths,

(5) bulge loop lengths,

(6) internal loop lengths,

(7) internal loop asymmetry,

(8) full two-dimensional table of internal loop scores,

(9) helix base pair stacking interactions,

(10) terminal mismatch interactions,

(11) single (dangling) base stacking,

(12) affine multi-branch loop scoring, and

(13) free bases.

To a large extent, the features above closely mirror the features employed

in traditional thermodynamic models of RNA secondary structure. We point

out a few key differences:

(1) CONTRAfold makes use of generic feature sets without incorporating

‘‘special cases’’ typical of complex thermodynamic scoring models,

such as the popular Turner energy rules [11]. For instance, CONTRA-

fold

– omits the bonus free energies for special case hairpin loops

(specifically items (d) through (f) from the list in Figure 2).

– does not contain a table exhaustively enumerating all possible

1 · 1, 1 · 2, 2 · 2, and 2 · 3 internal loops.
While such features may be useful, they are more likely to lead to

overfitting due to the large number of parameters that must be

trained.5 Incorporation of a small number of specially selected

interactions which are known to be particularly important a priori

is more feasible.

(2) Internal and bulge loop lengths are scored separately as a function

of the lengths ‘1 and ‘2 of each side of the loop:

f single lengthð‘1‚‘2Þ ¼
wbulge length½‘1 þ ‘2� if ‘1‘2 ¼ 0

winternal length½‘1 þ ‘2� otherwise
þ winternal asymmetry½|‘1 � ‘2|�
þ winternal correction½‘1�½‘2�:

8><>: ð8Þ

In most thermodynamic models, only bulge and internal loop length

score tables exist, whereas internal loop asymmetry is scored accord-

ing to the Ninio equations [14]. Here, CONTRAfold learns an explicit

scoring table winternal asymmetry [·] for internal loop asymmetry in addi-

tion to a two-dimensional correction matrix winternal correction [·] [·]

for representing dependencies not captured by total loop length and

asymmetry alone.

Fig. 1. Positions in a sequence of length L ¼ 10. Here, let xi denote the ith

nucleotide of x. For ease of notation, we say that there are L + 1 positions
corresponding to x—one position at each of the two ends of x, and L � 1

positions between consecutive nucleotides of x. We assign indices ranging

from 0 to L for each position.

4In practice, we avoid overfitting by placing a zero-mean Gaussian regular-

ization prior on the parameters, and selecting the variance of the prior using

holdout cross-validation on training data only (see Results).

5This may be considered an advantage of physics-based methods; a hybrid

approach which combines machine learning with physics-based prior knowl-

edge may help alleviate the burden on the learning algorithm.
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(3) Unlike typical energy minimization schemes, the energy of a helix

consists not only of stacking interactions but also direct base

pair interactions. Also, all combinations of nucleotide pairs are

allowed, unlike the standard nearest neighbor model in which only

canonical Watson-Crick or wobble gu pairs are permitted. Finally,

CONTRAfold introduces new scoring terms for helix lengths (via an

explicit scoring table for helices of length up to 5 and affine after-

wards), which are not part of the standard nearest neighbor model.

(4) Since little is currently known about the energetics of free bases

(bases which do not belong to any other loop in the secondary

structure), they are typically ignored by energy-based folders. Here,

CONTRAfold introduces two scoring parameters: wouter unpaired for

scoring each free base, and wouter paired for scoring each base pair

adjacent to a free base.

(5) For simplicity, CONTRAfold scores terminal mismatches for

hairpins, bulges, and internal loops using the same parameters.

CONTRAfold also does not account for coaxial stacking depend-

encies when scoring multi-branch loops. Like the special case hairpin

loops mentioned earlier, making more specific scoring models by

differentiating between these terminal mismatches may improve

prediction accuracy.

2.5 Maximum expected accuracy parsing with

sensitivity/specificity tradeoff

Most physics-based approaches to secondary structure prediction use

dynamic programming to recover the structure with minimum free energy

[26,7]. For probabilistic methods, the Viterbi algorithm (known as the CYK

algorithm [2] for SCFGs) fulfills this function by finding the most likely

parse,6

ŝsviterbi ¼ arg max
ŝs2WðxÞ

Pðŝs | x; wÞ: ð9Þ

Fig. 2. The construction of a CLLM from an energy-based model. In short, the conversion process involves expressing the total energy of a parse s as a linear

function of counts for joint features Fi(x, s) of the sequence x and the parse s. Once this is done, substituting into equation 6 gives a probabilistic model whose

Viterbi parse is the minimum energy parse.

6For unambiguous grammars, the most likely parse is also the most likely

secondary structure; however, this is not the case for ambiguous

grammars [1,16].
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Here, we describe an alternative scheme that, for a given setting of a

sensitivity/specificity tradeoff parameter g, identifies the structure with

maximum expected accuracy.

In particular, for a candidate structure ŷy with true structure y, let

accuracygðŷy‚yÞ denote the number of correctly unpaired positions in ŷy

(with respect to y) plus g times the number of correctly paired positions

in ŷy. Then, we wish to find,

ŷymea ¼ arg max
ŷy

Ey½accuracygðŷy‚yÞ�‚ ð10Þ

where the expectation is taken with respect to the conditional distribution

over structures of the sequence x.

Fig. 3. Correspondence between energy-based model scoring and CLLM potentials in CONTRAfold. In each diagram, the nucleotides comprising the indicated

RNA secondary structure element are shown in red. Green dotted lines indicate the groups of nucleotides involved in the terminal mismatch, helix stacking,

or single base stacking interactions considered by CONTRAfold.
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To do this, let pij denote the conditional probability that the ith and jth
nucleotides of sequence x base pair. Similarly, let qi ¼ 1 �

P
j pij be the

conditional probability that the ith nucleotide is unpaired. The following

recurrence computes M1‚ L ¼ maxyðEy½accuracygðŷymea‚yÞ�Þ:

Mi‚ j ¼ max

qi if i ¼ j
qi þMiþ1‚ j if i < j
qj þMi‚ j�1 if i < j
g · 2pij þMiþ1‚ j�1 if iþ 2 � j
Mi‚ k þMkþ1‚ j if i � k < j:

8>>>><>>>>: ð11Þ

Including the traceback for recovering the optimal structure, the parsing

algorithm takes O(L3) time and O(L2) space.

Note that in the above algorithm, g controls the balance between the

sensitivity and specificity of the returned structure—i.e., higher values of

g encourage the parser to predict more base pairings whereas lower values

of g restrict the parser to predicting only base pairs for which the algo-

rithm is extremely confident. When g ¼ 1, the algorithm maximizes the

expected number of correct positions and is identical to the parsing

technique used in Pfold [9]. As shown in the Results section, by allowing

g to vary, we may adjust the sensitivity and specificity of the parsing

algorithm as desired.

3 RESULTS

To assess the suitability of CLLMs as models for RNA secondary

structure, we performed a series of cross-validation experiments

using known consensus secondary structures of noncoding

RNA families taken from the Rfam database [5,6]. Specifically,

version 7.0 of Rfam contains seed multiple alignments for 503

noncoding RNA families, and consensus secondary structures

for each alignment either taken from a previously published

study in the literature or predicted using automated covariance-

based methods.

To establish ‘‘gold-standard’’ data for training and testing, we

first removed all seed alignments with only predicted secondary

structures, retaining the 151 families with secondary structures

from the literature. For each of these families, we then projected

the consensus family structure to every sequence in the alignment,

and retained the sequence/structure pair with the lowest combined

proportion of missing nucleotides and non-{au, cg, gu} base pairs.

The end result was a set of 151 independent examples, each taken

from a different RNA family.

3.1 Comparison to generative training

In our first experiment, we took nine different grammar-based

models (G1-G8, G6s) from a recent study by Dowell and Eddy

on the performance of simple SCFGs for RNA secondary structure

prediction [1]. For each grammar, we took the original SCFG

and constructed an equivalent CLLM. We then applied a two-

fold cross-validation procedure to compare the performance of

SCFG (generative) and CLLM (discriminative) parameter learning.

In particular, we partitioned the 151 selected sequence-structure

pairs randomly into two approximately equal-sized ‘‘folds.’’ For

any given setting of the MEA trade-off parameter g, we used

parameters trained on sequences from one fold7 to perform

predictions for all sequences from the other fold. For each tested

example, we computed sensitivity and specificity (PPV)8, defined as

sensitivity ¼ number of correct base pairings

number of true base pairings
ð12Þ

specificity ¼ number of correct base pairings

number of predicted base pairings
: ð13Þ

By repeating this cross-validation procedure for values of g 2
{2k: �5 � k � 10}, we obtained a receiver operating characteristic

(ROC) curve for each grammar. We report the estimated area

under each curve (see Table 1). In 7 out of 9 grammars, the

CLLM outperforms its SCFG counterpart.

Using a similar cross-validation protocol, we also found that

MEA parsing outperforms the Viterbi algorithm on average for

both the generative and discriminative models. In particular,

when an algorithm A achieves better sensitivity and specificity

than algorithm B, we say that A dominates B. On 7 out of

9 generatively-trained grammars and 9 out of 9 discriminatively-

trained grammars, we found a g for which the MEA parsing

algorithm dominates the Viterbi algorithm (see Table 2).

3.2 Comparison to other methods

Next, we compared the performance of CONTRAfold with a num-

ber of leading probabilistic and free energy minimization methods.

In particular, we benchmarked Mfold v3.2 [26], ViennaRNA v1.6

[7], PKNOTS v1.05 [17]9, Pfold v3.2 [9], and ILM [20], using

default parameters for each program.10 Whenever a program

returned multiple possible structures (e.g., Mfold), we scored

only the structure with minimum predicted free energy.

Table 1. Comparison of generative and discriminative model structure

prediction accuracy.

Grammar Generative Discriminative Difference

G1 0.0392 0.2713 +0.2321

G2 0.3640 0.5797 +0.2157

G3 0.4190 0.4159 �0.0031

G4 0.1361 0.1350 �0.0011

G5 0.0026 0.0031 +0.0005

G6 0.5446 0.5600 +0.0154

G7 0.5456 0.5582 +0.0126

G8 0.5464 0.5515 +0.0051

G6s 0.5501 0.5642 +0.0141

Each number in the table represents the area under the ROC curve of an MEA-based

parser using the indicated model. As seen below, the discriminative model consistently

outperforms its generative counterpart.

7To determine smoothing parameters (for SCFGs) or regularization con-

stants (for CLLMs), we used conditional log-likelihood on a holdout set

taken from the training data as an estimate of the generalization ability of the

learned model, and found the optimal setting of the desired parameter using a

golden section search [15].

8We considered only au, cg, and gu base pairs since many of the energy-

based folders cannot predict other types of base pairings as a consequence of

the nearest neighbor model.
9Because of the large size of some of the sequences in our dataset, we

disabled pseudoknot prediction for PKNOTS.
10Note that while all tools listed support single sequence RNA secondary

structure prediction, not all were designed specifically for single sequence

prediction. Pfold, for instance, was developed in the context of multiple

sequence structure prediction; similarly, ILM and PKNOTS were developed

for prediction of RNA structures with pseudoknots, and so might fare better

on sequences where pseudoknot interactions play a more important role.
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Unlike the other programs in our comparison, CONTRAfold’s

use of the maximum expected accuracy algorithm for parsing allows

it to optimize for either higher sensitivity or higher specificity via

the constant g. In Figure 4, we varied the choice of g for the parsing

algorithm so as to allow CONTRAfold to achieve many different

trade-offs between sensitivity and specificity; some of these trade-

offs allow for unambiguous comparisons between CONTRAfold

and existing methods.

As shown in Tables 3 and 4, CONTRAfold outperforms existing

probabilistic and energy-based structure prediction methods without

relying on the thousands of experimentally measured parameters

common among free energy minimization techniques. For g ¼ 6 in

particular, CONTRAfold achieves statistically significant improve-

ments of over 4% in sensitivity and 6% in specificity relative to the

best current method, Mfold. This demonstrates not only the quality

of the underlying model but also the effectiveness of the parsing

mechanism for providing a sensitivity/specificity trade-off.

3.3 Feature assessment

To understand the importance of various features to the

CONTRAfold model, we performed an abrasion analysis in

which we removed various sets of features from the model and

assessed the change in total ROC area for the MEA parser. As

seen in Table 5, the performance of CONTRAfold degrades as

features are removed from the model.

Interestingly, even the weakest model from Table 5, which

includes only features for hairpin, bulge, internal, multi-branch

loops (without accounting for internal loop asymmetry), helix clos-

ing base pairs, and helix base pairs, achieves a respectable ROC area

of 0.6003. In fact, this crippled version of CONTRAfold, which

does not even account for helix stacking interactions, manages to

obtain sensitivity and specificity values of 0.7006 and 0.6193,

respectively, accuracy statistically indistinguishable from Mfold.

3.4 Learned versus measured parameters

In many respects, the general techniques employed by CLLMs are

reminiscent of many previously described algorithms. For instance,

Table 2. Comparison of generative and discriminative model structure pre-

diction accuracy

Grammar Generative Discriminative

Viterbi MEA Viterbi MEA

Sens (spec) Sens (spec) Sens (spec) Sens (spec)

G1 0.41 (0.27) 0.18 (0.11) 0.40 (0.28) 0.48 (0.33)

G2 0.53 (0.36) 0.53 (0.36) 0.63 (0.48) 0.67 (0.64)

G3 0.46 (0.48) 0.56 (0.51) 0.45 (0.46) 0.54 (0.53)

G4 0.21 (0.17) 0.33 (0.23) 0.21 (0.17) 0.34 (0.23)

G5 0.03 (0.04) 0.06 (0.04) 0.02 (0.03) 0.06 (0.04)

G6 0.60 (0.61) 0.62 (0.63) 0.61 (0.62) 0.62 (0.67)

G6s 0.60 (0.62) 0.62 (0.64) 0.62 (0.63) 0.65 (0.65)

G7 0.58 (0.63) 0.63 (0.63) 0.58 (0.62) 0.63 (0.67)

G8 0.58 (0.60) 0.63 (0.62) 0.58 (0.61) 0.65 (0.62)

In each case, g was adjusted for MEA parsing to allow a direct comparison with Viterbi,

and the dominant parsing method is shown in bold. Finally, note that the results for MEA

reflect only a single choice of g rather than the entire ROC curve, so one should refer to

Table 1 for a more reliable comparison of generative and discriminative MEA accuracy.

Specificity

Fig. 4. ROC plot comparing sensitivity and specificity for several RNA

structure prediction methods. CONTRAfold performance was measured

at several different settings of the g parameter, which controls the

tradeoff between the sensitivity and specificity of the prediction algorithm.

As shown above, CONTRAfold achieves the highest sensitivity at each level

of specificity.

Table 3. Accuracies of leading secondary structure prediction methods

Method Sensitivity Specificity Time (s)

CONTRAfold (g¼6) 0.7377 0.6686 224

Mfold 0.6943 0.6063 62

ViennaRNA 0.6877 0.5922 8

PKNOTS 0.6030 0.5269 460

ILM 0.5330 0.4098 22

CONTRAfold (g ¼0.75) 0.5540 0.7920 224

Pfold 0.4906 0.7535 22

Table 4. Performance of CONTRAfold relative to leading secondary struc-

ture prediction methods

Sensitivity Specificity

Method + � p-value + � p-value

Mfold 34 69 0.00081 51 77 0.0271

ViennaRNA 30 72 4.9 · 10�5 44 82 0.00098

PKNOTS 17 94 5.5 · 10�13 26 104 1.5 · 10�11

ILM 20 101 3.6 · 10�13 12 126 6.8 · 10�22

Pfold 38 72 0.0017 41 64 0.0318

Mfold, ViennaRNA, PKNOTS, and ILM were compared to CONTRAfold (g¼ 6). Pfold

was compared to CONTRAfold (g¼ 0.75). The numbers in the+/� columns indicate the

number of times the method achieved higher (+) or lower (�) sensitivity/specificity than

CONTRAfold. p-values were calculated using the sign test.
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the inside-outside algorithms inspired by SCFGs bear close relation

to McCaskill’s procedure for computing base-pairing probabilities

via the partition function [12]. Indeed, one may be tempted to draw

direct analogies between the parameters of energy-based models

and the parameters learned by the CLLM (appropriately scaled by

�RT, the negated product of the universal gas constant and

absolute temperature).

As shown in Figure 5, in some cases one can find a good cor-

relation between parameters learned by CONTRAfold and those

measured experimentally. Differences between learned parameters

and measured values, however, are not necessarily diagnostic of

errors in the laboratory measurements. Roughly speaking, the

parameters learned by CLLMs reflect the degree of enrichment

of their corresponding features in training set secondary structures.

Therefore, parameters which do not appear often in training set

structures will have smaller parameter values, regardless of their

actual energetic contribution to real RNA structures. Additionally,

Gaussian prior regularization (see footnote to Section 2.2.2),

reduces the magnitude of less confident parameters to prevent over-

fitting. Finally, CLLM learning compensates for dependencies

between parameters so as to maximize the overall conditional like-

lihood of the training set; thus, the values learned for one parameter

will depend greatly on the other parameters in the model.

4 DISCUSSION

In this paper, we presented CONTRAfold, a new RNA secondary

structure prediction method based on conditional log-linear models

(CLLMs). Like previous structure prediction methods based on

probabilistic models, CONTRAfold relies on statistical learning

techniques to optimize model parameters according to a training

set. Unlike its predecessors, however, CONTRAfold uses a dis-

criminative training objective and flexible feature representations

in order to achieve accuracies exceeding those of the current best

physics-based structure predictors.

As a modeling framework for RNA secondary structure predic-

tion, CLLMs provide many advantages over physics-based models

and previous probabilistic approaches, ranging from ease of

parameter estimation to the ability to incorporate arbitrary features.

It is only natural, then, to suspect that these advantages will carry

over to related problems as well. For instance, most current methods

for multiple sequence RNA secondary structure prediction either

take a purely probabilistic approach or attempt to combine physics-

based scoring with covariation information in an ad hoc way. In

contrast, the CLLM methodology provides a principled framework

for combining the rich feature sets of physics-based methods with

the predictive power of sequence covariation.

To date, SCFGs and their extensions provide the foundation for

many standard computational techniques for RNA analysis, ranging

from modeling of specific RNA families to noncoding RNA detec-

tion to RNA structural alignment. In each of these cases, CLLMs

provide principled alternatives to SCFGs which take advantage of

complex features of the input data when making predictions.

Extending the CLLM methodology to these cases provides an excit-

ing avenue for future research.
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ABSTRACT

The interpretation ofmicroarray and other high-throughput data is highly

dependent on the biological context of experiments. However, standard

analysis packages are poor at simultaneously presenting both the

array and related bioinformatic data. We have addressed this challenge

bydevelopingasystemspringScapebasedon‘springembedding’andan

‘information landscape’ allowing several related data sources to be

dynamically combined while highlighting one particular feature.

Each data source is represented as a network of nodes connected by

weighted edges. The networks are combined and embedded in the 2-D

plane by spring embedding such that nodes with a high similarity are

drawnclose together.Complex relationshipscanbediscoveredbyvary-

ing theweight of eachdata source andobserving thedynamic response

of the spring network. By modifying Procrustes analysis, we find that

the visualizations have an acceptable degree of reproducibility. The

‘information landscape’ highlightsoneparticulardatasource,displaying

it as a smooth surface whose height is proportional to both the informa-

tion being viewed and the density of nodes. The algorithm is demon-

strated using several microarray data sets in combination with

protein-protein interaction data and GO annotations. Among the

features revealed are the spatio-temporal profile of gene expression

and the identification of GO terms correlated with gene expression and

protein interactions. The power of this combined display lies in its

interactive feedback and exploitation of human visual pattern recogni-

tion.Overall, springScape showspromiseas a tool for the interpretation

of microarray data in the context of relevant bioinformatic information.

Contact: d.jones@cs.ucl.ac.uk

Supplementary information: Supplementary data are available at

Bioinformatics online.

1 INTRODUCTION

Microarrays for the measurement of gene expression have become a

ubiquitous source of data in many biological experiments. Their

strength—the ability to simultaneously track the mRNA levels of

thousands of genes—also poses considerable challenges. The high

dimensionality and high noise level of the data can obscure patterns

that would be recognized with ease in smaller datasets. For these

reasons, visualisation of the results of such experiments is dif-

ficult and requires sophisticated mathematical tools. Furthermore,

the interpretation of experimental results often depends on the

biological context, which can be provided by reference to

non-microarray data sources. For example, an experiment aimed

at distinguishing tumor from normal tissue samples might

benefit from a visualisation showing the microarray data mapped

to the Gene Ontology (GO) (Ashburner, et al., 2000) network of

molecular function terms. Alternatively, an experimenter aiming

to delineate the transcriptional response to DNA damage might

wish to combine microarray data with protein-DNA interaction

information in order to highlight genes involved in transcriptional

control. However, current analysis packages provide little flexibility

to produce single-view visualisations which combine both the gene

expression data and complementary information from other

bioinformatic resources.

Many bioinformatic data sources can be represented as networks

(e.g. protein homology, protein interaction, gene regulation, meta-

bolic networks etc). Even microarray data can be viewed as a net-

work in which genes with similar expression profiles across

experimental conditions are connected by links weighted by the

strength of the similarity. However, commonly used multivariate

visualisation techniques optimize functions which do not explicitly

take account of this network structure. For example, principal com-

ponents analysis (PCA) focuses on the subspace of largest variance

within the data, while multidimensional scaling (MDS) optimizes

representation of the inter-point distances. One method explicitly

designed for visualising network information is that of spring embed-

ding (Eades, 1984; Fruchterman and Reingold, 1991). By represent-

ing each node as a mass and each connection as a spring, the method

finds a layout of the network which is of low potential energy. In this

configuration, nodes connected by the strongest springs (eg genes

with the most similar expression profiles) are drawn close to each

other while those with weaker interactions lie further apart.

Spring embedding has been used to visualise gene expression data

(Schroeder, et al., 2001) by representing each gene as a node and

using the angle between expression profile vectors as a distance

measure. Kim et al. (2001) obtained two-dimensional coordinates of�To whom correspondence should be addressed.
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genes from a force-directed placement algorithm (similar to spring

embedding) and then summarized the density of points in the third

dimension using an ‘information landscape’—a 3-dimensional sur-

face whose height is proportional to the density of points in the 2-D

plane. This simplification of the complex 2-D layout allowed them

to identify regions of the map (‘mountains’) enriched with genes

belonging to specific functional classes. However, in neither of

these studies was the important aspect of combining bioinformatic

data from multiple sources addressed.

A common approach in microarray analysis is first to explore the

gene expression data on its own to ascertain genes and conditions

showing interesting behaviour, and later to progress to statistical

analyses and integration with functional information. For example,

a popular methodology is to generate lists of genes which are dif-

ferentially expressed between experimental conditions and then to

examine them for over- or under-representation of functional

annotations, such as those from the GO database. The examination

of such lists requires significant effort which increases exponenti-

ally with the number of conditions compared. Some of this effort

could be reduced if such integration with external information could

be achieved at the data-exploratory stage, rather than after explicit

hypotheses have been tested. It is toward this goal that our research

with spring embedding algorithms has been aimed.

In this paper we describe a system, springScape, based on the

concepts of spring embedding and the information landscape to

visualise gene expression microarray data in the context of other

bioinformatic data sources. Our goals are to visualise the high

dimensional data in 2-D while combining data from several sources.

We desire a method well adapted to visualising biological networks

and which enables us to vary the weight of each different data

source according to the purpose of the visualisation. The spring

embedding technique will allow us to do this in a way which is

dynamically visible to the user. Finally, we wish to use the system to

focus on one particular aspect of these data sources (often the

microarray data itself), and for this we will use the information

landscape concept.

We illustrate the use of the springScape system with three

examples using two microarray data sets. The first example

shows how the algorithm can be used to map gene expression

data on to a single external data source—a GO network. In the

second example, we show how more than one external data source

can be combined in a sequential manner to elucidate complex rela-

tionships between these and the expression data. Finally, we provide

an example showing how correlations between gene expression

profiles themselves can be combined with external data to influence

the visualisation.

2 METHODS

2.1 Data source combination

Our approach starts by deciding what the Nn nodes and Ne edges in the spring

network will represent. For example, each node might be a single gene, with

the springs representing the strength of the correlation between the genes’

expression profiles over time. Alternatively, each node might be a GO term

representing a whole functional class of genes, and the edges could then

represent the connectivity of the GO relationships. Next, each of the K
information sources must be represented as an NnxNn similarity matrix

where each element sijk is a measure of the strength of interaction between

nodes i and j in the k’th information source. To continue the examples, in the

former case, sijk might be the thresholded correlation between genes i and j,
while in the latter case, sijk would be the adjacency of terms i and j on the GO

directed acyclic graph. When there are several information sources, the

individual similarity matrices are combined using a weighted mean:

sij ¼
1

K

X
k

wksijk

where wk is the weight of the k’th information source in the embedding.

In our visualisations we used values of wk ranging from 0.0001 to 0.01.

The weights are not normalised so that the absolute magnitude of sij can be

varied by the user.

2.2 Spring embedding

Having defined the overall similarity information to be represented, we

proceed to map this to the 2-D plane. We define a network of Nn identical

masses connected by Ne springs, where the strength of each spring is spe-

cified by the corresponding element of the combined similarity matrix, sij. If

sij¼ 0 we say the nodes are unconnected, otherwise for both sij < 0 and sij > 0

we say they are connected. The physical nature of the springs is given by a

force law which relates the spring length x to the attractive force F. To

prevent degenerate solutions (where all nodes collapse to a single point), we

ensure that the nodes also repel each other within a small range. The exact

form of the force law is not critical to the success of the approach; we follow

the approach of Fruchterman and Reingold (1991) in using a square attract-

ive term coupled with an inverse repulsive term. In our system, we subtract a

constant repulsive term, r, from all pairs of nodes which are closer than xmax

to form a modified similarity

s0ij ¼
sij � r if xij < x max

sij if xij � x max
:

�
Thus nodes separated by less than xmax which are unconnected (s ¼ 0)

receive a negative similarity, while the attraction of connected nodes is

reduced. We then compute the spring forces Fij according to

FijðxÞ ¼
� s02ij ð1/xij � 1/x maxÞ if s0ij < 0

s0ijx
2
ij if s0ij � 0

(
This set up ensures connected nodes separated by more than xmax will

always attract and that unconnected nodes coming within a distance xmax will

always repel each other. However, if two nodes are strongly connected

(sij > r) they will always attract even when separated by less than xmax.

In our experiments, we have found that this helps to unravel ‘tangled’

network layouts. As the connected nodes are allowed to approach each

other closely, they can effectively act as a single node and thus ‘thread’

their way through gaps that would be inaccessible to a more spatially exten-

ded subnetwork. Although this setup theoretically allows two nodes to

occupy identical positions, in many biological networks we have analysed,

repulsion from the rest of the network prevents this from happening. How-

ever, to prevent such pairs collapsing to a single point, we identify connected

nodes separated by x < xmax/100, giving them a repulsive modified similarity

of s’ij ¼ –r. The values of the parameters used in our visualisations were

xmax ¼ 0.2 and r ¼ 0:2 maxk ðwkÞ.
The simulation starts with the nodes uniformly distributed at random on

the unit square and proceeds according to Newtonian dynamics until the user

stops the display (owing to lack of further movement) or a fixed number of

iterations has been reached. The equations of motion are solved explicitly

using Euler’s method. The frequency of display updates is determined by the

user (typically every 2–10 iterations) and we used a maximum of between

103 and 104 iterations in our experiments. (Note that although the basic

spring embedding procedure requires around Nn iterations, further iterations

are required in the edge crossing and edge repulsion stages—see below). In

order to allow the system to reach a static equilibrium, we include a fluid-like

energy dissipation term in the simulation. This is defined by a force pro-

portional to, but in the opposite direction to the velocity. The proportionality
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constant used in our experiments was 0.1 such that 10% of the velocity is lost

at each iteration.

2.3 Edge crossing detection and edge repulsion

An important goal in network layout algorithms is minimisation of the

number of edges which cross each other. The obvious advantage is that

the structure of a network with fewer edge crossings is much more easily

interpretable to the human eye. However, the removal of edge crossings can

also lead to a lower energy solution by allowing edges ‘stretched’ across

intervening edges to reduce their length. We include edge crossing detection

and correction in our algorithm typically every few hundred iterations of the

Euler solver, allowing the system to return to a relaxed state before the next

set of corrections are made. Only edges with similarity above a threshold, sij

> sec are checked and the crossings are corrected using the following algo-

rithm.

Let xi and yi, i¼ 1,2,3,4 denote the coordinates of two pairs of nodes in the

network connected by two edges (1,2) and (3,4). If Dxij ¼ xj�xi and Dyij ¼
yj�yi and we calculate

a ¼ Dy34Dx13 � Dx34Dy13

Dy34Dx12 � Dx34Dy12

‚ b ¼ aDy12 � Dy13

Dy34

,

then the two edges cross if 0 < a < 1 and 0 < b < 1. We correct the crossing

simply by swapping the coordinates of points 2 and 4: ðx2‚y2Þ $ ðx4‚y4Þ.
Pairs of edges are considered sequentially and if a crossing is detected, it is

immediately corrected. A potential problem here is that a correction may

induce new crossings in the remaining network. These are not explicitly

checked, but will be corrected if they occur between a pair of edges that has

not yet been considered. If not, they will be corrected at the next round of

detection.

Although the above algorithm corrects edge crossings, it allows layouts

which place some nodes very close to unrelated edges. This makes inter-

pretation of the map difficult because such nodes may appear to be connected

to the nearby edge. To reduce this problem we add secondary masses to the

centre of each edge which only use the repulsive force law. The ‘edge

repulsion’ is turned on late in the simulation when the large scale layout

has been solved and acts merely to obtain a configuration with well spaced

nodes.

2.4 Information landscape

Once the 2-dimensional coordinates of the nodes have been found, we are

free to use the third dimension to focus on one particular part of the infor-

mation being presented. We chose to use the idea of an ‘information

landscape’ (Kim, et al., 2001)—a 3 dimensional surface whose colour

and height represent the information of interest. In our formulation, we

construct the surface using Gaussian kernels of fixed width s placed at

each node. The height z of the surface at any point (x,y) is found by summing

the kernels:

zðx‚yÞ ¼
XN
i¼1

ui exp � ðx�xiÞ2 þ ðy�yiÞ
2

2s2

 !
where each kernel is weighted by ui, the parameter of interest (eg mean gene

expression level for node i). The kernel width can be set by the user accord-

ing to the level of detail they wish to display. The figures in this paper used

values between s ¼ 0.01 and 0.02.

2.5 Assessing reproducibility of the visualisation

Given the same data, the spring embedding approach does not always

produce the same layout, partly owing to the random initial configuration

and partly because of the presence of local minima in the spring

potential energy. We assessed how often a similar layout is obtained

over many random restarts using two methods. Firstly, we developed a

modified form of Procrustes analysis (see supplementary information) to

examine the similarity between different layouts. The analysis was applied

to subnetworks of varying sizes and the evolution of Procrustes fit error

with subnetwork size was compared to that from random layouts. Secondly,

we investigated the potential energies of the spring layouts. The mean and

standard deviation of the energy was calculated across the multiple realisa-

tions and compared to that from random layouts (see Supplementary

Information).

springScape and all testing procedures were developed within the MAT-

LAB programming environment (version 7.0, The MathWorks, Natick, MA)

on a 2.5GHz Pentium 4 PC with 1GB RAM. We use MATLAB in preference

to other data analysis tools such as R because of its highly interactive

graphics facilities.

3 RESULTS

3.1 Yeast cell cycle time course displayed on GO

To demonstrate the visualisation of gene expression data in the

context of a single additional data source, we used the yeast cell

cycle data of Spellman et al. (1998). In this experiment, yeast cells

were synchronised by the addition of a factor, and the cell popu-

lation sampled every 7 minutes over the course of approximately

two cell division cycles (119 min in total). RNA was extracted and

expression profiles obtained using spotted cDNA arrays. We

mapped the genes to the GO cellular component ontology using

annotations from the Saccharomyces Genome Database (SGD)

(Cherry, et al., 1998). A subnetwork of the GO graph, rooted at

the term ‘cell’ and extending to a distance of 2 edges was extracted

and a visualisation using the spring embedding algorithm is shown

in Figure 1. The layout clearly illustrates the GO connectivity and

satisfies various ‘aesthetic’ criteria such as a low number of edge

crossings.

The mean expression ratio (MER) of all genes annotated to each

GO term was then visualised using the information landscape

technique. To calculate the MER for the leaf nodes of the subnet-

work, we used the inheritance properties of GO to allocate genes to

leaves that were ancestors of the annotated terms. However, inher-

itance was not used at higher levels of the subnetwork itself, to avoid

the MER of an ancestor being influenced by genes annotated to a

descendant present in the visualisation.

The data for 4 of the time points are shown in Figure 2. The GO

network has been visualised by the spring embedding procedure and

is overlaid by a landscape of mean gene expression. Some nodes

have no annotations for yeast and therefore display no landscape in

the figure. Clear differences between the mean expression of each

GO term can easily be identified from this plot. For example, at

0 min, the term with the highest mean expression, to the right of

the network, is ‘cell wall’. High expression of cell wall proteins

might be expected at mitosis which is the stage depicted at

the initiation of the experiment. As the cells move into the G1

and S phases of the cell cycle at 14 and 28 min, mean expression

becomes more comparable across many GO terms, particularly

children of the terms ‘intracellular’ and ‘membrane’. This includes,

for example, the term ‘nucleus’ and terms relating to the mitochon-

drial membrane and respiratory chain complexes. At 63 min, the

cells are beginning the second round of the cycle, again in the M/G1

phase. However, the plot indicates that the gene expression profile is

far from similar to that at 0 min, being heavily dominated by

the term ‘septum’. Again, activity at this location is expected at

mitosis and there is one gene in the GO database, DSE4

(YNR067C), annotated to this term. This gene is involved in

degrading the cell wall, allowing mother and daughter cells to
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separate (Colman-Lerner, et al., 2001). Note that GO terms are

highlighted by MER, not by enrichment in differentially expressed

genes, and so the standard hypergeometric test for enrichment is not

applicable. Thus, although the mean is a rather course summary of

the expression of many genes annotated to a given term, this is not

always a limiting factor and the system affords a global overview of

the expression changes in the context of the Gene Ontology rela-

tionships. Changes in expression related to different locations in the

cell can be easily identified, and interesting regions expanded by

extracting further subnetworks of GO at a deeper level.

3.2 Yeast cell cycle displayed on GO with

protein–protein interactions

The real versatility of the system becomes apparent when gene

expression data is viewed in the context of more than one other

information source. For yeast, a wealth of bioinformatic data is

available, much of which can be represented as a network. We

chose data on protein-protein interactions (PPIs) from the Munich

Information centre for Protein Sequences (MIPS, http://mips.gsf.de/)

to add to the visualisation described above. Figure 3 shows the

effect of adding this as a second external information source.

The upper left panel depicts the GO cellular component ontology

relationships, rooted at the term ‘cell’ and visualised by the spring

embedding procedure (as for Figure 2). In the upper right panel,

PPIs have been added to the information displayed. Note that since

GO inheritance is not used except at the leaf nodes, none of the PPIs

shown connect ancestor - descendant pairs. The number of inter-

acting protein pairs for each pair of GO terms gives an interaction

strength which is depicted by the thickness of the red lines in the

figure. In the lower left panel, the PPI springs have been activated,

leading to a new network layout where GO terms which share many

interactions are drawn closer together. To highlight terms most

affected by the addition of this PPI information, pairs of terms

were ranked by the magnitude of the decrease in separation due

to the new forces. The pairs showing the five largest decrements in

separation are all between children of the terms ‘membrane’ and

‘intracellular’. For example, the largest change is for the terms

‘integral to membrane’ and ‘cytoplasm’ which have 523 distinct

pairs of interacting proteins linking them.

Finally, the lower right panel shows, for the 28 min time point,

the mean expression of all genes annotated to each GO term as

a coloured landscape. This is superimposed on the network

layout produced by both the GO and PPI information. This time

point is the same as that shown in the lower left panel of Figure 2,

but Figure 3 gives a very different picture of the landscape of

gene expression. In Figure 2, the distribution of mean expression

is rather uniform across GO terms whereas the landscape of

Figure 3 is dominated by a few salient peaks. These high peaks

highlight cellular components characterised by both large

numbers of protein interactions and high mean gene expression.

Fig. 1. Part of the GO cellular component ontology visualised by the spring embedding algorithm. The ontology is rooted at the term ‘cell’ and extends to a

distance of 2 edges. The directions of the GO relationships are not shown to avoid complicating the display.
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The highest peak towards the top middle of the panel is due to the

terms ‘cytoplasm’, ‘intracellular organelle’ and ‘nucleus’. The

number of interacting protein pairs between each of these three

terms is greater than 3400 and has led to their close proximity

on the map. Note that the three terms corresponding to this peak

are terminal nodes of the network (i.e. at the lowest level displayed

in Figure 1).

3.3 Human dendritic cell viral infection data

Our last example is aimed at demonstrating how the visualisation

can be influenced by genes with similar patterns of expression

across a time course or multiple experimental conditions. Human

dendritic cells were exposed to five stimuli, either pathogen com-

ponents (lipopolysaccharide (LPS), polyinosinic polycytidylic acid

(PIC, a synthetic form of double-stranded RNA)), or live and inac-

tivated viruses (influenza, UV-treated influenza, rhinovirus).

Expression profiles were monitored at 6 time points over

24 hours using custom cDNA arrays. The top level network of

the GO molecular function ontology was extracted from the GO

database extending to all terms with more than 300 UniProt annota-

tions (http://www.ebi.uniprot.org/). Genes from the custom arrays

were assigned to the GO terms using Unigene (http://www.ncbi.

nlm.nih.gov/entrez/query.fcgi?db¼unigene and Locus Link (www.

ncbi.nlm.nih.gov/LocusLink) mappings. The network as visualised

by the spring embedding algorithm is shown in Figure 4.

Figure 5 (upper panel) shows the mean log expression ratio for the

LPS treatment at 18 hours of all genes annotated to each term

visualised by the information landscape technique. As with the

yeast data, GO inheritance was only used to annotate the leaf

nodes and not the internal nodes of the network. The plot is

dominated by two peaks—one positive and one negative. The pos-

itive peak corresponds to the term ‘rhodopsin-like receptor activity’

and the negative one to ‘protein kinase activity’. Next we add

springs whose strengths are proportional to the Pearson correlation

coefficient between the mean expression profiles (across all time

points and experimental conditions) of each pair of terms. GO terms

whose mean expression responds over time and condition in a

similar fashion to each other will thus be drawn closer together

on the resulting map. This is shown in Figure 5 (lower panel)

where we see that the GO network has become distorted by

these extra forces. Disregarding terms which have a parent–child

relationship, the pair having the highest correlation are ‘carrier

activity’ and ‘cation transporter activity’ which, annotate identical

genes in this data set and therefore have a correlation of 1.0. This

pair of nodes is found close together at approximately (0.4,0.4) in

the lower panel. Other pairs of terms found close together in

the lower panel include ‘endopeptidase activity’ and ‘cation

channel activity’ at approximate coordinates (0.45,0.53) with cor-

relation 0.62. If one plots the inter-node distances from the lower

panel versus the correlation coefficients, it is found that there is a

Fig. 2. Yeast cell cycle data. The GO cellular component ontology of Figure 1 is shown (solid lines) with the mean expression of all genes annotated to each

node overlaid in the 3rd dimension (coloured landscape). Each panel shows expression data for a different time point in the cell cycle. Note that the height

and colour of the landscape in each panel has been scaled to maximise differences in mean expression between the nodes, and thus is not comparable

between panels.
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relationship (though weak, Pearson correlation �0.55) such that

pairs with higher correlations tend to have lower inter-node dis-

tances (data not shown). Of course, one does not expect a perfect

relationship since the visualisation is not merely optimising the

correlation springs, but also those of the GO network.

3.4 Reproducibility of the visualisation

Though the Newtonian dynamics of the spring algorithm are

deterministic, repeated layouts of the same input data may not

be identical due to the random initial configuration and existence

of local minima in the spring energy. We assessed the reproducib-

ility of the spring embedding algorithm for two different biological

networks: the top level of the GO biological process ontology (down

to 300 UniProt annotations) and part of the MIPS PPI network for

yeast (rooted at YAL003w and extending to a distance of 5 edges).

As expected, the reproducibility decreased with increasing scale

(see Table 1 in Supplementary Information), with the Procrustes

residual increasing from 10–15% at small scales to 25–30% at

scales equal to half the network size. The residuals for the PPI

network were somewhat higher than those for the GO network.

We attribute this to the higher connectivity of the PPI network

(mean connection degree 2.9 as compared to 2.4 for the GO net-

work). This increases network ‘frustration’, thereby multiplying the

number of similar local minima of the spring potential energy.

Comparison with random layouts shows that the spring-embedded

layouts achieve a much lower residual, around 15–30% of the ran-

dom value. In all cases the reproducibility of the real layouts was

much higher than random layouts.

Additionally, we compared the mean potential energy of the

springs in each layout to assess the similarity of the (possibly

local) minima found by the multiple realisations. For the GO

network the mean energy per spring was 2.50±0.010 while for

the PPI network it was 2.43 ± 0.003 (arbitrary units). The standard

errors demonstrate a low degree of variation in energy minima

across the multiple embeddings. The mean energies of the random

layouts were 799 ± 9.7 and 757 ± 5.0 respectively, several hundred

times larger than for the embedded layouts, again showing the

substantial improvement produced by the embedding algorithm.

In summary therefore, we find that while the layouts produced

by the spring embedding algorithm are not always identical,

there is a reasonable degree of reproducibility which is several

Fig. 3. The GO cellular component ontology network (solid lines) is shown (upper left) rooted at the term ‘cell’. Protein-protein interactions are added (upper

right) in red, where the line thickness is proportional to the number of interactions between each pair of GO terms. Only pairs with the largest 10% of interactions

are shown for clarity. The springs corresponding to the interactions are activated and the network re-visualised (lower left), resulting in a new landscape of mean

gene expression for the 28 min time point (lower right).
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times better than that for random layouts. Although it is difficult to

translate these layout reproducibility values into the reproducibility

of interpretation, experience with a number of different networks

indicates that the variation is not usually high enough to change the

overall inferences drawn from the visualisation.

4 DISCUSSION

The system developed here is motivated by our desire to combine

several bioinformatic information sources when visualising the

results of a gene expression microarray experiment. It is often

through combination of different experimental data that scientific

insight is generated and this is made easier if all relevant informa-

tion sources are synthesised in a single view. The representation of

the data as networks allows the simultaneous combination of many

different sources of information and the solution described is flex-

ible in that the influence of each information source can be varied by

the user. Typically this would involve the sequential ‘turning on’ of

forces for each set of data and observation of the dynamic response

of the spring network, as exemplified by Figure 3. Alternatively, one

could alternate back and forth between visualisations based on

different information sources in order to gauge the influence of

each one. The fusion of multiple data sources is augmented by

adding a third dimension displaying one key aspect of the data,

often the gene expression levels themselves. With the information

landscape technique, the display of this ‘special’ information is

influenced by the spring-embedded map; the height of the landscape

is a combination of the values of the ‘special’ data and the density of

nodes. We have shown that the system is capable of highlighting

known biological information (such as the high mean expression of

cell wall and septum proteins in Figure 2). The potential for identi-

fication of novel biology by combining different information

sources is exemplified by the GO / gene expression / PPI visualisation

of Figure 3. Nonetheless it should be stressed that such visualisa-

tions merely serve to generate hypotheses which must then be

confirmed by further statistical or experimental investigation.

Though we have illustrated the use of spingScape primarily with

examples from GO, we emphasise that this is not just another GO

browser. There already exist many tools for visualising the enrich-

ment of GO terms with differentially expressed genes (e.g. Zeeberg,

et al., 2003; Zhang, et al., 2004). In our case, GO simply provides

one particularly useful bioinformatic context to influence the visu-

alisation. For the display of biological networks in general, several

methods have been proposed (Enright and Ouzounis, 2001; Kim,

et al., 2001; Schroeder, et al., 2001; Han and Ju, 2003; Adai, et al.,
2004). However, none of these show how information sources can

be combined to investigate their different influences on the inter-

pretation. We have chosen to combine networks through a simple

weighted mean of similarity matrices, though more complex ideas

can be envisaged, such as making use of networks with different

Fig. 4. The top level of the GO molecular function ontology as visualised by the spring embedding algorithm. The ontology is rooted at the term ‘molecular

function’ (node 3) and extends to all terms with more than 300 UniProt annotations. Arrows showing the direction of GO relationships have been omitted for

clarity.
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edge types. For example, we have demonstrated our method with

undirected networks (e.g. GO was treated as undirected), but dir-

ected representations could also be considered. These correspond to

non-symmetric similarity matrices and when combined, could cause

effects such as the cancelling out of opposite-direction edges and the

reinforcement of same-direction edges.

Our spring embedding algorithm is designed to visualise net-

works with up to a few hundred nodes and edges. At the outset,

we realised that attempting to visualise larger networks would be

fruitless, since even for ‘aesthetically pleasing’ layouts, the display

space would become cluttered with nodes and edges. The time

complexity of the algorithm depends on the range of the repulsive

force, xmax. When this is large, most nodes repel each other and the

time required for each iteration is approximately quadratic in the

number of nodes, t / N2
n. When xmax is small, the iteration time

depends linearly on the number of edges in the network, t / Ne.

Since in a connected network Ne can vary between Nn� 1 and
1
2

NnðNn � 1Þ, in most practical applications, each iteration pro-

ceeds at quadratic speeds. When combined with the total number

of iterations, this produced an approximately cubic total time com-

plexity in our experiments. This rather strong scaling with the

number of nodes is not a disadvantage however, since we do not

plan to visualise very large networks for the reasons noted above.

Other algorithms such as LGL (Adai et al., 2004) and Interviewer

(Han and Ju, 2003) are specifically aimed at scalability, and are

more appropriate for straightforward layout of large graphs. In

practice, the examples presented here were all visualised in less

than 2 minutes on a 2.5GHz PC with 1GB RAM running MATLAB

7.0. In addition, we have found that further insight into the rela-

tionships within the data is obtained by observing the dynamics of

the algorithm, rather than merely viewing the final layout. For

example, the strength of a connection is perceived intuitively

from the acceleration of the connected nodes—a feature not expli-

citly visible in the final layout. Finally, few algorithms allow one

data source to receive a special focus as provided by the information

landscape. To our knowledge, this concept has only been used to

represent the clustering of nodes in the layout (Kim, et al., 2001),

rather than a combination of the node density and other information

of particular interest, as presented here. For display, the landscape is

evaluated on a grid, and its display scales with the grid size (not the

network size) with typical display times of �10s using the equip-

ment described above.

We have demonstrated springScape on a few examples, specif-

ically concentrating on networks derived from the Gene Ontology

since these are some of the most common annotation resources used

in the interpretation of microarray experiments. However, many

applications can be envisaged, such as combining gene regulatory

interactions from the literature with time-series correlations

between the expressed genes. This would highlight when existing

interactions are supported by the experimental data, and allow new

interactions to be hypothesised. Alternatively, the similarities

between expressions of a group of genes could be used to embed

a network where the nodes represent arrays. This would form a

map showing differences between treatment conditions, in a

similar fashion to that in which PCA is often used. However,

with the algorithm described here, further information linking

the arrays (perhaps clinical chemistry or tumour morphology

measurements) could be included in the display. As shown in

this paper, the Gene Ontology perhaps provides some of the

most interesting applications. For example, combining a GO net-

work with protein homology information, one could construct

maps similar to those presented here, but where the GO network

is distorted in a fashion specific to a given organism or group of

organisms.

5 CONCLUSIONS

In summary, the springScape system presented here allows the

results of microarray experiments to be viewed in their biological

context; in particular, several relevant bioinformatic data sources

may be combined to produce a visualisation which reflects the

biological question being addressed. This type of combined visu-

alisation is not present in currently available algorithms for the

display of such data, leaving the biologist struggling to see the

‘big picture’ and the overall meaning of the experimental results.

We hope that our system may be used in the future to help generate

clarity and insight from the synthesis of microarray data with mul-

tiple other sources of biological information.

Fig. 5. Human dendritic cell data. upper panel: the GO molecular function

network of Figure 4 (solid lines) overlaid with a landscape showing the mean

expression (log ratio) of all genes annotated to each term. The landscape

corresponds to the LPS treatment at 18 hours. In the lower panel, springs

corresponding to the correlations between the expression profiles of each

node are turned on and the network and landscape are revisualised.
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ABSTRACT

Motivation: Gene expression profiling experiments in cell lines

and animal models characterized by specific genetic or molecular

perturbations have yielded sets of genes annotated by the per-

turbation. These gene sets can serve as a reference base for inter-

rogating other expression datasets. For example, a new dataset in

which a specific pathway gene set appears to be enriched, in terms

ofmultiplegenes in thatsetevidencingexpressionchanges,can thenbe

annotated by that reference pathway. We introduce in this paper a

formal statistical method to measure the enrichment of each sample

in an expression dataset. This allows us to assay the natural variation

of pathway activity in observed gene expression data sets from

clinical cancer and other studies.

Results: Validation of the method and illustrations of biological

insights gleaned are demonstrated on cell line data, mouse models,

and cancer-related datasets. Using oncogenic pathway signatures,

we show that gene sets built from a model system are indeed enriched

in the model system. We employ ASSESS for the use of molecular

classification by pathways. This provides an accurate classifier that

can be interpreted at the level of pathways instead of individual

genes. Finally, ASSESS can be used for cross-platform expression

models where data on the same type of cancer are integrated over

different platforms into a space of enrichment scores.

Availability: Versions are available in Octave and Java (with a

graphical user interface). Software can be downloaded at http://

people.genome.duke.edu/assess

Contact: sayan@stat.duke.edu

1 INTRODUCTION

Gene expression profiling experiments have been conducted on a

wide variety of cell lines and animal models with the goal of

characterizing genes sets whose expression patterns characterize

specific genetic or molecular perturbations. These gene sets

contain candidate players in pathways, or sub-pathways, that are

‘‘annotated’’ by the experimental perturbation. The fundamental

idea in pathway based analysis approaches (Huang et al., 2003;

Black et al., 2003; Mootha et al., 2003; Sweet-Cordero et al.,
2005; Alvarez et al., 2005; Febbo et al., 2005; Subramanian

et al., 2005) is that such a gene set serves as a reference base

for interrogating other expression data sets. A new data set in

which a specific pathway gene set appears to be enriched, in

terms of multiple genes in that set evidencing expression changes

can then be annotated by that reference pathway. An analogy can be

made here with sequence annotation in a BLAST search: sets of

experimentally derived pathways serve as annotation reference

sets for future experiments in the same way that annotated

sequences serve as references in a sequence search. Statistical

methods are needed and have been developed (Subramanian

et al., 2005; Barry et al., 2005; Kim and Volsky, 2005; Tomfohr

et al., 2005) to define computational tools for such expression-based

pathway annotation. Two of these methods, GSEA (Subramanian

et al., 2005) and SAFE (Barry et al., 2005), use nonparametric

statistics to provide formal statistical evaluation, and confidence

assessments, for annotation of an expression data set by measuring

the overlap of significantly perturbed genes with those in each

pathway in a database of pathways. Gene Set Enrichment Analysis

(GSEA) (Subramanian et al., 2005) has been successfully applied in

many basic science and clinical studies (Mootha et al., 2003; Sweet-

Cordero et al., 2005; Alvarez et al., 2005; Febbo et al., 2005;

Subramanian et al., 2005; Bild et al., 2006), including pathway

deregulation in cancer genomics. A fundamental shortcoming of

GSEA and other methods (Barry et al., 2005; Kim and Volsky,

2005; Tomfohr et al., 2005) is that they do not characterize the

variation in enrichment over individual samples in the data set.

If the enrichment of each sample in an expression data set can

be annotated, then one can assay the natural variation of pathway

activity in observed gene expression data sets from clinical cancer

and other studies. The ability to assay pathway variation in samples

allows the implementation of a general methodology to dissect

tumor samples in terms of oncogenic pathways. The logic behind

this methodology is to develop gene expression ‘‘signatures’’ of
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oncogenic pathways from model systems and then use these ‘‘sig-

natures’’ to annotate human tumors in terms of the deregulation

of oncogenic pathways (Bild et al., 2006).

In this paper we introduce a statistical method that allows us to

assay pathway variation, Analysis of Sample Set Enrichment Scores

(ASSESS). Given gene sets defined by prior biological knowledge

or genes co-expressed in an experiment with a specific genetic or

molecular perturbation, and a data set of expression profiles from

samples belonging to two classes, ASSESS provides: a measure

of the enrichment of each gene set in each sample and a confidence

assessment. This extends the methodology developed in GSEA

and SAFE to annotate individual samples.

A family of methods for pathway annotation was developed

and used to measure pathway deregulation in breast cancer and

lung cancer (Huang et al., 2003; Black et al., 2003; Bild et al.,
2006). The approach involved: (a) building statistical models of

pathway deregulation from cell lines where recombinant adenoviruses

were used to express oncogenic activities corresponding to pathway

deregulation, (b) applying the models to each sample in a data set of

tumors and estimating the probability of deregulation of the pathways.

The main drawback of this methodology is that cell line perturbation

data as well as tumor data are required for the analysis. For ASSESS,

only the list of genes characterizing the pathway deregulation is

required, the entire model and cell line data is not needed. This

provides a great advantage when the gene sets are determined by

literature review or a non-expression based assay, such as immuno-

histochemical, for which building an accurate model subsequently

applicable to expression data is a very difficult challenge.

2 RESULTS

2.1. Analysis of sample set enrichment scores

ASSESS is an annotation methodology that takes as inputs:

(1) Genome-wide expression profiles consisting of p genes and

n samples with each sample corresponding to one of two

classes, C1‚ C2. The expression of the j-th gene in the i-th
sample is xj

i;

(2) A database of m gene setsG ¼ fg1‚ . . .gmgwhere each gene set

gk is a list of genes (a subset of the p genes in the data set)

belonging to a pathwayor other functional or structural category;

(3) A ranking procedure and correlation statistic that takes

the expression data set and labels as inputs and produces cor-

relation statistics for each sample that reflects the correlation

of the p genes in that sample with respect to the the distribution

of expression in the two classes. The correlation statistics for

the i-th sample would be ci ¼ fci
1‚ . . .‚ci

pg where ci
j is calcu-

lated by any likelihood ratio statistic for measuring the corre-

lation of a sample to one class rather than the other:

ci
j ¼ log

Pðxi
j 2 C1 j xi

j‚dataÞ
Pðxi

j 2 C2 j xi
j‚dataÞ

 !
:

An example of a parametric and nonparametric correlation

statistic is described in detail in the following sections;

and produces as outputs:

(1) An enrichment score for each sample in the data set

with respect to each gene set in the database. ESk
i corresponds

to the enrichment of the i-th sample with respect to the k-th

gene set;

(2) A measure of confidence for each enrichment score is

given by a p-value with multiplicity taken into account by

Family-wise error rate (FWER) p-values and False Discovery

rate (FDR) q-values.

Given the correlation statistics for the i-th sample,

ci ¼ fci
1‚ . . .‚ci

pg, and a gene set gk, we construct the following

discrete random walk over the indices of the rank-ordered correla-

tion statistic

nð‘Þ ¼
P‘

j¼1 j cðjÞ j tIðgðjÞ 2 gkÞPp
j¼1 j cðjÞ j tIðgðjÞ 2 gkÞ

�
P‘

j¼1 IðgðjÞ=2gkÞ
p � j gk j

‚ ð1Þ

where cðjÞ is the rank-ordered correlation statistic, t is a parameter

(in general t ¼ 1), gk is the k-th gene set, IðgðjÞ 2 gkÞ is the indi-

cator function on whether the j-th gene (the gene corresponding to

the j-th ranked correlation statistic) is in gene set gk‚ j gk j is the

number of genes in the k-th gene set, and p is the number of genes in

the data set. The enrichment statistic for the i-th sample with respect

to the k-th gene set is the maximum deviation of the random walk

from zero

ESk
i ¼ n½arg max

‘¼1‚...‚ p
j nð‘Þ j �: ð2Þ

The random walk is a tied-down Brownian bridge process and the

deviation from zero is very closely related to the classical

Kolmogorov-Smirnov statistic (Feller, 1971). There are simpler

ways to define the enrichment score such as taking the average

rank of the genes in the gene set from the rank-ordered list of

genes. However, using a random walk is advantageous because it

allows one to see how the genes in the set are distributed in the rank-

ordered list. The random walk could alternatively be solved by

ranking j cðjÞ j rather than cðjÞ. While in certain situations a more

extreme enrichment score may be sacrificed, this ranking will not

allow for the access to the additional information of which genes in

the set are up or down regulated. Therefore we choose to calculate

the ES by a random walk using values ranked by cðjÞ, and suggest

gene sets be constructed to capture genes correlated with either over

expression or under expression in a class but not both.

To measure significance we assume under the null hypothesis that

the labels are exchangeable and therefore we can compute the null

distribution by permuting labels, ranking the genes according

to the recomputed statistic cpðjÞ, and computing the ‘‘random’’

enrichment statistic ESk
i ðpÞ. This is done over many label permu-

tations, p ¼ 1‚ . . .‚P. The p-value is computed by comparing the

enrichment score to the empirical distribution generated from

fESk
i ðpÞg

P
p¼1. Correction for multiple hypothesis testing is pre-

formed in the same manner as in GSEA and is addressed via

FWER p-values or FDR q-values (see (Subramanian et al., 2005)

for details). Overlapping gene sets do not influence the calculation

of q-values.

The key technical innovation in extending methods such as GSEA

or SAFE to provide enrichment scores for individual samples

is producing a correlation statistic and subsequent rankings that

model how representative each gene for a given sample is with

respect to the two classes. The ranking should reflect the natural

variation of how each sample is correlated with class labels. We

introduce two correlation statistics which reflect this variation: (1)
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based on a simple parametric normal model, (2) based on a non-

parametric random walk model. Both methods preform well, as

likely would other well-defined likelihood ratios such as a binary

regression model. We choose to use the nonparametric model on the

data in this paper as this method is a novel means for calculating

class membership likelihoods. However, the parametric method as

well as other methods not discussed here give comparable results.

2.1.1 Parametric model The parametric model assumes that the

expression of a given gene can be modeled by a mixture of two

normal distributions corresponding to the two classes. The mean

and standard deviations are computed from the data

m̂mj1 ¼
1

n1

X
i2C1

xi
j‚ m̂mj2 ¼

1

n2

X
i2C2

xi
j‚

ŝs2
j1 ¼

1

n1

X
i2C1

ðxi
j � m̂mj1Þ2‚ ŝs2

j2 ¼
1

n2

X
i2C2

ðxi
j � m̂mj2Þ2;

where n1 and n2 are the number of samples in class 1 and 2. The

expression of the j-th gene is modeled as Nðm̂mj1‚ ŝs j1Þ or Nðm̂mj2‚ ŝs j2Þ
depending on whether the sample belongs to class 1 or 2. We define

the class membership likelihood of expression xi
j from the models

of classes 1 and 2 as pj1 and pj2 respectively.

pj1 ¼ Pðj � xi
j j j � Nðm̂mj1‚ ŝs j1ÞÞ‚ if xi

j � m̂mj1‚

pj1 ¼ Pðj < xi
j j j � Nðm̂m j1‚ ŝs j1ÞÞ‚ if xi

j < m̂mj1‚

pj2 ¼ Pðj � xi
j j j � Nðm̂mj2‚ ŝs j2ÞÞ‚ if xi

j � m̂mj2‚

pj2 ¼ Pðj < xi
j j j � Nðm̂m j2‚ ŝs j2ÞÞ‚ if xi

j < m̂mj2:

We use the distribution function rather than the density because

there is a very natural directionality assumption in this model in

that if the Gaussians are well separated then the deeper inside the

respective class a point x resides the higher should be the member-

ship probability. We then use the log-likelihood ratio as the cor-

relation statistic. Given expression, xi
j, of the j-th gene of the i-th

sample the correlation statistic is computed as:

ci
j ¼ log

� pj1

pj2

�
‚ if m̂mj1 � m̂mj2

ci
j ¼ log

� pj2

pj1

�
‚ otherwise:

Thus, genes are ranked based upon the differential probability of

their membership in either class and because of this, genes are

ranked as a continuum from those with the greatest probability

of belonging to class 1 ranked at the top and genes with the greatest

probability of belonging to class 2 near the bottom. As most genes

will have limited differential expression between the two classes,

these genes will have similar probabilities of belonging to either

group and the log-likelihood ratio will be near zero.

2.1.2 Nonparametric model The assumption of normality in the

parametric model is often inappropriate for expression data. For this

reason, a nonparametric model to compute class membership like-

lihoods is used in most applications. The class membership likeli-

hoods are computed based upon absorption probabilities of a

Brownian motion (random walk) (see Figure 1 for an illustration

of the model).

We first estimate the densities of the j-th gene for the two classes,

p̂pj1ðxÞ and p̂pj2ðxÞ, using a Parzen estimator (Vapnik, 1998) with a

Gaussian kernel:

p̂pj1ðxÞ ¼ 1

n1sj1

ffiffiffiffi
2p
p

X
i2C1

e� j x
i
j�x j 2/2s2

j1 ‚

p̂pj2ðxÞ ¼ 1

n2sj2

ffiffiffiffi
2p
p

X
i2C2

e� j x
i
j�x j 2/2s2

j2 ‚

where n1 and n2 are the number of samples in C1 and C2 and

bandwidths sj1 and sj2 are set to the average distance between

points of the j-th gene in C1 and C2 respectively. We define two

points, ei
j1 and ei

j2, as the left or right extremes of the random walk

starting at xi
j.

ei
j1 ¼ min

i
fxi

jg if xi
j < m̂mj1‚ ei

j1 ¼ max
i
fxi

jg if xi
j � m̂mj1

ei
j2 ¼ min

i
fxi

jg if xi
j < m̂mj2‚ ei

j2 ¼ max
i
fxi

jg if xi
j � m̂mj2:

The membership likelihood of expression xi
j for class 1and 2 is

given by the absorption probability at the points ei
j1and ei

j2 for a

Brownian motion starting at xi
j with initial conditions distributed

as p̂pj1ðxÞ and p̂pj2ðxÞ.
We again use the log-likelihood ratio as the correlation statistic.

Given expression, xi
j, of the j-th gene of the i-th sample the cor-

relation statistic is computed as:

ci
j ¼ log

Pðabsorption at ei
j1 starting at xi

j j p̂pj1Þ
Pðabsorption at ei

j2 starting at xi
j j p̂pj2Þ

 !
: ð3Þ

The absorption probabilities can be computed as the solution of the

Dirichlet problem (Durrett, 1996) which for the Parzen estimators

results in a weighted sum of error functions and exponentials (see

methods section for the exact form and derivation). So the correla-

tion statistics can be computed efficiently.

2.2. Validation on Model Systems

The objective of ASSESS is to annotate each sample in an expres-

sion data set in terms of a priori defined gene sets often constructed
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Fig. 1. The two classes’ densities are displayed by the red and blue curves,

pr‚pb. Assume we have a diffusion process (random walk) starting at x. We

compute the probability of absorption at the point b if the initial conditions are

distributed as pb, P ðabsorption at b starting at x j pbÞ. We also compute the

probability of absorption at the point a if the initial conditions are

distributed as pr , P ðabsorption at a starting at x j prÞ. These two probabilities

serve as a measure that an individual sample belongs to one of the two

distributions.
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from model systems. In this section we validate the method by

demonstrating that gene sets built from model systems or with

known genetic perturbations are indeed enriched in gene expression

data from the same model systems or related systems.

2.2.1 Mouse models In (Majumder et al., 2004) transgenic mice

were generated that developed a highly penetrant prostatic intraep-

ithelial neoplasia (PIN) phenotype and expressed a constitutively

active AKT1 gene in the ventral prostate of the mouse. This

AKT-induced PIN phenotype can be reversed with treatment of

RAD001, a mTOR inhibitor. The transgenic mice were split into

two groups, with one group receiving RAD001 and the other a

placebo. Tissue was taken from the prostate of both groups and

DNA microarray analysis was preformed using the Affymetrix

Murine U430A microarray. This resulted in two sets of expression

data: samples treated with RAD001 (n ¼ 19) and placebo (n ¼ 19).

These data sets were split into a training and test set. The training set

consisted of the first 10 samples treated with RAD001 and the first

10 samples treated with the placebo. The test set was comprised of

the complimentary samples. The training set was used to construct

an AKT gene set using a logistic regression model (see methods

section for details).

We applied ASSESS to the test set using the AKT gene set

derived from the training data. The enrichment scores of the sam-

ples treated with RAD001 strongly indicate that genes in the AKT

gene set were under expressed compared to the samples given

placebo which showed enrichment in the gene set (see Figure 2).

All samples were significantly enriched (p-value < 0:001).

2.2.2 Cell culture models In (Bild et al., 2006) human primary

mammary epithelial cell cultures (HMECs) were used to develop a

series of pathway signatures which were then used to assay pathway

disregulation in non-small cell lung carcinoma (NSCLC). We use

this data set to validate our method.

The data was generated by using recombinant adenoviruses to

express specific oncogenes in an otherwise quiescent cell, thereby

isolating the subsequent events as defined by the activation/

deregulation of that single pathway. The cells were infected with

adenovirus expressing either human c-Myc, activated H-Ras,

human c-Src, human E2F3, or activated b-cantenin. RNA from

these multiple independent infections, as well as from normal

cells (with green florescent protein, GFP), was collected for

DNA microarray analysis using the Affymetrix Human Genome

U133 Plus 2.0 Array.

Given the independent replicates from the six conditions, the five

perturbed pathways and the normal GFP cells, we split each con-

dition into a train and test set. Thus given expression data from:

10 Myc, 10 Ras, 7 Src, 10 E2F3, 9 b-catenin, and 10 normal/GFP

samples we construct five training sets with the first half of the

samples from each experimental data set along with the first 5 nor-

mal samples. Similarly, five independent test sets were constructed

using the complimentary samples (the second half of samples in the

six conditions). The training sets were used to construct gene sets

for each of the five pathways, Myc, Ras, Src, E2F3, and b-catenin

using a logistic regression model (see methods section for details).

ASSESS was applied to the five test sets to calculate enrichment

with respect to the five gene sets computed from the training data.

2.2.3 Literature based models The approach developed in

(Huang et al., 2003; Black et al., 2003; Bild et al., 2006) of building

statistical models of pathway deregulation in controlled experi-

ments and then applying these to new data sets could have been

used in the previous two examples. However, this approach requires

that the cell line perturbation data as well as new data and that the

data are on comparable platforms. This approach cannot be used

for gene sets derived from literature whereas ASSESS is still

applicable.

In (Subramanian et al., 2005) a data set generated from mRNA

expression from lymphoblastoid cell lines derived from 15 males

and 17 females served as a validation set. We then sought to address

the following: which gene sets were over expressed in males and

which in females. Gene sets defined by cytogenetic bands and gene

sets defined by pathway or functional properties were examined. As

expected for males, chromosome Y as well as its two bands (Yp11

and Yq11) and a gene set corresponding to genes enriched in male

reproductive tissue (testis) were overexpressed. For females two

gene sets of genes that escape X-inactivation were overexpressed

in addition to a gene set corresponding to genes enriched in female

reproductive tissue (uterus). Genes on the X-chromosome would

–1 –0.8 –0.6 –0.4 –0.2 0 0.2 0.4 0.6 0.8 1
0

1
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Enrichment Score

treated

placebo

Fig. 2. A histogram of enrichment scores for the 9 treated and 9 untreated

mouse prostate samples in the test data with respect to the AKT pathway gene

set computed from the training data.

Table 1. Average enrichment scores (±sd) for the comparison of normal

(GFP cells to infected cells for the gene set built form the respective infected

cell type

Experiment ES for GFP cells ES for infected cells

BCAT �0.87(±0.031) 0.88(±0.042)

E2F3 �0.97(±0.0069) �0.98(±0.0061)

MYC �0.89(±0.018) �0.91(±0.067)

RAS �0.96(±0.012) �0.91(±0.021)

SRC �0.90(±0.016) �0.91(±0.022)
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not be expected to be overexpressed due to dosage compensation by

X-inactivation.

The enrichment of these seven gene sets with respect to the male

and female samples in the lymphoblastoid cell lines is displayed

in Figure 3. The male samples are clearly enriched with respect to:

Y, Yq11, Yp11, and testis. The female samples are clearly

enriched with respect to: the two escape of X-inactivation gene

sets (X-inactivation and Willard X-inactivation) and the uterus

gene set (labeled in the figure as Reproduction Genes). We used

a Myc gene set as a control in that it is not expected to be enriched

with respect to the male/female distinction and indeed this is the

case.

We further illustrate the procedure by plotting the random

walk (Equation (1)) for a male and female sample with respect

to one of the escape from X-inactivation gene sets and a Myc

gene set (see Figure 4). For a female sample with respect to this

gene set, the random walk increases very rapidly initially indicating

that genes escaping X-inactivation appear at the top of the list of

genes ordered by correlation with the female phenotype. This results

in a very positive enrichment score. For the male sample the random

walk is basically a mirror image of the female case indicating that

genes escaping X-inactivation appear at the end of a list of genes

ordered by correlation with the male phenotype. This results in a

very negative enrichment score. The third case is for a female

sample with respect to the Myc gene set. In this case the genes

in the gene set are randomly spread over the ranked list and so the

enrichment score never deviates far from zero.

2.3 Classification and clustering in the

space of pathways

A very natural consequence of obtaining enrichment scores for

each sample in the data set is that classification and clustering

can now be performed in the space of gene sets rather than indi-

vidual genes. Being able to interpret classification models using

samples
5 10 15 20 25 30

chrY

chrYp11

chrYq11

testis genes

X–inactivation

Willard X–inact

Reproduction Genes

Myc

Fig. 3. Enrichment scores for the comparison of males to females in the 8

gene sets. The male samples (1� 15) show enrichment in the Y, Yq11, Yp11,

and testis gene sets. The female samples (16� 32) show enrichment in the two

escape of X-inactivation gene sets and the uterus gene set. The Myc pathway

shows no differential expression between males and females, as expected.
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Fig. 4. Random walks. (a) The random walk for a female sample with respect

to one of the escape from X-inactivation gene sets. The hatches of the top line

indicate where the genes in the gene set fall with respect to the rank-ordering.

(b) The random walk for a male sample with respect to one of the escape from

X-inactivation gene sets. (c) The random walk for female sample with respect

to a Myc gene set. This gene set is not significantly enriched and so the hatches

appear randomly dispersed with respect to the rank-ordering.
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pathways offers an alternative and possibly more intuitive perspec-

tive than models using individual genes. Another aspect of building

models in the space of pathways that was emphasized in (Bild et al.,
2006) is knowing which pathways are disregulated with respect to

outcome and how this can help suggest targeted therapeutics.

2.3.1 Clustering In (Brunet et al., 2004) a matrix factoriza-

tion method (NMF) was applied to an expression data set with

acute myelogenous leukemia (AML) and acute lymphoblastic

leukemia (ALL) samples (Golub et al., 1999). The matrix

factorization allowed the clustering of the samples into subsets.

A parameter in this clustering method is the number of subsets

k. For this data set results with k ¼ 2‚3 were computed. For the

two cases the clusters comprised of fð25 ALLÞ‚ ð11 AML‚2 ALLÞg
and fð8 ALL-TÞ‚ð17 ALL-BÞ‚ð11 AML‚2 ALL-BÞg, where ALL-T

and ALL-B are two subtypes of ALL. We applied ASSESS to this

leukemia data set using a database of 523 gene sets (Subramanian

et al. 2005). We then applied NMF to this space of enrichment

scores and obtained identical results. The only difference is accord-

ing to the measure of confidence developed in (Brunet et al., 2004),

as the clustering obtained from the enrichment space had greater

confidence than that from the raw expression data. The result of the

clustering and the factors are displayed in Figure 5.

2.3.2 Classification We examined six gene expression data sets

for which single gene classification models have been built: (a)

Gender – male vs. female (Subramanian et al., 2005), (b) cDNA

Lung cancer – squamous vs. adenocarcinoma (Garber et al., 2001),

(c) oligonucleotide Lung cancer – squamous vs. adenocarcinoma

(Potti et al., 2006), (d) Medulloblastoma – survival vs. failure

(Pomeroy et al., 2002), (e) Prostate cancer – recurrence vs. nonre-

currence (Glinsky et al., 2004), and (f) Leukemia – AML vs. ALL

(Golub et al., 1999).

We applied the classification using enrichment scores procedure

outlined in the methods section to compute classification accuracy

on these six data sets (see Table 2). For all the data sets except

for the Leukemia data set the leave-one-out method was used

(Algorithm 1). For the Leukemia data set the train-test procedure

was used (Algorithm 2) with the train-test split outlined in (Golub

et al., 1999). The classification accuracy was comparable or better

than that for single gene classifiers for all the data sets except for the

Leukemia data.

The pathways associated with recurrent prostate cancer tumors

supports ASSESS’s ability to both accurately predict outcome as

well as provide biological insight. Both AKT and PTEN gene sets

were found to have increased coordinate expression in samples of

recurrent prostate cancer. PTEN loss is one of the most common

genetic alterations seen in advanced prostate cancer resulting in

activation of the PI3K-AKT pathway. Activation of this pathway

is known to occur at a greater frequency in advanced prostate cancer

and has prognostic significance. A ‘‘TERT-up’’ gene set was simi-

larly found to be associated with recurrent prostate cancer. An

essential requirement for tumor progression is avoidance of cellular

senescence, telomerase restores chromosomal telomeres and is

associated with the development of prostate cancer. Finally, another

interesting observation is the presence of the ‘‘DNA damage sig-

naling’’ and ‘‘Cell cycle checkpoint’’ pathways both representing

common cellular processes disregulated in aggressive cancer.

2.4 Cross-platform expression models

DNA microarray studies have been carried out on a variety

of platforms for the same case-control experiment, for example

both cDNA microarrays and oligonucleotide microarrays are pop-

ular in cancer genomics. The integration of data across platforms is

appealing for a variety of reasons: increasing the sample size of the

data, allowing for interstudy validation, mitigating platform based

biases, and mitigating study based biases.

Building a model from raw expression data from one platform

and applying the model to data from another platform directly will

not work since the expression data from the two platforms

have different distributions. One approach to normalize between

the platforms is to use median rank scores and quantile discretiza-

tion to map the data to a common space and then build a classi-

fication model in this space (Warnat et al., 2005).
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Fig. 5. The top and left figure are the left and right matrix factors for the

matrix of enrichment scores in the Leukemia data with k ¼ 3. The red line is a

plot of the first metapathway over the data and this metapathway selects for

the ALL-T samples. The green line is the second metapathway and it selects

for the ALL-B samples. The blue line is a plot of the third metapathway which

selects for the AML samples.

Table 2. Classification accuracy for six data sets building classification

models in the space of enrichment scores

Classes Accuracy

Gender: males vs. Females 94%

Lung Cancer(cDNA): Adeno vs. Squamous 91%

Lung Cancer(oglio): Adeno vs. Squamous 84%

Medulloblastoma: survival vs. failure 72%

Prostate: recurrent vs. nonrecurrent 73%

Leukemia: ALL vs. AML 85%
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We advocate an alternative approach of applying ASSESS to

expression data to map the data into the space of enrichment scores

for pathways and then building models in this space. Methods such

as median rank scores are no longer needed as enrichment scores

between platforms are numerically comparable. There are several

advantages to this approach: (1) the need to map genes using

UniGene ids is avoided; (2) the problem of multiple probe mappings

between platforms is avoided; (3) gene sets defined separately

by probes specific to each platform can be used; (4) the enrichment

statistic is much more robust than the rank of a single gene so

the loss of genes between platforms is mitigated; (5) interpret-

ing results on the level of pathways instead of single genes is

appealing.

We first applied this approach to two prostate cancer studies

(Welsh et al., 2001; Dhanasekaran et al., 2001). The two platforms

for the studies were cDNA microarrays (Dhanasekaran et al., 2001)

and Affymetrix oligonucleotide microarrays (Welsh et al., 2001).

The cDNA data set contained 53 samples of which 34 were

tumors and 19 were normal. The oligo data set contained 33 samples

of which 24 were tumors and 9 were normal. The catalog of human

functional gene sets comprised of 433 sets annotated for both

platforms (Subramanian et al., 2005) was used as the gene set.

The error rate for using the cDNA and oligo data sets as train-

test sets respectively is reported in Table 3, as is the error rate

for a leave-one-out procedure using all the cDNA and oligo samples

(see methods section for details on both test-train and leave-one-

out classification using gene sets). We compare these results with

the leave-one-out error computed on the individual data sets (see

Table 3).

We next applied this approach to two lung cancer studies (Garber

et al., 2001; Potti et al., 2006). The two studies involved the same

platforms as the prostate example. The cDNA data set contained

55 samples of which 38 were adenocarcinomas and 17 were

squamous cell lung carcinomas (Garber et al., 2001). The oligo

data set contained 93 samples of which 45 were adenocarcinomas

and 48 were squamous cell lung carcinomas (Potti et al., 2006). The

same catalog of gene sets as used in the prostate example was used.

The error rates for the cross-platform predictions as well as predic-

tions within the individual data sets are summarized in Table 3.

3 METHODS

3.1 Gene set construction

Given an expression data set with two class labels, we use a linear

logistic regression model with regularization or shrinkage (Hastie et al.,

2000) to construct gene sets. We define the expression data as a matrix

xi
j with i ¼ 1‚ . . .‚n (the number of samples) and j ¼ 1‚ . . .‚p (the number

of genes), the i-th sample is designated as xi, and the class labels as

y 2 f � 1‚1g. The logistic regression model with regularization involves

solving the following optimization problem

arg min
w‚ b

1

n

Xn

i¼1

logð1þ e�ðyiðw · xiþbÞÞÞ þ lkwk2�‚
"

where l is a model parameter that needs to be set.

Solving the above optimization problem results in a vector ŵw and the

absolute magnitude of the elements of the vector correspond to the relevance

of a gene or feature. For the HMEC data sets and the AKT data set, genes

corresponding to 50 elements of ŵw most correlated with the perturbation

phenotype were used to construct the gene sets. In both algorithms 1 and

2 genes corresponding to the top and bottom 50 elements of ŵw were used.

3.2 Classification and gene set selection

Classification using enrichment scores was applied in two settings: a train-

test setting and a leave-one-out cross-validation setting. The leave-one-out

setting was used for all the data sets except the leukemia data set for which

we used the test-train setting. The test-train setting is a simple generalization

of the leave-one-out setting.

3.2.1 Leave-one-out setting Given data set xi
j of gene expression

for j ¼ 1‚ . . .‚p genes and i ¼ 1‚ . . .‚n samples where the i-th column

of the matrix X correspond to the i-th sample, labels ðyiÞ
n
i¼1, and gene

sets G ¼ fg1‚ . . . ‚gmg the leave-one-out method outlined in Algorithm 1

provides an unbiased estimate of the error rate (technically leave-one-out

estimators are almost unbiased (Vapnik, 1998)).

Table 3. Classification accuracy for cross-platform models for the prostate

and lung cancer data sets

cDNA

LOO

oligo

LOO

train-test combined

LOO

prostate T/N 85.7% 76.5% (cDNA-oligo) 73.5% 80.7%

lung A/S 88.0% 90.9% (oligo-cDNA) 78.2% 88.5%

Algorithm 1: Leave-one-out procedure for pathway based

classification.

input: training data and gene sets

return: error rate

for i ¼ 1 to n do

split the data into xi (the i-th data point) and Xni (the data with

the i-th point removed);

compute Tr ¼ ESk
i for Xni (this is the enrichment of the m gene

sets on the n � 1 data in Xni);
compute Test¼ESi

k for xi (this is the enrichment of the m gene

sets on xi, the label i-th point is not used in the estimation of

the enrichment score by leaving this point out of the Parzen

estimator);

use Tr to build logistic regression with variable selection Mi;

apply Mi to Test to obtain prediction ŷyi;

if y : 6¼ ŷyi then error rate ¼ error rate + 1;

return error rate

Algorithm 2: Test error extimate for pathway based classification.

input: training data, test data, and gene sets

return: error rate

compute Tr ¼ ESk
i for X (this is the enrichment of the m gene sets

on the training data X);

use Tr to build logistic regression with variable selection

model M;

for j ¼ 1 to n
0

do

compute Test ¼ ESk
j for zj (this is the enrichment of the m gene

sets on the j-th test sample, use only the training data X to

compute the Parzen estimator);

apply M to Test to obtain prediction t̂tj;

if tj 6¼ t̂tj then error rate ¼ error rate + 1;

return error rate
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3.2.2 Train-test setting Given a training set of X ¼ ðxiÞni¼1 expression

profiles and labels ðyiÞ
n
i¼1, a test set of Z ¼ ðxjÞn

0

j¼1 expression profiles with

labels ðtjÞn
0

j¼1, and gene sets G ¼ fg1‚ . . .‚gmg the procedure outlined in

Algorithm 2 provides an unbiased error estimate on the test set.

3.3 Computation of absorption probabilities

To compute the correlation coefficients in the nonparametric model we

need to compute the probability that the expression of the j-th gene

in the i-th sample is representative of class 1 or class 2, Pðxi
j 2 C1Þ and

Pðxi
j 2 C2Þ for all samples i ¼ 1‚ . . .‚n and genes j ¼ 1‚ . . .‚p. We first scale

the expression data for each gene to ½0‚1�,

x̂xi
j ¼

xi
j � miniðxi

jÞ
maxiðxi

jÞ � miniðxi
jÞ
:

The class membership probabilities are the probabilities of absorption to

the left or right extreme, which are f0‚1g for the scaled data, depending

on whether x̂xj
i is greater or less than the scaled class means (see Table 4).

This simply reflects the directionality assumption of our model.

Let

uðx̂xÞ ¼ Pðabsorption at 0 starting at x̂xÞ‚
vðx̂xÞ ¼ Pðabsorption at 1 starting at x̂xÞ‚

and let pðx̂xÞ be supported on ½0‚1�, then

Pðabsorption at 0 starting at x̂x j pðx̂xÞÞ ¼
Z x̂x

0

uðx̂xÞ pðx̂xÞ dx̂x‚

Pðabsorption at 1 starting at x̂x j pðx̂xÞÞ ¼
Z 1

x̂x

vðx̂xÞ pðx̂xÞ dx̂x:

The absorption probabilities of a Brownian motion at the end points of a line

segment can be computed by solving the heat equation with appropriate

boundary conditions, the Dirichlet problem (Durrett, 1996). In the above

case we solve for

d2uðx̂xÞ
dx̂x2

¼ 0 s:t: uð0Þ ¼ 0‚ uð1Þ ¼ 1

d2vðx̂xÞ
dx̂x2

¼ 0 s:t: avð0Þ ¼ 1‚ vð1Þ ¼ 0:

This results in the solutions

uðx̂xÞ ¼ x̂x‚ vðx̂xÞ ¼ 1 � x̂x:

Given the Parzen estimates of the densities for the two classes

p̂pj1ðx̂xÞ ¼
1

n1sj1

ffiffiffiffiffiffi
2p
p

X
i2C1

e
� j x̂xi

j�x̂x j 2/2s2
j1 ‚

p̂pj2ðx̂xÞ ¼
1

n2sj2

ffiffiffiffiffiffi
2p
p

X
i2C2

e
� j x̂xi

j�x̂x j 2/2s2
j2 ‚

we can compute the absorption probabilities as

Pðabsorption at 0 starting at x̂x j p̂pjcÞ ¼
Z x̂x

0

s p̂pjcðsÞ ds

Pðabsorption at 1 starting at x̂x j p̂pjcÞ ¼
Z 1

x̂x

ð1 � sÞ p̂pjcðsÞ ds

where c denotes the classes f1‚2g. Solving the integrals results in a weighted

sum of error functions and exponentials.

4 DISCUSSION

In this paper we introduce a formal statistical method to measure

the enrichment of each sample in an expression data set with respect

to a priori defined gene sets. This allows us to assay the natural

variation of pathway activity in observed gene expression data

sets. It is a natural extension of methods that measure the enrich-

ment of an entire data set with respect to a priori defined gene sets

(Subramanian et al., 2005; Barry et al., 2005; Kim and Volsky,

2005; Tomfohr et al., 2005).

The method was validated on a variety of model systems:

oncogenic cell lines, mouse models, and known gender differences

in expression. The utility of the method was demonstrated by

clustering and building classification models in the space of path-

ways or gene sets. These were in general as accurate as methods

applied in the space of genes but more interpretable and robust. This

robustness was illustrated by the ability to build models between

different expression based technologies— cross-platform models.

This is hard to do in the single gene setting.

A variety of open questions regarding the pathway paradigm

and our implementation of it remain. Some of these questions

are technical and some are fundamental with respect to both sta-

tistical analysis and molecular biology.

We first discuss the technical issues:

� Enrichment statistic: We use a maximum deviation statistic

to compute our enrichment score. The theory behind BLAST

(Ewans and Grant, 2002) offers insights as to how we may

improve our statistic by adding to the maximal extremal excur-

sion the top r excursions. This would especially make sense when

the gene set corresponds to genes in a pathway that subdivide into

sub-pathways, some of which are up regulated and some of

which are down regulated.

� Correlation statistic: We used a Brownian motion model to

compute our correlation statistic. This outperformed a simple

Gaussian model and a model based upon the cumulative distri-

bution function of the Parzen estimator. However, these models

are by no means exhaustive and other statistics may be as robust

but with greater sensitivity.

� Extension to real-valued phenotypes: We stated the procedure

for the case with binary phenotypes. The crux of an extension

to real-valued phenotypes would be the computation of an

appropriate correlation statistic. In the context of a survival

model this would not be difficult but in general it can be

complicated.

There are two fundamental questions with respect to our approach

and they are intimately related

� What is a pathway (gene set): Gene sets can be derived

from experimental perturbations, literature based studies, and

a variety of other origins. A fundamental question is which of

these sets is most appropriate. For example, a database of

gene sets may contain 5 Ras pathways from a variety of experi-

ments or literature surveys. For a particular analysis which is

most appropriate? The authors believe that a partial answer or

consensus is developing that experimentally based gene sets are

in general more robust than ones derived from literature. How-

ever, the quantification of this and a statistically formal method

for scoring gene sets is still an open problem.

Table 4. Probability of class membership as a function of xx
j and the class

means

Pðx̂xi
j 2 C1Þ x̂xi

j � m̂m j1 Pðabsorption at 0 starting at x̂xi
j j p̂pj1

x̂xi
j > m̂m j1 Pðabsorption at 1 starting at x̂xi

j j p̂pj1

Pðx̂xi
j 2 C2Þ x̂xi

j � m̂m j1 Pðabsorption at 0 starting at x̂xi
j j p̂pj2

x̂xi
j < m̂m j1 Pðabsorption at 1 starting at x̂xi

j j p̂pj2
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� Likelihood based testing: The statistic used in our hypothesis

testing framework is likelihood based, P ðdata j pathwayÞ. The

problem with using this likelihood based framework is that in this

formulation is that the pathway we condition upon is not fixed.

The Ras pathway as defined today is different than the Ras

pathway as defined in two weeks, some genes are added and

some removed. In the above framework one can then ask which

pathway are we testing, is there multiplicity in the Ras pathway

and if so how many Ras pathways are there. An alternative

approach which is conceptually very appealing is to build our

statistical framework on the posterior, P ðpathway j dataÞ. This

provides a uniform framework and quantity that we can use to

score the different Ras pathways in the previous example. The

fundamental problem in using the posterior is that a prior is

needed on the space of pathways (for example priors over pos-

sible Ras pathways). The construction or estimation by sampling

gene expression data sets of such a priori defined gene sets

starting with a database of pathways is a very interesting and

challenging computational biology and statistics problem.
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ABSTRACT

Motivation: In a tri-partite biological network of transcription factors,

their putative target genes, and the tissues in which the target genes

are differentially expressed, a tightly inter-connected (dense) subgraph

may reveal knowledge about tissue specific transcription regulation

mediated by a specific set of transcription factors—a tissue-specific

transcriptional module. This is just one context in which an efficient

computation of dense subgraphs in a multi-partite graph is needed.

Result: Here we report a generic stochastic search based method

to compute dense subgraphs in a graph with an arbitrary number of

partitions and an arbitrary connectivity among the partitions. We then

use the tool to explore tissue-specific transcriptional regulation in the

human genome. We validate our findings in Skeletal muscle based

on literature. We could accurately deduce biological processes for

transcription factors via the tri-partite clusters of transcription factors,

genes, and the functional annotation of genes. Additionally, we propose

a fewpreviously unknownTF-pathway associations and tissue-specific

roles for certain pathways. Finally, our combined analysis of Cardiac,

Skeletal, and Smooth muscle data recapitulates the evolutionary

relationship among the three tissues.

Contact: sridharh@pcbi.upenn.edu

1 INTRODUCTION

Eukaryotic protein coding genes are transcribed by RNA

Polymerase-II. To accomplish this, Pol-II is critically aided by

several other transcription factors (TF) (Kadonaga, 2004). These

TFs bind to specific DNA elements in the relative vicinity of the

gene, and through cooperative interaction guide Pol-II to the tran-

scription start site (TSS). An important long-term goal is the knowl-

edge of groups of functionally interacting factors—transcriptional
module (Bolouri et al., 2002; Thompson et al., 2004). Transcription

modules provide an efficient mechanism to co-regulate a group

of functionally related genes, for instance, specific to a tissue

(Wasserman et al., 1998) or involved in immunity (Senger et al.,
2004).

A combinatorial approach to transcriptional module detection

uses a graph-theoretical abstraction: in a bi-partite graph of

TFs and genes, where a TF is connected to its target genes, a

large bi-partite clique represents a potential transcriptional module

(Hannenhalli et al., 2003). This is precisely the problem of clique
enumeration in bi-partite graphs (Alexe et al., 2000). One can

attach weights to the TF-gene pairs indicating the likelihood that

the TF regulates the gene. In this case a more desirable optimiza-

tion is to detect heavy sub-graphs (Tanay et al., 2004). These

combinatorial, enumerative approaches although effective in

several biological problems (Hannenhalli et al., 2003), are

inherently inefficient, thus limiting their application. Also, a

practical extension of this abstraction should include additional

types of nodes in the graph, for instance functional classes or tissues.

A maximal clique in a tri-partite graph with Tissue as the additional

partition would reveal tissue specific transcriptional modules. One

can imagine the utility of having additional partitions representing

other kinds of functional information.

Efficient algebraic approaches based on spectral graph theory

have been proposed to co-cluster the two dimensional gene-

expression (Ernst et al., 2002), and word-document (Dhillon,

2001) datasets; dense blocks in the permuted matrix represent

co-clusters. The main limitation with this approach is that the

co-clusters are non-overlapping and it is difficult to assess their

significance. Dense sub-graph computation in general graphs

has been studied in the context of identifying web communities

(Flake et al., 2000) using network flow techniques. However,

these methods focus on detecting a single most dense subgraph

and are not adaptable to our specific problem domain, as will

become clear later. There are approaches to detect overlapping

clusters, although only in 2-dimensional, gene-expression data

(Ihmels et al., 2002).

Another desirable feature that is lacking in current approaches

is that they do not distinguish a ubiquitously connected vertex

from a vertex that is highly connected to a specific subset of vertices.

In our application, we would like to avoid such ubiquitously con-

nected vertices without having to filter them out in a pre-processing

step. For instance a TF like Sp1 is not interesting, unless it is

more tightly connected to our genes of interest than to other genes.

Here we propose a stochastic search based approach to detect

dense subgraphs while addressing the concerns discussed above.

We assess the significance of our solutions based on graph random-

ization. Our current implementation exploits the tri-partite graph

structure with an arbitrary connectivity between partitions. We have

applied the tool on human whole genome TF-Gene graphs for tissue

specific genes to discover tissue specific transcriptional modules.

We have validated the clusters detected in Skeletal muscle based�To whom correspondence should be addressed.
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on the literature evidence. When applied to TF-Gene-GO graph

without the TF-GO edges, our approach can successfully deduce

TF-GO relations, i.e. functional assignment of TFs. Similar applica-

tion to TF-Gene-Pathway reveals novel TF-Pathway relations.

Application to Tissue-Gene-Pathway graph using the combined

datasets for Cardiac, Skeletal, and Smooth muscle recapitulates

the evolutionary relationship among the three tissues and reveals

novel Tissue-Pathway relations. Thus, our work presents a novel

efficient approach for dense subgraphs and its application to a

variety of genome wide tri-partite graphs.

2 RESULTS

2.1 Computing dense sub-graphs by Random

Search—method overview

The goal of our approach is to find ‘all’ distinct dense sub-graphs.

Because our input involves thousands of nodes and edges, our

method has to be time-efficient. We adopt a stochastic hill-climbing
approach that attempts to strike a balance between speed and pre-

mature stopping at local optima. In summary, consider a Markov

chain where each state represents a potential solution (represented

by an indicator variable for each node where a value of 1 indicates

that the vertex belongs to the cluster). We connect each state to

another state if they differ in exactly one vertex, and define the

transition probability to capture the fitness of the solution. Starting

from some starting state we stochastically traverse the neighbor-

hood of this state in the state space until an optimal state is reached.

We repeat this process starting from a large set of seed states to

obtain several good solutions.

Although our approach is applicable to a general graph, in order

to highlight the specific application to transcriptional module detec-

tion, here we illustrate the method using a tri-partite graph (Fig. 1).

Let the three parts be G0 (genes), T0 (Tissues) and F0 (Transcription

factors). We will also refer to these parts as GG, GT, and GF respec-

tively. Figure 1 shows the input graphs G0, T0, and F0 and a potential

solution G, T, F. Intuitively, we want a solution such that nodes in

G are connected to a large fraction of nodes in F and a relatively

smaller fraction of nodes in F0 (same holds for all pairs of subsets).

This can be captured using a log-likelihood score.

For a node g and a subset of nodes X in another partition, N(g,X) is

the number of nodes in X connected to g and D(g,X) ¼ N(g,X)/ jX j ,
i.e. the fraction of nodes in X that g is connected to.

The ‘score’ of a solution G, T, F is

SðG‚T‚FÞ ¼
X

u2G[T[F

X
X¼fG‚ T‚ Fg‚ u=2X

Nðu‚XÞ log
Dðu‚XÞ
Dðu‚X0Þ

24 35
In other words, for every node, we compute its log-likelihood

score with respect to each of the other partitions. In a given iteration

of our stochastic search (state transition in the Markov chain), the

solution can grow or shrink. Every node, both, inside and outside the

current solution, is scored. The score of a node outside the current

module, i.e. g =2 G AND g 2 G0, is S(G [ {g}, F, T) � S(G, F, T),

i.e. the relative increase in the cluster score if g is added to the

module. A node inside the module, i.e. g 2 G can be scored analo-

gously as the relative increase in the module score if g is removed.

The scores for all nodes from all partitions are normalized to a

sum of 1 (after initializing the negative scores to 0). A candidate

node is chosen according to this probability distribution. Note that

adding or removing a single node corresponds to a state transition

in our Markov chain. The procedure stops when no significant

gains are achieved for several consecutive iterations.

To seed our stochastic search, we enumerate all maximal com-

pletely connected clusters with a user specified minimum number

of nodes from each partition. For instance a typical value we have

used is 3 genes and 3 transcription factors. We then iterate until

we exhaust all seeds or reach the specified number of clusters;

we choose the largest of the unused seeds and run the stochastic

search algorithm to obtain a dense subgraph X; we then prune all

seeds that highly overlap X to avoid finding similar subgraphs in

subsequent runs. We stop after a pre-specified number of clusters

(100) are identified.

Data preparation. From among the 546 vertebrate TF positional

weight matrices (PWM) in TRANSFAC v8.4 (Wingender et al.,
1996), we have extracted 221 representative PWMs (methods). This

was done to minimize the bias in our clusters caused by highly

similar PWMs connected to the same set of genes. For these

221 PWMs, we obtained the TF-Gene edges for all human genes

using our binding site prediction method based on Phylogenetic
Footprinting (Levy et al., 2002) (methods). We defined Gene-

Tissue edges using an entropy-based measure of tissue-specificity

(Schug et al., 2005) and the Novartis tissue survey data (Su et al.,
2004). Finally Gene-GO and Gene-Pathway edges were defined

using GO (Harris et al., 2004) and KEGG pathway resources

(Kanehisa et al., 2002).

2.2 Tissue-specific transcriptional modules in

Human—Skeletal Muscle as a case study

We identified 477 genes specifically expressed in Skeletal Muscle

based on our threshold for tissue-specificity. We then applied

our tool to the bi-partite graph consisting of 477 genes and 221

representative transcription factors. Figure 2 (‘o’) shows the cluster

score distributions for this graph.

Significance To estimate the significance of the cluster scores, we

randomized the input graph and computed the cluster scores, as

shown in Figure 2 (‘+’). A majority of the identified clusters

have a score greater than the maximum score in the randomized

graph. To obtain a more stringent background, we randomized the

graph 100 times and for each randomized graph we retained only the

maximum cluster score after running our tool until exhaustion

Fig. 1. Illustration of an iteration of the stochastic search.
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(using the same parameters as that for the original graph). As shown

in the figure (‘D’), even though the peak of real scores is to the left of

the peak of max scores in the randomized graphs (this is expected

since we are using max scores for the randomized graphs), there are

several clusters in the input graph which score better than the

maximum for any randomized graph (�700). These 24 clusters

therefore represent highly significant clusters.

Sensitivity Wasserman and Fickett have analyzed six transcription

factors believed to confer muscle specific regulation (Wasserman

et al., 1998), namely, Sp1, AP-1, Myf, SRF, MEF-2, and TEF-1.

Sp1 is included in several of the top 24 clusters, including the top

scoring one. In our initial grouping of positional weight matrices

AP-1 belonged to a group with CREB as the representative and

CREB was included among the top 24 clusters. Myf is an E-box

protein and was grouped along with several other E-box proteins,

with E47 as the representative, and E47 was included among the top

24 clusters. SRF was not included among the top 24 clusters but was

in a cluster ranked 28, whose score is still above 90% of the back-

ground scores. MEF-2 was included in a very low scoring cluster

(ranked 57). TEF-1 has a short 6 base pair binding site with very

little information content, as reported in TRANSFAC and hence

was not part of our input graph. However, TEF-1 is very similar to

Tax/CREB in terms of binding site similarity which is in the same

group as AP-1 mentioned above. Hence most of the factors analyzed

in (Wasserman et al., 1998) are included in the high scoring clusters

that we have identified.

Specificity To evaluate other factors identified by virtue of

belonging to high scoring clusters, we extracted the 13 transcription

factors that were included in greater than 10 of the 20 top-scoring

clusters. These factors are: Sp1, MAZ, MAZR, Muscle_initiator,

ETF, Churchill, EGR-1, AP2, VDR, MTF-1, Zic1, ZF5 and Spz1.

MAZ (consensus: GGGGAGGG), MAZR (consensus:

GGGGGGGGGGCCA), Churchill (consensus: CGGGGG) and

ETF (consensus: GCGGCGG) are very similar to Sp1. ETF is a

close homolog of TEF-1 (mentioned above), whereas MAZ sites are

experimentally known to bind Sp1 (Parks et al., 1996), and MAZ is

expressed in Skeletal Muscle (Song et al., 1998), MAZR binding

site was found to be significantly enriched in 400 bp upstream of

muscle genes in an independent computational analysis (Aerts et al.,
2003). Muscle_initiator was derived by analyzing the promoters of

specific Myc targets in vivo (Grandori et al., 1997). EGR-1 with

SRF and Sp1 regulates muscle contraction (Irrcher et al., 2004). AP-

2 with Sp1 regulates the muscle gene Utrophin (Perkins et al.,
2001). VDR is involved in muscle development (Endo et al.,
2003). MTF-1 is involved in oxidative stress response (Wimmer

et al., 2005), an essential process in muscle. Zic1 is involved in

skeletal development (Aruga et al., 1999). ZF5 is known to repress

c-Myc (a gene involved in myogenesis) and one of the ZF5 isoforms

is specifically expressed in skeletal muscle (Numoto et al., 1997).

Thus, apart from Spz1, there is varying degree of support that all

other transcription factors frequently found in high scoring clusters

are involved in Skeletal muscle processes.

Although we have discussed the results only for Skeletal Muscle,

we have in fact applied the tool to all tissues in the Novartis set.

The score distributions follow a similar pattern relative to random-

ized graphs but specific analysis of the results in these tissues was

not done.

2.3 Functional annotation of TFs via tri-partite

cluster detection

Here we illustrate the utility of extending the above approach to

multi-partite graphs. The largest cluster in the TF-Gene graphs for

Skeletal muscle specific genes includes 36 TFs and 89 genes. We

constructed a tri-partite graph by including the GO biological pro-

cess (GOBP) for the genes as the third partition and connecting

this new partition to the ‘Gene’ partition only. We computed dense

clusters in this graph, with minimum edge density threshold of 0.75.

This resulted in 14 sub-clusters. As in section 2.2, the scores of these

14 clusters are higher than the maximum scores for 100 randomized

graphs (Wilcoxon rank sum test base p-value ¼ 3.8E-04).

Although, the GO annotations in these sub-clusters are largely over-

lapping, the genes and TFs in the sub-clusters are not so. Never-

theless it is difficult to interpret such subtly distinct sub-clusters

based on the current literature. Instead, we assessed whether we can

accurately assign functions to TFs via their sub-cluster membership.

Recall that we did not use any known TF-GO relationships in

identifying the clusters. The 14 sub-clusters involved 21 TFs and

12 GOBPs. Thus a total of 252 TF-GOBP relations are possible. In

this universe of 252 relations, 59 are directly supported by the GO

annotation for the TF protein, and thus represent the positives. To

predict TF-GOBP relationships, we assigned each TF in a sub-

cluster to each BP in that sub-cluster, resulting in 93 predicted

TF-GOBP relations. Of the total of 252 relations, the overlap

between predicted 93 and known 59 relations is 33 (Hypergeometric

p-value ¼ 5.4E-04). In other words 35% of our predictions include

56% of the known relations. To evaluate the validity of the 60

predicted relations with no supporting GO annotation, we took

an indirect approach. For TF x and GOBP p, we estimated the

support for a TF-GOBP relation ‘x$p’, as the number of

x$g$p triplets where the x$g indicates a binding site for x in

g’s promoter, and g$p indicates a GOBP annotation of g as p. We

expect the 60 predicted TF-GOBP relations to have a greater sup-

port than the background. For the background we used the 133 of the

252 relations which were neither predicted, nor known. Also to

Fig. 2. The cluster score distributions for (i) clusters in Skeletal muscle

specific genes and the corresponding TFs, (ii) maximum cluster score, one

per randomized graph for 100 randomizations, (iii) all cluster scores for

one randomized graph.
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avoid circularity, we only used the support from genes which were

not specific to Skeletal muscle and hence were not part of the input

graph. Figure 3 shows that the predicted relations have a signifi-

cantly greater support than the background (Wilcoxon rank sum test

based p-value ¼ 5.7E-15).

2.4 Co-regulation of genes involved in

specific pathway

To detect specific pathways within the skeletal muscle specific

modules, similar to the previous section, we constructed a tri-partite

graph by including the known pathways for the genes as the third

partition (instead of GO) and connecting this new pathway partition

to the gene partition only. We computed 4 tightly connected clusters

in this graph. One of them was intriguing in that the transcription

factor ETF uniquely belonged to this sub-cluster. Recall that ETF

was detected as a frequent member of high scoring clusters and is a

family member of TEF-1 known to be involved in muscle processes

but ETF does not have any direct evidence for involvement in

muscle processes. The other TFs in this sub-cluster are p300,

Sp1, AP-2 and EGR. And the genes in this sub-cluster are Keratin
17, Vitronectin, Integrin-a7, Integrin-b1A, and cytosolic, malic
enzyme 1. Furthermore, the pathway ‘ECM (Extra Cellular Matrix)

receptor’ belongs uniquely to this sub-cluster. Indeed Vitronectin,

Integrin-a7, and Integrin-b1A belong to this pathway. ETF

binding site occurs within 85 bps of a Sp1 site in the 1 kb promoter

region of 4 of the 5 genes and in Vitronectin and Integrin-b1A,

there are 2 distinct binding sites for ETF. Even though there is no

direct experimental evidence supporting the role of ETF in the

ECM-receptor pathway, we believe that the strong circumstantial

evidence makes it a promising candidate to pursue for direct func-

tional validation. Discoveries like this one can be made readily by

an approach like ours that takes into account multiple types of

information in an unbiased way.

2.5 Delineating Tissue-specific transcription factors

and pathways via tri-partite clustering

Next we evaluate whether our approach can reveal subtle differ-

ences between tissues related at a gross level. We combined the TF-

Gene data for genes specific to Heart, Skeletal muscle and Smooth

muscle, resulting in a tri-partite graph consisting of 221 TFs, 1519

genes, and 3 tissues. Among the three tissues, Heart (574 genes),

Skeletal muscle (477 genes), and Smooth muscle (666) genes, there

are 117 genes in common between Heart and Skeletal muscle,

65 genes between Heart and Smooth muscle and 32 between

Smooth and Skeletal muscle. This is consistent with phylogeny

based results in (OOta et al., 1999). Even though cardiac muscle

is evolutionarily closer to skeletal muscle, it is functionally closer to

smooth muscle in that both cardiac and smooth muscle are invol-

untary. We investigated whether this evolutionary relationship is

also reflected in the transcriptional modules. First, among the top

10 clusters, only 1 involved a single tissue and the other 9 involved

exactly 2 tissues. Of these 9 cases, 6 involved Heart and Skeletal

muscle, where 3 involved Heart and Smooth muscle. Thus there

are twice as many clusters associating heart with skeletal muscle

relative to smooth muscle. Second, among the top 10 tri-clusters,

we recorded whether a TF belonged in a cluster with a tissue. For

the three tissues in the specified order (Heart, Skeletal, Smooth), we

assigned 3 binary numbers to each TF. For instance (1,0,1) means

that the TF is associated with Heart and Smooth muscle but never

with Skeletal muscle. The number of TFs belonging to the 7 possible

binary vectors are—001(5), 010(0), 100(0), 110(29), 101(17),

011(0), 111(44). Thus most TFs are associated with all three tissues.

Additionally there are more TFs uniquely associated with Heart

and Skeletal muscle (29) than there are uniquely associated with

Heart and Smooth muscle (17). Thus the transcriptional modules

reflect the greater similarity between Heart and the Skeletal muscle.

However, the statistical significance of this is not clear given the

greater similarity between Heart and Skeletal muscle in terms of

common genes.

Next we computed tri-clusters in the Tissue-Gene-Pathways

graph in order to detect associations between tissues and pathways.

A total of 15 clusters were detected, each with 2 tissues (this is

because we required the seeds to have at least 2 tissues). Heart and

Skeletal muscle co-associate in 8 cases, Heart and Smooth muscle

co-associate in 5 cases and Smooth and Skeletal muscle co-

associate in 2 cases. Furthermore, there are pathways that uniquely

associate with one of the three tissues in our dataset. For instance

there are 9 pathways uniquely associating with Heart and several of

these have to do with immune system, e.g. B cell receptor signaling
pathway, Natural killer cell mediated cytotoxicity, and T cell
receptor signaling pathway. Carbon fixation pathway is uniquely

associated with Skeletal muscle, and there are several pathways that

uniquely associate with Smooth muscle, an overwhelming majority

of which are involved in amino acid metabolism and degradation.

We could not however assess the significance of these findings

based on the current literature.

3 METHODS

Binding site annotation

We extracted the 1 kb regions upstream of the annotated transcripts in the

hg16 release of the human genome from UCSC database (genome.ucsc.edu).

We also extracted the Human-Mouse alignments for these regions. We

searched the 1 kb regions using 546 binding profiles (Positional Weight

Matrix or PWM) for vertebrate transcription factors from TRANSFAC

v8.4 (Wingender et al., 1996). The search was done using the tool

PWMSCAN (Levy et al., 2002). The initial hits were based on a p-value

cutoff of 0.0002, corresponding to an average frequency of 1 hit every

5 kb scanned in the human genomic background. We filtered these initial

Fig. 3. Amount of indirect support for predicted TF-GOBP relations and for

the background.
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hits further using Human-Mouse alignments. For each hit we computed

the fraction c of binding site bases that were identical between human

and mouse. We retained the hits such that either p-value � 0.00002

(1 in 50 kb) or c � 0.8. This procedure is similar to the one reported

previously (Levy et al., 2002).

Clustering transcription factor PWMs

Pair-wise similarity computation Each PWM X is a 4 by k matrix for

k-length binding site, where Xui is the proportion of base u at position i, such

that
P

u Xui ¼ 1 (Stormo, 2000). We compute the dissimilarity or distance

between position i of PWM X and position j of PWM Y using relative entropy

REij ¼
P

u Xui ln ðXui=YujÞ (Durbin et al., 1998). For two identical positions

this value is 0 and the more dissimilar the positions, the higher the RE value.

However, as defined, this is an asymmetric measure and in practice we take

the average of Rij and Rji as the distance between the two positions. Notice

that according to this measure, for two positions at which the base pairs are

distributed according to the background probability (say, equi-probable),

their RE value will be 0, even though individually these positions are not

informative. Let Rir be the RE-value between column i and background

probability distribution of bases. Rjr is defined similarly. We define the

similarity between column i and column j, Sij ¼ Rir þ Rjr �
ððRij þ RjiÞ=2Þ. We first compute the Sij for every pair of columns for all

PWMs in the TRANSFAC database. These values are normally distributed

with mean m and standard deviation s. The sum of k such S-values is also

normally distributed with mean mk¼mk, and standard deviation sk¼sHk.

To compute the similarity between k consecutive columns of two PWMs, we

sum up the k S-values for aligned column pairs and transform this value to a

z-score ¼ (S � mk)/sk, which makes the scores for different values of k

comparable. Next, for every PWM-pair and for every alignment offset with a

minimum of 6 base overlap between the PWMs (i.e., k� 6), we compute the

similarity z-score (‘z-value’). Using the empirical distribution of z-values for

all alignments of all PWM pairs, we convert each individual z-value into a p-

value, i.e., the probability of observing the z-value or higher in the back-

ground distribution; we call this the pz-value. Finally, to compute the simi-

larity between two PWMs X and Y while allowing for the possibility that two

related PWMs may be slightly shifted in positions, we slide the PWMs

relative to each other such that at least 6 positions are aligned. For each

such offset we compute the pz-value. Let mpz be the minimum pz-value over

all offsets. Notice that the longer PWM pairs have a greater number of

possible offsets and thus tend to achieve a low mpz-value. To correct for

this effect, we compute the significance of the observed mpz-value as the

random expectation of observing the mpz-value for K trials where K is the

number of offsets. That is,

PðX‚YÞ ¼ 1 � ð1 � mpzðX‚YÞÞK :

Clustering PWMs based on the P-values Given a p-value threshold

(we use 0.005), all PWMs can be represented as a network where PWMs

correspond to the nodes and two nodes are connected if their similarity

p-value is below the threshold. We then compute the so-called bi-connected

component in this graph. A bi-connected component is a connected com-

ponent of the graph that remains connected if any of the nodes are removed.

Each bi-connected component corresponds to a cluster. In other words if

two PWMs belong to same cluster, they must have at least two independent

lines of evidence that they are related (i.e. paths in the graph). Each cluster

thus obtained represents a family of PWMs with similar DNA binding

specificity. We selected the median of each cluster as the cluster represen-

tative. Out of 546 PWMs, 442 were grouped into 117 clusters, and with 104

singletons, this procedure resulted in 221 representative PWMs.

Tissue specific genes

For each gene g and each tissue t, we say g is specific for t if its expression

level in t is considerably higher than in other tissues, using the following

procedure from (Schug et al., 2005). We use the Novartis GeneAtlas

expression dataset (Su et al., 2004): the dataset has 79 different types of

human tissues (two replicates each). The hybridization experiments are

done using the Affymetrix HG-U133A (33689 probesets) and GNF1B

(11391 probesets) platforms. Let w(g,t) be the average expression level

of probeset g in tissue t (not log2-transformed) over the two replicates.

For each probeset, the relative expression level for tissue t is

pðt j gÞ ¼ wðg‚ tÞ/
P

tissue i wðg‚ iÞ. The entropy of gene g is

HðgÞ ¼ �
X

t

pðt j gÞ log2 pðt j gÞ:

The categorical specificity of gene g and tissue t is Qðg j tÞ ¼
HðgÞ � log2 pðt j gÞ. A low Q score implies gene g is highly specific for

tissue t: H(g) is low when the expression level of g is concentrated in a few

tissues, whereas p(t j g) is high when g is highly expressed in t. We

empirically chose a value of 10.5 as the cutoff for Q(g j t), as the density

of the gene-tissue specificity begins a sharp increase at a higher Q. A more

stringent value of 7 was suggested in (Schug et al., 2005). We then remap the

association from Affymetrix probeset IDs to RefSeq IDs.

KEGG and GO annotation data

We built the associations between genes (refseq ID), KEGG pathways, and

GO terms as follows. We downloaded data from the KEGG server that

contained the association data between KEGG pathways and NCBI GI num-

bers. We downloaded the association data between GO terms and NCBI

GENE IDs from the NCBI server. The mappings from GI numbers and

GENE IDs to RefSeq IDs are obtained from NCBI. The mapping is inclusive:

for example, if KEGG pathway x is associated with GI number y, and y is

mapped to RefSeq IDs a, b, and c, then x is associated with a, b, and c.

Graph randomization

To determine the significance of cluster scores we find clusters by an ident-

ical process on randomized graphs with the node degrees identical to the real

graph. The graph randomization process is performed by swapping edges

with non-edges under a condition that preserves the degrees of all nodes.

Specifically, a quadruple of nodes (w,x,y,z) qualifies for this swapping

condition if it meets the following criteria (Yeger-Lotem et al., 2004):

(i) both w and x reside in the same partition A, and both y and z reside

in another partition B; (ii) there exists an edge between w and y, denoted as

E(w, y) ¼ 1, and also an edge between x and z, denoted as E(x, z) ¼ 1; and 3.

There exists a non-edge between w and z, and a non-edge between x and y,

denoted as E(w,z) ¼ 0 and E(x,y) ¼ 0 respectively. If the quadruple of

nodes meets these criteria, we then swap the edges by setting E(w,y) ¼
E(x,z) ¼ 0 and E(w,z) ¼ E(x,y) ¼ 1.

We sufficiently randomize an edge set between two partitions by selecting

a pair of nodes from each of the two partitions at random and swapping the

edges between these nodes if the above criteria are satisfied. This process is

repeated until the number of successful swaps is twice the total number of

edges. The number of swaps required to sufficiently randomize a graph was

determined by measuring the hamming distance from a representative graph

after each swap operation was performed.

4 DISCUSSION

The problem of efficient computation of tightly connected clusters

in a network has been studied in several biological as well as non-

biological contexts. As we have argued, however, the current

approaches are either (i) computationally inefficient, (ii) detect

one optimal cluster, (iii) find a few disjoint bi-clusters, or (iv) do

not discriminate against ubiquitously connected nodes. The trivial

approach to mask the best solution and repeat the process to find

other solutions leaves us with the problem of finding the best way

to mask current clusters and is not at all obvious. All previous

applications in biology are limited to two partitions, typically
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genes and expression conditions and there remains a need to extend

this to multiple partitions. Our emphasis has been on developing an

adaptable and general approach to finding meaningful clusters in a

collection of interrelated heterogeneous datasets.

The problem of identifying dense subgraphs in a general graph

(not necessarily a multipartite graph) has been studied in other

contexts using combinatorial approaches. These approaches aim

at finding the optimum (densest) subgraph. One can model this

problem in a way that is amenable to a Monte Carlo Markov
Chain (MCMC) technique, like Gibbs sampling. Briefly, we can

model the edges in the graph as being generated by two distinct

probability distributions depending on whether the edge belongs to

the (unknown) dense subgraph or not. The unknown parameters

including the edge probabilities and the cluster membership

can be iteratively estimated. In fact one can also design an

Expectation Maximization (EM) using the above setup. Although

we have modeled the problem as a Markov chain, we have decided

to search for a locally optimal cluster using a stochastic hill-

climbing approach. The main reason for this is the adaptability/

generality of the approach to a graph with arbitrary number of

partitions and arbitrary connectivity. Any given problem domain

entails different types of entities (partitions) with a different level of

connectivity between partitions. It was thus important to design

the method in a configurable fashion and our particular approach

allows that. We have not discussed, due to lack of space, the

various configuration parameters that our current implementation

allows. For instance, in principle, we can have a specific

schedule for selecting edges from different partitions to influence

the detected clusters if we had an a priori knowledge. Our cluster

score can be easily extended to weight edges or weight partitions

and this kind of adaptability is difficult to achieve with a more

standard approach like EM or Gibbs sampling. Our current imple-

mentation is ‘work in progress’ and this work illustrates the utility of

such a tool. A fully configurable tool for finding dense subgraphs

will be published in future work.

Efficient generation of seeds presents the computational bottle-

neck. We have followed a simple enumerative approach, given the

seed size relative to different partitions. For a seed size of k in one of

the partitions, we enumerate all k-vertex sets in that partition and

look for neighboring vertices in other partitions in search of a seed

above a specified size. This can become prohibitive for a partition

with several hundred vertices and k > 4. By carefully choosing the

partition to enumerate over, we have tried to counter this problem to

some extent.

There are very few examples of experimentally determined

transcriptional modules, thus making a large-scale evaluation of

computational methods difficult. However, we have shown using

a variety of validation approaches, that (i) the cluster scores are

highly significant, (ii) we can detect almost all of the established

TFs involved in Skeletal muscle specific expression, (iii) almost all

of the highly frequent TFs have literature evidence for involvement

in Skeletal muscle gene regulation, (iv) using a TF-Gene-GO graph,

we can successfully assign function to TFs, (v) in a combined set

of 3 tissues, the detected transcriptional modules support evolution-

ary relationship between Cardiac, Skeletal and Smooth muscle, and

(vi) novel hypotheses regarding TF-Pathway and Tissue-Pathway

can be generated using our approach.

Besides applying our tool to additional datasets, our future plan

includes (i) Extensive simulation studies and incorporation of other

score functions that account for edge weights, and (ii) extending

the current implementation to a graph with arbitrary number of

partitions.
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ABSTRACT

Motivation: To understand the behaviour of complex biological

regulatory networks, a proper integration of molecular data into a

full-fledge formal dynamical model is ultimately required. As most

available data on regulatory interactions are qualitative, logical mod-

elling offers an interesting framework to delineate the main dynamical

properties of the underlying networks.

Results: Transposing a generic model of the core network controlling

the mammalian cell cycle into the logical framework, we compare

different strategies to explore its dynamical properties. In particular,

we assess the respective advantages and limits of synchronous

versus asynchronous updating assumptions to delineate the asymp-

totical behaviour of regulatory networks. Furthermore, we propose

several intermediate strategies to optimize the computation of asy-

mptotical properties depending on available knowledge.

Availability: The mammalian cell cycle model is available in a

dedicated XML format (GINML) on our website, along with our logical

simulation software GINsim (http://gin.univ-mrs.fr/GINsim). Higher

resolution state transitions graphs are also found on this web site

(Model Repository page).

Contact: thieffry@ibdm.univ-mrs.fr

1 INTRODUCTION

A proper understanding of the structure and temporal behaviour

of biological regulatory networks requires the integration of

regulatory data into a formal dynamical model (for a review, see

de Jong, 2002). Although this issue has been recurrently addressed

by applying standard mathematical approaches (e.g., differential or

stochastic equations) borrowed from physical sciences, it is notably

complicated by the diversity and sophistication of regulatory

mechanisms, as well as by the chronic lack of reliable quantitative

information.

This situation has motivated the development of intrinsically

qualitative approaches leaning on Boolean algebra or generalisation

thereof (Glass & Kauffman, 1973; Thomas, 1991).

In this paper, we lean on previous work refining, extending

and implementing the logical approach initially formulated by

R. Thomas et al. (Thomas, 1991; Thomas et al., 1995). The cor-

responding framework is summarised in the following section (see

Chaouiya et al., 2003, for more detail). This framework is then

used to derive a logical version of the differential model for the

control of the mammalian cell cycle recently published by Novak

and Tyson (2004). The corresponding regulatory network is

described in the last chapter of the introduction, together with

citations of the most relevant experimental articles (for a didactic

introduction to cell cycle modelling, see Fuß et al., 2005).

In their landmark model analysis, Novak and Tyson have heavily

relied on numerical integration techniques (temporal simulations,

phase space analyses, and bifurcation diagrams) to delineate the

main dynamical properties of the complex regulatory system under

study. Their results are valid for specific sets of parameter values

and function shapes, which are difficult to establish quantitatively.

Furthermore, such parametric analyses can only handle a few

parameters at once.

In contrast, although much more qualitative, the logical frame-

work enables a more systematic and extensive characterisation of

all the behaviours compatible with a given regulatory graph.

Furthermore, this framework offers enumerative or analytical

means to identify relevant asymptotical behaviours (stable states,

state transition cycles, etc.). Finally, extending a logical model to

encompass additional regulatory modules is relatively easy.

However, one difficulty with the logical approach lies in the

implicit treatment of time. In this respect, different approaches

have been proposed, either considering all transitions under a

synchronicity assumption, or considering them under a fully asyn-

chronous assumption, i.e., selecting a single transition at each

dynamical step. The first assumption is simple but leads to well

known artefacts, whereas the results obtained under the second

assumption are more difficult to evaluate. In this paper, we explore

the use of different strategies enabling a honourable compromise

between these two extreme approaches.

1.1 Logical modelling of regulatory networks

The specification of a logical model involves three main steps:

(i) the building of a regulatory graph; (ii) the definition of the

logical parameters of the system; (iii) the specification of the

updating assumption(s).

Cross-regulations between regulatory components are formalized

in terms of an oriented graph. In this regulatory graph, the vertices

represent the different regulatory components (activity of a gene,

concentration of a regulatory product, or level of activity of a pro-

tein), whereas the edges represent regulatory interactions between

these components (including self-regulations). The level or activity�To whom correspondence should be addressed.
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of a regulatory component i is given by an integer, taking its values

in the interval [0, Maxi], where Maxi is the maximal value consid-

ered for this element (in the simplest, Boolean case, Maxi is set to 1).

Each edge is labelled with an interval of integers defining the set of

values for which the source of the interaction influences its target.

Naturally, this interval must be compatible with the values allowed

for the source of the interaction. Furthermore, for sake of simpli-

fication, the maximal value of the interval is usually set to the

maximal value of the source of the interaction (notion of threshold).

Note that this definition allows the specification of multiple inter-

actions between two components, provided that each interaction

involves a specific threshold (alternatively, disjoint contiguous

intervals can be used).

Finally, an edge can also be optionally labelled with a positive or

negative sign, which then specifies that the effect of the source on

the target is monotonous, either potentially activating or inhibiting

the target, respectively. The specification of interaction signs only

affects the graphical representation and must be translated into

proper parameter values to obtain coherent regulatory effects.

The next step consists in defining the combinatory effects of the

regulatory inputs on the expression or activity of a given component

of the regulatory graph. The set of inputs is already specified at the

level of the regulatory graph. However, the effect of each regulator

usually depends on the presence of the co-regulators. For the sake

of conciseness, we consider only the combinations of interactions

allowing a significant (non zero, from a logical point of view)

expression or activity of the regulated component. The correspond-

ing logical parameters are each univocally identified by the set of

interactions acting on the regulated genes and take their values in

[1,Maxtarget] (see the next section for a concrete illustration).

The dynamical behaviour of a logical regulatory model is repre-

sented in terms of an oriented graph, where each vertex represents a

specific logical state of the system (i.e., a vector giving the discrete

levels of expression/activity of all the components), whereas the

edges represent (possible) transitions between these states.

Together with the regulatory graph, the logical parameters define

the rules directing the dynamics of a network, i.e., the potential

occurrence of specific edges in the state transition graph. Indeed, at

a given state, a specific logical parameter can be associated with

each component. If the value of this parameter is smaller or greater

than that of the concentration/activity level of the corresponding

component, this level will tend to decrease or increase, respectively.

Otherwise (when the parameter value and the corresponding com-

ponent level are equal), the component will tend to keep its current

value.

At this stage, different assumptions might be considered. Accord-

ing to the simplest one, at a given state, all increase or decrease calls

are realized simultaneously (synchronous updating), changing the

component levels by one unit at a time (see e.g., Kauffman, 1993).

Easy to implement and computationally efficient, this approach

leads to well known dynamical artefacts (in particular spurious

cycles). At the other extreme of the spectrum, the transition calls

can be asynchronously updated, i.e., one single transition will be

selected at a time. This assumption requires additional rules to sort

out concurring transitions (e.g., the specification of time delays or of

priorities). These additional rules are tricky to define, as they may

perfectly be context sensitive, i.e., finely depend on the levels of

various regulatory components (although these combinations might

correspond to identical parameter values). For this reason, all

possible transitions are often generated, and an asynchronous tran-
sition graph is built where all single possible transitions are con-

sidered, although all resulting dynamical pathways cannot be

followed for a single set of transition rules.

Whatever the updating assumption, of particular interest is the

asymptotical behaviour of the system, e.g., the terminal vertices

(stable states, with no updating calls) or the attractive cycles found

in the state transition graph. Note that such attractors (in particular

the stable states and simple terminal cycles) can easily be located in

the context of the synchronous updating assumption. As we shall

see, the synchronous assumption can often (but not always) be

considered as a shortcut for the computation of the asynchronous

dynamics. This point will be further assessed below through the

analysis of a logical model of the core network controlling the

mammalian cell cycle.

To ease the definition of a regulatory graph and of the associated

logical parameters, as well as the construction of the (a)synchronous

state transition graphs, we have developed a logical modelling/

analysis/simulation software called GINsim (Gonzalez et al.,
2006). A new release of GINsim now implements the possibility

to play with the different updating assumptions and to define

different priority classes.

Let consider a regulatory graph with n nodes {g1, g2, . . . gn}. A

logical state is a vector S¼(s1, s2, . . . sn) where si is the current level

of the ith regulatory product (si 2 {0, . . . Maxi}). Given such a state,

it is possible to determine the evolution of gi, for all i ¼ 1, . . . n.

Indeed, given any regulatory component gi, the interactions which

are operating on gi in the state S can be identified, and the relevant

logical parameter (i.e., corresponding to the right combination of

incoming interactions) gives the value ki to which gi should tend. If

si > ki (the current level is greater than the parameter value), there is

a call for decreasing the level of gi, (a decrease call on gi is denoted

gi#); if si < ki, there is a call for increasing the level of gi (denoted

gi"); otherwise (if si ¼ ki), there is no updating call for this com-

ponent. A stable state is thus a state without updating call.

The synchronicity assumption amounts to apply all concurrent

transitions simultaneously, all states having thus at most one suc-

cessor; under the asynchronous assumption, concurrent transitions

are applied separately, and a state with q updating calls has then

exactly q successors.

Here, we introduce a new functionality of GINsim consisting in

the definition of p priority classes C1, C2, . . . Cp, with p � n, which

gather regulatory products depending on their qualitative pro-

duction and/or degradation delays:

(i) each class Ci is associated with a rank r(Ci) (1� r(Ci)� p, 1

being the highest rank), as well as with an updating policy

(synchronous or asynchronous);

(ii) several classes may have the same rank; and concurrent tran-

sitions on genes of different classes with identical rank are

triggered asynchronously;

(iii) at any state S, among all concurrent transitions, only those on

genes of the classes with the highest rank are triggered;

(iv) concurrent transitions inside a class are triggered accordingly

to the updating policy associated to that class;

(v) finally, increasing and decreasing transitions of each gene

can be distinguished and associated to classes with different

ranks.
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1.2 Regulation of the mammalian cell cycle

The cell cycle involves a succession of molecular events leading to

the reproduction of the genome of a cell (Synthesis or S phase) and

its division into two daughter cells (Mitosis, or M phase). The M

phase itself encompasses different sub-phases (prophase, meta-

phase, anaphase, telophase) characterised by specific chromosomal

and nuclear changes (respectively: condensation of the chromatin,

alignment of the chromosomes, separation of the sister chromatids,

and formation of the two daughter nuclei). The S and M phases are

preceded by two gap phases, called G1 and G2 respectively (for a

review, see, for example, Tessema et al., 2004). These events

are very well known and can easily be monitored with an optical

microscope.

During the late 1970s and early 1980s, yeast geneticists have

identified the cell-division-cycle (cdc) genes, encoding for new

classes of molecules including the cyclins (so called because of

their cyclic pattern of activation), and their cyclin dependent

kinases (cdk) partners. Since then, our knowledge of the molecular

network that controls cell cycle events has tremendously pro-

gressed, but the number of components and interactions known

to be involved has so much increased that proper formal modelling

becomes necessary to understand the behaviour of such a

complex system.

Our model analysis is rooted in the seminal work of Novak

and Tyson, who have recently derived and analyzed a set of 18

ordinary differential equations (ODE) to model the control of the

restriction point of the mammalian cell cycle (Novak and Tyson,

2004). Based on this differential model and using numerical inte-

gration techniques, the authors were able to qualitatively reproduce

the main known dynamical features of the wild-type biological

system, as well as the consequences of several types of perturba-

tions. This state-of-the-art model study nevertheless appears diffi-

cult to extend, although there is clearly many more regulators,

variants and interactions to consider (see, e.g., Kohn’s map at

http://discover.nci.nih.gov/kohnk/fig6a.html).

In this respect, the logical formalism offers an appropriate

framework to qualitatively explore the dynamical properties of

relatively complex regulatory graphs. However, up to now, it has

been mostly applied to transcriptional regulatory networks, and its

application to the numerous and various protein interactions at the

core of the cell cycle network was thus a challenge.

As a starting point, we have used Novak and Tyson’s diagram

and model to build a logical regulatory graph (see Figure 1). In the

process, we were led to derive a proper logical representation for

each type of regulatory interaction. In what follows, we summarize

the main experimental data and assumptions underlying our

regulatory graph. In the context of this paper, we further focus

on a specific Boolean version of this model.

Mammalian cell division is tightly controlled, for it must be

coordinated with the overall growth of the organism, as well as

answer specific needs, such as wound healing for example.

This coordination is achieved through extra-cellular positive and

negative signals whose balance decides whether a cell will divide or

remain in a resting state (quiescence or G0 phase), which can be

reached and left by the cell during the G1 phase. The positive

signals or growth factors ultimately elicit the activation of

Cyclin D in the cell. In our model, CycD thus represents the

input, and its activity is considered constant. Note that cdk4 and

cdk6, the partners of Cyclin D, are not explicitly represented in our

model, for their activity essentially depends on the presence or

absence of their cyclin. In other words, CycD stands here for the

whole cdk4/6-Cyclin D complex. The same approach has been

adopted for the other cyclin/cdk pairs.

In our model, CycD is necessary for the inactivation of the

retinoblastoma protein Rb, and for the sequestration of p27/Kip1

(p27 in the sequel). This protein is a cdk inhibitor that sequesters

cdk2/Cyclin E (CycE) and cdk2/Cyclin A (CycA), preventing

them from phosphorylating their targets (reviewed in Coqueret,

2003). It is usually considered that Cyclin D remains active

when in complex with p27, though the issue is still debated

(Olashaw et al., 2004). For the sake of simplicity, we consider

that CycD directly inhibits p27.

In contrast, the complexes formed by p27 and CycE or CycA

are represented in a subtler way, though this formation remains

implicit: when both p27 and CycE or CycA are active, the complex

forms, and the activity of the cyclin is blocked. To model the fact

that the cyclins remain present though sequestered when linked to

p27, we consider that p27 opposes their activities on their targets,

instead of directly inhibiting them. In our model, this is embodied

by arrows from p27 onto the targets of CycE and CycA, with a sign

opposite to that corresponding to the effect of the cyclins on their

targets in the absence of p27.

The other target of CycD, Rb, is a key tumour suppressor,

which is found mutated in a large variety of cancers. Rb is inac-

tivated by phosphorylation, and CycD is involved in the first step of

this process (reviewed in Tamrakar et al., 2000). However, in this

simplified Boolean model, we consider that Rb inactivation by

CycD is total.

Rb forms a complex with members of the E2F family of

transcription factors, turning them from transcriptional activators

to repressors, in part through recruitment of chromatin remodelling

Fig. 1. Logical regulatory graph for the mammalian cell cycle network. Each

node represents the activity of a key regulatory element, whereas the edges

represent cross-regulations. Blunt arrows stand for inhibitory effects, normal

arrows for activations.
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complexes. For this reason, we model the action of Rb by direct

inhibitions of E2F targets (which include E2F itself).

E2F is a wide family of dimeric transcription factors, formed

by a member of the E2F family, and a member of the DP family.

It is usually divided into activators E2Fs (E2F1, E2F2, E2F3a)

and repressors E2Fs (E2F3b, E2F4, E2F5), plus the recently dis-

covered E2F6, E2F7 and E2F8, whose structure, regulation and

mode of action are slightly different from those of the regular
E2Fs (Dimova and Dyson, 2005). In our present model, E2F

represents the activator members (together with their DP partners),

the other E2Fs being implicit.

At the G1/S transition, E2F activates the transcription of

Cyclin E, which in turns causes the inactivation of Rb. CycE

also phosphorylates p27, eliciting its destruction. Phosphorylated

Rb dissociates from E2F, allowing more Cyclin E to be transcribed,

further increasing the phosphorylation of Rb and the destruction of

p27, in a positive feedback loop.

Cyclin A is another target of E2F, which is activated slightly

after Cyclin E, when Rb is more completely inactivated

(Zhang et al., 2000). The action of CycA contributes to maintain

Rb and p27 inhibition, inactivates E2F and CycE and most impor-

tantly, inactivates the Anaphase Promoting Complex (APC).

The APC is an important E3 ubiquitin ligase that is activated in a

cyclic fashion (reviewed in Harper et al., 2002). The APC complex

is represented by its two activators, Cdh1 and Cdc20. Around the

G2-to-M-phase transition, CycA inactivates Cdh1, which switches

the APC OFF, allowing Cyclin B to appear. Cyclin B in turn

activates Cdc20, sowing the seeds of its own destruction, since

CycB is a target of Cdc20. Cdc20 is responsible for the metaphase-

to-anaphase transition: it activates separase through the destruction

of its inhibitor securin; this activation elicits the cleavage of

the cohesin complexes that maintain the cohesion between the

sister chromatids, thus leading to their separation. Cdc20 also par-

ticipates in degrading CycA, and indirectly activates Cdh1. Cdh1

completes CycA and CycB inactivation, and inactivates Cdc20. In

absence of its inhibitors, E2F can be reactivated and a new cycle

begins.

How Cyclin A can rise a level high enough to inactivate its

own inhibitor has long remained a paradox. Rape and Kirshner

(2004) solved it by highlighting the role of the E2 ubiquitin con-

jugating enzyme UbcH10). They found that UbcH10 is necessary

for Cdh1 dependent degradation of Cyclin A, but not of the other

APC substrates; once all of its substrates have been degraded,

UbcH10 can ubiquitinate itself, preventing the APC from degrading

Cyclin A, which can thus reappear. These findings make the activa-

tion of Cyclin A in S phase coherent with the observation that Cdh1

is still active at this point of the cycle (Huang et al., 2001). At the

present stage, the explicit inclusion of UbcH10 constitutes the most

remarkable extension of Novak & Tyson’s model. It further allows

us to incorporate an important additional interaction, the inactiva-

tion of CycA by Cdh1 (within the APC complex).

2 RESULTS

2.1 Regulatory graph and its parameterization

The Figure 1 displays the regulatory graph integrating all the data

briefly reviewed in the introductory section.

On the basis of this graph and using additional information

from the literature, it is possible to derive a set of rules enabling

the activation of each of the regulatory component encompassed by

this graph. Presented in Table 1, these rules are sufficient to derive

all the non-zero logical parameters enabling the recovery of the

main known features of the wild-type cell cycle.

In its present Boolean version (i.e., Maxi ¼ 1 for all regulatory

components), our model is still simple enough to allow an

exhaustive dynamical analysis with the logical simulation software

GINsim. The complete state transition graph contains 1024 vertices

(i.e., Boolean states). To study the dynamical trajectories corre-

sponding to the asymptotical behaviour of the system, we still

need to specify an updating assumption. As we shall see, this spe-

cification further determines the pathway(s) followed by the system,

in particular with respect to the cyclic attractor.

2.2 Synchronous versus asynchronous updating

Starting with the simplest, synchronous assumption, we obtain

two attractors. The first one is a stable state with only Rb, p27

and Cdh1 active, in the absence of CycD; this state is reached

from all the other states lacking CycD activity (i.e., in the lack

of growth factors; this state thus corresponds to the phase G0 or

cell quiescence).

In contrast, in the presence of CycD, all trajectories lead to a

unique dynamical cycle, made of a sequence of seven successive

states (Figure 2, bottom left). From a qualitative point of view, the

order of activity switching (off or on) matches the available data, as

well as the time plots published by Novak and Tyson (2004).

Looking more carefully at this synchronous cycle, one can

note that only two arrows correspond to single transitions, namely

the activations of CycA and Cdc20, whereas three arrows corre-

spond to double transitions, and two arrows to triple ones. In such

situations, the synchronous approach impedes any further refined

analysis of these transitions.

One may also consider a fully asynchronous assumption and

generate all the trajectories compatible with the regulatory graph

and the logical rules. Naturally, the stable state is conserved and can

still be reached from all states lacking CycD activity.

Similarly, in the presence of CycD activity, the system has a

unique attractor, but this now includes many intertwined cycles

(see Figure 2, top; see also the web supplementary material for

higher resolution graphs). Composed by 112 states, this attractor

is a terminal strongly connected component in the sense of graph

theory. In addition, the part of the state transition graph with CycD

active encompasses several dozens of additional (non terminal)

strongly connected components, each involving a small number

of states (typically four) and potentially representing transient oscil-

lations of few components on the way to the canonical cell cycle.

Interestingly, the seven states forming the synchronous cycle are

also found in the terminal strongly connected component found in

the asynchronous transition graph (see grey shaded states in

Figure 2, top), together with the corresponding single transitions.

However, the synchronous transitions may now correspond to

multiple asynchronous paths.

2.3 Mixed a/synchronous updating

Between these two extreme updating assumptions, it is possible to

define middle terms. One option is to consider the possibility that

the realisation of some transitions requires several updating steps.

Chaves et al. (2005) have recently explored this option to improve

their Boolean model analysis of the segment polarity network
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involved in the segmentation of the trunk of Drosophila embryos.

Here, we propose an alternative approach enabling the combination

of synchronous and asynchronous assumptions depending on the

regulatory element or on the nature of transition considered. Indeed,

depending on available knowledge or on the biological questions

addressed, it may be necessary to go into fine grain dynamical

analysis for only a subset of regulatory components. To deal

with these issues, the last version of GINsim enables the user to

group components into different classes, and to assign a priority
level to each of these classes. In case of concurrent transition calls,

GINsim first updates the gene(s) belonging to the class with the

highest ranking. For each regulatory component class, the user can

further specify the desired updating assumption, which then deter-

mines the treatment of concurrent transition calls inside that class.

When several classes have the same ranking, concurrent transitions

are treated under an asynchronous assumption (no priority).

To illustrate this approach, we have first built two priority classes,

which arguably group faster versus slower biochemical processes.

In the highest ranked transition priority class, we have included the

degradations of E2F, CycE, CycA, Cdc20, UbcH10, CycB, as well

as all transitions (in both directions) for CycD, Rb, p27 (Kip1) and

Cdh1. The remaining transitions corresponding to synthesis rates (of

E2F, CycE, CycA, Cdc20, UbcH10, and CycB) are grouped in a

lower priority class. Using these two priority classes, both consid-

ered under the asynchronous assumption, we still obtain a single

terminal strongly connected component (not shown) involving 34

states (to compare with the seven states obtained with the standard

synchronous treatment, versus the 112 states in the fully asyn-

chronous case without priority).

The analysis of this component reveals that some pathways are

clearly unrealistic, as they skip the activation of some crucial

cyclins, for example. To eliminate these spurious pathways, one

can further refine the priority classes, taking into account additional

information. Here, we can exploit the fact that several transitions are

controlled by similar regulatory mechanisms and group them

into synchronous classes. This leads to the definition of the four

transition classes displayed in Table 2.

For this last prioritisation, we obtain a smaller terminal strongly

connected component involving 18 states, which combine single

and multiple transitions. This mixed graph is thus much simpler that

the fully asynchronous transition graph. This graph enables a finer

description of the sequence of events characteristic of the normal

cell cycle than in the fully synchronous case. However, the data

presently available do not allow a clear distinction between the

different alternative pathways.

2.4 Mutant simulations

Beyond a faithful reproduction of the wild-type behaviour, a good

cell cycle model should enable the simulation of various types of

Table 1. Logical rules underlying the definition of the logical parameters associated with the regulatory graph of Figure 1

Product Logical rules leading to an activity of the product Justification/References

CycD CycD CycD is an input, considered as constant.

Rb ðCycD ^ CycE ^ CycA ^ CycBÞ
_ ðp27 ^ CycD ^ CycBÞ

Rb is expressed in the absence of the cyclins, which inhibit it by phosphorylation (Novak and

Tyson, 2004; Taya, 1997); it can be expressed in the presence of CycE or CycA if their

inhibitory activity is blocked by p27 (Coqueret, 2003).

E2F ðRb ^ CycA ^ CycBÞ _ ðp27 ^ Rb ^ CycBÞ E2F is active in the absence of Rb, that blocks E2F self-transcriptional activation (Helin, 1998),

and in the absence of CycA and CycB, that inhibit E2F (Novak and Tyson, 2004); CycA may

be present, if its inhibitory activity is blocked by p27 (Coqueret, 2003).

CycE ðE2F ^ RbÞ CycE activity requires the presence of E2f and the absence of Rb (Helin, 1998).

CycA ðE2F ^ Rb ^ Cdc20 ^ ðCdh1 ^ UbcÞÞ
_ ðCycA ^ Rb ^ Cdc20 ^ ðCdh1 ^ UbcÞÞ

The transcription of CycA is activated by E2F in the absence of Rb, which blocks this activation

(Helin, 1998), in the absence of Cdc20, as well as of the pair formed by Cdh1 and UbcH10,

which both lead to the degradation of CycA (Harper et al., 2002; Rape and Kirschner, 2004);

CycA is stable in the absence of its inhibitors Rb, Cdc20, and of the pair Cdh1 and UbcH10.

p27 ðCycD ^ CycE ^ CycA ^ CycBÞ
_ ðp27 ^ �ðCycE ^ CycAÞ ^ CycB ^ CycDÞðCycE ^ CycAÞ ^ CycB ^ CycDÞ

p27 is active in the absence of the cyclins; when p27 is already present, it blocks the action of

CycE or CycA (but not both of them) by sequestration (Coqueret, 2003).

Cdc20 CycB CycB indirectly activates Cdc20 (Harper et al., 2002).

Cdh1 ðCycA1 ^ CycBÞ _ ðCdc20Þ _ ðp27 ^ CycBÞ The activity of Cdh1 requires the absence of CycB and CycA, which inhibit it by

phosphorylation (Harper et al., 2002); Cdc20 further activates Cdh1. (Novak and Tyson,

2004); p27 allows the presence of CycA, by blocking its activity.

UbcH10 ðCdh1Þ _ ðCdh1 ^ Ubc

^ ðCdc20 _ CycA _ CycBÞÞ
UbcH10 is active in the absence of Cdh1; this UbcH10 activity can be maintained in the

presence of Cdh1 when at least one of its other targets is present (CycA, Cdc20, or CycB)

(Rape and Kirschner, 2004).

CycB ðCdc20 ^ Cdh1Þ CycB is active in the absence of both Cdc20 and Cdh1, which target CycB for destruction

(Harper et al., 2002).

components’’. Finally the last column provides some justifications for the logical rules, together with references.

The names of the components of the regulatory graph of Figure 1 are listed in the first column. For each one, the second column gives the logical rules specifying its behaviour.

More precisely, we have described only the situations where the component is activated (value of the corresponding Boolean variable set to 1), all other situations leading to an

inactivation. This description is based on the classical logical formulation, where ‘‘^’’ stands for ‘‘AND’’, ‘‘_’’ stands for (inclusive) ‘‘OR’’, and the negation is written by a bar over

the term. As an example, considering the case of CycE, there are eight non-zero parameters attached to CycE, specifying the different combinations of incoming interactions which lead to

an activation of CycE (cf. the GINML file on the GINsim website). These can be summarised by the logical formula ‘‘E2F active and Rb not active, whatever the state of the other
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Fig. 2. Simulations of the wild-type cell cycle based on the Boolean model defined in Figure 1 and Table 1. Each vertex (node) represents one state, with the

regulatory components ordered as mentioned in the top panel. The three state transition graphs correspond to the comprehensive asynchronous (top), the

synchronous (bottom left), and a mixed (bottom right) assumptions. Note the difference of complexity between the asynchronous and synchronous graphs. In the

bottom panels, solid arrows stand for single transitions, and dotted arrows for multiple transitions. The seven states involved in the synchronous cycle are grey-

shaded in the asynchronous and mixed state transition graphs. For larger resolution pictures, see GINsim website.
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perturbations, in particular, the addition of drugs interfering with

cell growth or cyclin activities, or the presence of loss-of-function

or gain-of-function mutations in some of the core regulatory genes.

In this respect, GINsim provides a simple interface to constraint

selected regulatory components within specific value intervals.

Depending on the initial state(s), once a regulatory component

has reached the corresponding value interval in the course of the

simulation, all transitions leading outside of this interval are

automatically discarded. This function greatly eases the simula-

tion of loss-of-function and gain-of-function mutants (a table

compiling our mutant analyses is maintained on the GINsim web

page). As we have represented molecule families by single com-

ponents, the comparison between in silico and experimental

results are not always straightforward. However, up to now, all

our simulation results are consistent with available experimental

data (loss versus preservation of cell cycle depending on the mutant

considered), but a few exceptions like the case of the p27 loss-of-

function, for which our model predicts a stable state in the absence

of CycD, whereas published data support the existence of oscilla-

tions in this situation. This discrepancy is likely due to the crude

representation of CycE and Rb activity levels in terms of Boolean

variables and could be solved by using ternary variables for these

elements.

3 CONCLUSIONS AND PROSPECTS

In this paper, we have assessed the power of the logical approach,

already in its simplest Boolean form, for the modelling of a complex

protein interaction network. We have further presented extensions

of our software GINsim to enable detailed studies of the asymptoti-

cal behaviour of complex systems, with synchronous, asynchronous

or mixed treatment of concurrent transitions.

As shown through the analysis of a model for the mammalian cell

cycle, a relatively simple logical model captures most qualitative

dynamical features of the wild-type network, as well as of docu-

mented mutants. Strikingly, even simplistic synchronous simula-

tions give rise to (only) two attractors consistent with available data,

as well as with the simulations of Novak and Tyson (2004). On the

one hand, we obtain a stable state in the absence of CycD, which

matches our knowledge of quiescent cellular states when growth

factors are lacking. On the other hand, in the presence of CycD, all

trajectories converge towards a unique complex dynamical cycle.

This is a favourable situation for the synchronous assumption, as no

spurious cycle is generated.

However, the synchronous dynamics obtained does not allow

the temporal separation of multiple regulatory activity changes.

In contrast, asynchronous updating does allow finer temporal

analyses, but the resulting state transition graph is very complex

and encompasses many incompatible or unrealistic pathways. Lean-

ing on specific GINsim functions, we have thus considered system-

atic ways to combine synchronous and asynchronous transitions,

taking advantage of existing information on kinetics or regulatory

mechanisms. This application thus illustrates the flexibility of the

combination of different updating assumptions.

The logical formalism used should further enable the identifica-

tion of the regulatory circuits playing the most crucial dynamical

roles (Thomas et al., 1995). Our present model comprises 132

different circuits, involving from one to nine regulatory elements.

A preliminary analysis suggests that only a dozen of these circuits

are functional in some region of the variable space, most of the time

only in the absence of CycD. The precise role of these different

circuits has still to be clarified.

Modelling the molecular regulatory network controlling

mammalian cell cycle is clearly a challenging and long-term enter-

prise. Focusing on the core network controlling the mammalian cell

cycle, our present Boolean model corresponds to a relatively high

level abstraction of our knowledge of the cellular system, which

involves many variants for several of the molecular species

considered (E2F, RB. . .). In this respect, the generation of extensive

functional genomics data sets should prove of great help to delineate

the specific expression and interaction patterns of these variants

(for a pioneering attempt to exploit various kinds of functional

genomic data sets to dynamically characterise the molecular net-

work controlling the cell cycle in yeast, see the recent article by de

Lichtenberg et al., 2005). On the basis of our generic, abstract

model, several extensions or refinements can now be considered,

including the use of multilevel variables wherever biological jus-

tifications can be advanced, further specifications and enrichments

of this model in reference to specific cell types, or yet the inclusion

of additional control modules.

A substantial increase in the sophistication of the logical

models considered will lead to combinatorial problems, e.g., to

identify all attractors or to analyze the trajectories leading to

these attractors. To prepare the ground to deal with such combina-

torial problems, we are exploring different approaches. First, we use

constraint programming to delineate attractors from simple or

composed logical models without computing the whole state tran-

sition graph (Devloo et al., 2003). Next, we have developed and

implemented a set of translations rules enabling the export of

parameterised regulatory graphs into standard or coloured

Petri nets, thereby enabling the use of the various dynamical anal-

ysis tools developed by this lively community (Chaouiya et al., in

press). Finally, we are presently evaluating the application of

temporal logic formalisms (e.g., Computational Tree Logics) to

assess the existence of specific dynamical pathways, or to

encompass specific temporal information (Bernot et al., 2004;

Batt et al., 2005).

Ultimately, more quantitative models are needed to explore fine

grain aspects of the control of the cell cycle, e.g., modulations of the

cycle period or of its amplitude. In this respect, Petri nets constitute

an interesting framework to refine discrete models, leaning on exist-

ing hybrid or stochastic extensions. Alternatively, one may use sets

of differential or stochastic equations, but even in this case, a

preparatory logical analysis should prove useful when dealing

with large and complex regulatory networks.

Table 2. Priority transition classes used to obtain the strongly connected

component shown in the bottom right panel of Figure 2

Rank Type Transitions

1 Asynchronous CycD, Rb, p27, Cdh1, E2F#, CycE#
1 Synchronous CycA#, Cdc20#, Ubc#, CycB#
2 Asynchronous E2F", CycE", CycA", Cdc20"
2 Synchronous Ubc", CycB"

The symbols # and " specify the (decreasing or increasing) direction of the considered

transitions (by default, both directions are considered, e.g., for CycD).
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ABSTRACT

Motivation:Massspectrometry (MS)combinedwith high-performance

liquid chromatography (LC) has received considerable attention for

high-throughput analysis of proteomes. Isotopic labeling techniques

such as ICAT [5,6] have been successfully applied to derive differential

quantitative information for two protein samples, however at the price

of significantly increasedcomplexity of the experimental setup. To over-

come these limitations, we consider a label-free setting where corre-

spondences between elements of two samples have to be established

prior to the comparative analysis. The alignment between samples is

achieved by nonlinear robust ridge regression. The correspondence

estimates are guided in a semi-supervised fashion by prior information

which is derived from sequenced tandem mass spectra.

Results: The semi-supervised method for finding correspondences

was successfully applied to aligning highly complex protein samples,

even if theyexhibit large variationsdue to different biological conditions.

A large-scale experiment clearly demonstrates that the proposed

method bridges the gap between statistical data analysis and label-

free quantitative differential proteomics.

Availability:Thesoftwarewill beavailableon thewebsitehttp://people.

inf.ethz.ch/befische/proteomics

Contact: bernd.fischer@inf.ethz.ch

1 INTRODUCTION AND RELATED WORK

A widely used approach to the sample-alignment problem fits a

piece-wise linear function to maximize the correlation between

the two samples. Methods of this kind are often characterized as

correlation optimized warping (COW) (12). Other approaches are

based on hidden Markov models (HMM) which formally define

generative models for aligned samples, see e.g. Listgarten et al.,
(11). From a machine learning perspective, both COW and HMM

methods are purely unsupervised in nature, since they do not exploit

prior information of known correspondences. Both approaches

share also the commonality that they have been solely applied to

aligning total ion counts. Figure 1 depicts total ion count curves for

two samples under two different biological conditions. Aligning

these two samples is very difficult when the total ion counts are

exclusively used as the information source.

In principle, both COW and HMM can be extended to aligning

multi-dimensional data. It is, however, extremely difficult to handle

LC/MS data of complex samples which are typically characterized

by a very large input dimension (up to a mass range of 2500 Da for

doubly charged peptides). The data analysis situation becomes even

more complicated if we have to align highly heterogeneous samples

that were taken under different biological conditions. Under these

conditions one typically finds many peaks that do not match to any
other peak in the second sample.

A first attempt to overcome these problems was made by

Tibshirani et al. (14), who introduced an aligning technique

based on hierarchical clustering.

In this paper we describe a new approach for LC/MS alignment

exploiting additional information from sequenced tandem mass

spectra rather than aligning only peaks from the LC/MS image.

The second spectrometry stage is used to acquire sequence informa-

tion. From a subset of these sequences which are identified in

both samples, a time warping function is estimated by fitting a

nonlinear regression function. Since there exists a number of

false-identifications we use a robust regression model to reduce

the sensitivity to outliers. Starting from an initial alignment

hypothesis, we further improve the model by combining supervision

information (sequenced peaks) and unlabeled information (all other

peaks) within an iterative self-training scheme: the predictive vari-

ance is computed for each of the peaks, and peaks with a very small

uncertainty are assigned a target value. Then, the model is re-trained

based on the enlarged dataset, and the whole procedure is iterated

until all peaks are labeled. This inclusion of unlabeled data yields an

improved detection of peak correspondences. All free model

parameters are selected by employing a cross-validation loop.

With this novel machine learning technique we are able to align

the underlying experiments of Figure 1.

2 EXPERIMENTAL SETTING AND DATA
GENERATION

2.1 Liquid chromatography and mass spectrometry

Before analyzing the proteins in a cell, the proteins are digested by

a specific enzyme like Trypsin, resulting in a mixture of small

peptides. The peptides are separated by high-performance liquid

chromatography. At (almost) equally spaced retention time steps

a mass spectrum is acquired from the peptide sample eluting from

the LC-column. The recording of a mass spectrum requires that a

peptide is ionized and transferred into the gas phase, typically by

electro-spray ionization. Most of the peptides are doubly or triply

charged, but singly charged peptides also appear in proteomics

experiments. The data are represented in form of a two dimensional�To whom correspondence should be addressed.
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measurement, where one dimension is the retention time (t) and the

other dimension is defined by the peptide mass over charge (m/z)

(See Figure 2). We will refer to this two dimensional measurement

as the LC/MS image. The local maxima in the LC/MS image cor-

respond to different peptides with different m/z values. The bottom

figure shows an accumulation of peaks over a large number of singly

charged peptides. One can recognize three different isotopes for

each peptide. Isotopes are common, since peptides are composed of

a large amount of C-atoms. The integral over the peak area mi yields

the amount of ions of a specific peptide i.

2.2 Quantitative measurement

The over-all goal of quantitative proteomics is the estimation of

the absolute protein expression. Let I(p) denote the set of peptide

indices for protein p. Assuming that all peptides I(p) of a protein

produce the same amount of ions and assuming a log-normal error

distribution, one can estimate the log protein expression as

dlog elog ep ¼
1

j IðpÞ j
X

i2IðpÞ
log mi : ð1Þ

The log-normal error model seems to describe expression levels

well in practice, although we are not aware of any systematic study

of this observation. The other assumption, however, that all peptides

produce the same amount of ions rarely holds. The peak-area inte-

grals are typically quite different for peptides of the same protein.

One reason lies in the ionization efficiency of the peptides and

suppression effects between peptides. An incomplete or overcom-

plete digestion process can also contribute to this discrepancy.

There is still too little known about the reason for the different

behavior of peptides. These uncertainties in the measurements ren-

der absolute quantitative proteomics infeasible today, but for pep-

tide specific multiplicative errors, the ratio of peak area integrals can

reliably be estimated. In our experience this assumption holds as

long as the two samples are fairly similar. For two very different

samples, peptide unspecific suppression effects play the major role.

Given two samples that both contain a certain peptide i and two

corresponding measurements m
ð1Þ
i and m

ð2Þ
i , the log-protein ratio in
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Fig. 1. The total ion count per time unit of two protein samples under two

different biological conditions.
Fig. 2. Top: LC/MS image. The x-axis is the retention time, the y-axis is the

peptide mass. Bottom: One peak in the LC/MS image accumulated over all

singly charged peptides.
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both samples can be estimated by

log rp ¼
1

j IðpÞ j
X

i2IðpÞ
log

m
ð1Þ
i

m
ð2Þ
i

: ð2Þ

A common procedure to measure peptides under two conditions is

isotopic labeling like ICAT (5,6). The peptides in the two samples

are marked with labels of different weights. The two samples are

then mixed together and measured together. In the resulting LC/MS

image, peptides of the two samples occur with a mass shift corre-

sponding to the different weights of the labels. In addition to the fact

that labels are still expensive, this approach carries the disadvantage

that the two samples have to be mixed together. In many applica-

tions, however, it is advantageous to measure both samples sepa-

rately. For example in cancer detection, one would like to first

analyze a certain number of collected disease samples which

then can be compared with patient probes without analyzing the

disease samples over and over again.

Label-free techniques do not suffer from these shortcomings.

Without the label information, on the other hand, one is forced

to detect corresponding peaks in the two samples. In order to

solve this correspondence problem we first have to shed some

light on the procedure of peak picking which extracts peaks in

the LC/MS image.

2.3 Peak detection

At the beginning of the analysis process, the mass spectrometry data

is stored in a large data matrix, the columns of which represent mass

spectra taken at different retention times. The m/z axis of these

spectra is discretized in 1.00045 Da bins which can be justified

as follows: If an amino acid is divided by its elementary mass

(the number of protons and neutrons), the average mass of one

elementary unit (a proton or neutron) is 1.00045 Da. Thus a peptide

with 2000 elementary units has a mean mass of 2000.9 Da. The

difference of 0.9 Da to the naively expected mean mass of 2000 Da
is clearly detectable by our mass spectrometer and this mass cor-

rection significantly increases e.g. the peptide retrieval in de novo

sequencing (3).

To ensure a standardized representation, each mass spectrum is

normalized by its total ion count, i.e. by the sum over the spectrum.

In the next step of the analysis process we measure the background

noise level by median filtering over a window of ±50 in time and

mass direction. This estimated noise level is then subtracted from

the measurements. An entry in the LC/MS matrix is marked as a

peak area, if the mean over ±5 in time direction and +1 in mass

direction exceeds at least 3.0 times the mean over pixels surround-

ing the potential peak. The local maximum in each connected com-

ponent defines the peak position with time and mass coordinates.

Figure 3 shows the detected peaks in the LC/MS image.

2.4 Sequence identifications

At this stage of the analysis process the amino-acid sequence of the

detected peaks is not available. We can, however, acquire sequence

information for a certain fraction of peaks by way of Tandem mass
spectrometry. From a measured MS spectrum a MS/MS device

selects one of the peaks exceeding a predefined level. The ions

in a small mass window around the selected mass are stabilized

in an ion trap and fragmented by collision with a noble gas. The

mass spectrum of the fragment ions contains information about the

peptide sequence. The tandem mass spectra are denoted MS/MS

spectra to distinguish them from standard MS spectra. Searching the

spectrum against a database (2,7) produces hypotheses about the

underlying peptide sequence. The hypothesized sequences are then

validated by using PeptideProphet (10). In our experiments we

consider spectrum identifications with a posterior probability

p � 0.97 as being valid. Successful sequence identification without

database knowledge is still a challenging problem. We have shown

that small subsequences can be identified by de novo peptide

sequencing (3) in many cases. In this work, however, we only

use the database search results.

To identify each MS/MS spectrum with one of the detected peaks

in the LC/MS image, we search for a detected peak in the neigh-

borhood of the mass/time coordinate of the MS/MS spectrum. We

observed that in most cases the mass of the detected peak is correct

or increased by 1 Da. Such increments might occur, if the first

isotope is much larger than the mono-isotopic peak. Figure 4 depicts

the fraction of sequenced MS/MS spectra that can be assigned to a

peak. The quantity w0 denotes the size of the window, in which a

peak is accepted if the mass is correct, and w1 is the corresponding

window for mass differences of one. The asymmetry in the figure

shows that the majority of peaks have the correct mass. Choosing

Fig. 3. Top: The detected peaks in the LC/MS image. Bottom: detailed view

of sub-image.
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w0¼ 10 and w1¼ 5 we can assign 52.2% of all identified sequences

to a peak. This rate might be increased by using larger windows,

however at the price of a higher false-positive rate. We will discuss

this issue in more detail later. The large fraction of not assignable

sequenced spectra is due to peaks that can hardly be distinguished

from the background.

The search includes all singly, doubly, and triply charged

peptides. Denoting the mono-isotopic mass of a peptide by m,

the m/z-values of a singly (i ¼ 1), doubly (i ¼ 2) and triply (i ¼
3) charged peptide are observed as mass/charge ratios

mðiÞ

z
¼ mþ i

i
ð3Þ

due to protone capture. On average there are about 5000 peaks per

LC/MS image from which roughly 200 could be sequenced.

Figure 5 depicts the distribution of the different charge states

over the LC/MS image. The green circles show the singly charged

peptides, the red crosses are the doubly charged peptides and the

blue filled circles are the triply charged ones.

2.5 Scenarios in quantitative proteomics

The analysis process described above extracts two different types of

information from the mass spectrometry data:

� a list of peaks in the LC/MS image, and

� sequence information for a small subset of the peak list.

A quantitative analysis based on these input data can pursue dif-

ferent goals:

(i) in a classification scenario one would like to separate a certain

protein sample under one biological condition (extracted e.g.

from a diseased patient) from samples under another biological

condition (extracted e.g. from a control group). For the mere

classification task one does not need the peptide sequence

information. One rather tries to find as many corresponding

peaks between two samples of different biological conditions

as possible.

(ii) A different scenario is known as biomarker discovery (9). In

addition to classification, one would like to identify proteins

or peptides which are causally related to a certain biological

condition (e.g. a certain disease). From a machine learning

point of view this identification problem defines a feature
selection task. Having selected ‘relevant’ features one is

typically interested in the underlying sequences. Thus, if we

pursue biomarker discovery as our goal, we have to sequence
as many peptides as possible. Ultimately, we try to compare

the complete proteome using these processing steps.

In this paper we will show that the number of peak correspon-

dences (for classification) as well as the number of sequence iden-

tified correspondences (for biomarker discovery) can be increased

by combining labeled and unlabeled information.

2.6 Sample preparation

The peptides we used for the analysis were derived from plant cell

culture samples that were exposed to different illumination pro-

grams (light versus dark). The proteins are fractionated by SDS-

PAGE and in-gel digested. The peptide mixture was loaded onto a

C18 reversed phase column and eluted with a gradient developed

from solvent A (5% ACN, 0.2% formic acid) and solvent B (80%

ACN, 0.2% formic acid). Gradient shape was as follows: 26 minutes

100% solvent A, within 0.2 minutes up to 5% solvent B, within

additional 69 minutes up to 55% solvent B and in one additional

minute up to 100% B. The flow rate at the tip of the column was

adjusted to 	200 nl/min. The chromatography (LC) was coupled

online to an LTQ ion trap mass spectrometer (Thermo-Finnigan,

San Jose, CA, USA) equipped with a nanospray ionization source.

Mass analysis was performed with a spray voltage of 2.0–2.5 kV

and one MS full scan followed by three data-dependent MS/MS

scans of the three most intensive parent ions. The dynamic exclusion

function was enabled to permit one measurement of a particular
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parent ion followed by an exclusion of the aquisition of MS/MS

spectra for this parent ion over a periode of 4 min.

3 LC/MS ALIGNMENT

When comparing two subsequent LC/MS scans, slight changes of

the time scale can often be observed in different experimental

situations. To compensate these time differences, an alignment

function of the form f : tð1Þ 7!tð2Þ maps the time scale of one experi-

ment to that of the second experiment. Instead of directly mapping

the scale itself, one can alternatively map one scale to the scale
differences between the two samples:

g : tð1Þ 7!tð2Þ � tð1Þ: ð4Þ

This formulation provides a clear visualization of the inherent non-

linearities of the warping process. Within the subset of peaks

sequenced in the second MS stage, we typically find an overlap

of 10-70 identified peaks that are common in both experiments.

Figure 6 depicts such time-warping functions learned from the

subset of common peptides for two different pairs of biological

samples. The non-linear relationship between the time-scales is

clearly visible in the top panel.

3.1 Warping by way of robust regression

Identifying the t
ð1Þ
i -values with xi, and the time differences

t
ð2Þ
i � t

ð1Þ
i with yi, the warping function depicted in Figure 6 is

determined by first expanding the x-values in a k-th order polyno-

mial basis

fi :¼fðxiÞ ¼ ð1‚xi‚x2
i ‚ . . . ‚xk

i Þ
t
‚ ð5Þ

and then by fitting a robust ridge-regression model. The latter finds

the k + 1 dimensional weight vector b which minimizesXn

i¼1

Lcðft
ib � yiÞ þ lbtb‚ ð6Þ

where Lc(j)denotes a robust loss function of Huber’s type:

LcðjÞ ¼
c j j j � c2

2
‚ for j j j > c

j2

2
‚ for j j j � c:

8>><>>: ð7Þ

Both the degree k of the polynomial and the ridge-penalty l are

chosen by 10-fold cross-validation. The reader should notice that

the above nonlinear regression model is equivalent to using a kernel
regression model with polynomial kernal of degree k. For compu-

tational reasons, in this special application it is better to explicitly
expand the input data in the polynomial basis, rather than using the

kernelized version.

In the usual regression setting, the observations y are assumed to

be generated by corrupting the values of f ðxiÞ ¼ ft
ib by additive

noise that follows some density p(j). Huber’s loss function turns out

to be optimal (in the sense that it guarantees the smallest loss in a

worst case scenario), if the true noise density is a mixture of two

components, one of which is known to be Gaussian distributed and

the other one is an arbitrary density (8). Huber’s loss function

penalizes large deviations j j j > c only linearly. Thus, it is superior

to its standard quadratic counterpart in situations where the data

contains outliers which are generated by an unknown and possibly

highly fluctuating noise source. The parameter c is typically esti-

mated from the data in an iterative fashion as a multiple of the

standard deviation of the observed residuals. A common scaling

formula is c¼ 1.345s, which yields 95% efficiency when the errors

are normal, and still protects against outliers. Usually a robust

measure of spread is employed in preference to the standard devia-

tion of the residuals. For example, a common approach is to

choose ŝs ¼ MAR/0:6745, where MAR is the median absolute

residual. This choice defines an unbiased estimator of the standard

deviation for Gaussian data, see (4).

The optimal weight vector b that minimizes eq. (6) is found

iteratively as the solution of a re-weighted least squares problem:

bnew ¼ ½FtWðbÞFþ 2lI��1FtWðbÞy‚ ð8Þ

where F denotes the (transformed) data matrix with rows fi, and

W(b) denotes the diagonal matrix

WðbÞ ¼ diagfvð½Fb�y�iÞg‚ ð9Þ
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Fig. 6. Examples of two different alignments. On the x-axis the retention time

is plotted, on the y-axis the difference in retention time. The red curve depicts

the estimated warping function, the light gray ones show 1s-confidence

intervals.
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with vðjÞ :¼ ð1/jÞ · @LcðjÞ
@j . The final entries Wii define weights for

the individual training data fðxÞi.

3.2 Semi-supervised alignment

In the above derivation, the regression function is learned exclu-

sively from the subset of identified correspondences in both sam-

ples. Due to technical limitations, the number of MS/MS spectra

and thus the number of peptide sequence identifications is usually

relatively small. We will now exploit the ideas of self-training (13),

to additionally extract the information contained in the remaining

peaks. Self-training is an incremental algorithm that labels the unla-

beled data and converts the most confidently predicted data points

into labeled training examples. This iteration proceeds until all the

unlabeled data are consistently labeled. In order to apply this

mechanism to our LC/MS alignment problem, we have to derive

a formula for the predictive uncertainty of test data.

We denote by FG the subset of training data which have been

assigned a weightWii ¼ 1 in the robust regression procedure defined

in eq. (8). These data points have small residuals j j j � k which are

penalized quadratically by the robust loss function eq. (7). Thus, for

these points the Gaussian noise assumption is valid. Since in this

case the posterior distribution is also Gaussian, a Bayesian treatment

of regression allows us to derive an analytical expression for the

uncertainty of the prediction for a new data point x
*
:

Var½f ðx
*
Þ� ¼ Eb jX½ð f ðx

*
Þ � E½ f ðx

*
Þ�Þ2�

¼ s2ftðx
*
ÞðlI þFt

GFGÞ�1
fðx

*
Þ:

ð10Þ

The total predictive variance, Var½yðx
*
Þ�, is the sum of the noise

variance s2 and the variance about the mean, Var½f ðx
*
Þ�, since both

sources of variation are uncorrelated, see e.g. (1) for details. For

estimating the noise variance one might again use the above equa-

tion ŝs ¼ MAR/0:6745 applied to the data in FG.

Our adaption of the self-training method now proceeds as fol-

lows:

Initialize: train the model on the correspondences verified by

sequencing.

Iterate:

(i) for a peak which elutes at time t
ð1Þ
i in the first LC/MS image,

predict the time difference t
ð2Þ
i � t

ð1Þ
i ;

(ii) for every such predicted peak, compute its predictive

variance;

(iii) for the 10% most certain peaks, search for a corresponding

peak in the second LC/MS image within a certain window.

(iv) include all found correspondences into the training set, and

retrain the model;

Until: No more peaks are found within a 2s-confidence interval

around the current fit.

Figure 7 shows the outcome of this semi-supervised learning

algorithm for the two samples that were analyzed previously in

Figure 6. The labeled objects are colored dark blue. Compared

to the alignment computed exclusively on the labeled objects

(cf. Figure 6), the inclusion of unlabeled objects makes it possible

to model more details of the warping function. Compared to the

supervised solutions, where often only a straight line can be reliably

fitted to the data, the semi-supervised solutions typically use

regression models of higher complexity (measured in terms of

the polynomial degree k in the expansion eq. (5), which is auto-

matically selected by cross validation).

3.3 Detecting peak correspondences

First we analyze the performance of the alignment in the classi-

fication scenario, where all peaks (sequenced as well as unse-

quenced) are aligned. The alignment function computed by

minimizing eq. (6) treats the two samples in an non-symmetrical

fashion, since it warps the first time scale to the second. In order to

derive symmetric correspondences between peaks, we predict the

retention times in both directions separately, which allows us to

easily check the self-consistency of the prediction model. Given a

peak in sample A, our method predicts the retention time in sample

B. If we have detected a peak in sample B within a window w around

the predicted peak position, we denote this a (directed) correspon-

dence. Here again we tolerate a mass difference of at most ±1 Da.

Predicting retention time in both directions between sample A
and sample B gives us a list of (directed) correspondences from

sample A to sample B and a list of (directed) correspondences
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from sample B to sample A. A correspondence is called confirmed if

we find a correspondence in both directions. If we find a peak only in

one of the directions, we call the correspondence unconfirmed. If we

obtain two different mappings for one peak, we declare the ‘cor-

respondence’ as contradicting. Denoting by n1 the number of con-

firmed, by n2 the number of unconfirmed and by n3 the number of

contradicting correspondences, the respective rates ni/(n1 + n2 + n3)

are depicted in Figure 8. It is obvious that the fraction of contra-

dicting correspondences monotonically increases if the window is

enlarged. For very small windows most correspondences remain

unconfirmed, whereas the fraction of confirmed correspondences

attains a maximum for windows of intermediate size. In practice, we

have to balance the number of confirmed correspondences against

the unconfirmed and/or contradicting ones. Figure 9 shows the

quotient n1/(n2 + n3) both for the semi-supervised and supervised

variants. These two curves nicely summarize the benefits of the

inclusion of unlabeled data: the maximum is higher (which is obvi-

ously desirable), and it is attained at smaller window sizes, which is

also desirable, since it yields better localization in the mass-

retention time space.
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3.4 Cross-validation

To show the efficiency of our approach we test it by cross-validation

for biomarker discovery. For each alignment we divide the set of

the known correspondences in a training set and a test set with size

proportions (75%/25%). Only the training set is used as supervi-

sion information during alignment. On the test set we evaluate the

error of the alignment. Such an error occurs, if the known

sequences are assigned to different peaks. Figure 10 (top) depicts

the cross-validation error for sequenced peaks. The error is plotted

against the window size of acceptance for peak correspondences.

An error of less than 0.03 is achieved for window sizes smaller than

15. Window sizes smaller than 10 are excluded from the plot,

because the corresponding error bars are extremely large, since

only very few identifications could be found. Compared to the

fraction of contradicting peaks in Figure 8, the error rate on the

subset of sequenced peaks is much smaller. The reason for this

reduced error is that many of the contradicting peaks in the

unsupervised setting are not counting for an error in this

supervised setting: a contradiction in the unsupervised setting

occurs, if two different peaks from sample 1 are assigned to the

same peak in sample 2. In the supervised setting such an inconsis-

tency produces an error only if both peaks from sample 1 are

differently sequenced. Sometimes the peak picking algorithm

finds two peaks where only one peak should be placed. The

sequenced MS/MS spectrum, however, is only assigned to one of

the two ‘‘pseudo’’-peaks. In the unsupervised setting, such a

situation would be treated as a contradiction, whereas in the super-

vised setting no error occurs.

On the bottom of the figure the gain of the semi-supervised

method is plotted. We defined the gain as the ratio of confirmed

correspondences for semi-supervised learning compared to super-

vised learning. One achieves 5% more assignments with

semi-supervised learning than supervised learning at a window

size of 15. Here again the improvement due to the semi-supervised

method increases with smaller window size.

4 DIFFERENTIAL PROTEIN EXPRESSION

The first step towards biomarker discovery requires to compute a list

of differential protein expression values. To increase the number of
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sequenced peptides in each LC/MS image, we generate three repli-

cate LC/MS/MS measurements per condition. To compare two

differently conditioned samples, we compute pairwise alignments

of all six LC/MS images and predict the retention time of the

peptides that have been sequences from each LC/MS image to

all others. This procedure yields an extensive increment in the

number of sequenced peptides in each single LC/MS image.

For each protein we obtain a collection of differential peptide

measurements, from which the log protein ratio is estimated accord-

ing to eq. (2).

To demonstrate the possibility to derive differential quantitative

measurements from biological samples, we estimate the expression

ratio both for replicate measurements and for differently condi-

tioned samples. Figure 12 shows the differential protein expression.

For better visualization, only a (randomly drawn) subsample of the

proteins is plotted. Each protein corresponds to one column. The

dots on the columns depict the differential peptide measurements.

The vertical lines indicate one standard deviation. A t-test with a

significance level of 0.03 rates 3.9% (24 out of 610) of the peptides

as significantly over- or underexpressed for the replicate measure-

ments. The significantly over-/under expressed proteins are colored

red. For the biologically different samples (bottom panel) one can

detect 24.5% (165 out of 735) of the proteins as significantly under-

or overexpressed. These six times higher rate of significantly dif-

ferent expression levels between biologically different samples and

technical replicates demonstrate that our statistical analysis is sen-

sitive to changes in conditions. We conclude that we are able to

recognize differences in protein expression by label-free differential

quantitative proteomics. To conclude that the differences are caused

by the different conditions, one should still compare the result with

biological replicates.

5 DISCUSSION AND CONCLUSION

In the recent years the use of LC/MS measurements has received

considerable attention for high-throughput analysis of proteomes.

For quantitative differential measurements it is commonly accepted

that isotopic labeling techniques such as ICAT are needed for a

reliable quantitative comparison of two protein samples. These

labeling techniques are not ideal, however, because they require

a significantly increased complexity of the experimental setup and

the necessity to mix the two labeled samples from different bio-

logical conditions. The latter is particularly problematic in appli-

cations like biomarker discovery where one would like to treat

samples from different biological conditions separately in order

to avoid a time-consuming and costly re-analysis of the, e.g.,

disease-specific reference sample.

As an alternative approach, we consider a label-free setting for

comparative proteomics. The absence of isotopic labels that could

guide the search for correspondences, however, imposes a severe

alignment problem between the elements of the two samples from

different biological conditions. Current approaches to solve this

problem try to find alignments solely on the basis of the observed

LC/MS measurements while ignoring potentially relevant addi-

tional information from the underlying sequences. In contrast to

these approaches, we propose to use tandem mass spectrometry to

extract partial sequence information of the peptides contained in the

samples. Based on this subset of sequenced peptides, we compute

a ‘‘seed’’ alignment by estimating a nonlinear robust regression
function which warps one time scale into the other. Within a

semi-supervised learning framework, this seed alignment is itera-

tively refined by successively including the mass peaks for which no

sequence information is available. By assessing the self-consistency

of the time warping in both directions, we have shown that

this refinement process significantly improves the quality of the

alignment.

In a large-scale experiment we have demonstrated that our

method is capable of aligning highly complex protein samples,

even if they exhibit large variations due to different biological

conditions. It is possible to reliably discriminate between technical

replicates and truly different biological conditions. We conclude

that the proposed method bridges the gap between statistical data

analysis and label-free quantitative differential proteomics.
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ABSTRACT

Motivation: Regulation of gene expression by a transcription factor

requires physical interaction between the factor and the DNA, which

can be described by a statistical mechanical model. Based on this

model, we developed the MatrixREDUCE algorithm, which uses

genome-wide occupancy data for a transcription factor (e.g. ChIP-

chip) and associated nucleotide sequences to discover the sequence-

specific binding affinity of the transcription factor. Advantages of our

approach are that the information for all probes on the microarray is

efficiently utilized because there is no need to delineate ‘‘bound’’ and

‘‘unbound’’ sequences, and that, unlike information content-based

methods, it does not require a background sequence model.

Results:We validated the performance of MatrixREDUCE by inferring

the sequence-specific binding affinities for several transcription factors

inS. cerevisiae and comparing the results with three other independent

sources of transcription factor sequence-specific affinity information:

(i) experimental measurement of transcription factor binding affinities

for specificoligonucleotides, (ii) reportergeneassays forpromoterswith

systematically mutated binding sites, and (iii) relative binding affinities

obtained by modeling transcription factor-DNA interactions based on

co-crystal structures of transcription factors bound to DNA substrates.

We show that transcription factor binding affinities inferred by

MatrixREDUCE are in good agreement with all three validating

methods.

Availability: MatrixREDUCE source code is freely available for

non-commercial use at http://www.bussemakerlab.org/. The software

runs on Linux, Unix, and Mac OS X.

Contact: Harmen.Bussemaker@columbia.edu

1 INTRODUCTION

The sequence-specific regulatory activity of a transcription factor

(TF) is the result of energetically favorable interactions between the

amino acids exposed in the DNA binding domain and portions of

nucleic acid bases exposed in the grooves of the DNA. A compu-

tational method for discovering the binding specificity of a TF

cannot provide a quantitative description of TF binding unless it

considers the physical underpinnings of the TF-DNA interaction.

Most physically motivated computational methods discover over-

represented patterns in a set of nucleotide sequences that are con-

sidered to be bound by the TF (for review see Stormo, 2000). These

methods use the information content of nucleotide patterns as a

proxy for the free energy contributions of the bases found in the

TF binding site (Berg and von Hippel, 1987; Stormo and Fields,

1998). Other computational methods infer physically-based TF

binding specificities from measured TF binding affinities for a

small set of oligonucleotides (Liu and Clarke, 2002) or from struc-

tural modeling of protein-DNA interaction (Paillard and Lavery,

2004; Endres et al., 2004; Morozov et al., 2005). However, genome-

scale, quantitative measurements of TF occupancies of intergenic

regions are now available due to the advent of in vivo chromatin

immunoprecipitation microarrays (Ren et al., 2000; Iyer et al.,
2001; Lieb et al., 2001; Simon et al., 2001; Lee et al., 2002;

Harbison et al., 2004), in vitro protein binding microarrays

(PBM; Mukherjee et al., 2004), and DNA immunoprecipitation

microarrays (DIP-chip; Liu et al., 2005). Thus, it is no longer

necessary to rely on small data sets, availability of protein-DNA

structures, or the analogy between information content and statis-

tical mechanics to infer free energy representations of transcription

factor binding sites.

We have developed a method, implemented as the program

MatrixREDUCE (Foat et al., 2005), that infers the sequence spe-

cificity of a TF directly and accurately from genome-wide TF occu-

pancy data by fitting a statistical mechanical model for TF-DNA

interaction (Figure 1). The sequence specificity of the TF’s DNA-

binding domain is modeled using a position-specific affinity matrix

(PSAM), representing the change in the binding affinity (Kd) when-

ever a specific position within a reference binding sequence is

mutated. To validate the physical model of MatrixREDUCE, we

discovered the PSAMs for several TFs in S. cerevisiae and com-

pared the results with three other independent sources of TF

sequence-specific affinity information: (i) experimentally measured

Kd’s as determined by in vitro methods (Gailus-Durner et al., 1996;

Liu and Clarke, 2002; Pierce et al., 2003), (ii) lacZ reporter assays

for promoters with systematically mutated binding sites (Gailus-

Durner et al., 1996; Pierce et al., 2003), and (iii) relative Kd’s

obtained by using a physical model of protein-DNA interaction

that makes binding affinity predictions starting from a co-crystal

structure of the protein-DNA complex (Morozov et al., 2005). We

find a surprising level of agreement between MatrixREDUCE-

predicted TF binding affinities, experimental measurements, and

structural predictions, suggesting that MatrixREDUCE is a�To whom correspondence should be addressed.
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powerful and accurate tool for the elucidation of physically accurate

TF sequence-specific binding affinities.

2 RELATED WORK

In contrast to information theory-based methods of defining

nucleotide-binding protein specificities, MatrixREDUCE belongs

to a small but growing class of methods that infer binding affinities

by directly fitting a physical model to experimental data. The first

such method was introduced by Stormo et al. (1986) who noted,

‘‘When quantitative data are known for many sequences one can

solve for the matrix elements that give the best fit between the

sequences and those data.’’ For Stormo et al. (1986) the quantitative

data were b-galactosidase activities for genes containing mutated

binding sites of the E. coli su2 amber stop codon suppressor. A

similar type of analysis was performed by Liu and Clarke (2002)

who fit a physical model for transcription factor binding to elec-

trophoretic mobility shift assay (EMSA) data measuring affinity of

the S. cerevisiae Leu3 TF for several oligonucleotides. The physical

model behind MatrixREDUCE is the same as that employed by

Stormo et al. (1986) and Liu and Clarke (2002). However, our

‘‘quantitative data’’ are microarray probe intensities, which mea-

sure TF occupancy over long chromosomal regions with unknown

binding site locations. Thus, the MatrixREDUCE model integrates

the binding signal over the entire length of the sequence. The

GOMER method of Granek and Clarke (2005) performs a similar

Fig. 1. The flow of data. A microarray measurement of TF occupancies (ChIP-chip, PBM, DIP-chip, or differential mRNA expression data) and relevant

nucleotide sequences for each microarray feature are used as input to MatrixREDUCE. MatrixREDUCE performs a least-squares fit to a statistical-mechanical

model of TF-DNA interaction to discover the relative contributions to the free energy of binding for each nucleotide at each position in the generalized TF binding

site. These contributions are represented as a position specific affinity matrix (PSAM) containing the relative equilibrium constants of the TF-DNA interaction,

with the highest affinity nucleotide at each position scaled to a value of one (DDG ¼ 0). The PSAM can be converted into an affinity logo that graphically

represents theDDG’s for each nucleotide at each position relative to the averageDDG at the respective positions. The PSAM can also be used to predict the relative

TF occupancy of any nucleotide sequence, allowing the PSAMs inferred by MatrixREDUCE to be compared with experimental measurements of TF binding

affinities for particular oligonucleotides.
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integration of signal over long regulatory sequences relevant to

measured microarray intensities. However, GOMER was only

used to test hypotheses about the regulatory mechanisms of TFs

for which a binding site weight matrix had already been defined by

other methods. Granek and Clarke (2005) did not attempt to fit the

GOMER model directly to experimental data to infer the binding

affinities of TFs. Finally, also of note are the QPMEME algorithm of

Djordjevic et al. (2003) and the work of Djordjevic and Sengupta

(2006) which use maximum likelihood procedures to infer PSAMs

by fitting physical models to known TF binding sites and SELEX

data, respectively, but rely on the prior delineation of ‘‘bound’’

sequences.

3 METHODS

3.1 Modeling TF-DNA interaction

We will develop the statistical-mechanical model used by MatrixREDUCE

starting with a transcription factor P that binds to a DNA sequence S to form

the TF-DNA complex PS:

kon

Pþ S � PS
koff

ð1Þ

The affinity of the TF for the sequence can be expressed in terms of its

equilibrium dissociation constant KdðSÞ:

KdðSÞ ¼
½P�½S�
½PS� ¼

koff

kon

¼ eDG/RT‚ ð2Þ

which is directly related to DG, the Gibbs free energy of binding per mole

(R is the gas constant and T is temperature). The occupancy N(S) of sequence

S by transcription factor P can be expressed as the concentration of TF-DNA

complex divided by the total concentration of DNA (bound or unbound):

NðSÞ ¼ ½PS�
½PS� þ ½S� ¼

½P�
½P� þ KdðSÞ

: ð3Þ

For simplicity, we will assume that the TF concentration [P] is much smaller

than KdðSÞ. This assumption seems physiologically plausible because in this

regime, the highest affinity binding sites in the genome will be the most

responsive to a change in the nuclear concentration of active TF. Thus, the

occupancy becomes:

NðSÞ 	 ½P�
KdðSÞ

¼ ½P�KaðSÞ‚ ð4Þ

where

KaðSÞ 
 K�1
d ðSÞ: ð5Þ

Consider a single point mutation from the original reference sequence Sref

to base b at position j resulting in the mutated sequence Smut. Such a mutation

will give rise to an additive change DDG in the free energy of binding or,

equivalently, a multiplicative change wjb in KaðSrefÞ:

wjb ¼
KaðSmutÞ
KaðSrefÞ

¼ eDDG/RT ‚ ð6Þ

where

DDG ¼ DGðSrefÞ � DGðSmutÞ: ð7Þ

To be able to generalize the binding of transcription factor P to a sequence

Smut with more than one point mutation, we assume that the free energy

contributions for each position in the binding site are independent (Benos

et al., 2002) and therefore additive. Equivalently, we can multiply the wjb’s

for any nucleotide sequence to obtain the overall KaðSmutÞ/KaðSrefÞ ratio.

Thus, the occupancy of a particular binding site Smut of length Lw with

nucleotide sequence Smutð1‚2‚ . . . ‚LwÞ ¼ ðb1‚b2‚ . . . ‚bLw
Þ is:

NðSmutÞ ¼ ½P�KaðSrefÞ
YLw

j¼1

wjSmutðjÞ: ð8Þ

The occupancy NðUgÞ for the entire promoter region Ug of gene g equals the

sum of occupancies for each binding site window of length Lw at each

position i over the length Lg of the sequence Ug:

NðUgÞ ¼ ½P�KaðSrefÞ
XLg�Lwþ1

i¼1

YLw

j¼1

wjUgðiþ j� 1Þ‚ ð9Þ

where UgðiÞ is the base at position i in sequence Ug.

3.2 Modeling genome-wide TF occupancy data

Recent technologies such as ChIP-chip (Ren et al., 2000; Iyer et al., 2001;

Lieb et al., 2001; Simon et al., 2001; Lee et al., 2002; Harbison et al., 2004),

PBM (Mukherjee et al., 2004), and DIP-chip (Liu et al., 2005) provide

indirect but quantitative information about the TF occupancy of large

genomic regions. For each segment of DNA there are two microarray inten-

sities. The test intensity Itest
g is equal to a background intensity atest plus a

term that, to first approximation, is proportional (g) to the occupancy NðUgÞ
by the TF, either because the amount of TF bound to the probe contributes

directly to the signal intensity (PBM) or because it determines the proportion

at which an immunoprecipitated TF-DNA fragment is present in the sample

(ChIP-chip or DIP-chip). The control intensity Icontrol
g is only the result of

background signal acontrol. Allowing for experimental noise eg, we obtain:

Itest
g

Icontrol
g

¼ gNðUgÞ þ atest

acontrol
þ eg 
 bNðUgÞ þ Cþ eg ð10Þ

Using Equation 9 for the occupancy NðUgÞ, we obtain:

Itest
g

Icontrol
g

¼ F
XLg�Lwþ1

i¼1

YLw

j¼1

wjUgðiþ j� 1Þ þ Cþ eg‚ ð11Þ

where

F ¼ b½P�KaðSrefÞ: ð12Þ

Note that b, [P], and KaðSrefÞ cannot be determined separately without

additional information such as the real protein concentration or KaðSrefÞ.
MatrixREDUCE discovers the set of wjb elements as well as F and C by

performing a least squares fit to the measured intensity ratios:

ðC‚F‚fwjbgÞ ¼ argmin
C‚ F‚fwjbg

X
g

Itest
g

Icontrol
g

�F
XLg�Lwþ1

i¼1

YLw

j¼1

wjUgðiþ j� 1Þ�C

 !2

: ð13Þ

The 4 · Lw matrix of Ka ratios wjb (3Lw parameters plus Lw reference

nucleotide values) for all nucleotides at all positions in the binding site is

referred to as the position specific affinity matrix (PSAM). Each position j in

the PSAM is rescaled such that the largest wjb is equal to unity, without loss

of generality.

Differential mRNA expression microarray data, which measures the

change in mRNA concentrations in cells from two different experimental

conditions, can be used in place of genome-wide TF occupancy data.

This substitution is reasonable since, to first approximation, the transcrip-

tion rate of genes is proportional to the total TF occupancy along the asso-

ciated promoter regions. Genome-wide occupancy data is preferable,

however, since it is a more direct measure of TF-DNA interaction and

since the design of the experiments provides the TF identities for the

discovered PSAMs.

3.3 MatrixREDUCE implementation and

parameters

MatrixREDUCE was implemented in Perl and C as outlined above and as

previously described (Foat et al., 2005) with some modifications.

Briefly, MatrixREDUCE takes microarray intensities and corresponding

Statistical mechanical modeling of genome-wide transcription factor occupancy data by MatrixREDUCE
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nucleotide sequence data as input. It first finds a gapped dyad motif (e.g. Leu3:

CCG-4nt-CGG), out of all possible dyad motifs of a fixed number of

nucleotides and a range of gap sizes, whose occurrences best correlate

with the measured intensities for the same sequences. The best dyad motif

is then converted into a seed matrix by filling in the gap with N’s and

extending out a user defined number of flanking N’s on either side of the

best-scoring dyad. In the 4 · Lw seed matrix, acceptable nucleotides (all

nucleotides for N’s, a single specific nucleotide at positions within the top

scoring motif) are given Ka ratios of one and unacceptable nucleotides are

given a very small Ka ratio wmin. This seed matrix serves as the starting point

for a quasi-Newton numerical minimization of Equation 13 to find the optimal

PSAM. The new version of MatrixREDUCE uses a k-fold cross-validation to

determine the significance of each discovered PSAM. After converging on a

PSAM, the input data is split into k random subsets of array features with

associated sequences. The optimal PSAM is then used to seed each of k re--

optimizations of the PSAM. A t-value (Pearson correlation) for the goodness

of fit is calculated for the optimal PSAM of each subset. Finally, the P-value

corresponding to the average t-value for the k re-optimizations is used to test

whether the originally optimized PSAM should be kept. This procedure does

not test the significance of the optimal PSAM itself, but rather it tests whether

the data contains widely distributed, explainable variance. Thus, false PSAMs

due to a few outliers are prevented. While not relevant to the current study,

MatrixREDUCE can iteratively build a linear model of multiple PSAMs that

best explain a particular data set (see Foat et al., 2005).

The parameters for the runs of MatrixREDUCE were as follows: For

all runs, the length of each of the two dyads of the seed motifs was three,

the length of the added flanks on each side of the dyad was three, the minimum

gap was zero, the k cross-validations were two, and wmin was 10�5. For all runs

on ChIP-chip and PBM data, the maximum acceptable P-value was 10�3 and

the maximum dyad gap was twenty. For all runs on DIP-chip data, the

maximum acceptable P-value was 10�6 and the maximum dyad gap was

ten. For all runs on differential mRNA expression data, the maximum accept-

able P-value was 10�3 and the maximum dyad gap was eleven.

3.4 Microarray and sequence data

All microarray data was gathered from publication supplements. We chose

specific TFs to analyze based on the availability of experimental Kd data or

crystal structure data. PSAMs were inferred by MatrixREDUCE for chro-

matin immunoprecipitation microarrays (ChIP-chip) using the microarray

data and microarray feature sequences from Harbison et al. (2004). These

ChIP-chip experiments were performed under a variety of culture conditions,

including rich media (YPD); sulfometuron methyl (SM), an inhibitor of

amino acid biosynthesis; and treatment with rapamycin (RAPA). PSAMs

were inferred for PBM experiments using the microarray data from Mukher-

jee et al. (2004) and the feature sequence data from Harbison et al. (2004) as

the two studies used the same array features. PSAMs were inferred for Leu3

using the DIP-chip microarray data and feature sequences from Liu et al.

(2005). Liu et al. (2005) performed DIP-chip experiments using two different

concentrations of Leu3, 4nM and 40nM, and PSAMs were inferred for each

concentration. The PSAM for Ndt80 was inferred from differential mRNA

expression microarray data measuring the sporulation response in a ndt80

deletion strain versus a wild-type strain (Chu et al., 1998). The sequence data

for the Ndt80 PSAM inference was the 800 bp upstream of every yeast gene,

retrieved from the Saccharomyces Genome Database (Issel-Tarver et al.,

2002) and purged of redundant sequences as previously described (Foat

et al., 2005). All microarray intensities were analyzed as the ratio of the

experimental sample intensity to the control sample intensity with the excep-

tion of the ndt80 deletion data, which was analyzed as the log2-ratio. All

microarray data was purged of extreme outliers before being analyzed by

MatrixREDUCE (Grubbs’ test, P-value ¼ 10�10; Grubbs, 1969).

3.5 Gel shift and lacZ expression data

While prone to their own inaccuracies, experimentally measured in vitro

binding affinities and changes in lacZ expression served as our ‘‘gold

standards’’ to assess the validity of our MatrixREDUCE model. The

electrophoretic mobility shift assay (EMSA) is able to provide direct

estimates of Kd’s for a TF binding to particular oligonucleotides (Fried

and Crothers, 1981). The ratio of the EMSA-measured Kd of a reference

oligonucleotide Sref to the Kd of one of the other tested oligonucleotides Smut

provides the same information as the product across the MatrixREDUCE

PSAM over the same sequence for the same TF. In the simplifying scenario

where the length of the oligonucleotides is the same as the length Lw of the

PSAM, we have

KdðSrefÞ
KdðSmutÞ

¼
YLw

j¼1

wjSmutðjÞ: ð14Þ

While the biological processes involved are considerably more complex,

lacZ expression data can be employed to the same end. If we assume that

b-galactosidase activity, concentration of b-galactosidase, the amount of

mRNA expressed, the specific recruitment of RNA polymerase to the

promoter, and the promoter occupancy by the TF are all proportional to

each other, then relative Kd’s are reflected in the ratio of b-galactosidase

activities between the assay using the reference binding site and another

assay using a different binding site. Thus, we used lacZ reporter expression

assay data in a similar manner to EMSA-derived Kd data to confirm the

results of MatrixREDUCE.

Experimentally determined in vitro binding affinities and lacZ reporter

expression activity data were gathered from publications. The Kd data and

lacZ expression data for Abf1 are from Gailus-Durner et al. (1996); Kd data

for Leu3 are from Liu and Clarke (2002); and Kd data and lacZ expression

data for Ndt80 and Sum1 are from Pierce et al. (2003).

To compare the experimental Kd measurements with MatrixREDUCE

PSAMs, all experimental Kd and lacZ expression data was first converted to

Ka ratios by normalizing with respect to the value of the highest affinity

oligonucleotide. The Ka ratios were then log-transformed to obtain the DDG

values. MatrixREDUCE PSAMs for each TF were converted to DDG’s

relative to the highest affinity oligonucleotide from the respective

experiment. The sum of the DDG values was calculated for the best

PSAM-matching window in each of the experimentally tested sequences.

If a sequence was shorter than the PSAM, the sum was taken over only the

best matching positions within the PSAM. All experimental DDG’s were

then compared to the PSAM DDG’s by plotting and by calculating Pearson

correlations.

BioProspector (Liu et al., 2001) and MDscan (Liu et al., 2002) are popular

information theory-based methods for determination of TF binding speci-

ficities. To compare the quality of the results from these methods with

MatrixREDUCE results, position-specific scoring matrices (PSSMs) were

derived from BioProspector and MDscan outputs by calculating the frequen-

cies of each base at each position in the putative binding sites and then

dividing by a background frequency for each respective base. Two different

background frequencies were tested: equal nucleotide probabilities and nuc-

leotide probabilities for intergenic sequences in S. cerevisiae. Once the

PSSMs had been created, they were tested against experimental EMSA

and lacZ data in the same manner as the MatrixREDUCE PSAMs above.

3.6 Structural modeling

DNA binding affinities and specificities of TFs are determined by the forces

of electrostatics, solvation, the hydrogen bonding patterns, and shape

complementarity at the binding interface. The magnitude of these contribu-

tions to the binding free energy can in principle be calculated given a

structure of the protein bound to its cognate DNA site. Therefore, it should

be possible to predict PSAMs starting from the experimentally available

structure of the protein-DNA complex (solved by either X-ray diffraction or

NMR), or, in the absence of the exact structure, from a suitably constructed

homology model. Under the assumption that the base pair energies

contribute approximately independently to the total binding affinity

(Benos et al., 2002), all one-point base pair mutations are introduced

into the DNA binding site. Protein-DNA binding energies DG ¼

B.C.Foat et al.
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Gprot�dna � Gprot � Gdna are then evaluated for each mutation. Mutations in

the reference binding site result in changes of protein-DNA binding energies

(DDG; Equation 7). A table of DDG values can be used to construct a PSAM

that is directly comparable with MatrixREDUCE predictions.

We have previously developed two alternative approaches for predicting

TF binding affinities and specificities starting from the protein-DNA

structure (Morozov et al., 2005). In one approach, the ‘‘all atom model’’

(which builds on the ROSETTA protein-nucleic acid interaction model of

Havranek et al., 2004), both direct and indirect readout mechanisms con-

tribute to the recognition of the DNA binding site:

DG ¼ DGdirect þ DGindirect. Direct readout is mediated by protein amino

acid-DNA base interactions, while indirect readout is encoded in the

shape of the DNA site imparted by the bound protein, primarily through

non-specific amino acid-DNA phosphate backbone contacts. Direct protein-

DNA interactions are modeled as a linear combination of the repulsive and

attractive parts of the Lennard-Jones potential, the orientation-dependent

hydrogen bonding potential (Kortemme et al., 2003), and the Generalized

Born electrostatics and solvation model (Onufriev et al., 2004):

DGdirect ¼ wLJrepELJrep þ wLJattrELJattr

þ whbEhb þ welGel‚
ð15Þ

where each term is a sum over all protein-DNA and protein-protein atomic

pairs, and {w} is a set of fitting weights. Indirect readout is modeled using an

effective harmonic representation of the DNA conformational energy (Olson

et al., 1998):

DGindirect ¼ wdna�bp

X
bp

Eab
dna�bp þ wdna�bs

X
bs

Eab
dna�bs‚ ð16Þ

where the first sum is over all base pairs in the DNA site (a, b denote bases in

a base pair), and the second sum is over all consecutively stacked base pair

steps (a, b denote base pairs in a base step). Base pairs and base steps are

counted once in the 50 to 30 direction. The first term penalizes deviations

from canonical base pairing, while the second term captures base stacking

energies. The quadratic energy terms are given by:

Eab
dna�bs/dna�bp ¼

1

2

X6

i¼1

X6

j¼1

f abij d�ai d�
b
j ‚ ð17Þ

where the sums run over six geometric degrees of freedom �i (Twist, Tilt,

Roll, Shift, Slide and Rise for base pair steps; Opening, Buckle, Propeller,

Shear, Stretch and Stagger for base pairs; Lu and Olson, 2003). The DNA

potential is a quadratic expansion in d�i (deviations of the degrees of free-

dom �i from their average values computed using a set of non-homologous

protein-DNA complexes). The force constants f ij are evaluated by inverting

the covariance matrix of d�i obtained with the same protein-DNA dataset:

f�1
ij ¼ hd�id�ji. All six weights are simultaneously fit to experimental DDG

data using a generalized linear model (implemented in the statistical soft-

ware package R): ðwLJrep‚wLJattr‚whb‚wel‚wdna�bp‚wdna�bsÞ ¼
ð0:00‚0:46‚0:77‚0:27‚ 0:03‚0:03Þ. No conformational flexibility is allowed

at the protein-DNA interface. Further details on the fitting procedure and

comprehensive tests of the all-atom free energy function can be found in

Morozov et al. (2005).

In another approach, we developed a ‘‘contact model’’ that exploits the

structure of the protein-DNA complex bound to a high affinity reference

DNA sequence but does not require detailed predictions of protein-DNA

interaction energies. In the contact model each mutated base in the PSAM

column i incurs equal energy cost relative to the consensus base from the

reference sequence:

DDGiðNÞ ¼
Emax ½f 1ðNmaxÞ log ð1 � N/NmaxÞ
� f 2ðNmaxÞ log ð1þ 3N/NmaxÞ� ðN < NmaxÞ

Emax ðN � NmaxÞ

8<: ð18Þ

Here, N is the number of protein amino acid-DNA base atomic contacts

summed over the base pair i (atomic contact is defined by a distance of less

than 4.5 s; hydrogen atoms are excluded from the counts), and Nmax is the

number of contacts above which the maximum energy penalty Emax is

imposed. f 1ðNmaxÞ and f 2ðNmaxÞ are fixed prefactors defined in Morozov

et al. (2005). Emax together with Nmax constitute the free parameters of the

contact model and are adjusted simultaneously to maximize the fraction of

correct predictions and minimize the average error over the DDG data set

identical to that used in fitting the all-atom model. The fraction of correct

predictions is based on a binary function: a prediction is considered to be

correct if both computational and experimental DDG’s are less than 1.0 kcal/

mol, or greater than 1.0 kcal/mol, or else separated by less than 0.3 kcal/mol.

The global minimum for the fit is found by exhaustive search; the best fit is

obtained with Nmax ¼ 15, Emax ¼ 3:0 kcal/mol.

3.7 Affinity logos

Information content-based weight matrices are usually displayed as

sequence logos (Schneider and Stephens, 1990) However, MatrixREDUCE

weight matrices are discovered without a background sequence model. Thus,

an appropriate logo should display the actual relative free energies of binding

for each nucleotide at each position rather than information content. There-

fore, we created affinity logos, which are constructed as follows: For each

position in the PSAM, the average DDG is calculated. Then, the difference

between each individual DDG and the average DDG at that position is

computed; the absolute value of this difference is the height of the character

representing that nucleotide. If the difference is positive (more favorable

than average), the letter is placed above a horizontal black line through the

center of the logo. If the difference is negative (less favorable than average)

the letter is placed below the black line. Larger letters are stacked on smaller

letters moving outward from the black line. The height of the letter can be

interpreted as free energy difference from the average in units of RT. Thus,

an intuitive high amplitude is given to the nucleotide positions that most

contribute to the sequence specificity of the TF. To highlight that the

characters representing the high affinity nucleotides are above the black

line, the characters representing the low affinity nucleotides are made

partially transparent. However, maintaining the representation of the poor

affinity nucleotides below the center line allows the viewer to immediately

see which nucleotide substitutions are most unfavorable to binding.

3.8 PSAM to PSAM alignments and correlations

By inspection of affinity logos, one can make qualitative observations about

the similarity between any two PSAMs. However, a quantitative measure of

similarity allows for more objective comparisons. Before two PSAMs can be

compared, they must first be aligned. Pearson correlations were calculated

between the DDG values for each nucleotide at each position for every

possible overlap of the two PSAMs for both the forward and the reverse

complement alignments. After the best overlap position and strand was

determined from the best correlation P-value, the DDG’s of the two

PSAMs were recentered relative to a common reference consensus

sequence. Finally, the P-value for the Pearson correlation between the

two optimally aligned and transformed PSAMs was calculated and subjected

to a Bonferroni correction for the number of alignments that were tested.

4 RESULTS

4.1 PSAMs inferred by MatrixREDUCE agree well

with experimental measurements of TF binding

affinity

We discovered the position specific affinity matrices (PSAMs)

for the Saccharomyces cerevisiae TFs Rap1, Ndt80, Gcn4,

Leu3, Abf1, and Sum1 by applying MatrixREDUCE to genome-

wide TF occupancy data and, in the case of Ndt80, differential

mRNA expression microarray data (Figure 2A). Experimental

measurements of relative Kd’s (EMSA or lacZ expression) for

specific oligonucleotides were available for Abf1, Leu3, Ndt80,

and Sum1. EMSA has long been employed to determine the
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DNA-binding affinities of TFs in vitro. Likewise, the lacZ reporter

assay has long been used to measure the difference in activities

of TF binding sites. We claim that a PSAM inferred by

MatrixREDUCE from genome-wide TF occupancy data can be

used to predict the relative binding affinities of the measured TF

to any sequence. Therefore, EMSA and lacZ expression data pro-

vide nearly ideal data sets for validation of the MatrixREDUCE

approach. For each combination of experimentally tested sequence,

experimental method (EMSA or lacZ), and TF, we compared the

experimental DDG with the DDG predicted from a PSAM for the

same TF (Figure 3). In every case, the experimental DDG values

strongly correlated with the PSAM-predicted DDG values, with R2’s

ranging from 0.36 to 0.88. Thus, PSAMs inferred by MatrixRE-

DUCE seem to be good models of the true relative DNA binding

affinities of the corresponding TFs. Unexpectedly, all of the regres-

sions of experimental DDG’s on MatrixREDUCE DDG’s have

Fig. 2. Comparison of PSAMs—affinity logos and correlations. (A) The PSAMs represented in the columns with blue headers were inferred by Matrix-REDUCE

from ChIP-chip, PBM, DIP-chip, or mRNA differential expression microarray data. YPD (rich media), SM (sulfometuron methyl), and RAPA (rapamycin) refer

to the environmental conditions to which the test sample was exposed before the ChIP-chip experiment. The DIP-chip experiments were performed with two

different concentrations of Leu3, 4nM and 40nM. An ndt80 deletion (ndt80D) versus wild-type mRNA expression experiment (mRNA) was used to obtain the

Ndt80 PSAM. The PSAMs represented in the columns green headers were inferred by modeling TF-DNA interactions based on crystal structures of the TFs using

two different methods, a contact-only model and an all atom model. (B) All PSAMs for each TF were aligned pairwise and the Pearson correlation between the

DDG values of both PSAMs for the best alignment was calculated. The P-value for this correlation is a measure of similarity between the PSAMs. Again, blue

labels indicate PSAMs inferred by MatrixREDUCE PSAMs and green labels indicate structurally inferred PSAMs.
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slopes less than one (range: 0.31 to 0.94). It seems that MatrixRE-

DUCE produces a slightly larger range of predicted DDG’s than is

realized in experiments. Nonetheless, the MatrixREDUCE PSAM-

predicted DDG’s are close to the experimentally inferred DDG’s in

most cases, especially among the highest affinity sequences.

4.2 PSAMs inferred by MatrixREDUCE agree well

with PSAMs inferred by structural models

Both genome-wide TF occupancy data and crystal structures of

protein-DNA complexes are available for Ndt80, Gcn4, and

Rap1. Thus, we were able to compare MatrixREDUCE PSAMs

with those based on ab initio structural models (see Methods;

Figure 2A). The structurally inferred PSAMs for Ndt80 were

obtained from its co-crystal structure bound to a high affinity

GACACAAAA site, solved at 1.4 s resolution (Lamoureux

et al., 2002). Figure 2A shows a reasonable agreement between

DDG predictions carried out with MatrixREDUCE and structural

models. The close correspondence with the contact model, which is

a function of the number of protein side chains in contact with DNA

base pairs, is especially remarkable, showing that the Matrix-

REDUCE approach is capable of reproducing structural details

of the binding interface based only on the genomic sequence and

genome-wide TF occupancy data.

Gcn4 is a TF of the bZIP class. It is a homodimer with the basic

region mediating sequence specific DNA binding and the leucine

zipper region required for dimerization (O’Shea et al., 1991). For

deriving the Gcn4 structural PSAMs, we used a 2.9 s crystal

structure of the TF bound to the ATGAGTCAT site (Ellenberger

et al., 1992). The symmetry of the binding site (two reverse

complement 4 bp half-sites separated by G in the middle) is a

reflection of the homodimeric binding and is captured well in

MatrixREDUCE predictions. While contact model and Matrix-

REDUCE predictions are similar, the all-atom model is less

successful, probably due to the low resolution of the crystal struc-

ture, which leads to considerable uncertainty in side chain positions

with respect to the neighboring DNA bases.

Finally, Rap1 binds DNA as a homodimer in a way that makes its

DNA site a tandem repeat. The crystal structure of the Rap1 homod-

imer in complex with a telomeric DNA site has been solved to

2.25 s resolution (Konig et al., 1996). Comparison of Matrix-

REDUCE PSAMs and structural PSAMs reveals good agreement

with the all atom model. The contact model overpredicts binding

specificity at the intermediate positions in the binding site (located

Fig. 3. Comparison of experimentally measured DDG’s with MatrixREDUCE PSAM-predicted DDG’s. Experimental measurements of DDG’s were derived

from EMSA (A) and lacZ reporter assays (B). The experimentalDDG values are plotted along the vertical axes. PredictedDDG’s were calculated from the PSAM

for each tested TF for the same oligonucleotide sequences that were measured in each experiment. The MatrixREDUCE-predicted DDG values are plotted along

the horizontal axes. In this representation, the higher affinity oligonucleotides have more positiveDDG’s. The diagonal dashed line represents experimentalDDG
equal to MatrixREDUCE DDG. DDG’s are in units of RT, where R is the gas constant and T is the temperature. The R2 and P-values for the Pearson correlations

between the experimental and predicted DDG’s are presented for each PSAM-experimental data pair.
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between tandem repeats), likely because it assigns similar

specificities to protein-DNA contacts in the loop region and in

the DNA binding domains.

4.3 PSAM to PSAM correlations

Upon visual inspection of Figure 2A, the similarities are immedi-

ately apparent between affinity logos for the same factor inferred

using different experimental and computational methods. However,

a quantitative measure of these similarities can be obtained by

aligning the PSAMs (see Methods) and calculating the correlation

of their DDG values. The P-value for this correlation between two

PSAMs serves as our similarity metric (Figure 2B). Overall, the

similarity between the PSAMs from MatrixREDUCE are the most

significant. There is extreme similarity between the Rap1 PSAMs

inferred from ChIP-chip and PBM data. The PSAMs inferred for

Gcn4 for three different ChIP-chip conditions are all very similar as

well. The Leu3 PSAMs inferred from the DIP-chip data are much

more similar to each other than they are to the Leu3 PSAM inferred

from the ChIP-chip data, but they are still both significantly similar

(P-value < 0.01) to the ChIP-chip Leu3 PSAM. The significance of

the correlations between MatrixREDUCE PSAMs and structurally

inferred PSAMs is more variable. Both the all atom model PSAM

and the contact model PSAM for Rap1 and Ndt80 have significant

similarities with the respective MatrixREDUCE PSAMs (P-value <
0.01). However for Gcn4, while the contact model PSAM has strong

similarities with all of the other PSAMs, the all atom PSAM has

insignificant similarities with all other PSAMs.

4.4 How good is the information theory

approximation?

In the original papers describing the ChIP-chip (Harbison et al.,
2004), PBM (Mukherjee et al., 2004), and DIP-chip (Liu et al.,
2005) data, the authors used BioProspector (Liu et al., 2001) or

MDscan (Liu et al., 2002) to define weight matrix representations of

TF binding sites. These two methods use the set of sequences that

the experimenters label as ‘‘bound’’ to produce a list of potential

binding sites. When interpreted through information theory, the

nucleotide frequencies at each individual position in the binding

sites divided by the ‘‘background’’ frequencies for the respective

bases provide an estimate of a PSAM in the form of a position-

specific scoring matrix (PSSM). Since we had already compiled the

EMSA and lacZ expression data, we had the opportunity to experi-

mentally verify the results of these PSSMs.

We gathered the BioProspector and MDscan results from the

original, published analyses, transformed them into PSSMs, and

used them to predict DDG’s for the EMSA and lacZ experimentally

tested sequences. We performed this comparison using two different

‘‘background’’ nucleotide frequency models: one using equal nuc-

leotide probabilities and one using nucleotide probabilities derived

from S. cerevisiae intergenic sequences. The R2 and P-values for the

correlations between these predicted DDG’s and the experimental

results are displayed in Figure 4. Overall, the quality of the results

from the information theory PSSMs and the MatrixREDUCE

PSAMs were similar. However, the results for the PSSMs are dif-
ferent depending on the choice of equal or intergenic nucleotide

frequencies. While we did not test this scenario, the information

theory results would also change depending on the probe intensity

threshold chosen to label genes as ‘‘bound.’’ Thus, while Matrix-

REDUCE performs comparably with existing information theory

methods, it conveniently avoids having to choose several ad hoc
parameters required by the other methods.

5 DISCUSSION

Overall, position specific affinity matrices (PSAMs) as inferred by

MatrixREDUCE from genome-wide TF occupancy data are good

approximations of the real sequence-specific DNA binding affini-

ties. Discrepancies between the computationally predicted and the

experimentally inferred binding affinities may be due to either the

computational or the experimental methods. EMSA has known

problems with ‘‘caging’’ of the TFs by the gel while electrophoresis

is proceeding (Fried and Crothers, 1981). This could lead to inferred

DDG’s of smaller magnitude. Likewise, lacZ reporter assays are a

very indirect way of measuring relative binding affinities as they

require transcription, translation, and b-galactosidase reactions in

order to make measurements, and noise could be introduced at each

step. Structural model predictions are strongly dependent on the

quality of input structures and are affected by errors in the energy

function. The current MatrixREDUCE model may also give rise to

systematic biases. First, it makes the approximation that nucleotides

contribute independently to the free energy of TF binding (Benos

et al., 2002). Second, it makes the assumption that the concentration

of TF is much smaller than the Kd, which may not be correct for

some TFs. Finally, all consecutive positions in the PSAM are cur-

rently treated as parameters to be estimated, which may lead to

overfitting. We plan to address these issues in a future version of

the algorithm.

Despite these current limitations, PSAMs discovered using the

current implementation of MatrixREDUCE are good approx-

imations of the relative nucleotide binding affinities of assayed

TFs. Especially for microarray methods like PBM and DIP-chip,

where the objective is to define nucleotide-binding specificities,

MatrixREDUCE may be the most physically accurate method

available to analyze the data. Even for less direct reflections of

TF binding affinities like ChIP-chip or differential mRNA expres-

sion data, it will still provide good approximations of the sequence-

specific binding affinities of TFs relevant to those data. Preliminary

results also suggest that MatrixREDUCE performs well on data

Fig. 4. Correlations of experimentally measured DDG’s with information

theory-predictedDDG’s. Experimental measurements of DDG’s were derived

from EMSA and lacZ reporter assays. The R2 and P-values for the Pearson

correlations between the experimental and predicted DDG’s are presented for

each PSSM-experimental data pair. PSSMs were derived and tested using

two different background nucleotide frequencies: equal probabilities and

intergenic probabilities.
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from higher eukaryotes including D. melanogaster and mammals.

Finally, MatrixREDUCE has two key advantages over most other

computational methods for defining nucleotide binding specific-

ities: (i) it uses the information for all probes in genome-wide

TF occupancy data, and (ii) it does not require a background

sequence model.
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ABSTRACT

Motivation: DNA motif finding is one of the core problems in

computational biology, for which several probabilistic and discrete

approaches have been developed. Most existing methods formulate

motif finding as an intractable optimization problem and rely either on

expectation maximization (EM) or on local heuristic searches. Another

challenge is the choice of motif model: simpler models such as the

position-specific scoring matrix (PSSM) impose biologically unrealistic

assumptions such as independence of the motif positions, while more

involved models are harder to parametrize and learn.

Results: We present MotifCut, a graph-theoretic approach to motif

finding leading to a convex optimization problem with a polynomial

time solution. We build a graph where the vertices represent all

k-mers in the input sequences, and edges represent pairwise k-mer

similarity. In this graph, we search for a motif as the maximum density

subgraph,which isasetof k-mers thatexhibit a largenumberofpairwise

similarities. Our formulation does notmake strong assumptions regard-

ing the structure of the motif and in practice both motifs that fit well the

PSSM model, and those that exhibit strong dependencies between

position pairs are found as dense subgraphs. We benchmark

MotifCut on both synthetic and real yeast motifs, and find that it com-

pares favorably to existing popular methods. The ability of MotifCut to

detectmotifs appears to scalewell with increasing input size.Moreover,

the motifs we discover are different from those discovered by the other

methods.

Availability: MotifCut server and other materials can be found at

motifcut.stanford.edu

Contact: fratkin@cs.stanford.edu

1 INTRODUCTION

The identification of over-represented but imperfectly conserved

motifs in genomic DNA is a problem with important biological

applications, such as the discovery of regulatory elements that

determine the timing, location, and level of gene transcription.

Experimental techniques such as ChIP-chip and gene-expression

microarrays can identify sets of genomic regions that are likely

to be enriched for binding sites of a given transcription factor,

which can then be mined computationally for an associated binding

motif. This problem has been tackled many times with a number of

disparate methods (Bulyk et al., 2003; Buhler et al., 2002; Eskin

et al., 2002; Favorov et al., 2004; Frith et al., 2004; Gordon et al.,

2005; Hertz et al., 1999; Hughes et al., 2000; Liang et al., 2004;

Keich et al., 2002; Liu et al., 2001; Mahony et al., 2005;

Pavesi et al., 2004; Pevzner et al., 2000; Sinha et al., 2004,

2003; Stormo et al., 1989; Thijs et al., 2001; Van Helden et al.,
1998; Wang et al., 2003; Workman et al., 2000). A thorough exam-

ination of the field has also been published (Buhler et al., 2005).

There are two broad classes of motif-finding methods: probabil-

istic, and discrete or word-based. The most popular probabilistic

methods model motifs with position-specific scoring matrices

(PSSM). CONSENSUS (Stormo et al., 1989) uses a greedy strategy

to attempt to maximize the information content of a position-

specific scoring matrix (PSSM). AlignACE (Hughes et al., 2000)

and BioProspector (Liu et al., 2001) use a Gibbs sampling strategy

to search the space of all possible PSSMs. MEME (Bailey et al.,
1995) models motifs similarly, and searches for motifs with a strat-

egy based on Expectation Maximization (EM). The second class of

motif-finding methods is discrete, or word-based searches. There is

a diverse array of such methods, including clustering methods, such

as WINNOWER/cWINNOWER (Liang et al., 2004) and PRO-

JECTION (Buhler et al., 2002), and word-enumeration methods

such as MDScan (Liu et al., 2002) (a ChIP-chip specific motif

finding algorithm), MULTIPROFILER (Keich et al., 2002), and

WEEDER (Pavesi et al., 2004).

Most of the popular approaches have a built-in assumption that

the probability of each nucleotide at each position in the motif is

independent of the nucleotides at other positions. Recent work has

shown evidence for dependencies between positions in transcription

factor binding sites (Benos et al., 2002; Bulyk et al., 2002; Zhou

et al., 2004). Zhou and Liu found evidence for statistically signi-

ficant dependencies in 25% of TRANSFAC motifs (Zhou et al.,
2004). Our analysis of yeast and multicellular eukaryotic motifs

confirms this (results not shown). Figure 1 is an example of a

regulatory motif with nucleotide dependencies that cannot be accur-

ately described with a simple PSSM model. To better model motifs

that do not follow the simple PSSM model, some algorithms apply a

Bayesian network framework (Agarwal et al., 1998; Barash et al.,
2003; Friedman, 2003), while another approach uses a simpler

model of pairwise dependencies (Zhou et al., 2004). These

approaches provide added expressive power, but due to training

issues and computational complexity have not yet been widely

used in real life applications. In this paper, we reexamine the

motif-finding problem from a novel, graph-theoretic perspective,

which addresses the problem of nucleotide dependencies in a nat-

ural way. We formulate motif finding as a search for the maximum

density subgraph of a graph whose nodes are the words in the input
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sequences, and whose edges connect similar words. The resulting

optimization can be performed in polynomial time. We present

MotifCut, a tool for motif finding based on this formulation. Our

method can be considered non-parametric, in the sense that the

model size, in our case the number of vertices in the predicted

motif subgraph, increases with the size of the input. MotifCut

required minimal training and exhibits comparable running time

to the leading motif finding algorithms. We tested MotfiCut on

both simulated and real yeast data, and showed that it performs

significantly better than previous leading approaches.

2 OVERVIEW OF THE MOTIFCUT ALGORITHM

As a first step, MotifCut converts the input sequences into a col-

lection of k-mers. This collection contains all occurrences of k-mers

in the sequences, where each overlap or duplicate is considered as a

distinct k-mer. In other words, there is one k-mer for each nucleotide

position in the input sequences. These k-mers form the set of ver-

tices, V, in a graph G¼ (V, E) representing the input. For every pair

of vertices vi, vj we create an edge with a weight wij. The weight is a

function of the number of mismatches between the two vertex

k-mers, which is normalized with respect to the nucleotide back-

ground distribution, so that more similar k-mers are connected with

higher-weight edges. The background distribution is used to find the

probability of the two k-mers appearing at random given the input.

Therefore, the weight of the edges connecting a pair of k-mers that

are unlikely to appear in the background is up-weighted. Using these

dependencies is essential, since it is well known that in genomic

sequences certain dimers and trimers are much more common than

the GC content alone would indicate (Karlin et al. (1997)).

A general motif can be viewed as a set of k-mers where elements

of the set exhibit higher degree of pairwise similarity that would be

expected based on the background distribution. Since an edge in this

graph representation is a measure of that pairwise similarity, we

expect the sets of k-mers representing motif occurrences to be

recognizable as the portions of the graph with the greatest edge

density. This insight is the basis of our algorithm. The notion of

subgraph density can be defined in various ways, but there are only a

few computationally tractable options. Among them is the most

common definition of graph density: given a graph G ¼ (V, E),

the density of G is kEk/kVk, where kVk is the number of vertices and

kEk is the total weight of all the edges. We build on this

formulation and define motif finding in the input sequences

as the search for the maximum density subgraph (MDS)

G� ¼ argmaxG0�GðkE0k/kV0kÞ. In Methods we will provide some

evidence that this choice is reasonable for biological data. To search

efficiently for maximum density subgraphs in genomic sequences,

we introduce optimizations that we discuss in Methods.

The MDS formalization has two main advantages over PSSM-

based methods, and most existing methods in general: (1) The motif

model can in principle accommodate complicated and hard-to-

parametrize structures in real motifs, such as nucleotide dependen-

cies. Figure 2 illustrates how nucleotide dependencies can lead to a

k-mer being incorrectly identified as a motif occurrence under the

PSSM definition, and how the MotifCut algorithm deals with this

problem. (2) Through problem-specific optimizations, motifs can be

efficiently located in large inputs; the optimization problem that we

define can be explicitly solved in polynomial time, and therefore the

algorithm is guaranteed not to be trapped in local optima as input

size increases.

Fig. 1. Two yeast motifs: with and without nucleotide dependencies. This

diagram shows two graphs of real yeast motifs—ADR1 and YAP6. Each node

corresponds to a motif occurrence. Edges connect pairs of k-mers that are

identical or differ by one mutation. If we model a motif with a PSSM, we can

compute the probability of a specific k-mer being generated by that PSSM.

Given the number of motif instances we can convert these probabilities into

the expected number of occurrences for each k-mer. This number can be

compared with the actual number of occurrences. In the two graphs k-mers

that occur less frequently than expected are colored red, k-mers that occur

more frequently are colored green, and cases in which observed and expected

numbers are equal are colored blue. In such a graphical representation, PSSM-

generated motifs have a single dense center, corresponding to the maximum

likelihood k-mers, and the density of k-mers decreases as they are further from

that center and hence less likely. The PSSM model is a good fit for the YAP6

motif, but not for the ADR1 motif.

Fig. 2. Nucleotide dependencies and MDS. An alignment of 8-mers on the

left represents a motif consisting of 6 motif occurrences. This is an artificial

motif with perfectly conserved nucleotide dependencies (at positions 1, 2 and

3). The example k-mer on the right does not have the appropriate dependen-

cies, and as such is not a good candidate motif. From the standpoint of the

PSSM (center top), this k-mer appears to be as good a candidate as any of the

motif instances. In contrast, if we create an edge between all the k-mers that

have a mutation distance of 3 and fewer nucleotides and no edge otherwise,

then the motif candidate will not be connected to the motif set in the graph

representation. This example demonstrates that nucleotide dependencies that

are ignored by the PSSM representation are implicitly incorporated in our

graph representation of a motif.
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3 RESULTS

3.1 Synthetic data

To test the performance of MotifCut we ran a series of tests

against three of the most popular motif-finding algorithms currently

available: MEME (Bailey et al., 1995), AlignAce (Hughes et al.,
2000), and BioProspector (Liu et al., 2001). The selection of these

three algorithms was largely based on an extensive performance ana-

lysis (Buhleretal., 2005).Of the14algorithmspresented in that study,

we considered the six that had the best performance in yeast and

overall. From these six we chose three that did not have k-mer size

limitations that would prevent them from discovering some of the real

yeast motifs. The WEEDER (Pavesi et al., 2004) tool, for instance,

does not operate on motifs of odd length or on k-mer sizes greater then

14; this would prevent it from being used on over 65% of real yeast

data. The three algorithms that do not suffer from such limitations

included both MEME and MEME3, and we chose to include only

MEME since it demonstrated significantly better performance on

yeast. We included BioProspector even though it was absent from

the performance comparison (Liu et al., 2001), because in our tests it

demonstrated the best performance of all previous methods.

Our first experiment consisted of running all of the algorithms on

a synthetic data set. There are several reasons to use synthetic data

for benchmarking. It obviates the problem of obtaining sufficient

test cases, and allows us to gauge performance as a function of

specific input parameters. It further eliminates the possibility that

algorithm parameters were overtrained on known yeast motif

annotations. Also, one can identify false positives unambiguously,

while in real data some of the true motifs may not have been

annotated.

For the synthetic data, we generated background sequences using

a 3rd-order Markov model. These dependencies were estimated

from all intergenic regions of the yeast genome. We then generated

three sets of PSSMs of sizes 8, 12, and 16, with fixed information

contents of 12, 14, and 16 bits respectively (in a PSSM representa-

tion of a motif each nucleotide position can be viewed as 2 bits of

information if it predicts a specific nucleotide with probability 1; if

any of the four values are equally likely the information content at

that position is 0). For each motif size, we run experiments on inputs

consisting of 10,000, 15,000 and 20,000 nucleotides respectively,

subdivided into 20 sequences. For each test, 20 instances of the

motif were randomly seeded into the input, not necessarily one per

sequence, and our results are based on 100 runs of each of the nine

tests. To score the results we compute the PSSM of the top three

motifs returned by each algorithm and calculate the value of its

Pearson correlation with the seeded motif’s PSSM. If the value of

this correlation is higher than 0.7, which is a commonly used thresh-

old for strong statistical similarity, we consider the seeded motif to

be correctly identified. It is possible that an algorithm will find the

true motif, but that its positions will be shifted left or right. For

scoring purposes, we allow uniform shifts of one to three nucle-

otides across the entire motif set. The size of the maximum allow-

able shift depends on the k-mer size.

As can be seen in Figure 3, MotifCut performs better than the

other methods in all of the tests on randomly generated data. All

algorithms experience a significant performance drop-off as the

ratio of the number of motif occurrences to the length of the

input sequence decreases. MotifCut also follows this pattern, yet

demonstrates a more gradual performance decay.

Since we use a novel formulation of the motif finding problem,

we expected a lower correlation between the motifs found by

MotifCut, and those located by the other three algorithms.

One way to measure the correlation between two algorithms’

performance is by using a log-odds ratio. Based on the test runs,

we first calculate the probability of a motif being correctly identified

simultaneously by both algorithms. We divide this probability by

the expected probability under the assumption of algorithm inde-

pendence, which is derived from the fraction of motifs found by

each algorithm. Taking the log2 of that ratio as the measure of

similarity between two algorithms, a value of 0 indicates total

independence, and a value of 1 signifies that the amount of observed

Fig. 3. Performance of four motif-finding algorithms on synthetic data. In

these graphs the X-axis represents the input size, in nucleotides, and the

Y-axis represents the percentage of motifs correctly identified. A motif is

considered correctly identified if its Pearson correlation with the seeded motif

is 0.7 or greater.
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overlap is twice the expected overlap assuming independence.

Under this measure, unlike with the Pearson correlation, two

strongly performing algorithms will not a priori have high simil-

arity. Some motifs may be extremely easy to locate, whereas others

may not be identifiable by any statistical methods. The correlation

of all the algorithms in such instances is misleading since it is

virtually methodology independent. Hence in computating the

log-odds ratio we restricted our input to motifs that were found

by at least one algorithm, and missed by at least one other algorithm.

Table 1 shows the log-odds ratios for each pair of algorithms. As can

be seen from the table, MotifCut’s results are significantly different

from those of the other three algorithms.

In our approach to motif finding we have departed from linear

complexity sampling heuristics. To make the running time of

MotifCut scale for real life applications we implemented a series

of problem-specific optimizations, which made the MDS algorithm

sub-quadratic. Details of our optimizations are discussed in

Methods. Figure 4 demonstrates the running times for all four

algorithms on synthetic test data. For each algorithm we benchmark

the running time for input sequences of length 10,000, 15,000 and

20,000 base pairs. For each type we averaged running time for

k-mers of size 8, 12 or 16. As can be seen from the figures, Motif-

Cut’s running time is comparable to that of the other algorithms.

3.2 Yeast data

Synthetic data is a convenient testbed that gives us control over

every aspect of the input; however, it exhibits only limited fidelity to

the real task. To benchmark the performance of our algorithm on

real data, we tested MotifCut against other algorithms on a set of 83

experimentally verified yeast motifs, which were obtained in a

genome-wide study that was reported previously (Harbison et al.
(2004)). These motifs were identified in a CHip-chip experiment as

having a p-value of less then 0.001 and were conserved in at least

one other yeast genome.

As shown in Figure 5, MotifCut has a significant lead over the

other methods in identifying yeast motifs. As was the case with the

synthetic data, we accepted the top 3 results for each algorithm. 31%

of the motifs were identified by all four algorithms.

Similarly to the synthetic data, we find that MotifCut identifies

motifs that are less correlated with those found by other algorithms

as shown in Table 2.

4 METHODS

4.1 Graph construction

The main idea behind the MotifCut algorithm is to formulate motif finding as

the problem of finding the Maximum Density Subgraphs (MDS) in a

specially constructed weighted graph G ¼ (V, E); where the set of vertices

V corresponds to the set of all of the k-mer occurrences in the input, and the

set of undirected edges E, represents nucleotide similarities between those

Table 1. Table of log-odds ratios on synthetic data

AlignAce BioProspector MEME

MotifCut 0.14 0.10 0.12

MEME 0.20 0.31

BioProspector 0.24

The log-odds ratios of the 4 algorithms in the synthetic data set.

Fig. 4. Running time comparison. The X-axis is the input size, the Y-axis is

the time in seconds in which the average task completes. The values are found

by averaging running time on k-mers of sizes 8, 12 and 16.

Fig. 5. Performance of the four algorithms on real yeast data. The Y-axis in

this graph represents the percentage of motifs identified with a Pearson

correlation of 0.7 or greater to the annotated motif’s PSSM. The grey level

represents the percentage of motifs found by all four algorithms.

Table 2. Table of correlations on yeast data

AlignAce BioProspector MEME

MotifCut 0.13 0.12 0.02

MEME 0.67 0.38

BioProspector 0.54

This table shows log-odds correlation values between motifs found by each of the four

algorithms in real yeast data.
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k-mers. Given such a graph G let M � V denote the collection of k-mer

occurrences corresponding to the binding sites of a specific transcription

factor, and let B denote the background k-mers. The output of MotifCut it the

set of vertices that is its best prediction of the set M.

Let S1 . . . Sn be the set of input sequences. Each sequence Si is an array of

nucleotides Si ¼ {ai1, ai2, . . . , aim}. We start by constructing a collection of

k-mers, V. This is the multiset of all k-mers encountered in the input includ-

ing repeats and overlaps. Hence, each vertex vl can be uniquely identified by

its starting position. This position corresponds to a particular nucleotide aij in

the input sequence, hence vl ¼ [aij, aij+1, . . . , aij+k�1] where k is the size of

k-mers. The edge set, E, is created by a pairwise evaluation of the similarity

between each pair of k-mers in V. Since G is a weighted graph, for simplicity

we can view it as a fully connected graph and concentrate on assigning an

appropriate weight to each edge.

The edge weight wij between a pair of vertices vi and vj is defined as

follows:

wij ¼
Prðvi 2 M j vj 2 MÞ þ Prðvj 2 M j vi 2 MÞ

QðPrðvi 2 BÞÞ þQðPrðvj 2 BÞÞ ð1Þ

In this formula Q is a background normalization function that will be

rigorously defined in Background Normalization. We estimate the other

quantities as follows: To estimate the probability of vi 2 M given vj 2 M

we took into account the k-mer size k and the hamming distance (number

of mismatches) l between vi and vj. For every k ¼ 6, . . . , 31 we generated

random PSSMs with a specific information content for every k, selected

empirically to reflect the average conservation rates in yeast motifs

(Harbison et al., 2004). Even though the PSSM model explicitly ignores

inter-nucleotide dependencies, models effectively the majority of real motifs.

On the other hand if we were to include data with simulated dependencies, the

choices of those dependencies would reflect various examples found among

annotated yeast motifs, and hence cause overfilling. For values of k where

there are no curated databases of real motifs (k > 18), we extrapolated the

information content based on the asymptotic behavior for k¼ 6, . . . , 18. Then,

we generated 100 instances of 10,000 bp-long input sequences by the 3rd-

order Markov background of the entire yeast genome; in each input, we

implanted 20 occurrences of motifs generated by the PSSM. This resulted

in 100 input graphs G, each containing 10,000 vertices, 20 of which are in M.

Given vi2M, leta(k, l) be the number of vertices vj2M that are l mismatches

from vi, and let b(k, l) be the number of vertices vj =2M that are l mismatches

from vi. For every combination of k and l we estimate

Prðvi 2 M j vj 2 MÞ ¼ aðk‚ lÞ
bðk‚ lÞ ð2Þ

The plot of Pr(vi2M j vj2M) against the number of nucleotide mismatches l

between vj and vi is well approximated by a sigmoid. With parameters determ-

ined by the k-mer size k and the number of nucleotide mismatches between vi

and vj.

Pr ðvi 2 M j vj 2 MÞ ¼ 1

1þ e�yþ zl
ð3Þ

Here y and z depend on the size of the k-mer, k. It can be seen that the results of

this approximation (Figure 6) fall within the range observed in yeast data.

The probability of vi 2 B is a straightforward application of the nth order

Markov dependency assumed for the input:

Pr ðvjÞ ¼
Y

ait2vj

Pr ðait j ait�1 . . . ait�nÞ
,

:25

 !
ð4Þ

The order n of the Markov dependency is based on the size of the input to

ensure sufficient sampling.

4.2 Finding the maximum density subgraph

To find the maximum density subgraph we use a modified parametric flow

algorithm (Gallo et al., 1989). This is an example of fractional programming

(Gallo et al., 1989). It is solved through an iterative application of the

push/relabel algorithm to find max-flow and min-cut. To apply the parametric

flow algorithm we modify our original graph G by adding two additional

vertices: s—the source, and t—the sink. We compute the graph density

l ¼ kEk/kVk. Each vi of V will be connected to one of the vertices s or

t. Let the sum of the weights of adjacent edges to vi be d(vi). If d(vi) � l, s

will be connected to vi with an edge of weight d(vi) � l, otherwise vi is

connected to t with an edge of weight l� d(vi). In the new graph we execute

the push/relabel algorithm. This algorithm finds the maximum flow through

the graph while also finding the minimum cut. The minimum cut partitions

the graph into two disconnected subgraphs. One partition includes the sink

and the other includes the source. We discard elements that are connected to

the sink, recompute a new value for l with the remaining elements and rerun

the algorithm. This algorithm will converge in a polynomial number of steps

to the set of vertices that constitute the maximum density subgraph. (Gallo

et al., 1989).

The algorithm for finding the MDS is simple and easy to implement,

however its running time is O(nmlog(n2m)), where n is the number of ver-

tices and m is the number of edges. This time complexity is too great for large

data sets. To overcome this limitation, we define a set of n subgraphs N(vi),

one for every vertex vi. Each of these subgraphs represents a neighborhood of

one of the vertices, vi: it is induced by all vertices directly connected to vi

with an edge of weight greater than some threshold w, including vi itself

(Figure 7).

Since the graph G is fully connected, for a given motif set M there exists a

minimal w such that for some instance of the motif, m 2 M, all of the other

instances of the motif are directly connected to m with an edge weight greater

than or equal to w. This means that all the instances of the motif will appear

in a single neighborhood if the minimum allowed weight is less then or equal

to w. Based on this property, for a proper choice of w, we can find the MDS of

each local neighborhood, and one of these MDSs will contain the motif set.

If we assume that the motif set M produces the highest density subgraph,

then there will be a neighborhood of some motif instance m that will

produce the same density, and this density will be the highest of all the

neighborhoods.

To speed up the algorithm, we want to set w as high as possible while not

decreasing sensitivity of motif detection. We picked w using the following

heuristic approach. To compute an appropriate threshold w(k) as a function

of motif length k, we generated motifs based on synthetic PSSMs of size k

and with various information contents (bits of information), and implanted

them in 10 kb of random sequence. We then found the information content

Fig. 6. The probability of a k-mer belonging to a motif given its mutation

distance to a motif k-mer. The probability Pr(vi 2M j vj 2M) is plotted (red

line) as a function of number of mutations between vj and vi, as we estimated it

from simulated PSSMs. The blue area is the range of values for the probability

for motifs observed in yeast promoter regions. For this example we used

k-mer size 11 since the amount of empirical data for this size was the greatest.
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such that 50% of motifs of that content were detected by running MDS on the

entire graph G, and picked the highest w(k) such that sensitivity did not

decrease.

Therefore, after selecting all vertices that are connected to vi with an edge

weight > w(k) (for k-mer size k), we obtain neighborhood graph N(vi). Note

that this induced graph is defined to include all edges in E connecting pairs of

nodes in the neighborhood of vi, including edges of weight < w(k). For each

neighborhood subgraph N(vi) we find the maximum density subgraph N0(vi),

and its associated density li. Then, we isolate N� ¼ argmaxN0 ðviÞli. This

latter subgraph is our candidate motif set that will be refined next.

4.3 The refinement step

Our set of candidate k-mer occurrences N* is a good starting point for

finding which elements constitute the real set of binding sites. However,

empirically we often find false positives in this set. To eliminate false

positives we find a subset of N* that minimizes the entropy of the

entire set. The entropy of a set S is computed as follows:

EðSÞ ¼ logðkSkÞ
Pk

j¼1 ðð
P

i2S ajiÞ logð
P

i2S ajiÞÞ. The optimization pro-

ceeds in a greedy leave-one-out fashion that finds the locally optimum

subset. The process terminates once convergence is achieved. Note that

the log(kSk) term ensures that the set will not shrink to a single k-mer.

In practice we are often interested in finding more than a single motif

candidate within a set of input sequences. We achieve that by performing the

refinement step and returning a user-specified number of top scoring neigh-

borhoods. We ensure that the returned results do not contain neighborhoods

primarily consisting of the same vertices, or representing a uniform shift of a

few bp over the vertex set of another neighborhood.

4.4 Background normalization

The function for assigning weights to the edges is critical for effectiveness

of the method on real biological data. In particular real DNA often has

irregularities in its k-mer distribution, such as a high GC content or

low-complexity regions. If not accounted for, such abnormalities will

emerge as dense regions in the graph, and obscure the presence of real

motifs. We are compensating for these irregularities when computing

edge weights, as was discussed in Graph Construction. Intuitively, this

compensation should be such that in the absence of a true motif, for any

vertices vi, vj, the corresponding densities li and lj are approximately equal.

To achieve that, we defined the function Q in equation (1) empirically. We

constructed input sequences with 3rd order Markov irregularities of varying

severity (up to 90% GC content). We then attempted different families of

functions for Q, such as exponential, polynomial, and logarithmic functions,

and found that the following definition of Q results in densities that are

sufficiently normalized:

QðPr ðvjÞÞ ¼ PrðvjÞ1/e ð5Þ

An example of how the normalization with Q works in practice is displayed

in Figure 8, for a set of sequences with 70% GC content. As seen in this

figure, before normalization the densities li display a high degree of vari-

Fig. 7. Construction of a neighborhood subgraph. A. Starting with

the complete graph, we first temporarily discard all the edges with

weight � w (depicted as light grey in the picture). B. Each vertex in turn

is chosen (colored red), to be the center of a neighborhood. C. All the vertices

connected to the central vertex define an induced subgraph; in this subgraph

we reintroduce all the edges of lower weight than w. Those vertices and the

central vertex form the neighborhood subgraph (circled with a red line). D.

We find the maximum density subgraph of the neighborhood (green vertices).

This process is repeated once for every vertex (k-mer) in the input.

Fig. 8. Predicting k-mer specific density value. In graph A k-mers are sorted

by the predicted maximum density (red line); the density that is calculated

given each k-mer’s nucleotide composition and its distribution in the back-

ground. The blue lines indicate actual maximum density values that were

obtained from the neighborhood of the appropriate k-mer. Graph B shows the

effect of normalization by the predicted maximum density. Once again, the

red line demonstrates the normalized predicted value, and blue lines the actual

value obtained. In both cases obvious outliers are instances of the motif.
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ation, and as a result the motif instances are drowned by background words.

After normalization, the background k-mers all induce approximately equal

densities li, and as a result the motif k-mers can be clearly discerned.

4.5 Choice of density function

As our results demonstrate, the objective function of subgraph density used

in MotifCut is effective in separating motifs from background. However, it is

not clear a priori that kEk/kVk is the optimum choice of density function.

Even though this function is a canonical definition of graph density, other

functions are equally meaningful. A more general definition of density is

given by kEkx/kVkwhere the exponent x can range from 0 to1. The value of

x fundamentally changes the results of the optimization (Figure 9). If x¼ 0.5

for instance, and we are applying it to the unweighted graph, then

this problem is equivalent to determining the size of the maximum

clique. If x ¼ 2.0 the output will always be the largest connected component

of the graph. The optimization problem for most values of x is intractable.

In fact, the only non-trivial formulation of the problem for which it

remains tractable is for the exponent value x ¼ 1, used by our

algorithm. Though we cannot realistically use any other objective function

than kEk1/kVk, we also provide some evidence that our choice of x is likely

to be close to optimal.

Ideally we would like to pick the exponent for which the densities of the

motifs are separated as much as possible from maximum densities of sub-

graphs in the background. We asked the question of what is the best such

exponent x for real yeast data. For each of the 83 promoter sets containing a

motif, we first computed the density kEkx/kVk of the motif subgraph. Then,

ideally we would like to compute the maximum density of a background

subgraph. However, this is not possible for arbitrary x because the problem is

intractable. Therefore, we relied on sampling random subgraphs. In every

yeast input in our benchmark we picked 1,000 random subgraphs of size 2y,

where y ranged from 2 to 8, and measured their density for values of x from

0.5 to 2.0. For each combination of subgraph size and exponent x, we found

the mean and standard deviation of the density values. The resulting distri-

bution served as our estimate for the distribution of densities of background

subgraphs. We now hypothesized that for a given subgraph size 2y, the

optimal choice of x is the one in which the ratio R(x, y) of motif density

over the standard deviation of the background density is maximum. For

each exponent x we recorded the minimum ratio value produced by the

background subgraphs of size 2y (Figure 10A). When plotted against x,

the minimum value minyR(x, y) creates a curve (Figure 10A, red line).

The optimal choice for the exponent x on this curve corresponds to the

highest point. In Figure 10B we plot the average over all yeast motifs of

minyR(x, y), after we normalize that curve so that its peak is at 1. The peak

should intuitively correspond to the optimal value of the exponent x, which

we find to be 0.95. This value is remarkably close to the the canonical value

of 1 used in MotifCut. Although the above argument is not a precise estima-

tion of the objective function for our yeast data set, it nonetheless provides

some explanation of the strong performance of MotifCut.

5 CONCLUSION

We have presented MotifCut, a novel graph-based approach to

motif finding. We have demonstrated better performance than the

leading motif finding algorithms on both simulated motifs, and

experimentally derived yeast motifs. Performance of MotifCut

appears to scale well with input size. An important feature of Motif-

Cut is that the formulation is markedly different from the commonly

used PSSM models, and as a result the motifs it finds are signific-

antly different. Since originally the computational tools used to

detect motifs in our yeast data set were PSSM (or ‘‘diffused con-

sensus’’) based, it is possible that by imposing too many assump-

tions on the motif structure, motifs were missed. There is substantial

evidence that cis-regulatory elements can evolve in parallel with

Fig. 9. The Maximum Density Subgraph for different exponent values. If we

assume that all the edges in this graph are of weight 1, then the MDS for

exponent 0.5 is of size 3 (blue vertices), and has a density kEk1/kVk ¼ 1. The

MDS for exponent 1, shown as green vertices, does not include the clique of

size 3 and has a density of kEk1/kVk ¼ 4/3.

Fig. 10. Optimal exponent value. Graph A depicts an example of sampling

output for a particular input (ADR1). X-axes are exponent values ranging

from 0.5 to 2.0. The Y axis is the number of standard deviation for subgraphs

of a specific size to the subgraph generated by the motif occurrences. Each

blue line represents sample output for a particular size subgraph. Sizes range

from 4 to 256. The red line indicates the minimum number of standard

deviations for the specific value of the exponent. Graph B depicts the mini-

mum values for each exponent, averaged over all yeast motifs. In image B the

red line represents exponent used in MotifCut and green line represents the

optimal value.
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their binding factors (Athanikar et al., 1998; Jyoti et al., 1998; Shaw

et al., 2002). For example, we see this effect in the transcription

factor Rpn4p and its binding site in S. cerevisiae and C. albicans

(Gasch et al., 2004). The sequences of these related binding sites

can be substantially different. In our graph-based formulation, it is

possible for two k-mers in a subgraph to be substantially different, if

the k-mers that connect them are sufficiently edge-dense. Therefore,

two related but substantially different k-mers can be part of the same

motif, if there also exist a set of intermediary k-mers.

The source code and executables for MotifCut are available under

the GNU public licence at http://motifcut.stanford.edu.
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ABSTRACT

Motivation: The protein tyrosine kinase Src is involved in a multitude

of biochemical pathways and cellular functions. A complex network of

interactions with other kinases and phosphatases obscures its precise

mode of operation.

Results: We have constructed a semi-quantitative computational

dynamic systems model of the activation of Src at mitosis based on

protein interactions described in the literature. Through numerical

simulationandbifurcation analysiswe show thatSrc regulation involves

a bistable switch, a pattern increasingly recognised as essential to

biochemical signalling. The switch is operated by the tyrosine kinase

CSK, which itself is involved in a negative feedback loop with Src.

Negative feedback generates an excitable system, which produces

transient activation of Src. One of the system parameters, which is

linked to the cyclin dependent kinase cdc2, controls excitability via a

second bistable switch. This topology allows for differentiated

responses to a multitude of signals. The model offers explanations

for the existence of the positive and negative feedback loops involving

protein tyrosine phosphatase alpha (PTPa) and translocation of

CSK and predicts a specific relationship between Src phosphorylation

and activity.

Contact: fuss-h@ulster.ac.uk

INTRODUCTION

One striking feature of the protein tyrosine kinase pp60/c-Src is

the number of biochemical signalling pathways it is involved in.

Cellular functions such as cytoskeletal organisation, cell cycle

control, growth factor signalling, cell adhesion, migration and dif-

ferentiation depend on it (Thomas and Brugge, 1997; Bjorge et al.,
2000; Brown and Cooper, 1996). The numerous phosphorylation

targets that have been identified characterise Src as a hub in cellular

signalling networks (Abram and Courtneidge, 2000).

It was originally discovered as a viral oncogene (v-Src) (Rous,

1911) and in fact it is frequently deregulated in various human

cancers (Irby et al., 1999; Thomas and Brugge, 1997). Its normal,

physiological form, c-Src, occurs in all higher vertebrates. It also

constitutes a family of tyrosine kinases consisting of nine members.

Src homology domains (SH domains) appear as interaction domains

in many other proteins. For example, SH2 is an important phos-

photyrosine (pTyr) binding motif. Crystal structures of Src family

proteins have provided many clues as to its regulation (Xu et al.,

1997). However, despite its obvious importance to the correct

functioning of cellular processes, a tangible role for Src in cell

physiology has not yet emerged.

Thomas and Brugge identified six major difficulties that impede

the functional characterisation of individual Src family kinases

(Thomas and Brugge, 1997). Among these are: redundancy among

Src family members, the complexity of their downstream pathways,

interference due to a high degree of homology among interacting

proteins and a few others that make the in vivo system inaccessible.

Our computer-aided approach aims to tackle this complexity

through mathematical modelling and numerical analysis. We pre-

sent here a dynamic systems model aiming to characterise the

activation of Src at mitosis by simulating known and hypothesised

interactions.

A dynamic systems model describes the temporal evolution of a

system state using only a fixed set of rules. In a protein-protein

interaction model the system state is defined by the concentrations

of each molecular entity at a given time t. The dynamic rules of

the model allow computation of a subsequent state at a later time t +
Dt.

The objective of our approach is two-fold: First, complex

biological systems require a reliable way of testing whether the

hypothesised interactions account for the observed behaviour in

the real system. The aim is to find reasons for the vast complexity

of interactions that Src undergoes in the characteristics of its

temporal behaviour. Second, dynamic models have predictive

capabilities. A variety of experimental set-ups, such as overexpres-

sion and deletion or the effects of amino acid substitution, can be

simulated with our model. Emergent properties such as bistability,

robustness or sensitivity to system parameters, such as kinase

activities or physiological conditions, can be verified in wet-lab

experiments and thus provide new insights about the characteristics

of the enzymes involved.

Current research is beginning to relate known protein-protein

interactions to architectural concepts and principles (Tyson et al.,
2003; Milo et al., 2002). One important concept is bistability, which

is now recognised as an essential feature of cellular signalling net-

works (Bhalla and Iyengar, 1999). A bistable system can alternate

between two discrete stable steady-states in response to a signal.

Bistable biochemical switches can, for example, amplify and modu-

late an extra-cellular signal to yield a decisive all-or-nothing

response from the intracellular logic. Enzymatic systems involved

in cell cycle regulation appear to make heavy use of bistable sys-

tems in order to co-ordinate progression through each stage of

the cycle (Fuß et al., 2005; Ingolia and Murray, 2004).�To whom correspondence should be addressed.
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The Src system

As noted above, Src interacts with a huge number of different

proteins. From these we have taken an exemplar set that is thought

to be essential to the activation of Src at mitosis.

We know that Src activity is controlled in a complex manner

through several phosphorylation sites: When phosphorylated on

Tyr5291 Src assumes a compact, inactive conformation due to an

intramolecular pTyr-SH2 interaction (Xu et al., 1997). It is normally

inactive in this conformation (with exceptions as we shall see later).

The N-terminal sites Thr34, Thr46 and Ser72 are thought to be

phosphorylated by the cyclin-dependent kinase cdc2 (Shenoy

et al., 1989). Their phosphorylation leads to weakening of the

intramolecular pTyr-SH2 interaction and exposes pTyr529 to phos-

phatases (Stover et al., 1994; Shenoy et al., 1992). Phosphorylation

of the other major tyrosine phosphorylation site, Tyr418 within the

activation loop, is known to significantly increase kinase activity

(Kmiecik and Shalloway, 1987; Xu et al., 1999). This site is phos-

phorylated in an autocatalytic reaction.

Two other proteins are associated with phosphorylation and

dephosphorylation of Tyr529: PTPa and CSK (see Fig. 1). PTPa

(Protein Tyrosine Phosphatase alpha) is the ubiquitously expressed

receptor protein tyrosine phosphatase (RPTP) that is known to

dephosphorylate Src pTyr529 and thus to positively affect Src activ-

ity. Furthermore it has been suggested that PTPa is a target of Src

itself: PTPa features at least one phosphorylation site at Tyr789

that is essential for its Src directed activity. It has been hypothesised

that PTPa therefore participates in a positive feedback loop with

Src (den Hertog et al., 1994; Zheng and Shalloway, 2001). The

activity of PTPa is further regulated by an inhibitory protein, Grb2.

Grb2 binding to PTPa down-regulates its activity (den Hertog et al.,
1994; Zheng and Shalloway, 2001). However, serine hyper-

phosphorylation of PTPa can prevent their interaction. Zheng

and Shalloway suggested that protein kinase C (PKC) could be

responsible for this modification (den Hertog et al., 1994; Zheng

and Shalloway, 2001).

CSK (c-Src tyrosine kinase or C-terminal Src kinase) is a

negative regulator of Src activity and is homologous to Src. How-

ever, its activity is regulated in a different fashion. In the inactive

state, CSK resides in the cytoplasm. Cbp (CSK-binding protein, also

known as PAG), a membrane-located binding protein and phospho-

rylation target of Src, associates with CSK through a pTyr-SH2

interaction. This interaction enables its kinase activity and recruits

it to the membrane, where it can target the inhibitory Src phospho-

rylation site Tyr529. Cbp and CSK therefore seem to constitute

a negative feedback loop with Src (Howell and Cooper, 1994;

Kawabuchi et al., 2000; Brdička et al., 2000).

METHODS

Information retrieval

Our model is the result of a hypothesis-driven (as opposed to data-driven)

approach. The information about protein interactions was mainly retrieved

from published articles referenced throughout this paper.

Default parameter values were manually adjusted to fit observations

from literature and to correspond to physiologically plausible assumptions.

Where available, quantitative findings from literature have been accommo-

dated. However, our model focuses on the discovery of general, qualitative

behavioural features rather than on making quantitative predictions. The

model variables therefore represent dimensionless concentrations.

Computational modelling

The software tool Narrator, an implementation of the Codependence Model
formalism (Mandel et al., 2006), was used to define the Src system model

in Fig. 2.

Codependence Models are a graphical formalism intended for describing

dynamic models of complex biological systems. The main strength of the

formalism is the uniform description of transport or (for example chemical)

transformation processes and informational interactions, such as stimulation

and inhibition (Mandel et al., 2006). The formalism also defines a dynamic

interpretation and therefore allows direct translation to a system of ordinary

differential equations (ODE). It is more readable and less prone to errors,

since features like conservation of mass are implicitly derived from the graph

structure. The equations that need to be specified (see Table 1) are much

simpler than in a typical biochemical ODE model. Unlike many formalisms,

its model elements are abstract entities rather than representations of con-

crete biochemical classes such as enzymes, proteins, transcription factors

etc. Its one-to-one correspondence to ODEs enables the use of a full range of

mathematical analysis techniques. The main elements of the Codependence

Model formalism are described in the caption of Fig. 2.

Kinetic equations

Our model employs simple, mass-action based kinetics to represent enzym-

atic reactions. The resulting equations are simpler than for example

Michaelis-Menten kinetics and contain fewer parameters. This simplification

is valid under the assumption that the Michaelis constant KM for each

enzyme is large compared to its physiological concentration.

All kinetic equations (velocities) therefore take the form

v ¼
X

i

niki · aenzyme · substrate

where ni is a stoichiometric parameter to distinguish forward and reverse

reaction, ki the kinetic rate constant and aenzyme the activity of the relevant

enzyme. Enzymatic activities of Src and PTPa also include a background

element a0
enzyme.

Numerical simulation

For subsequent mathematical analyses, the model was converted to an ODE

file for use with XPPAut (Version 5.91) (Ermentrout, 2005) The latter is a

numerical simulation program for ODEs and other types of equation sys-

tems. It includes an interface to AUTO (Doedel, 1981), a software package

for numerical bifurcation analysis, which was used to generate Figures 3 to 7.

For numerical solution of differential equations a fourth order Runge-

Kutta algorithm with adaptive step size was used, with a maximum step size

of 0.1. AUTO was operated with an error tolerance of 10�7 (EPSL, EPSU

and EPSS) and a step size not greater than 0.01.

CSK Src

A C

B

PTPα

Fig. 1. Schematic representation of three feedback loops controlling the

activity of Src. Two external feedback loops (A and C) involve other kinases

(CSK) and phosphatases (PTPa), while internal feedback (B) is caused by

autophosphorylation.

1The nomenclature for Src phosphorylation sites is not consistent in the

literature, which is partly due to the different positions of these sites in

human, mouse and chicken homologues. All positions in this article refer

to human Src according to UniProt entry P12931.
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RESULTS

Model definition

We have constructed a dynamic model that represents interactions

between Src, PTPa and CSK. These proteins were selected because

of their known and described importance for tyrosine phosphory-

lation in the cell cycle, specifically at mitosis (Mustelin and

Hunter, 2002). Zheng and Shalloway developed a basic temporal

model for PTPa activation (Zheng and Shalloway, 2001, Fig. 10).

Our approach integrates this model and the Cbp/CSK system

(see for example Kawabuchi et al. (2000); Okada et al. (1991))

in a computational dynamic systems model.
A diagrammatic representation of the model, for which we have

used a graphical formalism called Codependence Models (Mandel

et al. (2006), see Methods), is shown in Fig. 2. The model consists

of ten species, which hold the concentrations of each molecular

entity. The model works with fractional units rather than physio-

logical concentrations, since there is little quantitative data avail-

able. These entities are connected through seven reactions (process

clouds in Fig. 2). Their velocities, n1 to n7, are defined using only

basic mass-action kinetics (Table 1). Kinetic parameters are indi-

cated as weights on the respective links (thin lines, known as con-

ditional links).

Src occupies the central role in our model. Two tyrosine phos-

phorylation sites are of particular importance to the dynamics of Src

activation, namely Tyr529 and Tyr418. These two sites allow four

possible combinations of phosphorylation states, which are depicted

on the left-hand side of Fig. 2. Other phosphorylation sites are not

explicitly represented in the model, but the effect of N-terminal

serine and threonine phosphorylation can be simulated through

model parameters as we will see. The four states are abbreviated

srci (inactive), srco (opened), srca (activated) and srcc (closed) for

convenience. The corresponding states of each phosphorylation site

can be seen in Fig. 2.

The model allows all conformations except srci to contribute to

kinase activity, and each to a different degree, reflected by their

specific molar activities rsrco, rsrca and rsrcc. The node ‘Src activity’

combines these into a summative activity exerted onto Src phos-

phorylation targets, which includes Src itself (autophosphorylation,

interaction E). Tyrosine kinase background activity is included as an

additional model parameter.

Phosphorylation status of Tyr529 is controlled by CSK (interac-

tions A and B in Fig. 2) and PTPa (interactions C and D). We

assumed that the activity of these enzymes is independent of Tyr418

phosphorylation status, hence they control both n1 and n3.

While the srcc state (phosphorylated on both Tyr529 and Tyr418)

has been observed in vitro (Boerner et al., 1996) its exact role in vivo
remains controversial. The kinase domain of srcc appears to retain

its activity. Once Src is activated, CSK is not able to deactivate it

until pTyr418 is dephosphorylated (Sun et al., 1998). Xu et al. state

that the srcc state has not been observed in vivo (Xu et al., 1999). It

is unclear why CSK should not target srca in living cells. If srcc
cannot be observed, this could be due to a short lifetime of this state.

This is reflected in the model by a high default value of k4 ¼ 10,

which leads to rapid hydrolysation of pTyr418 in srcc. We do

not, however, propose or favour any particular mechanism of

Fig. 2. Computational model. Blue rectangles represent molecular species, turquoise clouds denote reactions between them. Blue arrows represent material flow

(positive direction is indicated by filled arrowhead). Thin red lines, so-called conditional links, represent informational flow, e.g. enzymatic activity. The small

red circle indicates information source, e.g. the enzyme catalysing the reaction. Each condition has an associated weight that controls the intensity of

the interaction (ellipses on conditional links). If unspecified, the weight is 1. Large turquoise circles represent constants or computed logical entities.

Fuß et al.
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deactivation. Ubiquitination of active Src, causing protein degrada-

tion, has been suggested as an active such mechanism (Hakak and

Martin, 1999).

The upper right part of Fig. 2 is concerned with PTPa. Src-

directed activity of PTPa again depends on its phosphorylation

status: Phosphorylation of Tyr789 seems to increase specific activ-

ity towards Src; and phosphorylation on serine residues decreases its

inhibitory binding to Grb2 (Zheng et al., 2000). The hypothesised

phosphorylation feedback loop between Src and PTPa is repre-

sented by interactions G, C and D in the model. We assumed

that the two modifications, Tyr789 and serine phosphorylation,

are independent of each other. The model therefore shows PTPa

as two entities, ‘PTPa’ and ‘PTPa-pTyr789’. Serine phosphoryla-

tion of PTPa and association with Grb2 are not explicitly repre-

sented in the form of molecular entities in the model. We can

however simulate this effect through Kser, which stands for the

fraction of PTPa phosphorylated on serine residues and therefore

immune to Grb2 inhibition.

The CSK/Cbp subsystem is depicted in the lower right-hand

corner of Fig. 2. Src activity causes phosphorylation of the mem-

brane protein Cbp. CSK can then associate with Cbp through a

pTyr-SH2 interaction (node ‘Cbp-P-CSK’). This interaction both

activates CSK and recruits it to the membrane, where it can interact

with Src (Kawabuchi et al., 2000; Okada et al., 1991).

Total amounts of Src, CSK and PTPa are assumed to be constant.

We are not aware of any evidence for differential expression of Src

between cell cycle phases. PTPa has been shown to be expressed at

constant levels in interphase and mitosis (Zheng and Shalloway,

2001). We have assumed constant overall CSK concentration, but

we will later discuss the influence of CSK concentrations on

Src regulation.

Some kinases and phosphatases in the system are unidentified,

and their activities are denoted p1 to p3. p1 stands for the activity of a

phosphatase targetting Src pTyr418, while p2 and p3 target PTPa

pTyr789 (phosphatase and kinase, respectively).

The interaction between CSK and Cbp was modelled as a

simple association/dissociation reaction with kCbp;on and kCbp;off

as forward and reverse reaction rates. The dissociation constant

then becomes

Kd ¼
kCbp;off

kCbp;on

:

Bistability in the activation of Src

To study the effect of CSK on the system let us first consider

a smaller subsystem of this model, where CSK concentration is

kept constant (open-loop model). This can be realised by cutting

interaction F or setting kCbp¼ 0. CSK activity (represented by

Cbp-P-CSK) now becomes a model parameter and can be varied

independently.

Fig. 3 shows two phase-plane diagrams that demonstrate the

response of this subsystem to variation in CSK activity. The

lines indicate steady-state solutions (fixed points), where the system

is at rest. Heavy lines represent stable solutions and dashed lines

represent unstable solutions. When perturbed by a small amount,

the system will return to a stable fixed point on either branch.

The two saddle-node bifurcation points SN1 and SN2 enclose

a bistable region. For any CSK concentration within this region,

the system has two stable solutions and one unstable solution.

The system therefore exhibits hysteresis, which is characteristic

of bistable systems: When travelling leftwards along the lower

stable branch by decreasing CSK activity, Src remains inactive

until SN2 is reached. If we decrease CSK any further, the lower

stable fixed point disappears and the system moves towards the

upper stable branch, corresponding to high Src activity. If CSK

increases again, the system will proceed along the upper stable

branch until SN1 is reached and another transition occurs, bringing

the system back to the lower branch.

The two stable branches clearly separate high from low Src activ-

ity and this effect is even more pronounced for PTPa activity. These

findings suggest that Src may be switched on and off through a

bistable switch.

Role of the negative feedback loop involving CSK

We will now return to the full model and reactivate the negative

feedback loop involving CSK translocation. The system is still

attracted to the stable manifolds of Fig. 3. High Src activity, how-

ever, causes activation of CSK, which leads the system back to its

original state.

This phenomenon is called excitable behaviour and is well-

known in other disciplines of biological modelling. Examples are

systems which involve spatiotemporal pattern formation or signal

Table 1. Mathematical definition of model components. v1 to v7 refer to

processes in Fig. 2. Combined with the model topology these equations can

be converted to a set of differential equations for numerical analysis.

Processes:

v1 ¼ k2 · aPTPa · srci � k1 · cbp-P-csk · srco

v2 ¼ k3 · aSrc · srco � p1 · srca

v3 ¼ k1 · cbp-P-csk · srca � k2 · aPTPa · srcc

v4 ¼ k4 · p1 · srcc

v5 ¼ ðaSrc þ p3Þ · PTPa � p2 · PTPa-pTyr789

v6 ¼ kcbp · aSrc · cbp

v7 ¼ kcsk;on · cbp-P · csk � kcsk;off · cbp-P-csk

Activities:

aSrc ¼ rsrco · srcoþ rsrca · srcaþ rsrcc · srccþ a0
Src

aPTPa ¼ ptpyþ a0
PTPa

Default parameters:

rsrco ¼ 0‚ rsrca ¼ 1‚ rsrcc ¼ 1

k1 ¼ 1:0‚ k2 ¼ 0:8‚ k3 ¼ 1:0‚ k4 ¼ 10

kcbp¼1:0‚ kPTPa¼1:0‚ Kser ¼ 1‚

kcsk;on ¼ 0:1‚ kcsk;off ¼ 0:01

a0
Src ¼ 0:0001‚ a0

PTPa ¼ 0

p1 ¼ 0:05‚ p2 ¼ 0:15‚ p3 ¼ 0:035

Default initial conditions:

srcit¼0 ¼ 1‚cbpt¼0 ¼ 1‚

cskt¼0 ¼ 1‚PTPat¼0 ¼ 1

all other species are 0 at t ¼ 0
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propagation, such as in the famous neural membrane potential

model by Hodgkin and Huxley (1952).

The phase-plane diagram in Fig. 4A shows trajectories of the

simulated system response to a drop in Src-directed CSK activity.

For default parameters, excitation occurs below a threshold of

CSK 	 0:5. After Src activation, CSK activity is restored through

phosphorylation of Cbp by Src and translocation of CSK near

the membrane. The trajectory leads back along the upper stable

manifold to the original state on the lower branch.

This represents what we might observe during normal progres-

sion through the cell cycle: transient activation of Src at mitosis,

followed by low Src activity after cytokinesis. However, our simu-

lations show that this system is capable of more differentiated

responses that could account for cell cycle checkpoint responses,

in which Src activity is sustained at high level for longer periods.

We obtain a qualitatively different response if we restrict the

amount of available CSK or increase the dissociation constant

Kd for Cbp and CSK (Fig. 4B): As the system moves along the

upper stable branch towards SN1, Src activity leads to complete

conversion of Cbp into Cbp-P. Free Cbp is depleted before the

system reaches the bifurcation point. It therefore comes to rest

on the upper stable branch.

As we will demonstrate, several system parameters will allow us

to achieve this kind of dynamic behaviour. This mechanism of

obtaining sustained Src activity can be exploited by a regulatory

system to produce diverse responses to environmental conditions.

Influence of physiological parameters

Let us examine the influence of the parameter k2. It determines

the rate at which Src is dephosphorylated on pTyr529 through

the effect of PTPa, represented by v1 and v3 in Fig. 2 and

Table 1. This parameter reflects the status of several Src phospho-

rylation sites located near the N-terminus. The cyclin-dependent

kinase cdc2 (also known as cdk1) is associated with phosphoryla-

tion of these serine and threonine residues. When phosphorylated

the cleft between the C-terminal tail and the SH2 domain widens

and Tyr529 becomes more accessible to dephosphorylation. k2 is

therefore a function of cdc2 activity and thus an important connec-

tion to cell cycle.

Fig. 5A demonstrates the influence of k2 on bistability of the

system. As k2 increases the bistable range expands and is shifted

to higher CSK activities. Low k2 values (corresponding to low cdc2

activity and therefore weak interaction between PTPa and Src)

result in a strong inhibitory effect of CSK.

For a high k2 the position of SN1 exceeds the amount of total

available CSK in the cell (dotted line) and CSK activity is no longer

sufficient to bring the system back to the lower stable branch. Any

further increase in k2 amplifies this effect. We can display this

relationship between k2 and Src activity at equilibrium in another

bifurcation diagram (Fig. 5B), from which two new bifurcation

points, SN3 and SN4 emerge.

To the left of SN3 we observe excitable behaviour due to strong

negative feedback. Within the bistable region, CSK will initially

keep Src activity low, but cannot restore the low Src state after

excitation. Finally, SN4 represents the point, above which CSK by

itself is not even capable of enforcing the low Src state and Src

becomes constitutively active. A CSK deficient cell will generally

display this phenotype (Imamoto and Soriano, 1993; Nada et al.,
1993).

These results show that the system exhibits bistability on at least

two different levels: activation of Src by CSK and control of

excitability. Many other bistable signalling systems have been

characterised to yield an all-or-nothing response similar to what

can be seen in Fig. 3 (Bhalla and Iyengar, 1999; Laurent and

Kellershohn, 1999). The system described here is capable of

three qualitatively distinct types of behaviour: stable high, excitable

and bistable.

We see a potential role for this new, bistable region in the G2/M

cell cycle checkpoint. Src normally displays only transient activity

during these cell cycle phases, but the regulatory system needs to

guarantee that downstream events of Src are completed before

proceeding to the next stage. For example, if delays occur due to

unfavourable environmental conditions, the action of cdc2 will keep

the system to the right of SN3. This means that Src activity will

continue until cdc2 activity falls below this point. The low Src state,

however, is robust to cdc2 variation: Src activation is only triggered
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Fig. 3. The Src system exhibits bistability with respect to CSK. Lines show

fixed point solutions, where the system is at equilibrium. Dashed lines

indicate unstable solutions. Two saddle-node bifurcation points (SN1 and

SN2) mark the borders of a bistable region.
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Fig. 4. Trajectories demonstrate the effect of negative feedback. A:

Following a drop in CSK activity below SN2, the system is attracted by

the upper stable branch. High Src activity now leads to activation of CSK,

pushing the system to the right (i.e. towards high CSK) along the branch and

restoring low Src activity. B: This process can be interrupted if the amount

of CSK available to Cbp is limited (dotted line). In this case the limitation is

imposed by simulating a weaker Cbp-CSK interaction (Kd ¼ 0:1).
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by a drop in CSK activity: CSK switches the system on, while cdc2

controls when it is switched off.

CSK translocation and robustness

As we have seen, the fact that the amount of available CSK is

limited creates a second set of bifurcation points that define another

bistable region. Experimental evidence suggests that the Src system

is in fact sensitive to this amount (Imamoto and Soriano, 1993;

Nada et al., 1993). Surprisingly, in our model we find instead a

remarkable degree of robustness with respect to CSK.

Fig. 6 demonstrates the influence of total CSK on the bifurcation

points SN3 and SN4 (see Fig. 5). Fig. 6A is based on the default

parameter set. While lowering total CSK below the default of

1.0 results in a larger range of high Src activity, increasing total

CSK has more modest effects. This is not surprising, as the amount

of Cbp has been kept constant at 1 in this experiment. Greater

concentrations of CSK result in saturation of phosphorylated

Cbp, where more inactive CSK remains in the cytoplasm.

In order to establish an explanation for the mechanism in which

CSK is assumed to be regulated, we have created a hypothetical,

alternative version of our model, where Cbp is not involved and

CSK is activated by direct Src phosphorylation. Fig. 6B shows

the same bifurcation diagram for this alternative model. In this

theoretical system the positions of the bifurcation points SN3

and SN4 are directly proportional to the total concentration of

CSK. A two-fold increase in CSK would therefore shift the bistable

area from k2 2 ½0:67‚1:3� to [2.0, 4.4]. This is in contrast to the

translocation model, where the bifurcation points asymptotically

approach a finite value and the same increase has a weaker impact

on the position of the bistable range (k2 2 ½0:87‚1:74�). The theo-

retical model thus displays greater sensitivity to CSK variation than

the translocation model.

Translocation has the advantage that regulation depends on two

protein concentrations instead of only one. Alterations to one of

these have a smaller impact than in the simple activation model.

However, experimental findings suggest that Src is in fact sensitive

to singular variations of CSK. We will consider some explanations

for this discrepancy under Discussion and Conclusion.
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Fig. 6. The amount of available CSK controls the position of bifurcation

points SN3 and SN4 in Fig. 5B. Default values are indicated as dashed lines.

A: In the default model, higher amounts of CSK do not significantly disturb

the system. B: In a hypothetical alternative model, in which CSK is activated

by direct phosphorylation, the system becomes more sensitive to the abun-

dance of CSK. This demonstrates the benefit of an indirect activation via

translocation.
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Fig. 5. Effect of k2 on bistability. A: The bistable region expands with

increasing k2. The two straight lines containing the bistable region correspond

to the positions of SN1 and SN2 from Fig. 3. The dashed line represents the

amount of available CSK. At a critical value of k2 	 0:67 SN1 crosses this

line and the low-Src area is no longer reachable after Src activation (dotted

line). B: In the full model, with the CSK negative feedback loop in place, we

therefore observe another set of bifurcation points (SN3 and SN4). Sustained

activation of Src is not possible to the left of SN3.
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Prerequisites for bistability

Existence of bistability in the Src system depends on a number of

model parameters. Surprisingly, our simulations show that an

increased rsrco (i.e. activity of unphosphorylated Src) eliminates

bistability (Fig. 7). For the default parameter set, the unstable

branch disappears above rsrco 	 0:075. However, a reasonable sep-

aration of branches is only achieved below rsrco 	 0:02. This figure

corresponds to at least a 50-fold increase of activity upon Tyr418

phosphorylation (rsrca/rsrco).

Due to autocatalytic activity it is difficult to experimentally

correlate phosphorylation state of Tyr418 to Src activity. Under

in vitro conditions autophosphorylation of wildtype Src cannot

be eliminated completely. Kmiecik and Shalloway have used Src

mutants possessing a phenylalanine substitution at Tyr418 (Y418F)

to study the effects of autophosphorylation deficiency. Their

in vitro kinase assays suggest a more modest, roughly five-fold

increase in activity, corresponding to a rsrco of 0.2. However,

they also show that the Y418F mutant has drastically lowered

in vivo activity (Kmiecik and Shalloway, 1987, Table 1). The

small bistable area of Fig. 7A suggests that activity of the unphos-

phorylated kinase domain is in fact nearly or completely absent.

The model also allows for an alternative explanation, which

is that pTyr418 is required for some targets, but not for others.

Strictly speaking any enzymatic rate is dependent on both enzyme

and substrate. Kinase assays are usually carried out with small

detectable peptide substrates. It is conceivable that larger protein

substrates behave differently and that various conformations of

Src show diminished (or possibly even enhanced) activity towards

those substrates. The central ‘Src activity’ node in our model

admittedly is a simplification.

To further investigate this hypothesis we extended our model

to account for substrate-specific Src activities. The extended

model contains three different nodes that replace the ‘Src activity’

node: Cbp-specific, PTPa-specific and autophosphorylation-

specific activity. The simulation results show that only rsrco rates

for PTPa-directed activity and autophosphorylation are critical

for bistability. Above rsrco‚ auto 	 0:12 the system becomes

monostable, while variation of rsrco‚ Cbp has no effect on stability

(data not shown). In conclusion, our model suggests that the activity

of Src in absence of Tyr418 phosphorylation is either entirely

suppressed or at least ineffective on the two positive feedback

loops.

Role of the positive feedback loops

Positive feedback is known to be an essential ingredient for bista-

bility in biochemical systems (Cinquin and Demongeot, 2002;

Angeli et al., 2004). The system described here provides a good

example of sophisticated control over a positive feedback loop.

In fact, our model contains two positive feedback loops (see

Fig. 1): Src autophosphorylation (B) and the PTPa loop (C). The

strength of loop B is determined by the kinetic parameter k3. Loop C

depends on multiple parameters: k2, Kser and kPTPa. Similar to k2,

Kser is a physiological parameter. Kser is directly proportional to the

activity of serine/threonine kinases that phosphorylate

PTPa, inhibiting the interaction of PTPa and Grb2. Because of

its position in the model, the behaviour produced by variation of

Kser is analogous to k2.

As we have demonstrated in Fig. 5, the parameter k2 is dependent

on phosphorylation status of the N-terminal Src phosphorylation

sites, which in turn are controlled by cdc2 activity. cdc2 effectively

determines the amount of positive feedback that Src experiences

after dephosphorylation on pTyr529. Thus, Fig. 5 gains a new

interpretation: it demonstrates the influence of the external positive

feedback loop (loop C) on Src activation and deactivation.

While decreasing k2 confines bistability to a very small region,

inhibiting Src-mediated tyrosine phosphorylation of PTPa has an

even more dramatic effect on bistability (Fig. 7B). If kPTPa falls

below approx. 0.12, the bistable region disappears. Even an

unreasonably large increase of k3 – the parameter controlling

feedback loop B – cannot reinstate bistability. The conclusion is

that internal feedback is not sufficient to maintain bistability in the

Src system.

DISCUSSION AND CONCLUSION

We have developed a dynamic systems model of a small set of

interacting proteins centred around the protein tyrosine kinase Src.

The model reproduces its activation during mitosis, as influenced

by the tyrosine kinase CSK and tyrosine phosphatase PTPa. We

have shown that the model is consistent with the observations

made in normal, healthy cells, as well as in a number of perturbed

systems such as CSK mutants.

The simulations reveal an interesting implementation of bistabil-

ity at the base of an excitable system. Bistability is frequently

associated with systems which display a sustained response to a

short, transient signal, toggling between two discrete states.

Excitable behaviour is less common in biochemical systems. The

combination of these two elements produces a system capable of

differentiated responses. Depending on the parameter k2 we observe

either full excitability, sustained Src activation or a bistable com-

bination of both. Part of this complex behaviour may be required

for biological phenomena such as cell cycle checkpoints.

If we accept bistability as an explanation for the complex manner

in which Src is regulated, the model raises several questions. Bista-

bility only exists if we assume that Src activity is completely or

almost completely inactive under absence of phosphorylation of
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Fig. 7. Critical parameters for existence of bistability. Graphs show

deviations from default parameter set, where rsrco ¼ 0 and kPTPa¼1. A: Par-

ticipation of srco (ie not phosphorylated on Tyr418 nor Tyr529) in positive

feedback removes bistability. B: External positive feedback via PTPa is
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the critical point remains significantly above zero within physiologically

acceptable parameter ranges.
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Tyr418 in the activation loop. This must be true for at least PTPa-

directed activity and for autophosphorylation. Kinase assays using

small peptide substrates are probably not conclusive in this case.

Our simulations confirm that Src regulation is sensitive to the

amounts of Cbp and CSK in the cell, although we observe a

remarkable level of robustness to CSK overexpression, which

is not observed in vivo. This discrepancy could indicate a role

for other regulatory components in the system. There are several

possible explanations: Src not only resides at membranes, but it also

participates in cytoplasmic interactions. Even if regulation of

membrane-bound Src was not affected by CSK overexpression,

the detrimental effect of overexpression on cytoplasmic Src

could be responsible for the observed lethality. Also it is not

clear whether Cbp is increased in cell lines that overexpress

CSK. If this is the case, this could indicate a regulatory influence

of CSK on the expression of Cbp. The observed dynamics would

be similar to Fig. 6B. Unfortunately, there is little data available

about the Cbp/CSK subsystem, for example regarding expression

levels of Cbp in wildtype and CSK overexpression cell lines or

about its deactivation by tyrosine phosphatases. The resolution of

this problem requires experimental evidence.

There is currently little supporting evidence for the existence of

feedback loop C (Fig. 1) involving PTPa. Our results show that a

feedback loop of this kind is likely to exist. Together with bistability

critical characteristics of the system behaviour are lost without it.

For example, control exerted by cyclin-dependent kinases (such as

cdc2) is dependent on external positive feedback. These issues, too,

will need to be addressed experimentally.

The behaviour we have reproduced probably demonstrates only a

small part of what the tyrosine kinase Src is capable of. For example,

it is known to also reside in the cytoplasm, or at other membranes

than the cytoplasmic. Other phosphorylation sites influence its

interactions and activity. PTPa is known to form inactive dimers,

which could constitute a negative regulatory mechanism (Jiang et al.,
2000). Src interacts with numerous other kinases, phosphatases, and

transcription factors. Its regulation in another context is bound to be

different from what we have described here. In order to understand

the purpose of Src and kinase signalling in general the possibilities in

these domains will need detailed exploration.
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Brdička,T., et al. Phosphoprotein associated with glycosphingolipid-enriched

microdomains (PAG), a novel ubiquitously expressed transmembrane adaptor

"protein, binds the protein tyrosine kinase CSK’and is involved in regulation of

T cell activation. J Exp Med, 191(9):1591–604, 2000.

Brown,M.T. and Cooper,J.A. Regulation, substrates and functions of src. Biochim

Biophys Acta, 1287(2-3):121–49, 1996.

Cinquin,O. and Demongeot,J. Roles of positive and negative feedback in "biological

systems. C R Biol, 325(11):1085–95, 2002.

den Hertog, J. Tracy,S., and Hunter,T. Phosphorylation of receptor protein-tyrosine

phosphatase alpha on Tyr789, a binding site for the SH3-SH2-SH3 adaptor protein

GRB-2 in vivo. EMBO J, 13(13):3020–32, 1994.

Doedel,E.J. Auto: a program for the automatic bifurcation analysis of autonomous

systems. In Proc 10th Manitoba Conf on Num Math and Comp, volume 30, pages

265–284. Univ. of Manitoba, Winnipeg, Canada, 1981. URL http://indy.cs.

concordia.ca/auto.

Ermentrout,G.B. XPPAUT 5.91. Website, 2005. URL http://www.math.pitt.edu/ bard/

xpp/xpp.html.

Fuß,H. Dubitzky,W., Downes,C.S., and Kurth,M.J. Mathematical models of cell cycle

regulation. Brief Bioinform, 6(2):163–77, 2005.

Hakak,Y. and Martin,G.S. Ubiquitin-dependent degradation of active Src. Curr’Biol,

9(18):1039–42, 1999.

Hodgkin,A.L. and Huxley,A.F. A quantitative description of membrane current’and

its’application to conduction and excitation in nerve. J Physiol, 117(4):500–44,

1952.

Howell,B. and Cooper,J. Csk suppression of Src involves movement of Csk to sites of

Src activity. Mol Cell Biol, 14(8):5402–11, 1994.

Imamoto,A. and Soriano,P. Disruption of the CSK gene, encoding a negative regulator

of Src family tyrosine kinases, leads to neural tube defects and embryonic lethality

in mice. Cell, 73(6):1117–24, 1993.

Ingolia,N.T. and Murray,A.W. The ups and downs of modeling the cell cycle. Curr

Biol, 14:R771–R777.

Irby,R.B., et al. Activating Src mutation in a subset of advanced human colon cancers.

Nat Genet, 21(2):187–90, 1999.

Jiang,G., den Hertog, J. and Hunter,T. Receptor-like protein tyrosine phosphatase alpha

homodimerizes on the cell surface. Mol Cell Biol, 20(16):5917–29, 2000.

Kawabuchi,M., et al. Transmembrane phosphoprotein Cbp regulates the activities of

Src-family tyrosine kinases. Nature, 404(6781):999–1003, 2000.

Kmiecik,T. and Shalloway,D. Activation and suppression of pp60/c-Src "transforming

ability by mutation of its primary sites of tyrosine phosphorylation. Cell, 49(1):

65–73, 1987.

Laurent,M. and Kellershohn,N. Multistability: a major means of differentiation and

evolution in biological systems. Trends Biochem Sci, 24(11):418–422.

Mandel,J., Palfreyman,N., and Dubitzky,W. Modelling codependence in biological

systems. IEE Proc Systems Biol, 153(5), 2006. In Press.

Milo,R., et al. Network motifs: Simple building blocks of complex networks. Science,

298:824–827, 25 Oct. 2002.

Mustelin,T. and Hunter,T. Meeting at mitosis: cell cycle-specific regulation of c-"Src

by RPTPalpha. Sci STKE, 2002(115):PE3, 2002.

Nada,S., et al. Constitutive activation of Src family kinases in mouse embryos that lack

CSK. Cell, 73(6):1125–35, 1993.

Okada,M., et al. CSK: a protein-tyrosine kinase involved in regulation of Src family

kinases. J Biol Chem, 266(36):24249–52, 1991.

Rous,P. A sarcoma of the fowl transmissible by an agent separable from the tumor cells.

J Exp Med, 13(4):397–411, 1911.

Shenoy,S., Chackalaparampil,I., Bagrodia,S., Lin,P., and Shalloway,D. Role of p34/

cdc2-mediated phosphorylations in two-step activation of pp60/c-Src during mito-

sis. Proc Nat Acad Sci, 89(15):7237–7241, 1992.

Shenoy,S., et al. Purified maturation promoting factor phosphorylates pp60/c-Src at the

sites phosphorylated during fibroblast mitosis. Cell, 57(5):763–74, 1989.

Stover,D., Liebetanz,J., and Lydon,N. Cdc2-mediated modulation of pp60/c-Src activ-

ity. J Biol Chem, 269(43):26885–26889, 1994.

Sun,G., Sharma,A., and Budde,R. Autophosphorylation of Src and Yes blocks their

inactivation by Csk phosphorylation. Oncogene, 17(12):1587–95, 1998.

Thomas,S. and Brugge,J. Cellular functions regulated by Src family kinases. Annu Rev

Cell Dev Biol, 13:513–609, 1997.

Tyson,J.J., Chen,K.C., and Novák,B. Sniffers, buzzers, toggles and blinkers: dynamics

of regulatory and signaling pathways in the cell. Curr Opin Cell Biol, 15(2):

221–231, 2003.

Xu,W., et al. Crystal structures of c-Src reveal features of its autoinhibitory mechanism.

Mol Cell, 3(5):629–38, 1999.

Xu,W., Harrison,S.C., and Eck,M.J. Three-dimensional structure of the tyrosine kinase

c-Src. Nature, 385(6617):595–602, 1997.

Zheng,X.M., Resnick,R.J., and Shalloway,D. A phosphotyrosine displacement mecha-

nism for activation of Src by PTPalpha. EMBO J, 19(5):964–"78, 2000.

Zheng,X.M. and Shalloway,D. Two mechanisms activate PTPalpha during mitosis.

EMBO J, 20(21):6037–49, 2001.

Mitotic Src activation model

e165



Vol. 22 no. 14 2006, pages e166–e173

doi:10.1093/bioinformatics/btl249BIOINFORMATICS

Context-specific independence mixture modeling for

positional weight matrices
Benjamin Georgi1,� and Alexander Schliep1,�
1Max Planck Institute for Molecular Genetics, Department of Computational Molecular Biology,
Ihnestrasse 73, 14195 Berlin, Germany

ABSTRACT

Motivation: A positional weight matrix (PWM) is a statistical repres-

entation of the binding pattern of a transcription factor estimated

from known binding site sequences. Previous studies showed that

for factors which bind to divergent binding sites, mixtures of multiple

PWMs increase performance. However, estimating a conventional

mixture distribution for each position will in many cases cause

overfitting.

Results: We propose a context-specific independence (CSI) mixture

model and a learning algorithm based on a Bayesian approach. The

CSImodel adjusts complexity to fit the amount of variation observed on

the sequence level in each position of a site. This not only yields a

more parsimonious description of binding patterns, which improves

parameter estimates, it also increases robustness as the model auto-

matically adapts the number of components to fit the data.

Evaluation of the CSI model on simulated data showed favorable

results compared to conventional mixtures. We demonstrate its adap-

tive properties in a classical model selection setup. The increased

parsimony of the CSI model was shown for the transcription factor

Leu3 where two binding-energy subgroups were distinguished equally

well as with a conventional mixture but requiring 30% less parameters.

Analysis of the human-mouse conservation of predicted binding sites

of 64 JASPAR TFs showed that CSI was as good or better than a

conventional mixture for 89% of the TFs and for 70% for a single

PWM model.

Availability: http://algorithmics.molgen.mpg.de/mixture

Contact: georgi@molgen.mpg.de, schliep@molgen.mpg.de

1 INTRODUCTION

The reliable identification of putative transcription factor binding

sites (TFBS) in genomic sequences is a problem of considerable

importance for understanding gene regulation. The accepted

approach is to formulate a mathematical representation of the binding

pattern of a given factor based on collections of confirmed binding

site sequences. This representation is subsequently used to score

candidate sequences for occurrences of said pattern. The effective-

ness of this approach depends on the models ability to accurately

formalize the regularities found in the confirmed sites. Positional

weight matrices (PWM) (Staden, 1984; Staden, 1989; Werner,

1999; Stormo, 1990; Stormo, 2000) are a statistical approach to

modelling the factor-specific binding site composition. A PWM is

derived from a multiple alignment of confirmed binding sites. For

each position in the alignment a distribution over the four bases is

estimated from the corresponding alignment column. Assuming inde-

pendence between positions, this gives a probabilistic model of the

binding site of a specific factor which subsequently can be used to

score whether a DNA sequence contains a binding site for this factor

(Hertz and Stormo, 1999; Levy and Hannenhalli, 2002).

However, this approach relies on two strong assumptions,

namely that all positions within the site are independent and,

more importantly, that all binding sites of a factor are slight varia-

tions of the same sequence. The former has been shown to be a

simplification of biological reality for such examples as the Zinc

finger motive (Wolfe et al., 1997) or the Mnt repressor (Man and

Stormo, 2001). For the latter there is ample biological evidence to

make it at least doubtful: It is well known that TFBS occur in

clusters of functionally interacting transcription factors (TF) in

promotor regions, so called transcriptional modules (Bolouri and

Davidson, 2002; Ludwig et al., 1998; Thompson et al., 2004). A

single factor may have many different interaction partners for dif-

ferent genes and it has been shown that the topology of these

modules has an impact on the binding site sequences found for

about nine thousand sites in S. cerevisiae (Bilu and Barkai,

2005). Also, it is known that a single change in a binding site

can have profound effects on both the interaction behavior of a

factor (Ptashne, 2004) or the level of induced gene expression

(Williams et al., 2000). Moreover, in (Kotelnikova et al., 2005)

the authors find increased levels of conservation for non-consensus

binding site positions for 16 factors in 10 bacterial genomes,

concluding that these sites are subject to evolutionary pressure.

This gives further evidence for a level of biological complexity

of binding site sequences beyond the ‘‘single site’’ hypothesis

and motivates the development of more sophisticated methods.

This issue has received some attention in recent years. In (Barash

et al., 2003) the authors successfully used subclasses of Bayesian

networks for de novo motive discovery, among them mixtures of

PWMs. More recently, in (Hannenhalli and Wang, 2005) binding

sites have also been described as mixtures of PWMs. There it was

shown, that a two component mixture model yielded improved

conservation scores and higher expression coherence when com-

pared to using a single PWM for a collection of 64 PWMs taken

from the JASPAR data base (Sandelin et al., 2004).

However, the conventional mixture approach has severe draw-

backs. First, it is an essentially unsolved problem to choose an appro-

priate number of mixture components, in particular if data is sparse

and the classical model selection techniques (Akaike 1973; Schwarz,

1978) do not apply. In general too few components lead to subop-

timal performance due to insufficient generalization, while, more�To whom correspondence should be addressed.
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severely, too many components will cause overfitting. To circumvent

this issue the number of components was fixed to two in (Hannenhalli

and Wang, 2005). Secondly, it seems plausible that for most factors

which have several types of binding sites (and can thus be modeled

more precisely by a mixture), the different subgroups will not

consists of distinct, dissimilar sequences. Rather, the variability

between sites will be concentrated on specific positions. Estimating

a full PWM for each mixture component will then introduce un-

necessary parameters into the model. This increases model complex-

ity unnecessarily and leads to less robust parameter estimates.

We present an extension of the conventional mixture framework

that addresses these problems by learning an explicit dependency

structure between the components of a PWM mixture. The basic

idea of the method is to reduce the number of parameters required in

the model by representing binding site positions with little variabil-

ity in the different components by the same distribution. A biologi-

cal example for such a situation is the TF Leu3. In (Hannenhalli and

Wang, 2005) the authors showed that a two component mixture

naturally separated the known binding sites (Liu and Clarke, 2002)

into one high and one low binding-energy subgroup. Now, consider

Fig. 1. The figure shows the sequence logos (Schneider and

Stephens, 1990) for these subgroups. It can be seen that sequence

variability is only present in position 1, 4, 5 and 6 (indicated by

arrows) while the other sites are highly conserved. Another example

is the factor Reb1. Reb1 binds with different affinities to motives

TTACCCG and TTACCCT [37], that is the two subgroups differ in

a single position only.

This notion of adapting model complexity to the data is known as

context-specific independence (CSI) and has received considerable

attention in the probabilistic reasoning community (Boutilier et al.,
1996; Chickering and Heckerman, 1997; Friedman and Goldszmidt,

1998). In the context of mixture modeling, CSI has been success-

fully used for the analysis of gene expression data (Barash and

Friedman, 2002).

The advantage of the CSI model in settings such as the Leu3 and

Reb1 data is that in a conventional mixture random sequence devia-

tions will cause the parameters in the different components for the

same position to vary slightly, even if there is no meaningful vari-

ability on the sequence level. This overfitting introduces a distortion

in the scores produced by the model that may result in a decrease in

performance. Therefore, learning a CSI structure does not only yield

a more parsimonious model, as less parameters are required, but

also increases robustness for noisy data. Moreover, if components

share the same group in the CSI structure for all positions, they can

be merged thus reducing the number of components in the model.

Therefore learning of a CSI structure allows for an automatic reduc-

tion of the number of components to a value more appropriate for a

data set as an integral part of model training.

In the following sections we are going to introduce notation for

the CSI mixture model and present the structure learning algorithm.

We will then evaluate the performance of our method based on both

simulated and real biological data.

2 METHODS

2.1 CSI mixture models

Before we begin defining the CSI mixture model we briefly introduce

notation for conventional mixture models (refer to (McLachlan and Peel,

2000) for a detailed coverage of the subject). Let X1, . . . , Xp denote random

variables (RV) over the four bases (A,C,G,T) corresponding to a binding site

with p positions. Given a data set D consisting of N samples xi, i ¼ 1, . . . , N

where each xi consists of an realization xi1,. . . , xip of X1, . . . , Xp a K com-

ponent mixture distribution is given by

PðxiÞ ¼
XK
k¼1

PðC ¼ kÞ
Yp
j¼1

Pjðxij jC ¼ kÞ‚ ð1Þ

where C is a RV representing the component number, the P(C ¼ k) are the

component priors (
PK

k¼1 PðC ¼ kÞ ¼ 1) and the Pðxij jC ¼ kÞ are discrete

distributions over the four bases, conditional on the component RV C.

That is, each Pðxij jC ¼ kÞ is parameterized by a 4-component probability

vector �j j k . Define the collection of all �j j k and the weight vector �p ¼
ðPðC ¼ 1Þ‚ . . .‚PðC ¼ KÞÞ as �M ¼ ð�p‚�j j kÞ. Then �M completely para-

meterizes the mixture M. The likelihood P(D jM) for data set D is simply

the product over the mixture densities of each independent sample

PðD jMÞ ¼
YN
i¼1

PðxiÞ: ð2Þ

At this point we would like to point out that mixtures models and the

extensions we are about to describe are not limited to discrete

features. Rather the Pjðxij jC ¼ kÞ can be of any parametric family, be it

Fig. 1. WebLogos (http://weblogo.berkeley.edu) for the two subgroups of Leu3 binding sites. It can be seen that sequence variability is limited to positions 1, 4, 5

and 6 (indicated by arrows).
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discrete or continuous and that in particular the domains of the Xj can be

heterogenous.

In order to formally define the CSI mixture model it is helpful to first review

the independence assumptions implicit in the conventional mixture model. In

addition to the routine assumption of independence between the different data

samples xi, we also assume conditional independence between the Xj given a

component k. This leads to a model structure as shown in Fig. 2a. The figure

shows the structure matrix for a five component mixture with p¼ 4, each cell

representing an uniquely parameterized distribution over the corresponding

Xj. In a CSI model we qualify the general assumption of conditional inde-

pendence between the Xj by representing multiple components with the same

set of parameters. Essentially this amounts to learning a parameter tying

structure for each Xj over the range of C. This is closely related to learning

parameter ties in the topology of a Hidden Markov Model (HMM) (Durbin et
al., 1998; Stolcke and Omohundro, 1994) as a mixture can be seen as an HMM

with strongly constrained topology. In Fig. 2b we show one possible CSI

structure for this model. Again, each cell of the matrix represents an uniquely

parameterized distribution. This means that for example C1 and C2 are

represented by the same distribution for X1 and all components share the

same distribution for X4.

Formally we define the CSI mixture model as follows: For the

set of component indexes C ¼ f1‚ . . .‚Kg and variables X1‚ . . .‚Xp let G ¼
fgjgðj¼1‚ ...‚ pÞ be the CSI structure of the model M. Then gj ¼ ðgj1‚ . . .gjZj

Þ
where Zj is the number of subgroups for Xj and each gjr‚r ¼ 1‚ . . .‚Zj is

a subset of component indexes from C. That is, each gj is a partition of C
into distinct subsets where each gjr represents a subgroup of components

which share the same distribution for Xj. The CSI mixture distribution is

then obtained by replacing Pjðxij jC ¼ kÞ with Pjðxij j gjðkÞÞ in (1) where

gjðkÞ ¼ r such that k 2 gjr . Accordingly �M ¼ ð�p‚�Xj j gjr
Þ is the model

parameterization. The complete CSI model M is then given by M ¼ ðG‚�MÞ.
The usefulness of the CSI approach for real world applications obviously

depends on the ability to accurately and reliably determine an appropriate

structure from data. This problem is addressed in the following section.

2.2 Structure learning

The task of learning a CSI model from data consists of assigning values to

the group structure variables gj and estimating parameters for the induced

distributions. For the latter the Expectation Maximization (EM) (Dempster et
al., and McLachlan and Krishnan, 1997) algorithm is the standard technique

to arrive at parameter estimates. For the former, we adopted a Bayesian

approach in the Structural EM algorithm framework (Friedman, 1997). This

means that we score different candidate model structures based on the model

posterior PðM jDÞ which according to Bayes rule is given by

PðM jDÞ / PðMÞPðD jMÞ‚

where P(M) is a prior over the model structure and P(D jM) is the

Bayesian likelihood based on the data D and the maximum a posteriori

(MAP) parameter estimates ~��M. That is

PðD jMÞ ¼ PðD j~��MÞPð~��MÞ‚

where Pð~��MÞ is a prior over the model parameters in form of a product

of conjugate Dirichlet priors over the individual elements of �M. The prior

over the mixture weights �p was uniform, the priors over the �Xj j gjr
were

chosen to be almost uniform with a small bias towards uniform � (i.e., all

hyper-parameters of the Dirichlets were set to 1.02). This was done to

guard against overfitting by setting zero probabilities in the parameter

estimation.

For the model prior P(M) we adopted a fairly simple factored form

PðMÞ / PðKÞPðGÞ‚ ð3Þ

where the P(K) is the prior over the number of components and P(G) is

the model structure prior. We set PðKÞ ¼ gK and PðGÞ ¼
Qp

j¼1 a
Zj with

both g and a < 1. Thus by means of the prior we introduce a bias towards

smaller models and simpler structures into the model posterior.

2.3 Learning algorithm

For a CSI mixture with K components over p RVs there are Bp
K possible

model structures, where BK is the Kth Bell number (Aigner, 1999). BK gives

the number of possible partitions of a set with K elements. This makes an

exhaustive search over the structure space infeasible even for moderate sizes

of K and p. For example for K ¼ 3 and p ¼ 8 there are 390,625 different

structures. Instead we adopt an iterative greedy backward-selection proce-

dure to learn a CSI model M ¼ ðG‚�M). We initialize the procedure with

M0 ¼ ðG0‚�0
MÞ, such that G0 is the structure of maximal complexity (which

is equivalent to a conventional mixture) and the initial parameters �0
M are

obtained by a single EM update based on a random assignment of data to

components, followed by conventional parametric EM to obtain the MAP

parameters.

In each following steps l we then use the current model Ml ¼ ðGl‚�l
MÞ to

score the candidate structures G based on possible merges ðgl
jr‚gl

jzÞ ! gl
jr [

gl
jz ðr‚z ¼ 1‚ . . .‚Zj‚r 6¼ zÞ by computing the posteriors and accepting the

candidate model with maximal posterior as Mlþ1. Due to the independence

assumption between the Xj we can score the candidate structures of each

variable separately. In the framework of Structural EM (Friedman, 1997)

this scoring can be done efficiently by computing the expected sufficient

statistics of a candidate based on the current model Ml. Once we have

determined Glþ1 we can obtain the parameterization �lþ1
M by running para-

metric EM. The procedure terminates when all candidate models have a

posterior worse than Ml.

In summary, the structure learning procedure for an initial model M0

consists of iterations over the following steps:

� Score possible candidates Ml+1 based on Ml, accept candidate with

maximal posterior.

� Optimize �lþ1
M by running parametric EM.

2.4 Choosing the structure prior

One important aspect of the Bayesian approach to structure learning is the

choice of the hyper parameters in the model prior. There are techniques for

estimating these parameters directly from data (Robbins, 1956) or by simu-

lation techniques such as Gibbs sampling (Gelman et al., 2003). In our

application and for this first analysis we choose the structure prior parameter

a directly based on a simple heuristic.

In general the prior P(M) encodes the preference for a simpler model. This

is contrasted with the data likelihood P(D jM) which increases with model

complexity. One way of thinking about the relation between prior and

likelihood is that the prior acts as a regularization of the likelihood to prevent

overfitting. From the perspective of the CSI structure learning task, the

choice of the hyper parameter a of the structure prior P(G) expresses our

preference of a simpler, less complex structure. One way to look at this is that

a puts a threshold on the decrease in likelihood we are willing to accept in

exchange for a less complex structure. Since the likelihood of a data set is

dependent on the sample size N the same must be true for a. To make this

Fig. 2. a) Model structure for a conventional mixture with 5 components and

four RV. Each cell of the matrix represents a distribution in the mixture and

every RV has an unique distribution in each component. b) CSI model struc-

ture. Multiple components may share the same distribution for a RV as

indicated by the matrix cells spanning multiple rows. In example C2,C3

and C4 share the same distribution for X2.
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explicit, consider the decision rule between a model Ml and a candidate

model M during an iteration of the learning algorithm. Recall that Ml and

M are identical except for a single merge in a gj. This merge is accepted if

PðMl jDÞ
PðM jDÞ ¼

PðD jMlÞPðMlÞ
PðD jMÞPðMÞ � 1:

Substituting Eq. 2 and (3) and cancelling terms we obtain

YN
i¼1

Pðxi jMlÞ
Pðxi jMÞ

a � 1:

Each of the N fractions gives the decrease in likelihood of a xi for moving

from M0 to the less complex model M. That is, we can think of each fraction

as (1 + di) where di is the relative decrease in likelihood for xi. Under the

simplifying assumption that all of the di are equal, i.e. di ¼ d, we can now

choose a d as the maximal relative decrease in likelihood we are willing to

accept in exchange for a less complex model. Then a is given by

a ¼ aðd‚NÞ ¼ 1

ð1þ dÞN
:

It is important to stress that at this point all we have done is to replace

the choice of a with the choice of d. However this is advantageous for

two reasons: First, the formula given above explicitly shows the impact

of the data set size N. Secondly, d has a straightforward interpretation as

the reduction in likelihood between simple discrete distributions. As

such it is easier to make an informed choice for d based on the specific

application. In our case it seemed reasonable to use a strong prior, such that

the structure only introduced additional complexity into the model if clearly

warranted by the data. In the following we chose the prior according to

a(0.18, N) (unless noted otherwise). As an example for 20 sequences we

obtain a(0.18, 20) ¼ 0.036.

2.5 Sequence scoring

One practical advantage of the model extensions described above is that

it refines the models ability to represent TF binding patterns without aban-

doning the framework of probabilistic models. This means that the CSI

model can be seamlessly and easily combined with established techniques

for finding hits with significant scores in genomic sequences (Hertz and

Stormo, 1999; Levy and Hannenhalli, 2002). Here, as in (Hannenhalli

and Wang, 2005), the score of a mixture was defined as the maximum

score over all components. This means that the score of a sequence was

given by the strongest signal found among the components. Similar scoring

schemes have been used for instance in the field of speech recognition.

3 RESULTS

3.1 Simulation studies

In order to examine the difference in performance between normal

mixture and CSI models we generated artificial data sets from

mixtures with differing numbers of components and structures.

In the first experiment the generating model was a two component

CSI mixture with p¼ 10 and random weights �p. The CSI structure

was set up as follows: Out of the ten positions, six were represented

by single distributions in both components and four had a unique

distribution in each component. The parameters of the distributions

�Xj j gj
were chosen randomly.

First we evaluated the ability of our method to adapt to the

structure in the data and thus to avoid overfitting. We trained

one conventional and one CSI mixture model, both using three

components on a training data set with 40 samples. The first result

was that the structure learning algorithm recovered the generating

models two component CSI structure with high accuracy (not

shown). In order to quantify the advantage of the CSI model for

sequence scoring we generated test data sets with 500 samples. We

used a uniform background model to obtain the scores for each

sample and the scores were then converted to p-values based on

a score distribution on 1Mb of random sequence. We repeated the

simulation for 30 different randomly generated data sets and

observed that the CSI mixture yielded better (lower) p-values

than the conventional mixture. The one-sided Wilcoxon test for

paired samples assigned a significance of 0.02 to this result.

Repeating the experiment with only 25 training samples confirmed

these results with a Wilcoxon test significance of 0.04.

The next question we addressed was how the CSI model

performed for different data sets in a classical model selection

setup. We generated data sets of size 500 with p ¼ 10 from four

different models: a single PWM model G1, a conventional two

component mixture G2, a CSI mixture with four components

GCSI and a conventional four component mixture G4. The parame-

ters of the discrete distributions in �M were chosen such that one

base b was assigned a random probability sampled uniformly from

[0.5,0.8] and the remaining mass split evenly over the other bases.

In each case b was chosen such that it adhered to the CSI structure

of the respective model, that is components that did not share a

group for a Xj also had a dissimilar b. The structure in GCSI con-

sisted of 6 positions with four groups and two positions with three

and two groups each. Subsequently we trained 30 models M of

each of the four types (i.e. M1, M2, MCSI and M4) on each of the

four data sets. Model fit was assessed by the Bayesian Information
Criterion (BIC) (Schwarz, 1978). The best scoring model for each

data set and its average BIC value based on the 30 repetitions is

shown in Table 1. As one would expect, the model type that best

matches the respective generating model yields the optimal BIC. A

more interesting point to consider was the distributions of the dif-

ferences of the remaining models to the optimal BIC shown in

Fig. 3. It can be seen that for data sets where MCSI is not optimal

it achieves BIC scores very similar to the best. These results illus-

trate the inherent ability of CSI models to adapt to different data

settings. This makes CSI a preferable choice of model for practical

applications where the true number of components is unknown.

3.2 Analysis of TF LEU3

It was shown that 46 known binding sites of the TF Leu3 (Liu and

Clarke, 2002) can be separated into a high and low binding-energy

subgroup using a two component mixture with highly significant p-

value (Hannenhalli and Wang, 2005). We repeated this analysis by

training a two component CSI mixture. Since we were using the

model in a clustering context a weak prior of a(0.05, 46)¼ 0.11 was

used. Fig. 4 shows the resulting CSI structure. Note the correspon-

dence between the fully parameterized positions (1, 4, 5, 6) and the

Table 1. Optimal model for the four data sets according to the average BIC

over 30 repetitions

Best model Best avg. BIC

G1 M1 10851

G2 M2 11444

GCSI MCSI 12266

G4 MCSI 12350
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group specific sequence variability as visualized in Fig. 1. The CSI

mixture yielded a subgroup division of the Leu3 sites that was

practically identical to the one previously reported. However

there are two important differences between the two models:

First, the conventional mixture requires the estimation of 61 free

parameters while due to the tying expressed in the CSI structure our

model only needs 43 parameters. This means that CSI gave equiva-

lent results using about 30% less parameters. Secondly, the CSI

structure makes information about the subgroup and position spe-

cific sequence variability an explicit part of the model. Having this

information readily available will facilitate further investigations,

especially for large-scale studies where hundreds or more factors are

involved.

3.3 Conservation statistics

The validation of predicted binding sites with respect to their

biological functionality is a difficult problem as functionality cannot

be directly assessed. One surrogate for functionality found in the

literature is the degree of conservation in genomic sequences

between related species (Thomas et al., 2003). For the sake of

comparability with the results reported in (Hannenhalli and

Wang, 2005) we follow the same evaluation approach taken

there and evaluate the different models by the fraction of conserved

predicted binding sites.

In the following we are going to evaluate the performance of

a single PWM M1, a two component mixture M2 and a two com-

ponent CSI mixture MCSI based on human-mouse conservation. We

used the same 64 JASPAR TFs as in (Hannenhalli and Wang, 2005).

We downloaded the 1kb upstream regions of the hg17 assembly

(May 2004) from the UCSC genome data base (Hinrichs et al.,
2006). The mouse conservation data (mm7) was extracted from

the axtNet data set (Schwartz et al., 2003) (also UCSC). For

each of the 64 TFs and each of the three models under consideration,

we then computed the 1000 best scoring hits in the 1kb upstream

regions. The overall base composition of the sequences was used as

the background model. For the mixtures the hits were chosen pro-

portionally to the mixing weights. This means that for a �p ¼ (0.6,

0.4) we would chose the 600 best hits from the first component and

the 400 best from the second. The fraction of hits that was conserved

in mouse was then computed based on a 80% sequence identity

cutoff.

Evaluation: In order to decrease the impact of random variation

on the analysis we considered TFs with very similar fractions of

conserved hits for two model types as not giving conclusive pref-

erence to any of the two. That is, if the difference in the conserved

fraction was less than ten percent of the maximal conserved fraction

observed for any of the three model types, the scores were consid-

ered to be ‘‘equal’’ for the purposes of this analysis. This has the

effect of making the results more conservative in the sense that the

impact of factors with very small differences in the conservation

statistics was suppressed.

Fig. 5 shows the comparison of conserved fraction for the three

model types. To illustrate the impact of the available number

of training samples N for a factor on performance, we depict

TFs differently based on the number of associated sequences.

TFs with less than 18 sequences are shown as red diamonds, TFs

with 19–31 sequences are shown as blue rectangles and TFs

with more than 31 sequences are shown as green dots. The numbers

were chosen as to split the 64 TFs into three roughly equally sized

groups.

Fig. 3. Distributions of the difference in BIC to best scoring model for the four simulated data sets on 30 repetitions.

Fig. 4. Two component CSI mixture structure for known Leu3 binding sites.

Each cell represents a discrete distribution, where cells spanning both rows

identify positions with high conservation in both subgroups.
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M1 vs M2: In 5a) you can see the conserved fraction of M1 and

M2 for the 64 TFs in the data set. The mixture model M2 was as good

or better than M1 in 67% (43) of the cases. For 33% (21) of the TFs

the mixture was strictly better. This means that the performance of

the two component mixture was somewhat weaker in our analysis

than reported in (Hannenhalli and Wang, 2005). Recall, that our

data set differed from the one in (Hannenhalli and Wang, 2005) as it

was based on a later genome freeze and, more importantly, it did not

contain any downstream sequences. To the best of our knowledge

the rest of our analysis was identical to the one conducted in

(Hannenhalli and Wang, 2005).

MCSI vs M1: The comparison between the fraction of conserved

hits of the CSI mixture MCSI and the single PWM model M1 can be

seen in Fig. 5b). In 70% (45) of the TFs under consideration MCSI

showed a conserved fraction as good or better than M1, with 28%

(18) being strictly better. One important observation is that in most

instances where M1 had a strong advantage in conserved hits, the

factor had only a small number of known binding sites. This can be

seen by the large number of diamonds below the diagonal. For

instance the rightmost point in Fig. 5b) at (0.53, 0.43) corresponds

to MA0062 which has 7 known sites. In such a situation a little

random variation in the sequences can have a strong impact on the

trained model and lead to spurious structures. This is supported

by the correlation between the number of available sequences for

a factor and the increase in conservation for the CSI model. If we

only considered TFs with 15 or more sequences, MCSI is as good or

better in 74% (40/54) of the cases, for 20 or more sequences in 85%

(34/40) and for 40 or more in 94% (15/16). The fraction of TFs

where MCSI is strictly better remained in the range of 30% inde-

pendent of the number of sequences.

MCSI vs M2: In Fig. 5c) we show the fraction of conserved hits for

MCSI and the conventional two component mixture M2. For 89%

(57) of the TFs the CSI model yields higher or equal conservation,

58% (37) being strictly greater.

Performance of MCSI: Applying the two conditions (M2 � M1)

and (M1 > M2) on the conserved fractions of hits split the 64 TFs

in two subsets of size 43 and 21. We can think of the first subset as

those TFs where a mixture model is appropriate and the second

subset as being better represented by a single PWM. In the follow-

ing we examined the performance of our CSI models within these

two subsets. The results are summarized in Table 2. For the subset

induced by (M2�M1) MCSI was as good or better then M1 or M2 for

a strong majority of 84% (36) and 89% (38) of the TFs respectively.

MCSI was strictly better for 47% and 37% respectively. This means

that for TFs where a two component mixture improves performance

as compared to a single PWM, the CSI model will in most cases

(a)

(b)

(c)

Fig. 5. a) Conserved fractions of hits for M1 and M2. The mixture M2 is as

good or better for 67% (43) of the TFs. b) Conserved fractions for MCSI and

M1. For 70% (45) of the TFs the conservation of MCSI was as good or better

than for M1. Outliers with strong preference for M1 model had very few known

sequences. If we only consider TFs with at least 20 sequences, the CSI yields

as good or better conservation in 85% (34/40) of the cases. c) Comparison of

conservation statistics of M2 and MCSI. For 89% (57) of the TFs MCSI yields

higher or equal conservation.

Table 2. Comparison of the conserved fraction of the 1000 best scoring hits

for MCSI, M1 and M2 in the two subsets of the TF data given the conditions

(M2 � M1) and (M1 > M2) respectively

M2 � M1 (43) M1 > M2 (21)

MCSI � M2 84% (36) 100% (21)

MCSI > M2 47% (20) 81% (17)

MCSI � M1 89% (38) 33% (7)

MCSI > M1 37% (16) 10% (2)
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outperform both of the other models. M2 due to the reduction in

overfitting and the more robust parameter estimates, M1 because of

the improved description of the binding pattern.

For the subset where a single PWM yielded a larger conserved

fraction than the two component mixture (given by the condition

(M1 > M2)) MCSI was as good or better than M2 for all the TFs in the

subset (100% (19)) and strictly better for 81% (17). This illustrates

the property of the CSI model to adapt to the number of subgroups

supported by the data (one in this case) by means of the structure

learning. MCSI is equivalent or better than M1 in 33% (7) of the TFs

in the subset. This rather low number again shows the impact of

spurious structures for TFs with few known binding sites. If we

only consider the 11 TFs in the subset with 20 or more annotated

binding sites, the value for (MCSI � M1) goes up to 64% (7/11).

Finally, MCSI is strictly better than M1 for a negligible 10% (2). This

is not surprising as we would not expect CSI to outperform M1 in

situation where a single PWM is the appropriate model. Rather a

successful application of the structure learning in such a case makes

MCSI equivalent to M1. This corresponds to the points which lie

directly on the diagonal (i.e. the conserved fractions are equal)

in Fig. 5b).

4 DISCUSSION

The results of our simulation studies show that the CSI formalism

yields more parsimonious and robust representations for TFs that

exhibit a position-wise subgroup structure in their binding pattern.

The greater parsimony of the CSI model as compared to conven-

tional mixtures was demonstrated for a subgrouping of known Leu3

binding sites. In this example CSI required 30% less parameters

than a conventional mixture for equal performance. The analysis of

the conserved fraction of predicted binding sites in human upstream

regions in mouse showed that a two component CSI model is clearly

superior to a conventional two component mixture. This means that

learning the CSI structures led to a more biologically meaningful

characterization of the binding patterns of the TFs under con-

sideration. For the TFs where the CSI model increased perfor-

mance, we can assess that the known binding sites apparently

exhibited a biologically relevant subgroup structure. The exact

nature of the biological mechanisms underlying these subgroups

remains elusive at this point. One possible explanation though

would be the existence of different conformations of the TFs

which show distinct binding patterns.

A strong advantage of the CSI (or conventional mixture)

model over the single PWM model could not be observed on

this data set. This was due to the occurrence of spurious structures

for TFs with very few known binding sites and the large number

of TFs where the single PWM model seems to be appropriate.

This makes sense as one would expect the structure learning to

be more vulnerable to outliers in situations where data is extremely

sparse. The conclusion we draw from this result is twofold:

First, CSI is a practical tool for the search for putative TFBS

that fits in seamlessly within the probabilistic framework for scoring

hits that has been established for the single PWM model (e.g. [18]).

For a practical analysis using CSI though it seems important to

require a minimum number of available binding sites (say 18) in

order to attempt to fit a CSI model and to use the single PWM

model otherwise. This could be easily included into the model prior.

Secondly, we would expect the general usefulness of the CSI

approach to increase in the future as the pool of known confirmed

binding sites increases.

For future research we consider the development of more

complex structure priors and improvements to the structure learning

algorithm for sparse data. Also, it might be interesting to quantify

the impact of different sequence scoring schemes on the perfor-

mance the model. Moreover, since the probabilistic framework we

work in is fully general, there are numerous biological applications

where our method might yield improved results. In particular we

consider applying our methods on donor splicing site detection, as

larger data sets are available in this setting.
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ABSTRACT

Motivation: Structure-based protein redesign can help engineer

proteinswithdesirednovel function. Improvingcomputational efficiency

while still maintaining the accuracy of the design predictions has been

a major goal for protein design algorithms. The combinatorial nature

of protein design results both from allowing residue mutations and

from the incorporation of protein side-chain flexibility. Under the

assumption that a single conformation can model protein folding and

binding, the goal of many algorithms is the identification of the Global

Minimum Energy Conformation (GMEC). A dominant theorem for

the identification of the GMEC is Dead-End Elimination (DEE). DEE-

based algorithms have proven capable of eliminating the majority of

candidate conformations, while guaranteeing that only rotamers not

belonging to the GMEC are pruned. However, when the protein design

process incorporates rotameric energy minimization, DEE is no longer

provably-accurate. Hence, with energy minimization, the minimized-

DEE (MinDEE) criterion must be used instead.

Results: In this paper, we present provably-accurate improvements

to both theDEE andMinDEE criteria.We show that our novel enhance-

ments result in a speedup of up to a factor of more than 1000 when

applied in redesign for three different proteins: Gramicidin Synthetase

A, plastocyanin, and protein G.

Availability: Contact authors for source code.

Contact: Bruce.R.Donald@dartmouth.edu

1 INTRODUCTION

Desired novel protein function can result from the structure-based

redesign of known protein sequences. In order to expedite the design

process, a number of computational approaches for making redesign

predictions have been successfully applied. In many protein

design algorithms, the accuracy of the protein model is improved

by incorporating protein flexibility (Street and Mayo, 1999; Jin

et al., 2003; Jaramillo et al., 2001; Bolon and Mayo, 2001;

Looger et al., 2003; Lilien et al., 2005). In (Najmanovich et al.,
2000), a number of bound and unbound structures are compared,

and the conclusion is drawn that only a small number of residues

undergo conformational change, and that the structural changes are

primarily side-chains, and not backbone. Hence, many protein

design algorithms start with a rigid backbone conformation and

optimize the residue sequence and the side-chain placements.

Side-chain flexibility is typically modeled using a discrete set of

low-energy rigid conformations, called rotamers (Lovell et al.,
2000; Ponder and Richards, 1987). A major challenge for protein

design algorithms is thus the combinatorial nature of the design

process, resulting both from allowing residue mutations and from

the incorporation of side-chain flexibility.

Under the assumption that a single conformation can accurately

model protein folding and binding, the goal of many algorithms is

the identification of the Global Minimum Energy Conformation

(GMEC). It has been proven that protein design for a rigid backbone

and using rotamers and a pairwise energy function is NP-hard

(Pierce and Winfree, 2002; Chazelle et al., 2004). Hence, some

heuristic approaches that do not make provable guarantees about

the accuracy of the results have been developed (Street and Mayo,

1999; Kuhlman and Baker, 2000; Jin et al., 2003; Jaramillo et al.,
2001; Marvin and Hellinga, 2001; Desmet et al., 2002; Shah et al.,
2004). In contrast to such heuristic approaches (e.g., Monte Carlo,

neural network, genetic algorithm), Dead-End Elimination (DEE)

(Desmet et al., 1992; Lasters and Desmet, 1993) is a provable and

efficient deterministic algorithm that is capable of eliminating the

majority of the conformations, while guaranteeing that the GMEC

is not pruned.

1.1 Traditional Dead-End Elimination

The DEE criterion (Desmet et al., 1992) uses rotameric energy

interactions to identify and prune rotamers that are provably

not part of the GMEC. The total energy of a conformation can

be written as

ET ¼ Et0 þ
X

i

EðirÞ þ
X

i

X
j>i

Eðir‚ jsÞ: ð1Þ

Here, ir specifies the particular rotamer identity r at residue position

i; Et
0 is the template energy (the energy of the rigid portion of the

molecule); E(ir) is the self-energy (the intra-residue and residue-to-

template energies) of rotamer ir; and E(ir,js) is the non-bonded

pairwise energy between rotamers ir and js. In the original DEE

criterion (Desmet et al., 1992), a target rotamer ir could be provably�To whom correspondence should be addressed.
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pruned if a competitor rotamer it is found, such that the best (lowest)

possible energy among conformations containing rotamer ir is

worse (higher) than the worst possible energy among conformations

containing it. Hence, an alternative rotamer that is energetically

more favorable than ir exists for the entire conformation space,

so ir cannot be part of the GMEC and can thus be provably pruned.

Formally, the DEE condition for pruning rotamer ir is:

EðirÞ þ
X
j6¼i

min
s

Eðir‚ jsÞ > EðitÞ þ
X
j6¼i

max
s

Eðit‚ jsÞ: ð2Þ

All the pairwise and self-energy terms are precomputed and a

lookup is performed during the evaluation of the DEE condition.

Eq. (2) is evaluated for each target rotamer ir until either a superior

competitor it is found and ir can be pruned, or there are no unex-

amined competitors remaining, in which case ir would not be

pruned. For a protein with n residues and a maximum of q rotamers

per residue, the complexity of evaluating Eq. (2) for all target

rotamers is O(q2n2).

The evaluation of Eq. (2) for all target rotamers represents a

single DEE pruning cycle. Since rotamers that are pruned in a

given cycle are not used in the evaluation of subsequent cycles,

multiple repetitions of the DEE cycle can result in pruning a larger

number of rotamers. Several extensions and enhancements to the

original DEE criterion use more complex energy interactions and

allow for additional pruning, at the cost of some additional com-

plexity (Desmet et al., 1992; Lasters and Desmet, 1993; Goldstein,

1994; Gordon and Mayo, 1998; Pierce et al., 2000; Looger and

Hellinga, 2001). Algorithms that combine several of these

extensions into the DEE cycle significantly improve the pruning

efficiency, thus allowing for the redesign of larger protein motifs

(Gordon et al., 2003; Pierce et al., 2000). For a summary of DEE

conditions, see Fig. 3(top).

The DEE pruning cycle can be repeated until the identification of

the GMEC or until no more prunings are identified during a given

cycle. Although DEE is a powerful algorithm, it does not guarantee

a unique solution: multiple unpruned conformations may remain

after pruning with DEE is exhausted. If DEE does not produce a

unique conformation, the algorithm can report an unsuccessful

design (Gordon et al., 2003; Pierce et al., 2000). As an alternative,

the DEE pruning stage can be followed by an enumeration stage, in

which the remaining conformations are examined and the GMEC is

identified. In (Leach and Lemon, 1998), A� branch-and-bound

search is used after pruning with DEE to expand a conformation

tree, so that conformations are extracted in order of conformational

energy; the first conformation that is returned by the A� search is the

GMEC. The need to generate all unpruned conformations is thus

eliminated, resulting in a combinatorial-factor reduction in the

search space. However, since the enumeration stage is still expo-

nential in nature, an efficient DEE pruning cycle is essential for

making complex design problems computationally feasible.

1.2 Minimized Dead-End Elimination

Although rotamers represent low-energy side-chain conformations,

the resulting discretization of the conformation space may decrease

the accuracy of the underlying model (Desmet et al., 2002). The

motivation for performing rotameric energy minimization is thus

well-founded. However, when the protein design process incor-

porates energy minimization, DEE is no longer provably-accurate,

since a pruned conformation may subsequently minimize to a lower

energy than the energy of the DEE-identified GMEC. In (Georgiev

et al., 2006), MinDEE, a novel generalized DEE algorithm is

presented. In contrast to traditional-DEE (the DEE conditions

described in Sec. 1.1), MinDEE guarantees that no rotamers belong-

ing to the minimized-GMEC (minGMEC), the conformation with the

lowest energy among all energy-minimized conformations, are

pruned. Thus, in order to be provably-correct, MinDEE (instead

of traditional-DEE) must be used for a design process that incor-

porates energy minimization.

In (Georgiev et al., 2006), it was experimentally confirmed that

traditional-DEE can prune rotamers belonging to the minGMEC.

For the 9-residue active site of the phenylalanine adenylation

domain of the non-ribosomal peptide synthetase (NRPS)

Gramicidin Synthetase A (GrsA-PheA) (PDB id: 1AMU)

(Conti et al., 1997), traditional-DEE and MinDEE were applied

in a 2-point-mutation redesign search1 for switching the binding

affinity of the protein from Phe to Leu. Traditional-DEE was

shown to prune 2 of the 9 rotamers belonging to the minGMEC.

Moreover, the energy of the minGMEC was approx. 5 kcal/mol

lower than the energy of the rigid-GMEC.2 The results in

(Georgiev et al., 2006) thus confirm both that traditional-DEE

is not provably-correct with energy minimization and that

MinDEE is more capable of returning lower-energy (and

hence, more stable) conformations.

The idea underlying MinDEE is analogous to the traditional-DEE

approach: rotameric energy interactions are used to determine

which rotamers are provably not part of the minGMEC and can

be pruned. In contrast to traditional-DEE, however, since rotamers

are allowed to energy-minimize, lower and upper bounds on the

self- and pairwise rotamer energies must be used, instead of the

rigid-energy terms E(ir) and E(ir, js) in Eq. (2). We will now

describe the initial MinDEE criterion, closely following

(Georgiev et al., 2006).

Without energy minimization, a rotamer stays in the same rigid

conformation, independent of the rotamer identities for the remain-

ing residues. In contrast, with energy minimization, a rotamer r at

residue i may minimize from its initial conformation in order to

accommodate a change from rotamer s to rotamer u at residue j. So

that one rotamer does not minimize into another, rotameric move-

ment is constrained to a voxel of conformation space. The voxel

V(ir) for rotamer ir contains all conformations of residue i within ±�
degrees around each rotamer dihedral. Similarly, the voxel for the

pair of rotamers ir and js is V (ir, js) ¼ V(ir) · V(js). The self-energy

of a given rotamer can change as different conformations within the

voxel are assumed. We can thus define the maximum, minimum, and

range of voxel self-energies:

E�ðirÞ ¼ max
z2VðirÞ

EðzÞ‚ EðirÞ ¼ min
z2VðirÞ

EðzÞ‚

EgðirÞ ¼ E�ðirÞ � EðirÞ:

The maximum, minimum, and range of pairwise voxel energies

are defined analogously (see Fig. 3). We now define the initial

1In a 2-point mutation search, any 2 of the 9 active site residues are allowed

to mutate simultaneously.
2For clarity, we will henceforth call the GMEC returned by traditional-DEE,

the rigid-GMEC.
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MinDEE criterion as:

EðirÞ þ
X
j 6¼i

min
s

Eðir‚ jsÞ �
X
j6¼i

max
s

EgðjsÞ

�
X
j6¼i

X
k 6¼i‚ k>j

max
s‚ u

Egðjs‚kuÞ > E�ðitÞ

+
X
j 6¼i

max
s

E�ðit‚ jsÞ:

ð3Þ

If Eq. (3) holds, then there exists a competitor it whose worst

possible conformational energy is lower than the best possible con-

formational energy for the target rotamer ir. Hence, ir cannot belong

to the minGMEC and can be provably pruned (for a proof, see

(Georgiev et al., 2006)). Eq. (3) for MinDEE is hence the analog

of Eq. (2) for traditional-DEE. The most significant difference

between traditional-DEE and MinDEE is the accounting for

possible energy changes during minimization, which are incor-

porated through the introduction of the terms
P

j max
s

EgðjsÞ andP
j

P
k max

s‚ u
Egðjs‚kuÞ. Similarly to traditional-DEE, the min and

max self- and pairwise energy terms are precomputed and a lookup

is performed during the pruning stage. Note that the termsP
j max

s
EgðjsÞ and

P
j

P
k max

s‚ u
Egðjs‚kuÞ can also be precom-

puted, since they are a function only of residue i. Thus, the MinDEE

criterion (Eq. 3) can be computed as efficiently as the traditional-

DEE criterion (Eq. 2).

The MinDEE criterion has been shown to be applicable both to

GMEC-based and ensemble-based protein design (Georgiev et al.,
2006). For the ensemble-based redesign, MinDEE was applied as

a provable conformational-space filter in K�, a scoring and search

protein design algorithm that incorporates energy minimiza-

tion (Lilien et al., 2005). Combined with A� search, the Hybrid

MinDEE-K� algorithm introduced a significant improvement in

computational efficiency over the original K� results in (Lilien

et al., 2005). In MinDEE/A� (the GMEC-based algorithm), similarly

to (Leach and Lemon, 1998) for traditional-DEE, MinDEE was

first used to prune a large portion of the conformational space;

the minGMEC was then extracted by A� from the remaining con-

formations. Although MinDEE/A� made the search for the minG-

MEC computationally feasible, the provable guarantees of the

algorithm resulted in more conservative pruning and, hence, in

slow running times (Georgiev et al., 2006). The derivation of

novel techniques for improved pruning efficiency that can be incor-

porated into MinDEE/A� is thus essential.

1.3 Contributions of the Paper

In this paper, we present novel provable enhancements both to

traditional-DEE and MinDEE, for improved pruning efficiency.

When applied in protein design searches, our enhancements yield

a speedup of up to a factor of more than 1000. In particular, our

paper makes the following contributions:

1. DACS: a provably-accurate divide-and-conquer enhancement

to traditional-DEE. DACS is shown to obtain improved pruning

efficiency and much faster running times. Due to its divide-and-

conquer nature, DACS is especially beneficial in design problems

where enumeration (Sec. 1.1) must be performed. The DACS
algorithm is also extended to incorporate energy minimization.

2. MinBounds: a novel provable pruning criterion that incorpor-

ates energy minimization, generalizing the Bounds technique

(Gordon et al., 2003) for protein design without energy minimiza-

tion. MinBounds prunes all rotamers ir for which the lower bound

on the energy of all conformations that contain ir is greater than a

computed reference energy.

3. Analogously to the enhancements to traditional-DEE, we

derive enhancements to the initial MinDEE criterion (Eq. 3) for

additional pruning. The MinDEE analogs to the traditional-DEE

simple and generalized Goldstein (Goldstein, 1994), conformational

splitting (Pierce et al., 2000), and dead-ending pairs (Desmet et al.,
1992; Lasters and Desmet, 1993) conditions are presented here; the

simple Goldstein criterion was previously applied in (Georgiev

et al., 2006).

4. A more efficient and powerful version of the MinDEE/A�

algorithm (Georgiev et al., 2006), incorporating MinBounds,

DACS, and the enhancements to the initial MinDEE criterion.

The new MinDEE/A� algorithm is shown to lead to a significant

improvement in pruning efficiency;

5. Application of our novel algorithms in GMEC-based searches

for redesigning plastocyanin and the b1 domain of protein G, and

for switching the substrate specificity of GrsA-PheA.

2 APPROACH

2.1 DACS

By partitioning the conformational search space, the original

conformational splitting DEE (split-DEE) criterion (Pierce et al.,
2000) (see Fig. 3g) enhances the pruning efficiency of traditional-

DEE. Fig. 1a shows a simple example of the power of confor-

mational splitting. In Fig. 1a, the simple Goldstein criterion

((Goldstein, 1994) and Fig. 3c) would not prune rotamer ir, since

it requires that there exist a competitor rotamer with better con-

formational energies than ir for all conformations. In contrast, when

split-DEE is used, the conformational space can be divided into

several partitions, such that for each partition, there is some com-

petitor that always has better conformational energies than ir within

that partition. In Fig. 1a, the dashed line divides the space into

two partitions, P1 and P2. With this division, the competitor rotamer

Fig. 1. Pruning with split-DEE andDACS. A point on the curve for rotamer

ir represents the energy of the corresponding conformation when residue i has

the specific rotamer identity r. (a) Whereas the simple Goldstein criterion

cannot prune ir, conformational splitting can prune ir by partitioning the

conformational space. The dashed line shows a splitting of the conformational

space into the two partitions P1 and P2. (b) Conformational splitting cannot

prune rotamer ir in partition P2, so ir must remain unpruned for the full

conformational space. In contrast, DACS leaves ir unpruned only for P2;

the local GMECs for P1 and P2 are computed and compared to obtain the

overall GMEC. Note that the conformational space is discrete; continuity is

shown here only for illustration purposes.
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iu always outperforms ir in partition P1, while rotamer it is

always better than ir in partition P2. Thus, ir can now be pruned,

since there is always a better alternative for residue i, for any

conformation. Hence, ir is provably not part of the rigid-GMEC.

The advantage of split-DEE is that no single competitor is required

to outperform ir for every conformation; as long as there exists a

(different) dominant competitor for each partition, rotamer ir can be

pruned. A simplified schematic of split-DEE is given in Fig. 2a.

We now describe a modification of the split-DEE criterion that

will allow for a further increase in pruning efficiency. Fig. 1b shows

a different energy landscape. In this case, neither it nor iu outperform

ir for all conformations in partition P2. Thus, the original split-DEE

criterion can no longer prune rotamer ir and the potentially bene-

ficial information that iu is always better than ir in partition P1 is

discarded. In general, it may be possible to prune ir in the majority

of the partitions, but so long as there exists a partition where no

competitor is always better than ir, the original split-DEE criterion

must keep ir unpruned. To remedy this loss of information, we relax

the requirement that ir be outperformed in all partitions; instead, we

use a provably-accurate divide-and-conquer approach.

As in the original split-DEE criterion, we divide the conforma-

tional space into partitions. Within each partition, we apply DEE

pruning to determine if there exists a competitor at residue i that

always outperforms rotamer ir. We then identify the local rigid-

GMEC, restricted to the current partition, independently of the other

partitions. If DEE pruning does not produce a unique solution,

enumeration of the conformations in the current partition must

be performed. The lowest-energy conformation among the local

rigid-GMECs for all partitions is the overall rigid-GMEC (the

rigid-GMEC among all conformations, for all partitions). We

call this new approach DACS (Divide-And-Conquer Splitting)

(Fig. 2b). Note that in Fig. 1b, rotamer ir is still unpruned in partition

P2, so the enumeration stage for P2 must consider conformations

containing ir. However, in partition P1, rotamer ir can be provably

pruned and hence all conformations in P1 containing ir can be

eliminated from further consideration. With split-DEE, the con-

formations containing ir for both partitions must still be enumerated.

Hence, the general advantage of DACS over split-DEE is the ability

to prune an additional combinatorial subset of the conformational

space by exploiting partition-specific prunings.

The DEE pruning stage in DACS can incorporate any com-

bination of the available provably-accurate traditional-DEE tech-

niques (e.g., simple Goldstein and split-DEE). The enumeration

stage is implemented using A� search, which results in an additional

combinatorial-factor reduction in the search space (see Sec. 1.1).

Several approaches based on ideas related to conforma-

tional splitting have been previously described. In (Looger and

Hellinga, 2001), a generalized version of the split-DEE algorithm

that is capable of pruning rotamer clusters, and not just single

rotamers, was derived independently from (Pierce et al., 2000).

A split flags technique was introduced in (Gordon et al., 2003)

that is closely related to the approach in (Looger and Hellinga,

2001). With split flags, if a target rotamer ir cannot be pruned

for all partitions, the partitions in which ir can be pruned are flagged

as dead-ending. These split flags effectively represent dead-ending

rotamer pairs.3 Since the dead-ending pairs are not used in the

evaluation of the DEE equations (e.g., Eq. 2), more single dead-

ending rotamers may be identified in the subsequent DEE cycles.

Thus, both DACS and the split flags technique use pruning

information that is otherwise discarded by split-DEE. However,

there is one major advantage of the DACS algorithm over split

flags, that can be attributed to the divide-and-conquer paradigm.

Since the cost of expanding the A� search tree depends combinat-

orially on the number of rotamers for each residue position,4

a divide-and-conquer approach (in which the number of rotamers

for each partition is reduced) can be more efficient than finding the

global solution directly. Hence, for design problems in which the

enumeration stage cannot be avoided, DACS should be especially

useful.

In (Desmet et al., 1997), a divide-and-conquer algorithm for DEE

pruning was described. In this algorithm, a list of dead-ending

rotamers is constructed for each part of the divided conformational

space; the intersection of all such lists gives the final list of pruned

rotamers. Hence, this algorithm suffers from the same drawback as

split-DEE: since a rotamer ir cannot be pruned unless it is identified

as dead-ending in all parts of the conformational space, potentially

beneficial pruning information is often discarded.

The DACS algorithm benefits both from its divide-and-conquer

nature and from the use of partition-specific prunings; DACS thus

presents advantages over the other algorithms discussed in this

section.

Correctness

We now prove the correctness of the DACS algorithm. Let C be the

initial set of conformations and let q be the number of partitions Pi,

1 � i � q, into which C is divided. Proposition 1 proves that

DACS correctly identifies the local rigid-GMEC for each partition.

C C

C’

rigid-GMEC

(enumerate)

split-DEE

PkP1 P2
...

DEE DEE

C1
Ck

(enumerate) (enumerate)

...

local GMEC local GMEC...

rigid-GMEC

(a) (b)

partition

Fig. 2. Schematic of the (a) split-DEE, and (b) DACS algorithms. In (a),

the reduced set C0 of conformations is obtained after split-DEE is applied to

the initial conformational set C. If jC0 j ¼ 1, then split-DEE has output a

unique solution, the rigid-GMEC; otherwise, enumeration must be per-

formed. In (b), the initial set C is first partitioned. DEE pruning is performed

for each partition and the corresponding local rigid-GMEC is obtained. The

lowest-energy conformation among the local GMECs for all partitions is the

overall rigid-GMEC.

3In a dead-ending rotamer pair (ir, js), either ir or js may be part of the GMEC,

but not both.
4For a protein with n residues and at most q rotamers per residue, the worst-

case cost of expanding the A� conformation tree is O(qn).
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Proposition 2 shows that the overall GMEC is obtained as the

lowest-energy conformation among the local GMECs, thus

completing the proof of correctness for DACS.

PROPOSITION 1. DACS identifies the local rigid-GMEC for each
partition Pi.

Proof: Let Cj denote the set of conformations for a given

partition Pj, for an arbitrary j. Since the DEE pruning stage in

DACS incorporates only provably-accurate traditional-DEE tech-

niques the rigid-GMEC gj 2 Cj is guaranteed not to be pruned. The

rigid-GMEC for Pj is then extracted using the A� search. &

PROPOSITION 2. Let gi be the local rigid-GMEC for partition Pi

and let E(gi) be the total conformational energy of gi. Then the
overall rigid-GMEC is obtained as argmingi E (gi), for 1 � i � q:

Proof: We give a proof by contradiction. Let h 2 C; h 6¼ gi, 8i,
be the overall rigid-GMEC, so that E(h) < mini E(gi); that is, the

overall rigid-GMEC h is not a local rigid-GMEC. By definition,

h can be in exactly one partition of C; let this partition be Pj. It

follows that E(h) < E(gj), so gj is not the local rigid-GMEC for

partition Pj. We thus have a contradiction. Hence, h must be a local

GMEC; the lowest-energy local GMEC, argmingi
E(gi), for 1 �

i � q, is the overall rigid-GMEC. &

Partitioning

For each rotamer ir, the original split-DEE (Pierce et al., 2000)

forms partitions by choosing one or more of the protein residues

as the splitting positions (residues).5 Ideally, for n residues and s
split positions, all n�1

s

� 	
possible combinations would be examined,

until ir can be pruned for all partitions in some combination. For s >
2, however, the increased algorithmic complexity suggests the use

of a magic bullet approach to splitting (Gordon and Mayo, 1998).

With this approach, a single combination (a magic bullet) of split

positions is chosen, based on a heuristic ranking criterion.

In the original split-DEE, different rotamers can be pruned using

different combinations of splitting residues, since the pruning

information is combined before the enumeration stage of the search

for the rigid-GMEC. DACS uses partition-specific pruning informa-

tion, so the prunings for one partition are generally not valid for a

different partition (see Fig. 1b). If different rotamers are pruned

using different splitting residues, the divide-and-conquer-type

approach can no longer be used. Thus, the DACS partitions must

be identical for all rotamers tested for pruning. To partition the set of

conformations, we therefore choose t split residues, 1 � t � n,

before applying the DACS criterion; we will henceforth refer to

these split residues as major split residues, in contrast with the

original split-DEE splitting positions.

We use a magic-bullet-type approach for choosing the major split

residues. Assuming preliminary DEE pruning has been performed,

we can rank residues in terms of the corresponding p-ratio (the ratio

of pruned rotamers to total number of rotamers). The top t residues

with the lowest p-ratio are chosen as the major split positions.

Intuitively, residues with a low p-ratio are less prone to pruning

and should thus minimize the cost of not being able to prune

rotamers at the split positions.6 Note that the method for choosing

the major split residues does not affect the correctness of the

algorithm, but may affect its pruning efficiency, so alternative

methods for choosing the major split positions can also be applied.

Complexity

For t major split residues and at most q rotamers per residue, DACS
divides the conformational space into O(qt) partitions. The cost of

running the DEE cycle for each partition is determined by the

complexity of the DEE algorithms in the cycle. As noted in

Sec 1.1, the cost of the initial DEE criterion (Desmet et al.,
1992) is O(q2n2). The simple Goldstein criterion (Goldstein,

1994) has a complexity of O(q3n2). An implementation of the ori-

ginal split-DEE (Pierce et al., 2000) with s ¼ 1 split positions has

the same complexity as simple Goldstein, assuming (q > n). The

computation of split flags is done during the split-DEE run at no

additional complexity. Hence, for a DEE cycle in which the most

costly algorithm used is split-DEE, the general complexity of DACS
is O

�
q2+s+tn n � 1

s

� 		
, where O

�
q2+sn n � 1

s

� 		
is the cost of each split-

DEE run. With t ¼ 1 (a single magic bullet split position) for major
splitting and s ¼ 1 split-DEE in the inner loop, DACS runs in

O(q4n2), which is less than the cost of s ¼ 2 split-DEE, O(q4n3).

Note that since the computation of the results for each partition is

independent of the other partitions, DACS is easily parallelizable,

which further reduces the effective complexity of the algorithm.

2.2 MinDEE Extensions

As already discussed, extensions to the initial traditional-DEE cri-

terion have resulted in improved computational efficiency (Desmet

et al., 1992; Lasters and Desmet, 1993; Goldstein, 1994; Pierce

et al., 2000). Analogous MinDEE extensions for additional pruning

are presented in Fig. 3. For example, the conformational splitting

extension to MinDEE in Fig. 3(h) is the analog of the original split-

DEE extension to traditional-DEE (Fig. 3g). The DACS algorithm is

easily extended to incorporate energy minimization; in order to only

prune rotamers that are provably not part of the minGMEC, the

traditional-DEE criteria (Fig. 3, top) in the DEE cycle of DACS
must be discarded and their MinDEE equivalents (Fig. 3, bottom)

used instead.

2.3 MinBounds

We now present a provably-accurate pruning technique that is based

on rotameric minimum energy bounds. The technique, MinBounds,

is analogous to the Bounds approach of (Gordon et al., 2003)

for traditional-DEE. In contrast to Bounds, however, MinBounds

is provably-correct with energy minimization. Similarly to

(Georgiev et al., 2006), we define the lower bound Bir
on the

minimized energy of all conformations containing rotamer ir as:

Bir ¼ Et0 + EðirÞ þ
X
j6¼i

min
s

EðjsÞ þ
X
j6¼i

min
s

Eðir‚ jsÞ

+
X
j 6¼i

X
k 6¼i‚ k>j

min
s‚ u

Eðjs‚kuÞ:

Thus, Bir is the best energy that a conformation can achieve after

minimization if residue i has the particular rotamer identity r. Now,
5A splitting position (residue) divides the conformational space into parti-

tions, such that each rotamer at that residue forms a separate partition. 6In each partition, there is only one rotamer for each major split residue.
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let Ec be the minimized energy of a given conformation and Eg be

the energy of the minGMEC, so that Ec� Eg. For a given rotamer ir,
if Bir > Ec‚ then Bir > Eg‚ so ir cannot belong to the minGMEC and

can thus be provably pruned.

In (Gordon et al., 2003), multiple Monte Carlo searches are used

throughout the design process, in order to compute lower values

for Ec (called the reference energy), so that more rotamers could

be pruned by the Bounds criterion. Alternatively, in order to reduce

the computational burden, MinBounds obtains Ec by energy-

minimizing the wildtype only.

The MinBounds approach is most beneficial if used in a com-

bination with the MinDEE criteria described in Sec. 2.2. Since the

MinDEE conditions are conservative, a rotamer ir cannot be pruned

unless a better alternative is found, so some rotamers with bad

(high) lower energy bounds may not be pruned by MinDEE.

Using MinBounds with a good reference energy guarantees that

rotamers with bad lower energy bounds will be pruned, further

reducing the conformational search space.

Fig. 3. Dead-End Elimination Pruning Conditions. A summary of the previously-described traditional-DEE pruning conditions (top) and our newly

derived minimized-DEE pruning conditions (bottom). (a) is the initial criterion for traditional-DEE (Desmet et al., 1992), and (b) is the generalization for

minimized-DEE (Eq. 3). The simple (d) and general coupled (f) minimized-DEE pruning conditions are analogous (resp.) to the corresponding Goldstein pruning

conditions (c, e) of traditional-DEE (Goldstein, 1994). General Goldstein (e), in traditional-DEE, compares the energy of ir to a weighted average of the

interaction energies among T candidate pruning rotamers itx . Cx� 0 is the weight given to the energy computed using rotamer itx . The traditional conformational

splitting criterion (Pierce et al., 2000) and the analogous MinDEE condition are given in (g) and (h), respectively. In the minimized-DEE generalization (j) of

traditional Dead-Ending Pairs (i), E�ð½ir js�Þ ¼ E�ðirÞ þ E�ðjsÞ þ E�ðir; jsÞði 6¼ jÞ;E�ð½ir; js�Þ; htÞ ¼ E�ðir ; htÞ þ E�ðjs; htÞði; j 6¼ hÞwhere E� 2 fE;E�g:

Traditional-DEE

(a) EðirÞ � EðitÞ þ
X
j6¼i

min
s

Eðir ; jsÞ �
X
j 6¼i

max
s

Eðit; jsÞ > 0 (Desmet et al., 1992)

(c) EðirÞ � EðitÞ þ
X
j;j6¼i

min
s

Eðir ; jsÞ � Eðit; jsÞð Þ > 0 (Goldstein, 1994)

(e) EðirÞ �
X

x¼1;T

CxEðitx Þ þ
X
j;j 6¼i

min
s

Eðir; jsÞ �
X

x¼1;T

CxEðitx ; jsÞ
 !

> 0 (Goldstein, 1994)

(g) EðirÞ � EðitÞ þ
X

j; j 6¼h 6¼i

min
s

Eðir; jsÞ � Eðit; jsÞð Þ
� �

þ Eðir ; hvÞ � Eðit; hvÞð Þ > 0 (Pierce et al., 2000)

(i) Eð½ir js�Þ � Eð½iujv�Þ þ
X
h6¼i;j

min
t

Eð½ir js�; htÞ �
X
h6¼i;j

min
t

Eð½iujv�; htÞ > 0 (Desmet et al., 1992; Lasters and Desmet, 1993)

Minimized-DEE

(b) EðirÞ � E�ðitÞ þ
X
j 6¼i

min
s

Eðir ; jsÞ �
X
j 6¼i

max
s

E�ðit; jsÞ �
X
j 6¼i

max
s

E�ðjsÞ �
X
j 6¼i

X
k 6¼i;k>j

max
s;u

E�ðjs; kuÞ > 0 (Georgiev et al., 2006)

(d) EðirÞ � E�ðitÞ �
X
j 6¼i

max
s

E�ðjsÞ �
X
j 6¼i

X
k 6¼i;k>j

max
s;u

E�ðjs; kuÞ þ
X
j 6¼i

min
s

Eðir ; jsÞ � E�ðit; jsÞð Þ > 0

(f) EðirÞ �
X

x¼1;T

CxE�ðitx Þ �
X
j 6¼i

max
s

E�ðjsÞ �
X
j 6¼i

X
k 6¼i;k>i

max
s;u

E�ðjs; kuÞ þ
X
j 6¼i

min
s

Eðir ; jsÞ �
X

x¼1;T

CxE�ðitx ; jsÞ
 !

> 0

(h) EðirÞ � E�ðitÞ �
X
j 6¼i

max
s

E�ðjsÞ �
X
j 6¼i

X
k 6¼i;k>j

max
s;u

E�ðjs; kuÞ þ
X
j 6¼i;h

min
s

Eðir ; jsÞ � E�ðit; jsÞð Þ
� �

þ Eðir ; hvÞ � E�ðit; hvÞð Þ > 0;

(j) Eð½ir js�Þ � E�ð½iujv�Þ þ
X
h6¼i;j

min
t

Eð½ir js�; htÞ �
X
h6¼i;j

max
t

E�ð½iujv�; htÞ �
X
h6¼i;j

max
t

E�ðhtÞ �
X
h 6¼i;j

X
k 6¼i;j;k>h

max
t;w

E�ðht; kwÞ > 0

Table 1. Traditional-DEE algorithms. The name of the algorithms (left) is

shown with the corresponding sequence of pruning criteria (right). Each of

the pruning criteria (as well as the full DEE cycle) is repeated until no further

prunings are obtained. For each target rotamer ir, full split-DEE attempts

pruning for all possible combinations of n�1
s

� 	
split positions. The algorithms

with DACS use t ¼ 1 major split positions

SD1f Bounds, simple Goldstein, full s ¼ 1 split-DEE;

SD2f Bounds, simple Goldstein, full s ¼ 1 split-DEE,

full s ¼ 2 split-DEE;

SF2f Bounds, simple Goldstein, full s¼ 1 split-DEE w/ split flags,

full s ¼ 2 split-DEE w/ split flags;

DACS-SD1f SD1f, followed by t ¼ 1 DACS with a DEE stage

incorporating the set of SD1f criteria;

DACS-SD2f SD2f, followed by t ¼ 1 DACS with a DEE stage

incorporating the set of SD2f criteria;

DACS-SF2f SF2f, followed by t ¼ 1 DACS with a DEE stage

incorporating the set of SF2f criteria.
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3 ALGORITHMS

3.1 Traditional-DEE

The performance advantage of DACS for protein design without

energy minimization is evaluated in comparison to the original split-

DEE and split flags. The DEE pruning stage of the benchmarking

algorithms is presented in Table 1. DACS-SD1f, DACS-SD2f, and

DACS-SF2f introduce an additional complexity factor of only O(q),

compared to, respectively, SD1f, SD2f, and SF2f (see Sec. 2.1,

Complexity). For all algorithms, the pruning stage is followed

by an A�-search enumeration stage.

3.2 MinDEE

We now present an improvement of the MinDEE/A� algorithm

(Georgiev et al., 2006), incorporating the simple Goldstein and

conformational splitting extensions to the MinDEE criterion

(Sec. 2.2), MinBounds (Sec. 2.3), and DACS for MinDEE (Sec.

2.2). In addition, the MinDEE/A� algorithm is adapted to allow

the use of the volume filter applied in the ensemble-based searches

of (Lilien et al., 2005; Georgiev et al., 2006). The volume filter is

applied to the initial set of mutation sequences.7 pruning over- and

under-packed sequences, relative to the original sequence. For each

of the remaining sequences, the MinDEE analog of the DACS-SD1f

algorithm (Sec. 3.1) is used to eliminate the majority of the can-

didate conformations. A� search is then applied in the enumera-

tion stage to extract the minGMEC from the set of remaining

conformations. Similarly to the DACS algorithm, the lowest-energy

conformation among the rigid-GMECs for all mutation sequences is

identified as the overall rigid-GMEC. If conformations within Ew

of the minGMEC energy are to be generated, the pruning criteria

and the A� search can be modified accordingly (Georgiev et al.,
2006). The application of the enhanced pruning conditions and the

use of the volume filter aim at improving the pruning capabilities

and the computational efficiency of the algorithm.

4 METHODS

Structural Model. The NRPS enzyme GrsA-PheA (PDB id: 1AMU) (Conti

et al., 1997) is used both for the traditional-DEE and MinDEE redesigns.

Similarly to (Lilien et al., 2005; Georgiev et al., 2006), the residues modeled

as flexible are the 9 active site residues (D235, A236, W239, T278, I299,

A301, A322, I330, C331). In addition, our structural model consists of the

steric shell (the 30 residues with at least one atom within 8 Å of a residue in

the active site: 186Y, 188I, 190T, 210L, 213F, 214F, 230A, 234F, 237S,

238V, 240E, 243M, 279L, 300T, 302G, 303S, 320I, 321N, 323Y, 324G,

325P, 326T, 327E, 328T, 329T, 332A, 333T, 334T, 515N, and 517K), the

amino acid substrate, and the AMP cofactor. The 9 flexible residues are

allowed to mutate to the set (GAVLIFYWM) of hydrophobic amino acids.

Traditional-DEE experiments are also performed on plastocyanin (PDB id:

2pcy) (Garrett et al., 1984). Based on (Gordon et al., 2003), we model as

flexible 18 residues in the core of plastocyanin (5, 14, 21, 27, 29, 31, 37, 38,

39, 41, 72, 74, 80, 82, 84, 92, 96, 98), allowing them to mutate to the set

(AVLIFYW) of hydrophobic amino acids. Similarly to (Gordon et al., 2003),

redesign with traditional-DEE was also performed on 14 surface residues

(4, 6, 8, 13, 15, 17, 42, 44, 46, 48, 49, 51, 53, 55) of the b1 domain of protein

G (PDB id: 1pga) (Gallagher et al., 1994). The 14 residues modeled as

flexible are allowed to mutate to the set (ANQSTDE); the remaining residues

(except for the N-terminus) are modeled as part of the steric shell. Further,

similarly to (Shah et al., 2004), 1pga redesign was performed on 12 core

residues (3, 5, 7, 9, 20, 26, 30, 34, 39, 41, 52, 54), allowed to mutate to

(GAVLIFYWM). Rotamer Library. Side-chain flexibility is modeled

using the Richardsons’ rotamer library (Lovell et al., 2000). Energy

Minimization. Conformations are energy-minimized using steepest-descent

Table 2. Traditional-DEE redesign for GrsA-PheA (a), plastocyanin (b), and the b1 domain of protein G (surface) (c). The total number of conformations

for cases (a), (b), and (c) is 4.78 · 1015, 2.06 · 1027, and 2.25 · 1022, respectively. The Enum values show the number of remaining conformations after pruning

with the algorithm given in the corresponding column; these conformations must be considered by A� in the enumeration stage. Time shows the total running time

(in minutes) consumed by each algorithm for the identification of the rigid-GMEC. All experiments were performed on a single processor.

SD1f SD2f SF2f DACS-SD1f DACS-SD2f DACS-SF2f

(a) Enum 4.14 · 108 2.67 · 108 2.25 · 108 1.04 · 107 1.46 · 107 3.87 · 106

Time 46.1 34.3 25.0 2.34 3.36 2.12

(b) Enum 6.78 · 1012 4.52 · 1012 1.86 · 1012 5.11 · 1011 3.84 · 1011 6.44 · 1010

Time 2057.1 1192.8 207.4 769.1 534.4 55.6

(c) Enum 3.7 · 1012 1.47 · 1011 1.6 · 1010 3.56 · 109 2.97 · 106 2.13 · 108

Time � � 4540.2 171.3 6.5 154.1

� Did not complete in 10,000 minutes.

Table 3. Partition Pruning with DACS-SF2f for GrsA-PheA. The conformational space was divided into 16 partitions by splitting at residue 322 (with a

p-ratio of 29/45 after the initial pruning with SF2f). The Enum values show the number of remaining conformations after pruning with DACS-SF2f, for each of the

16 partitions. Due to rounding, these values do not sum exactly to the corresponding total number of conformations shown in Table 2.

1 2 3 4 5 6 7 8

Enum 5.8 · 105 2.2 · 105 1.8 · 105 2.2 · 105 7.3 · 104 3.3 · 104 3.1 · 105 0.8 · 103

9 10 11 12 13 14 15 16

Enum 1.1 · 103 2.0 · 104 5.3 · 103 1.1 · 104 2.8 · 105 4.5 · 105 4.4 · 104 1.5 · 106

7A mutation sequence is a particular assignment of amino acid types for each

residue.
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minimization and the AMBER energy function (electrostatic, vdW, and

dihedral energy terms) (Weiner et al., 1984; Cornell et al., 1995). A

voxel of � ¼ ±9 � is allowed around each rotamer dihedral. Volume Filter.

(MinDEE/A� only) Over-/under-packed mutation sequences (by more than

30Å3) relative to wildtype GrsA-PheA are pruned.

5 RESULTS AND DISCUSSION

Traditional-DEE. The results of applying the 6 different

algorithms described in Sec. 3.1 to GrsA-PheA are shown in

Table 2, Case (a). With s¼ 1 split-DEE (SD1f), the redesign process

took 46.1 minutes on a single processor, but the introduction of

DACS (DACS-SD1f) decreased the execution time by a factor of

20. For s ¼ 2 split-DEE without and with split flags (SD2f and SF2f,

respectively), the application of DACS resulted in a speedup factor

of approx. 10 and 12, respectively. Thus, the minor additional

complexity of the algorithms incorporating DACS (see Sec. 3.1)

is outweighed by a significant increase in computational efficiency

over the corresponding algorithms without DACS. Moreover, DACS
performed better even when compared to more costly algorithms:

DACS-SD1f was a factor of 10 faster than the SF2f algorithm.

A major factor for the speedup associated with the DACS
algorithms is the corresponding increase in pruning efficiency

(Table 2). By using a divide-and-conquer approach to partition

the conformational space and identify partition-specific prunings,

DACS allows for additional elimination, after pruning with the

original split-DEE and split flags techniques is exhausted.

Table 3 shows the DACS-SF2f pruning results for all 16 partitions.

As can be seen from Table 3, the remaining conformations after the

DEE stage of DACS differ widely for each partition, ranging from

less than 1,000 (partition 8) to approx. 1.5 million (partition 16).

This variation shows that a different subset of rotamers can be

pruned for each of the partitions, confirming the significance of

using the DACS partition-specific prunings.

The improved execution times of the DACS redesigns can further

be explained by the reduced cost of expanding the A� search trees

for each partition, resulting from the divide-and-conquer approach,

as opposed to expanding the single A� tree for the full conforma-

tional space. For example, for the SF2f algorithm, A� must simul-

taneously consider all of the remaining 2.25 · 108 conformations,

whereas the largest partition for DACS-SF2f has only 1.5 · 106

candidate conformations.

Table 2, Case (b), shows the plastocyanin redesign results for

the six different algorithms used. Similarly to GrsA-PheA, the

DACS algorithms (columns 4 � 6) outperform the corresponding

split-DEE/split flags algorithms in columns 1 � 3, resulting in a

speedup of up to a factor of 4. Unlike GrsA-PheA, however, the

execution time for SF2f was less than that for DACS-SD1f, although

the total number of unpruned conformations for DACS-SD1f was

smaller. We can thus conclude that the overhead of expanding

separate A� trees for each partition can be outweighed only by a

significant improvement in pruning efficiency. However, in all

of the redesign results presented in Table 2, the addition of the

DACS algorithm (columns 4 � 6) shows the necessary substantial

increase in pruning efficiency over the respective algorithms (with-

out DACS) in columns 1 � 3. Hence, we conclude that, in general,

DACS should be used as an enhancement, and not a substitute, to the

other available DEE techniques.

The core redesign of the b1 domain of protein G was completed

within 5 minutes by all six algorithms (data not shown), which

precludes a differential performance comparison for this case.

However, our conclusions so far are confirmed by the (more diffi-

cult) surface redesigns of b1 of protein G (Table 2, Case c). When

compared to the algorithms without DACS, the respective DACS
algorithms show a speedup of up to three orders of magnitude. In

fact, the SD1f and SD2f algorithms exceeded the maximum allotted

time of 10,000 minutes, so the use of DACS for these redesigns was

essential. Moreover, similarly to Case (a), DACS-SD1f performed an

order of magnitude better than the more costly SF2f.

Note that SF2f in Case (c) ran 20 times slower than SF2f in

Case (b), although the number of unpruned conformations for

Case (c) was two orders of magnitude lower. This is a direct result

of the expansion mechanism of A� and implies that, in order to

generate the best conformation, a larger portion of the A� conforma-

tion tree had to be expanded for SF2f in Case (c) than in Case (b).

Indeed, the A� tree in Case (c) contained approx. 1.9 · 106 nodes at

the time of completion, whereas the Case (b) tree contained only

5 · 105 nodes.

Also note the increased running time of DACS-SD2f as compared

to DACS-SD1f (Case a) and DACS-SF2f as compared to DACS-SD2f

(Case c). This can be explained by the choice of an inefficient

major splitting residue. To test this hypothesis, we examined a

different heuristic for choosing the major splitting positions, so

that preference is given to lower-numbered residues.8 With the

new approach, a higher-numbered residue ni+k is chosen as the

major split position if its p-ratio is at least a value of a lower

than the p-ratio of the lower-numbered residue ni, 1 � i � n. In

our experiments, we used a ¼ 0.15. The new splitting approach

significantly reduced the running times for most DACS redesigns

(data not shown). DACS-SD2f and DACS-SD1f in Case (a) ran in 2.15

and 2.04 minutes, respectively. The running time of DACS-SD2f

(Case c) remained unchanged, whereas that of DACS-SF2f was

reduced by a factor of 44 to a total of 3.5 minutes. We can thus

conclude that more sophisticated alternatives for choosing the major
splitting positions should further improve the computational

efficiency.

Table 4. MinDEE/A� Redesign for GrsA-PheA using MAnew (a) and

MAsimple (b). The number of conformations remaining after the volume filter

is 1.7 · 108. Pruned shows the number and percentage (in parentheses) of

conformations pruned by the MinDEE stage of the corresponding algorithm;

the number of remaining unpruned conformations is shown in Remaining;

Minimized represents the number of conformations generated by A� and

energy-minimized. Time/Seq. is the average CPU time (in minutes) for

the evaluation of a single mutation sequence.

(a) (b)

Pruned 1.697 · 108 (99.8%) 1.66 · 108 (97.6%)

Remaining 3.86 · 105 4.0 · 106

Minimized 9.3 · 104 9.64 · 104

Time/Seq. 16.11 16.66

8Lower-numbered residues are at lower depths of the A� conformation tree

and are thus expanded first.
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The results in this section show the additional pruning power

and computational speedup of the DACS algorithm for traditional-

DEE design, compared to the original split-DEE and split flags

techniques, thus confirming the significance of this new approach.

MinDEE/A�. Results from a 2-point mutation redesign search

with energy minimization for switching the binding affinity of

GrsA-PheA from Phe to Leu are shown in Table 4. Our improved

version of the MinDEE/A� algorithm9 (Sec. 3.2), Table 4(a), is

compared against the original MinDEE/A� algorithm10 (Georgiev

et al., 2006), Table 4(b), which uses only the MinDEE analog of

the simple Goldstein criterion. In order to fairly evaluate the effects

of using the novel pruning criteria presented in this paper, the

original MinDEE/A� algorithm was also modified to incorporate

the volume filter described in Sec. 3.2. For our experiments, we

used a value of 6.0 for Ew (Sec. 3.2). The redesigns were performed

on a cluster of 36 processors.

Only 30% of the mutation sequences passed the volume filter.

The application of the MinDEE criteria in MAnew resulted in the

elimination of (99.8%) of the remaining conformations, while the

same algorithmic stage in MAsimple eliminated only (97.6%).

The number of remaining conformations that had to be considered

by A� in the enumeration stage was consequently an order of

magnitude smaller for the MAnew algorithm. Thus, as desired,

the incorporation of the novel pruning techniques significantly

enhanced the pruning capabilities of the MinDEE stage.

When considering the execution times, however, the speedup

resulting from the use of the MAnew algorithm was not significant.

The reason that the increased pruning efficiency did not lead to

increased computational efficiency can be explained by the role

of the MinDEE stage in the MinDEE/A� algorithm. By pruning

the majority of the possible rotamers, MinDEE reduces the cost

of expanding the A� search tree.11 Since the number of rotamers

for a single mutation sequence is comparatively small, the overhead

of expanding the A� tree is also smaller. Hence, for a single

sequence, the execution time will be dominated mostly by the

conformational energy minimization, and not by the tree expansion.

Since an approximately equal number of conformations are

energy-minimized by both MAnew and MAsimple, the similar exe-

cution times of both algorithms are not surprising. However, the fact

that the novel advanced pruning techniques resulted in a significant

increase in pruning efficiency, leads to the conclusion that the

improved MinDEE/A� algorithm will be especially useful in

redesigns of larger systems12 with energy minimization where

the cost of managing the search tree dominates the computational

effort.

6 CONCLUSION

In this paper, we presented novel enhancements for increased

pruning efficiency, applicable in protein design problems both

with and without energy minimization. The additional pruning

power and the divide-and-conquer nature of the DACS algorithm

were shown to lead to a significant computational speedup over

other conformational-splitting-based algorithms, for the redesigns

of GrsA-PheA, plastocyanin, and b1 of protein G. Plastocyanin and

protein G redesigns were also described in (Pierce et al., 2000;

Gordon et al., 2003), using conformational splitting techniques

in a combination with other advanced pruning criteria, such as

dead-ending pairs. It would thus be interesting to incorporate

such advanced pruning techniques into the DACS algorithms, in

order to facilitate the faster design of larger systems. Moreover,

since the choice of major splitting residues was shown to impact

the efficiency of the algorithm, a further improvement of DACS
could involve the derivation of a better approach for choosing the

split positions. For larger systems, the use of multiple major split

positions should also prove beneficial.

Our improved MinDEE/A� algorithm incorporated the

MinBounds technique, the simple Goldstein and split-DEE exten-

sions to MinDEE, and the MinDEE version of DACS, resulting in a

significant improvement in pruning efficiency over the original

MinDEE/A� algorithm. Similarly to traditional-DEE, further

improvements to MinDEE/A� could include the incorporation of

s ¼ 2 split-DEE and the split-flags techniques, as well as other

advanced pruning criteria. As suggested by our results, in order

to benefit from the increased pruning efficiency, MinDEE/A� should

be applied to larger systems, where the cost of expanding the search

tree in the enumeration stage, rather than the energy minimization,

will dominate the computation. MinDEE experiments on larger

systems are currently under way and will be reported in future work.

The pruning techniques presented in this paper add to the power

of available protein design algorithms and can be an important step

towards the development of algorithms for the efficient solution of

increasingly more computationally-expensive design problems.

More efficient algorithms will also allow the use of improved

models (e.g., larger rotamer libraries, improved energy functions,

and the incorporation of backbone flexibility), thus increasing the

accuracy of the design predictions.
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ABSTRACT

Motivation: Clinical data, such as patient history, laboratory analysis,

ultrasound parameters—which are the basis of day-to-day clinical

decision support—are often underused to guide the clinical manage-

ment of cancer in the presence of microarray data. We propose a

strategy based on Bayesian networks to treat clinical and microarray

data on an equal footing. The main advantage of this probabilistic

model is that it allows to integrate these data sources in several

ways and that it allows to investigate and understand the model struc-

ture and parameters. Furthermore using the concept of a Markov

Blanket we can identify all the variables that shield off the class variable

from the influence of the remaining network. Therefore Bayesian

networks automatically perform feature selection by identifying the

(in)dependency relationships with the class variable.

Results: We evaluated three methods for integrating clinical and

microarray data: decision integration, partial integration and full

integration and used them to classify publicly available data on breast

cancer patients into a poor and a good prognosis group. The partial

integration method is most promising and has an independent test set

area under the ROC curve of 0.845. After choosing an operating point

the classification performance is better than frequently used indices.

Contact: olivier.gevaert@esat.kuleuven.be

1 INTRODUCTION

In the past decade microarrays have had a great impact on cancer

research. This technology allows to measure the expression of

thousands of genes at once; possibly representing the whole

genome. Usually a microarray consists of a selection of probes

which are applied onto a solid surface and represent a number of

genes (Lockhart et al. (1996); Brown and Botstein (1999)). Reverse

transcribed mRNA extracted from a tumor sample can be hybrid-

ized with the probes on this surface. This results in expression

levels of thousands of genes for every tumor sample that is

hybridized. The resulting data has been used for many applications

such as class discovery and the prediction of diagnosis, prognosis

or treatment response. Several studies have been conducted using

microarray technology studying several types of cancer (Golub

et al. (1999); Bhattacharjee et al. (2001); Singh et al. (2002);

van’t Veer et al. (2002); van de Vijver et al. (2002); Spentzos

et al. (2004, 2005)).

However, microarray data is high dimensional, characterized by

many variables and few observations. Moreover this technique

suffers from a low signal-to-noise ratio. In our opinion, integration

of other sources of information could be important to counter ran-

domly generated differences in expression levels. For example

Shedden et al. (2003) used a pathological framework and showed

that this information significantly lowered the number of genes

required in their model. Nevertheless, the focus in most studies

is on the microarray analysis while the clinical data is not used

in the same manner. Clinical data includes for example: patient

history, laboratory analysis or ultrasound parameters. This data

was the basis of research and fully guided the clinical management

of cancer in the pre-microarray era and is, in our opinion, often

underused when microarray data is available. Here we propose

methods based on Bayesian networks that integrate clinical data

and microarray data. These methods treat both the clinical and the

microarray variables (i.e. the gene expression levels) in the same

manner. For example, Shedden et al. (2003) also did not add clinical

data to the gene expression leves when classifying tumour samples.

Bayesian networks are popular decision support models

(Husmeier et al. (2005)) because they inherently model the

uncertainty in the data. They are a successful marriage between

probability theory and graph theory. They allow to model a mul-

tidimensional probability distribution in a sparse way by searching

independency relations in the data. Furthermore this model allows

different strategies to integrate two data sources. First, it is possible

to combine data sources directly or, secondly, by combining them

at the decision level. Furthermore, because Bayesian networks are

learned from data in two independent steps, we can define a third

method to integrate both data sources. These three methods will be

presented and evaluated using Receiver Operator Characteristic

(ROC) curves on the training set. The method with the highest

average ROC performance will be evaluated on an independent

test set. To the author’s knowledge, the first two methods have

not been previously applied in this context and the third method

has not been previously defined.

We will focus as an example on the prediction of the prognosis in

lymph node negative breast cancer (without apparent tumor cells
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in local lymph nodes at diagnosis). We define the outcome as a

variable that can have two values: poor prognosis or good prognosis.

Poor prognosis corresponds to recurrence within 5 years after dia-

gnosis and good prognosis corresponds to a disease free interval of

at least 5 years (van’t Veer et al. (2002)). If we can distinguish

between these two groups, patients could be treated more optimally

thus eliminating over- or under-treatment.

2 METHODS

2.1 Bayesian networks

2.1.1 Definition A Bayesian network is a probabilistic model that

consists of two parts: a dependency structure and local probability models

(Pearl (1988); Neapolitan (2004)). The dependency structure specifies how

the variables are related to each other by drawing directed edges between the

variables without creating directed cycles. Each variable depends on a

possibly empty set of other variables which are called the parents:

pðx1‚ . . .‚xnÞ ¼
Yn
i¼1

pðxi jPaðxiÞÞ ð1Þ

where Pa(xi) are the parents of xi. Usually the number of parents for each

variable is small therefore a Bayesian network is a sparse way of writing

down a joint probability distribution. The second part of this model, the local

probability models, specifies how the variables depend on their parents. We

used discrete-valued Bayesian networks which means that these local prob-

ability models can be represented with Conditional Probability Tables

(CPTs). Such a table specifies the probability that a variable takes a certain

value given the value of its parents. Figure 1 shows an example of a Bayesian

network with four binary variables. The prognosis variable in this example

has two parents: gene 2 and gene 3. The CPTs for each variable are shown

alongside each node.

2.1.2 Markov Blanket An important concept of Bayesian networks is

the Markov blanket of a variable. The Markov blanket of a variable is the set

of variables that completely shields off this variable from the other variables.

This set consists off the variable’s parents, children and its children’s other

parents. A variable in a Bayesian network is conditionally independent of

the other variables given its Markov Blanket. Conditional independency

means that when the Markov blanket of a certain variable x is known, adding

knowledge of other variables leaves the probability of x unchanged (Korb

and Nicholson (2004)). This is an important concept because the Markov

blanket is the only knowledge that is needed to predict the behaviour of that

variable. For classification purposes we will focus on the Markov Blanket of

the outcome variable. The concept of a Markov blanket is shown in Figure 2.

2.2 Bayesian network learning

Previously we mentioned that a discrete valued Bayesian network consists of

two parts. Consequently, there are two steps to be performed during model

building: structure learning and learning the parameters of the CPTs.

2.2.1 Structure learning First the structure is learned using a search

strategy. Since the number of possible structures increases super-

exponentially with the number of variables, we used the well-known greedy

search algorithm K2 (Cooper and Herskovits (1992)) in combination with

the Bayesian Dirichlet (BD) scoring metric:

pðS jDÞ / pðSÞ
Yn
i¼1

Yqi

j¼1

GðN0 ijÞ
GðN0 ij þ NijÞ

Yri

k¼1

GðN0 ijk þ NijkÞ
GðN0 ijkÞ

" #
‚ ð2Þ

with Nijk the number of cases in the data set D having variable i in state k

associated with the j-th instantiation of its parents in current structure S. n is

the total number of variables. Next, Nij is calculated by summing over all

states of a variable: Nij ¼
Pri

k¼1 Nijk . N0ijk and N0ij have similar meanings but

refer to prior knowledge for the parameters. When no knowledge is available

they are estimated using Nijk ¼ N/ðriqiÞ (Heckerman et al. (1995)) with N

the equivalent sample size, ri the number of states of variable i and qi the

number of instantiations of the parents of variable i. G(.) corresponds to the

gamma distribution. Finally p(S) is the prior probability of the structure.

p(S) is calculated by: pðSÞ ¼
Qn

i¼1

Qpi

li¼1 pðli!xiÞ
Qoi

mi¼1 pðmixiÞ with pi

the number of parents of variable xi and oi all the variables that are not a

parent of xi. Next, p(a! b) is the probability that there is an edge from a to b

while p(ab) is the inverse, i.e. the probability that there is no edge from a to b.

Since we are interested in the prediction of the prognosis, edges with the

outcome variable are given a higher prior probability than other edges.

Using Equation 2 we can now score structures using the K2 search strat-

egy. K2 consists of a greedy search combined with a prior ordering of the

variables. This ordering restricts the search space by only allowing parents if

they precede the current variable in the ordering. Then K2 iteratively tries to

find the best parents for each variable separately by starting with an empty set

of parents and incrementally adding the best parents. When the addition of a

parent does not increase the score, the algorithm stops and moves on to the

next variable in the ordering. Since the ordering of the variables is not known

in advance, the model building process is iterated a number of times with

Gene 1

Gene 2 Gene 3

Prognosis

Gene 1

P(on) 0.8

P(off) 0.2

Gene 2    Gene 1 Gene 1
     on off

P(on)       0.3 0.6

P(off)       0.7 0.4

Gene 2    Gene 1 Gene 1
     on off

P(on)       0.3 0.6

P(off)       0.7 0.4

Prognosis Gene 2 on Gene 2 on Gene 2 off Gene 2 off
Gene 3 on Gene 3 off Gene 2 on Gene 3 off

P(good) 0.6 0.1 0.9 0.5

P(poor) 0.4 0.9 0.1 0.5

Fig. 1. A simple example of a Bayesian network with four binary variables.

The conditional probability tables are shown next to each node where each

column in such a table refers to a specific instantiation of the parents. Gene 1

has no parents therefore the node’s table specifies a priori probabilities.

A

Fig. 2. The Markov blanket of variable A is composed of the variable’s

parents, its children and its children other parents. Here the Markov blanket

variables are shown in a grey circle.
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different permutations of the ordering. Then the network with the highest

score is chosen.

2.2.2 Parameter learning The second step of the model building

process consists of estimating the parameters of the local probability models

corresponding with the dependency structure. In section 2.1.1 we reported

that we are using CPTs to model these local probability models. For each

variable and instantiation of its parents there exists a CPT that consists of a set

of parameters. Each set of parameters was given a uniform Dirichlet prior:

pð�ij j SÞ ¼ Dirð�ij jN0ij1‚ . . . ‚N0ijk‚ . . .‚N
0

ijri
Þ ð3Þ

with �ij a parameter set where i refers to the variable and j to the j-th

instantiation of the parents in the current structure. �ij contains a probability

for every value of the variable xi given the current instantiation of the parents.

Dir corresponds to the Dirichlet distribution with (N0ij1‚ . . .‚N
0

ijri
) as paramet-

ers of this Dirichlet distribution. Parameter learning then consists of updating

these Dirichlet priors with data. This is straightforward because the multi-

nomial distribution that is used to model the data, and the Dirichlet distri-

bution that models the prior, are conjugate distributions. This results in a

Dirichlet posterior over the parameter set:

pð�ij jD‚SÞ ¼ Dirð�ij jN0ij1 þ Nij1‚ . . .‚N0ijk þ Nijk‚ . . .‚N
0

ijri
þ Nijri Þ ð4Þ

with Nijk defined as before. We summarized this posterior by taking the

Maximum A Posteriori (MAP) parameterization of the Dirichlet distribution

and used these values to fill in the corresponding CPTs for every variable.

Using MCMC could improve our current set-up because this technique allows

devising the complete posterior distribution (Neal (1996)).

2.3 Data

We used the data of van’t Veer et al. (2002) which is available at http://www.

rii.com/publications/default.htm or in the Integrated Tumor Transcriptome

Array and Clinical data Analysis database (ITTACA (2006)). This data set

consists of two groups of patients. The first group of patients, which we call

the training set, consists of 78 patients of which 34 patients belonged to the

poor prognosis group and 44 patients belonged to the good prognosis group.

The second group of patients, the test set, consists of 19 patients of which

12 patients belonged to the poor prognosis group and 7 patients belonged

to the good prognosis group. DNA microarray analysis was used to determ-

ine the mRNA expression levels of approximately 25000 genes for each

patient. Every tumour sample was hybridized against a reference pool made

by pooling equal amounts of RNA from each patient. The ratio of the sample

and the reference was used as a measure for the expression of the genes and

they constitute the microarray data set. Each patient also had the following

clinical variables recorded: age, diameter, tumor grade, oestrogen and pro-

gesterone receptor status, the presence of angioinvasion and lymphocytic

infiltration, which together form the clinical data.

2.3.1 Preprocessing The microarray data consists of approximately

25000 expression values per patient, which was already background correc-

ted, normalized and log-transformed. An initial selection was done (similar

to van’t Veer et al. (2002)) by removing the genes that did not meet the

following criteria using only the training data: at least a twofold increase or

decrease and a P-value of less than 0.01 in more than 3 tumors. This resulted

in a subset of approximately 5000 genes. Then we calculated the correlation

between the expression values of these genes with the binary outcome

and selected the genes with a correlation of � 0.3 or ��0.3. This resulted

in 232 genes that where correlated with the outcome. Missing values were

estimated using a 15-weighted nearest neighbours algorithm (Troyanskaya

et al. (2001)). Then these genes were discretized into three categories:

baseline, over-expression or under-expression according to two thresholds.

These thresholds depended on the variance of the gene such that a gene with

high variance receives a higher threshold than a gene with low variance. The

data set that results from these steps was used as input for the Bayesian

network software.

2.3.2 Model building We evaluated the performance of the different

methods for integrating both data sources (see section 2.4) using the training

data. This was done by randomizing the training data set 100 times, in a

stratified way, into a set of 70% of the patients used to build the model

(model building data set) and a set of 30% to estimate the Area Under the

ROC curve (AUC). Then these 100 AUCs were averaged and reported. In

this manner we can evaluate the generalizing performance of a specific

method and compare with other methods.

Next, the method that performed best in the previous step was used to train

100 models with different orderings using the complete training set. The

model with the highest AUC among these 100 models was chosen to predict

the outcome on the test set.

2.4 Integration of data sources

2.4.1 Full integration Bayesian networks allow to combine the two

data sources, the clinical and microarray data, in different ways. The first

method, full integration, is equal to putting both data sources together and

treating them as if it is one dataset. This means that both the clinical variables

(e.g. age, diameter, grade, etc.) and the microarrays variables (mRNA

expressions for each gene) are offered as one data set to the Bayesian

network learning algorithm. In this manner the developed model can contain

any type of relationship between the clinical variables and the microarray

variables.

2.4.2 Decision integration The decision integration method amounts

to learning a separate model for the clinical and the microarray data. Then

the predictions for the outcome are fused. This comes down to combining the

probability of the outcome for the clinical model with the probability of the

outcome for the microarray model using weights. The weight parameter is

trained using only the model building data set (see section 2.3.2) within each

randomization which, in the context of decision integration, is called an outer

randomization. This is done by performing again 100 inner randomizations

of the model building data set within each outer randomization by again

splitting this data set in 70% of the data for training and 30% of the data for

testing. For each inner randomization the weight is increased from 0.0 to

1.0 in steps of 0.1. Then the weight value with the highest average AUC on

the 30% left out data of the 100 inner randomizations is chosen as weight for

the outer randomization.

2.4.3 Partial integration Bayesian networks also allow a third

method, which we will call partial integration. This is due to the fact that

learning Bayesian networks is a two step process. Therefore we can perform

the first step, structure learning, separate for both data sources. This results in

a structure for the clinical data and a structure for the microarray data. Both

structures have only one variable in common, the outcome, since this vari-

able is present in both data sources. The outcome variable allows joining the

separate structures into one structure. Then the second step of learning

Bayesian networks (i.e. parameter learning) starts with the combined clinical

and microarray data. Partial integration is similar to imposing a restriction

during structure learning where no links are allowed between clinical vari-

ables and gene expression variables.

3 RESULTS

Model building was done as described in section 2.3.2 for the three

integration methods (full, partial and decision integration) and for

both data sources (clinical and microarray) separately for compar-

ison. In case of decision integration, we used randomizations to

determine the weights to fuse the decisions as described in 2.4.2.

This resulted in a weight of 0.6 for predicted probabilities of the

clinical model and a weight of 0.4 for predicted probabilities of

the microarray model, slightly favouring the clinical model. After

choosing these optimal weights, we can compare the methods for

integrating the data sources. Table 1 shows the AUCs for the
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developed models. Partial integration and decision integration are

significantly different from the other methods but not significantly

different from each other (Wilcoxon rank sum tests).

Next, both decision integration and partial integration were

chosen as the best methods of integrating the two data sources

and 100 models were built using the training set. Then the best

performing model for each method was chosen and used to predict

the outcome on the test data set. The best partial integration model is

referred to as BPIM (Best Partial Integration Model) and the best

decision integration model as BDIM (Best Decision Integration

Model). Table 2 shows the AUC of these two models on the

test set. We compared our models with the 70 genes prognosis

profile by applying the methods described in van’t Veer et al.
(2002) and using the resulting classifier on the test set. The AUC

is also shown in table 2, the standard deviations were estimated

according to Hanley and McNeil (1983). Both BPIM and the 70

genes model perform in the same manner on the data set while

BDIM is worse. However, there are no significant differences

between the ROC curves of BDIM, BPIM and the 70 genes

model (Hanley and McNeil (1983)).

Next we chose an operating point for BDIM and BPIM by

choosing a threshold that corresponds with a maximum for the

sum of the sensitivity and specificity (Smet et al. (2004)). Then

we compared the classifications of our models with the 70 genes

model and with the following indices: the St. Gallen consensus

(Goldhirsch et al. (1998)), the National Institute of Health (NIH)

index (Eifel et al. (2001)) and following (Edén et al. (2004)) also

with the widely used Nottingham Prognostic Index (NPI) (Blamey

et al. (1979)). For the NPI we used the standard threshold of 3.4

to determine a good or a poor prognosis. Below this threshold the

prognosis is considered good, above this threshold the prognosis is

considered moderate or poor (Todd et al. (1987)). Table 3 shows the

number of patients that is assigned to the poor prognosis group for

the complete test set, the set of true poor prognosis patients

(i.e. sensitivity) and the set of true good prognosis patients (i.e.

1-specificity). We have applied the St Gallen consensus and the

NIH index in the same manner as van’t Veer et al. (2002). The

results show that both the St Gallen consensus and the NIH con-

sensus criteria have a tendency to produce more false positives

than the other models which has been observed before (Boyages

et al. (2002)). In the test set both indices also have some false

negatives which can be due to sample selection and small sample

size. Both BPIM and the 70 genes have similar performance and

are better than the other models since they produce few false

positives and false negatives. Both Tables 2 and 3 show that

BPIM and the 70 genes have similar performance and are better

than BDIM and the frequently used indices. BPIM and 70 genes can

reliably be used to predict the prognosis in lymph node negative

breast cancer.

Figure 3 shows the complete network built with partial integra-

tion. The outcome variable and its Markov Blanket is indicated

with triangle nodes. Figure 4 shows the Markov Blanket in detail

with the gene names where possible. There are three clinical

variables: age, grade and angioinvasion and 13 genes, 12 annotated

and 1 unannotated.

4 DISCUSSION

We have developed Bayesian networks to integrate clinical and

microarray data using the data of van’t Veer et al. (2002) and

investigated if an improvement was made for the prediction of

metastasis in breast cancer. We investigated three methods for

integrating the two data sources with Bayesian networks: full

integration, partial integration and decision integration.

Table 1 showed that only partial integration and decision integ-

ration perform significantly better than each data source separately.

We believe that this is due to the different nature of the data sources.

Clinical data has a low noise level, there are mostly fewer variables

than observations and there are both discrete and continuous-valued

variables. Microarray data on the other hand has a much higher

noise level. There are a lot more variables than observations and all

Table 3. The number of patients assigned a poor prognosis for the complete

test set and for the true poor and good prognosis patients.

Total test

set (n ¼ 19)

Metastasis

within 5 yr

(n ¼ 12)

Disease

free at

5 yr (n ¼ 7)

St Gallen 1998\ 13/19 (68%) 10/12 (83%) 3/7 (43%)

NIH 2000� 15/19 (79%) 10/12 (83%) 5/7 (71%)

NPI¤ 11/19 (58%) 9/12 (75%) 2/7 (29%)

70 genes† 14/19 (74%) 12/12 (100%) 2/7 (29%)

BPIM† 13/19 (68%) 11/12 (92%) 2/7 (29%)

BDIM† 11/19 (58%) 9/12 (75%) 2/7 (29%)

\Either one of the following criteria equals poor prognosis: ER negative, tumour diameter

�2 cm, grade 3 or age <35
�Poor prognosis if tumour diameter >1 cm.
¤NPI is the sum of 0.2 times the tumour diameter in cms, lymph node stage and the tumour

grade.
†The operating point is determined by maximizing the sum of the sensitivity and spe-

cificity on the training set.

Table 1. Average AUC performance and standard deviation of the three

methods for integrating clinical and microarray data and each data source

separately with 100 randomizations. The first two methods, clinical and

microarray, are for comparison. The next three methods (decision, partial

and full) refer to the methods for integrating the clinical and microarray data.

Method average AUC Std

Clinical data 0.751 0.086

Microarray data 0.750 0.073

Decision integration 0.790 0.072

Partial integration 0.793 0.068

Full integration 0.747 0.099

Table 2. The AUC of the Bayesian network models (BPIM and BDIM) and

of the reconstructed model based on van’t Veer et al. 2002 based on 70 genes.

AUC std

70 genes 0.851 0.132

BPIM 0.845 0.132

BDIM 0.810 0.118
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the variables are continuous. Therefore, it could be advisory to treat

them separately in some way. Partial integration uses separate struc-

ture learning while decision integration builds separate models but

fuses the outcome probabilities. Full integration does not make a

distinction between these two heterogeneous data sources which

causes that the clinical variables are submerged by the microarray

variables and mostly have few connections. This leads to a model

where the Markov Blanket only consists of microarray variables and

explains the similar performance between full integration and using

only the microarray data.

Next, Table 2 showed that BPIM generalizes best to unseen data

compared to BDIM. The difference between these two models is

that BPIM is integrated at the parameter level and BDIM at the

decision level. The former combines clinical and microarray

variables in a more sophisticated way because combined parameter

learning results in different parameters for every instantiation of the

clinical variables. The latter method combines the outcome prob-

abilities using a weighting scheme and relies on the weights for

each model. Furthermore BPIM outperforms the prognostic indices

and has comparable performance with the 70 genes prognosis pro-

file (van’t Veer et al. (2002)) despite having fewer genes. This

suggests that using clinical data decreases the number of genes

required to reliably predict the prognosis. Moreover the low number

of genes in BPIM could allow the design of a cheaper test for breast

cancer prognosis while still benefiting from data at the molecular

level.

Next, we also looked more closely at the BPIM model to invest-

igate the performance of the model when the links of the outcome

variable with either the clinical variables or the microarray variables

in the Markov blanket are removed. This resulted in worse per-

formance of the model. When the links between the outcome and

the clinical variables are removed the AUC performance drops to

0.804 (std 0.130). Similarly when the links between the outcome

and the genes are removed the AUC performance drops to
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Fig. 3. The complete Bayesian network for the best model using partial integration of clinical and microarray data. The Markov blanket of the outcome variable is

indicated with triangle white nodes.
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GRADE
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NIPA1

PDIA4

Fig. 4. Markov blanket of the outcome variable for the BPIM model.

Gene names have been used where possible.
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0.798 (std 0.128). This is strong evidence that the combination

between the clinical and the microarray variables boosts the per-

formance. Also the formation of a prognostic index from a com-

bination of clinical variables and a small number of genes seems

possible.

Furthermore we searched the literature for relations of the vari-

ables in the Markov blanket of BPIM (see Figure 4) with breast

cancer prognosis and metastasis. The presence of the clinical

variables can be explained because they are used as conventional

prognostic markers and in prognostic indices. Age in particular

because patients with breast cancer at young age have been correl-

ated with poor prognosis (Goldhirsch et al. (1998)) while grade is

part of the NPI (Blamey et al. (1979)). Moreover, recently a large

study has shown that lymphovascular invasion, which is related to

angioinvasion, is an independent prognostic factor in node-negative

breast cancer and improves the NPI (Lee et al. (2006)). Furthermore

there are 13 genes, 12 annotated and 1 unannotated. Among the

annotated genes, MMP9, HRASLS and RAB27B have strong asso-

ciations with cancer (Owen et al. (2004); Kaneda et al. (2004)).

MMP9 is associated with tumor invasion and angiogenesis since

matrix metalloproteases are an important family of proteases that

degrade a path through the extra-cellular matrix and the stroma.

This process allows tumor cells to invade the surrounding tissue

(Pecorino et al (2005)). HRASLS is associated with the RAS path-

way (Malaney and Daly (2001)) and is thought to function as a

tumor suppressor. Furthermore RAB27B is a member of the RAS

oncogene family.

On the other hand BDIM also showed interesting characteristics.

This decision integration model used a weight of 0.6 for the

clinical model and a weight of 0.4 for the microarray model.

This emphasizes the importance of the clinical data for classification

compared to the microarray data. In addition, the clinical data

generalizes better to new data since the test set performance is

similar to the training set performance (average training set AUC

of 100 clinical data models is 0.838) while the microarray data

allows bitter fitting but with the danger of overfitting (average

training set AUC of 100 microarray data models is 0.981) (also

see Table 1). Therefore combining both data sources can lead to

models benefiting from the complementary advantages of each data

source separately. The results of BDIM and BPIM show that this is

possible.

The advantages of the probabilistic approach are that the current

models can be extended with prior information. This can be done

both at the structure level and the parameter level. This will influ-

ence the variables that show up in the Markov blanket and results

in a feature selection method based on data and prior biological

knowledge with automatic tuning of the balance between data and

prior knowledge. Possible sources of prior information are literature

abstracts (Glenisson et al. (2004)), known pathways (e.g. KEGG or

BIOCARTA) or motif information (Thijs et al. (2002)). Moreover

publicly available microarray data sets studying the same clinical

problem can be combined via the prior.

Furthermore, since Bayesian networks are not tuned for

classification—they provide a more general framework by model-

ing a multi-dimensional probability distribution—the reported per-

formance could be improved by using more traditional classifiers.

Our ongoing research includes investigating the use of Bayesian

networks as feature selector followed by Least Squares Support-

Vector Machines for classification (Pochet et al. (2004)).

In conclusion, the integrated use of clinical and microarray data

outperforms the indices based on clinical data (NIH, St. Gallen and

NPI) and has comparable performance with the 70 genes prognosis

profile. Therefore this approach offers possibilities for the use of

Bayesian networks to integrate data sources for other types of

cancer and data. Furthermore BPIM has comparable performance

as the 70 genes prognosis profile (van’t Veer et al. (2002)) but

allows interpretation and contains fewer genes. When more public

data becomes available the described approach and BPIM in par-

ticular can be validated.
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ABSTRACT

Motivation:Predictionmethods are of great importance formembrane

proteinsasexperimental information isharder toobtain than forglobular

proteins.Asmoremembraneproteinstructuresare solved it is clear that

topology information only provides a simplified picture of a membrane

protein.

Here, we describe a novel challenge for the prediction of a-helical

membrane proteins: to predict the distance between a residue and the

center of the membrane, a measure we define as the Z–coordinate.

Even though the traditionalwayof depictingmembraneprotein topol-

ogy is useful, it is advantageous to have a measure that is based on a

more “physical” property such as the Z–coordinate, since it implicitly

contains information about re-entrant helices, interfacial helices, the tilt

of a transmembrane helix and loop lengths.

Results:We show that the Z–coordinate can be predicted using either

artificial neural networks, hidden Markov models or combinations of

both. The best method, ZPRED, uses the output from a hidden

Markov model together with a neural network. The average error of

ZPRED is 2.55Å and 68.6% of the residues are predicted within 3Å

of the target Z–coordinate in the 5–25Å region. ZPRED is also able

to predict the maximum protrusion of a loop to within 3Å for 78% of

the loops in the dataset.

Availability: Supplementary information and training data is available

at http://www.sbc.su.se/~erikgr/

Contact: arne@bioinfo.se

1 INTRODUCTION

Integral a-helical membrane proteins constitute an important subset

of the proteins encoded by a genome, comprising 20–25% of the

proteome (Krogh et al., 2001; Granseth et al., 2005a). These pro-

teins are crucial for many cellular processes including signaling and

transport processes. They are also the target for the majority of all

drugs, making them important for the pharmacological industry

(Chen and Rost, 2002). For several experimental reasons it is

more difficult to obtain the structures of transmembrane proteins

than those of globular proteins and a consequence of this is that less

than 1% of the 3D-structures in the Protein Data Bank are from

transmembrane proteins (Berman et al., 2000). Nevertheless it has

recently been noted that the number of experimentally known

3D-structures has an exponential increase (White, 2004). Still,

for many membrane proteins only “low-resolution” topology

information about the structure is known, i.e. what parts of the

sequence are transmembrane regions and the orientation of the

protein relative to the membrane.

Partly due to the lack of three-dimensional information of mem-

brane proteins many topology predictors have been developed for

a-helical transmembrane (TM) proteins. The first only relied on the

fact that TM helices are on average more hydrophobic than the loop

regions and globular proteins and classified each segment that was

sufficiently long and hydrophobic as a TM helix (von Heijne, 1992).

Although these simple methods worked surprisingly well, many

regions were wrongly classified. A significant improvement was

obtained when hidden Markov models (HMMTOP (Tusnády and

Simon, 1998), TMHMM (Sonnhammer et al., 1998)) were used to

extract the features of different regions in TM proteins. Several

recent benchmarks have shown that the state of the art methods

perform quite well (Chen et al., 2002; Käll and Sonnhammer, 2002),

predicting the correct topology for close to 70% of the membrane

proteins.

For a long time the general view was that membrane proteins in

principle existed in a two–dimensional space, with the TM helices

perpendicularly penetrating the membrane (Taylor et al., 1994).

However, recent analysis of membrane protein structures shows

that membrane proteins certainly not can be seen as constrained

in two dimensions (Granseth et al., 2005b). Instead it is clear that

many membrane proteins have a similar amount of structural com-

plexity as globular proteins. This can be illustrated by the structure

of the glutamate transporter homolog from Pyrococcus horikoshii
(Yernool et al., 2004), Figure 1a. The structure does not only have

ordinary TM helices but also two helices that are not helical

throughout the entire membrane, one of them contains a helix inside

the lipid bilayer that is parallel to the membrane plane. This can also

be seen in the corresponding Z–coordinate (the distance to the center

of the membrane for each residue) located around residue number

140 in Figure 1b. The structure also contains two re-entrant helices,

where a helix only goes half-way through the membrane, and then

turns back again to the same side it originated from. These two re-

entrant helices meet each other in the middle of the membrane, a

feature that also can be observed in aquaporin-like structures

(Tornroth-Horsefield et al., 2006).

Here, we introduce a novel challenge for structure prediction of

membrane proteins: the prediction of the Z–coordinate, i.e. the

distance for a residue to the center of the membrane. Even though

the traditional way of depicting membrane protein topology is use-

ful, it is advantageous to also have a measure that is based on a more

“physical” property such as the Z–coordinate. The problem should
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not only be seen as an intermediate approach towards complete

3D-structure prediction, but also be of potential interest for the

identification of interesting structural features important for drug-

binding and/or function of membrane proteins. One such example is

locating good N-glycosylation sites for experimental topology

determination since efficient N-glycosylation requires that the

acceptor site is sufficiently spaced from the membrane surface

(Popov et al., 1997).

We have developed a number of methods based on earlier

topology predictors to predict the Z–coordinate. We show that

methods using either hidden Markov models (HMM) or artificial

neural networks (ANN) are able to predict the Z–coordinate in

the 5–25Å region with an average error of �3Å while methods

that combine both HMMs and ANNs can decrease the average

error to 2.55Å. As expected, the use of evolutionary information

also provides improvement of the predictions. We show that these

predictors can provide valuable additional information comple-

mentary to the predictions from traditional topology modeling

methods.

2 RESULTS AND DISCUSSION

Topology prediction of membrane proteins has been a valuable tool

for classification of membrane proteins, for genomic studies and as

an aid for remote homology detection (Hedman et al., 2002). How-

ever, given the observation that membrane protein structures are

complex, the structural information obtained from topology predic-

tions might be limited. In contrast, the Z–coordinates of the amino

acids in the structure implicitly contain information about re-entrant

helices, interfacial helices, the tilt of a TM helix and how much a

loop protrudes from the membrane.

A significant difference between our Z–coordinate predictor and a

topology predictor is that the former only predicts the distance from

the center of the membrane and not the direction of this distance, i.e.

we do not distinguish between the cytosolic (“inside”) and extra-

cellular (“outside”) sides of the membrane. This somehow simpli-

fies the problem but is possible since the membrane to a large degree

is symmetric. A further simplification used in this study is that all

residues that are between 0–5Å are defined to be in a central

hydrophobic region and hence set to 5Å. All residues that are out-

side the lipid bilayer, >25Å are in a similar manner defined to be in a

non-membrane environment and set to 25Å. This means that the

predictor focuses the predictions on the region where the environ-

ment inside the membrane changes most (White and Wimley,

1999). Using a larger region for the prediction (0–30Å instead of

5–25Å) decreased the overall prediction accuracy as well as the

accuracy in the 5–25Å region. We also made attempts at using a

non-symmetric definition of the membrane, i.e. predicting the �25

to +25Å region, but the prediction accuracy that was obtained for

this problem was very low.

Below, we will first describe a set of predictors based on ANNs

and/or HMMs that all predict the Z–coordinate and thereafter we

exemplify the usefulness with the prediction of the glutamate recep-

tor homolog shown in Figure 1.

Prediction accuracy

To be able to assess the quality of the predictions three measures of

accuracy are introduced, the average error, the fraction of residues

with an error smaller than 3Å and ZQ2, i.e. the fraction of residues

correctly predicted to be inside (�15Å) or outside (�15Å) the

membrane. The ZQ2 resembles Q2 which is often used for bench-

marking topology prediction methods. Although these three mea-

sures are strongly correlated they provide slightly different types of

information as can be seen below.

Prediction of the Z–coordinates using HMM-based methods The

standard TMHMM-2.0 model (Krogh et al., 2001) predicts the

Z–coordinate with an average error of 3.17Å, Table 1. Interestingly,

the average error did not decrease if evolutionary profiles were used

as in PRO-TMHMM, however the amount of residues within 3Å

from the target Z–coordinate increased slightly. This contradiction

is because TMHMM-2.0 frequently uses separate state compart-

Fig. 1. (a) The glutamate transporter homolog (1XFH) contains reentrant

regions and non-ideal transmembrane helices. Non-ideal TM helices light-

blue and green, reentrant regions red and dark-blue. The end of the hydro-

carbon region of the lipid bilayer at ±15Å is depicted as blue mesh. (b) The

upper part of the image shows the topology of the membrane protein structure.

BlackSquares are TM helices, black lines below the midpoint are inside loops,

and outside loops if above the midpoint. The lower part shows the absolute

value of the Z–coordinate. The coloring is the same as in Figure 1a.
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ments for short and long globular loops, while PRO-TMHMM uses

the same. This leads to a decrease in the Z–coordinate accuracy in

the loop regions for PRO-TMHMM since it is less specific. Since

PRO-TMHMM is superior to TMHMM-2.0 at topology predictions

(Viklund and Elofsson, 2004), it has more residues predicted

within 3Å.

The HMM based method with best Z–coordinate accuracy is

PRODIV-TMHMM with an average error of 2.83Å. It predicts

65.9% of the residues within 3Å from their target Z–coordinate

and has a ZQ2 value of 86.5%. PRODIV-TMHMM differs from

PRO-TMHMM by using the target profile to re-estimate the model

parameters. This procedure provides a topology prediction which

maximizes the divergence of the amino acid distributions in the

different regions, something that has been shown to significantly

improve the accuracy of topology predictions (Tusnády and Simon,

2001). The improved topology predictions result in improved

Z–coordinate predictions.

It can be noted that the hidden Markov models have particular

problems at predicting the 5–15 Å region, Figure 2. This is largely

due to the model architecture of the membrane spanning regions,

which contains an intrinsic contradiction between the length vari-

ability of the membrane regions and accurate modeling of their

Z–coordinates. We believe that it should be possible to improve

the Z–coordinate predictions by using a more sophisticated HMM

architecture.

Prediction of the Z–coordinate using artifical neural network
based methods A simple neural network trained on the sequence

using sparse encoding of a sequence window as input (ZPRED-

SEQ) does not outperform any of the HMM based methods, Table 1.

However, it performs better than the simplest method assigning the

Z–coordinate based on the average hydrophobicity alone. The out-

put from the sequence network is very noisy, and it often mispre-

dicts parts of 25Å regions to be below 20Å. This means that the

network cannot discriminate between short hydrophobic regions in

cytoplasmic or periplasmic domains and longer hydrophobic trans-

membrane regions. It is not until ZPRED-SEQ’s window size is

larger than 9 residues that it outperforms the hydrophobicity (data

not shown). It is interesting to see that it is possible to predict the

Z–coordinate, albeit with quite poor accuracy, by the sequence

alone. This implies that it is the local environment surrounding a

residue that, to a large extent, determines its depth inside the

membrane.

The use of evolutionary profiles (ZPRED-PRO) improves the

performance, the average error decreases �0.5Å, the residues

within 3Å increase by 15.5% and the ZQ2 value improves slightly

compared to ZPRED-SEQ. This improvement is quite dramatic and

a notable difference is that when using the evolutionary profiles the

network predicts a significant number of residues to be at 5 or 25Å

which ZPRED-SEQ rarely does.

In contrast to the HMMs, the error of the ANNs is largest

around 15Å and at the two extreme points, Figure 2. The large

central error is quite likely due to that it is “easier” to make a

mistake in this region since you can both predict a too high and

a too low number while at the end you can only make the mistakes in

one direction. The increase in the errors at 5 and 25Å are most likely

due to that the ANN has not converged completely and should be

possible to overcome using more data and improved methods in the

future.

Combinations of neural networks and hidden Markov
models There are two different possibilities to combine the meth-

ods: either by using previously trained neural networks as additional

input into the hidden Markov model or by using the output from a

hidden Markov model as input to a neural network.

It is not obvious how to include the predicted Z–coordinate

directly into the HMMs. Therefore a special version of neural net-

works (ZPRED-D) was trained to predict discrete regions of the

Z–coordinates. These predictions were then used as an additional

alphabet in the HMMs, see methods for details. The inclusion of

neural network predictions into the HMMs only lead to significant

improvements for TMHMM-2.0 and PRO-TMHMM but not

for PRODIV-TMHMM, Table 1. There exist two explanations

for this: first, it is harder to improve PRODIV-TMHMM since

its original topology prediction performance is better, and second,

the parameter re-estimation step of PRODIV-TMHMM restricts the

possibility to make small adjustments in the prediction since each

state is more optimized to emit a specific amino acid distribution

corresponding to a particular sequence position. Interestingly, if

the results from the discrete network predictions are included

in TMHMM-2.0, the accuracy in the 5–17Å region increases,

while it at the same time decreases in the 17–25Å region (data

not shown).

The inclusion of the HMM information into the neural networks

is straightforward as the output from the HMM can be used as an

additional input. Using the output from PRODIV-TMHMM and

evolutionary profiles as input to a neural network (ZPRED) pro-

duced the method of choice for predicting the Z–coordinate, see

Table 1. The average error was 2.55Å, around one half turn of a

transmembrane helix, and more than two-thirds of the residues were

predicted to be within 3Å from the target Z–coordinate. The accu-

racy in the 5–25Å region clearly increased, particularly around

10–20Å, see Figure 2. The accuracy is also improved in the

5–6Å region due to the fact that the neural network without

HMM input (ZPRED-PRO) sometimes has problems reaching

5Å, the predictions are often around 5.5–6Å instead. The same

tendency could also be seen at the >25Å region. ZPRED also

has a more flat distribution of the average error across the

5–25Å region than the other methods.

The glutamate transporter homolog

from Pyrococcus horikoshii

To illustrate the prediction of the Z–coordinate for a complex mem-

brane protein, we studied the prediction of the glutamate transporter

homolog in more detail.

Figure 3a shows all residues that are predicted to be �15Å by

ZPRED. It can be noted that most helices are identified correctly,

but that some regions (at the left in this figure) are misplaced. When

using a standard TMHMM prediction, slightly larger areas were

missed (data not shown).

As described previously, the glutamate transporter homolog con-

tains two re-entrant regions. The predicted Z–coordinate shown in

Figure 3b contains some indication that there is something peculiar

happening close to the first re-entrant helix (residue 270). However,

the predicted Z–coordinate is located around 10Å instead of 5Å. The

second reentrant helix (at residue 350) has a Z–coordinate similar to

an ordinary TM helix, i.e. it is not identified. This is most likely

because it is more hydrophobic than the first one.

Z–coordinate prediction of membrane proteins
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The fourth TM helix (at residue 140) is the odd one containing the

parallel helix in the middle of the membrane. The Z–coordinate of

this parallel helix is erroneously predicted to be around 15Å, when it

should be between 5 and 7Å, but at least it could be possible to

identify it. The complexity of this region is completely missed by

the PRODIV-TMHMM prediction, which assigns the most

hydrophobic region to be the TM helix. In fact, the beginning of

the TM helix and the parallel middle helix have similar hydropho-

bicity as an ordinary loop.

Possibly the most important observation from the Z–coordinate

prediction of the glutamate transporter homolog and from most

other proteins is that the Z–coordinates of loop regions can be

predicted quite accurately. ZPRED is able to predict the maximum

protrusion of a loop to within 1Å for 50% of the loops in the dataset,

and within 3Å for 78%. The loops surrounding the re-entrant

regions are less accurately predicted.

Topology prediction

Finally, we wanted to estimate if the Z–coordinate predictions could

be used to improve topology predictions. A simple method to obtain

a topology prediction is by assuming all regions that are below a

specific Z–coordinate to belong to TM helices and choosing inside/

outside loop with the positive inside rule (see methods for details).

A previously used dataset of 147 experimentally verified membrane

protein topologies was used here (Viklund and Elofsson, 2004).

Using this strategy ZPRED-SEQ correctly predicts the topology

of 40 proteins and ZPRED-PRO 65 proteins, with the latter slightly

better than TMHMM-2.0 (61). By including the prediction from

PRODIV-TMHMM into ZPRED the topology is correctly predicted

95 times which is 2 fewer than the initial PRODIV-TMHMM

predictions. When output from discrete network ZPRED-D was

used in the PRO-TMHMM model, a modest improvement was

observed (95 vs. 90) while no improvement was observed for

PRODIV-TMHMM.

3 CONCLUSIONS

In this study we have shown that the distance to the center of the

membrane can be predicted with acceptable accuracy for residues in

a-helical membrane proteins. The prediction can be performed

using either an artificial neural network or a hidden Markov

model with roughly the same error rate. It was clear that the

local environment around a residue to a large degree determines

its depth inside the membrane as it was possible to predict the

Z–coordinate using only hydrophobicity or local sequence informa-

tion.

The best predictions were obtained using the output from a hidden

Markov model as an additional input to an artificial neural network

together with profile information from a sequence window. This

method, ZPRED, reached an average error of 2.55Å. ZPRED also

has a quite evenly distributed average error in the 5–25Å region in

contrast to the other methods examined.

While introducing the field of Z–coordinate prediction it is also

our hope that it will provide an interesting challenge for other

developers and that more refined methods will become available

as the amount of solved 3D–structures increases. We foresee several

possible improvements in the future, for instance, it is clear that the

model architecture of TMHMM is not ideal for the predictions of

Z–coordinates. Hence, we expect that it is possible to improve

HMM-based predictions by refining the model to better suit

Z–coordinate prediction.

4 MATERIAL AND METHODS

Dataset

The dataset consisted of 101 non-homologous protein chains from 46 PDB

structures obtained by X-ray diffraction (see supplementary information for

full list). The biological unit PDB structures were rotated and translated as

described in Tusnády et al., 2005 so that they are positioned in their most

Table 1. Performance of predicting the Z–coordinate with different methods.

Method Average Residues ZQ2

error within 3Å (%)

(Å) (%)

Hydrophobicity 4.26 39.0 78.9

HMM based methods

TMHMM-2.0 3.17 61.5 84.0

PRO-TMHMM 3.25 62.4 84.0

PRODIV-TMHMM 2.83 65.9 86.5

ANN based methods

ZPRED-SEQ 3.53 54.1 83.4

ZPRED-PRO 3.01 62.5 86.6

Combined methods

TMHMM-2.0+ZPRED-D 2.85 64.6 85.1

PRO-TMHMM+ZPRED-D 2.98 64.8 85.7

PRODIV-TMHMM+ZPRED-D 2.78 66.6 86.8

ZPRED 2.55 68.6 87.9

The average error is how far on average each residue deviates from its target

Z–coordinate. Residues within 3s is the fraction of residues with an error smaller

than 3s. The ZQ2 score is the fraction of the residues that are correctly predicted to

be within 15s from the center, i.e. inside the membrane, plus the fraction correctly

predicted to be outside the membrane.

Fig. 2. Average error in the 5–25Å region for different Z–coordinate predic-

tion methods.
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probable localization in the lipid bilayer. The Z–coordinate is then perpen-

dicular to the membrane plane and Z¼ 0 is in the middle of the membrane.

Some of the structures were translated a few Å along the Z–coordinate to

better fit their hydrophobicity profiles. In all, 21,589 residues and their

corresponding Z–coordinates were used for training and testings and hidden

Markov models.

In order to maximize the amount of data, we used the absolute value of the

Z–coordinate from the structure and limited it so that all residues above 25

were set to 25Å and all residues between 0 and 5 were set to 5Å. This target

value was used for the training and testing of the neural networks and used to

benchmark the different hidden Markov models. We also tested a larger

region, 0–30Å, but this seriously decreased the learning capabilities of the

neural networks. When trying to predict from �25 to +25Å instead, the

average error was 13Å and only 20% of the residues were predicted within

3Å of the target Z–coordinate.

147 membrane protein sequences with experimentally verified topologies

were used for evaluating the topology prediction (Viklund and Elofsson,

2004).

Hydrophobicity

The hydrophobicity was calculated using the GES scale from Engelman

et al., 1986 and a running average over 19 residues. The hydrophobicity

was extrapolated to the Z–coordinate by linear regression. If the extrapolated

hydrophobicity was above 25 it was set to 25Å, and if below 5, set to 5Å.

Neural network training

For the sequence-only neural network (ZPRED-SEQ), the amino acids were

converted to numerical values by sparse encoding. PSI-BLAST was used to

generate profiles for the profile networks (ZPRED-PRO and ZPRED)

(Altschul et al., 1997). The log-odds profile from the first iteration was

used and converted to values between 0 and 1 by the logistic function

1/(1+ e�x).

The neural networks were 5-fold cross validated, where 4 sets were used

for training and the fifth used for testing. All values reported are from the test

set data. Netlab (Bishop, 1995) was used for constructing one hidden layer,

feed-forward, back propagation networks with linear output nodes and

scaled conjugate optimization as optimization algorithm.

The input for the neural networks was a symmetrical sliding window

between 3 and 35 residues wide and the target Z–coordinate was for the

residue in the middle of the window. Starting with 5 hidden nodes, the

average error between the predicted Z–coordinate and the target

Z–coordinate stopped decreasing after a window size of 19 residues. Increas-

ing the number of hidden nodes did not increase performance, while a

decrease to 4 nodes did not alter the accuracy at all, but has the advantage

of decreasing the number of free variables to optimize. 3 nodes seriously

decreased the performance, so the final networks used 19 residue sliding

windows and 4 hidden nodes.

The learning rate was varied, but for the final networks a learning rate of

0.01 was used. The learning was stopped when the average error ceased to

decrease for the test set data.

For the topology prediction of the 147 membrane proteins, the arithmetic

average was used from the outputs of the final 5 cross validated networks.

6 different neural networks (ZPRED-D) were trained to mimic the time-

averaged distributions of the principal (quasi-molecular) structural groups of

a dioleoylphosphocholine (DOPC) bilayer (White and Wimley, 1999). The

different regions are: CH3 (0–5Å), hydrocarbon core (0–15Å), C¼C (5–15Å),

carbonyl (12–18Å), cholin (17–25Å) and water of hydration (20–25Å). These

particular intervals were chosen because they might have specific amino acid

composition signatures. A 19 residue sliding window was used to train each

of the 6 different networks with logistic output nodes and one node in the

hidden layer. The target value was set to 1 in the specific regions and

0 elsewhere. The 6 different networks were 5-fold cross validated and

the Mathews Correlation Coefficient (MCC) was used to measure the

performance. The final 0–5Å network had MCC 0.53, 0–15Å 0.68,

5–15Å 0.43, 12–18Å 0.15, 17–25Å 0.66 and 20–25Å 0.65. The outputs

from these networks were later used as input to the hidden Markov models.

HMM training

The HMM-based topology predictors TMHMM2.0 (Krogh et al., 2001),

PRO-TMHMM and PRODIV-TMHMM (Viklund and Elofsson, 2004)

were adjusted to emit Z–coordinates using the following procedure.

A sequence profile was constructed for each sequence by running BLAST

(Altschul et al., 1990) with an e-value cutoff of 10�5. The most probable

state path for each sequence was attained using the geometric mean (GM)

extension to the Viterbi algorithm. During this stage the sequences were

provided with labels (M, i, o) to ensure the most probable path to be con-

sistent with the correct topology. The labels were loosened by 10 states

around each region border to allow the model some freedom in adjusting

the position of the membrane regions. Each state was then assigned a

Fig. 3. Z–coordinate prediction of the glutamate transporter homolog from

Pyrococcus horikoshi. (a) Residues predicted by ZPRED to be within 15Å

from the center of the membrane are colored red, the rest are colored green.

The blue mesh is located at ±15Å. (b) Correct and predicted topologies (top),

where inside loops are colored blue, outside magenta, TM helices red and

re-entrant regions green. The Z–coordinates are shown below with the target

Z–coordinate colored green and the ZPRED prediction red.
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Z–coordinate by calculating the mean value of the Z–coordinates for the

residues in the dataset that were emitted in that state.

When predicting Z–coordinates for a sequence, the most probable state

path for that sequence is calculated using the Viterbi algorithm together with

unlabeled sequences and translated into Z–coordinates using the estimated

values for each state.

When evaluating the prediction performance, a strict jackknifing proce-

dure was used, i.e. the state Z–coordinates used when evaluating the per-

formance of a particular sequence were estimated using all sequences except

the one being tested.

The six class predictions made from the ZPRED-D neural networks were

encoded as a second discrete alphabet and added to the HMMs. Topology

predictions are performed using the neural network outputs as a profile input

vector to the HMM alongside the regular amino acid profile vector. The state

emission score is calculated as the joint score of the amino acid profile and

the Z–coordinate class profile:YA
i¼1

eðaiÞXðaiÞ�
YZ
j¼1

eðzjÞXðzjÞ,

where the first product is the GM state score for the amino acid vector (e(ai)

is the emission probability value and X(ai) is the corresponding profile vector

value) and the second product is the GM state score for the Z–coordinate

class vector (e(zj) is the emission probability value and X(zi) is the profile

vector value). The state emission parameters for the Z–coordinate classes

were optimized using simulated annealing.

Topology assignment from the Z–coordinate

All residues predicted below 10Å were annotated as membrane helix. A

membrane region of 10Å implies that a transmembrane helix is �13 resi-

dues, which is substantially smaller than the 20 residues needed to traverse a

30Å thick membrane bilayer. However, having a cutoff at 15Å would miss

many short loops. A filter that splitted helix regions longer than 25 residues

in half and removing helix regions shorter than 4 residues was also applied.

The inside and outside annotation of the loop was done by calculating the

number of positive charges (Arginine and Lysine) 10 residues from the helix

start or end and 5 residues into the helix, i.e. the “positive inside” rule (von

Heijne, 1986, 1994). The positive charges were summed for every other

loop, with the largest sum set as “inside” and the opposite side as “outside”.

Predictions were evaluated on the sequence level where a topology is

considered correctly predicted if all membrane regions are detected with a

minimum overlap of 5 residues compared to the correct topologies and the

orientation of the loop regions is correct.
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ABSTRACT

Summary: Recently, genome-wide surveys for non-coding RNAs

haveprovidedevidence for tensof thousandsofpreviously undescribed

evolutionary conserved RNAs with distinctive secondary structures.

The annotation of these putative ncRNAs, however, remains a difficult

problem. Here we describe an SVM-based approach that, in conjunc-

tion with a non-stringent filter for consensus secondary structures, is

capable of efficiently recognizing microRNA precursors in multiple

sequence alignments. The software was applied to recent genome-

wide RNAz surveys of mammals, urochordates, and nematodes.

Availability: The program RNAmicro is available as source code and

can be downloaded from http://www.bioinf.uni-leipzig/Software/

RNAmicro

Contact:JanaHertel, Tel:++493419716704,Fax:++493419716709,
{jana,studla}@bioinf.uni-leipzig.de

1 INTRODUCTION

MicroRNAs (miRNAs) form an abundant class of non-coding

RNA genes that have an important function in post-transcriptional

gene regulation and in particular modulate the expression of

developmentally important genes in both multi-cellular animals

and plants. In both kingdoms they act as negative regulators of

translation. They are transcribed as longer primary transcripts

from which approximately 70 nt precursors (pre-miRNAs) with a

characteristic stem-loop structure are extracted; after export to the

cytoplasm, the mature miRNAs, approximately 22 nt in length, are

cut out from one side of the precursor stem structure. For reviews on

the discovery and function of miRNAs we refer to the literature, see

e.g. (Ambros, 2004; Kidner & Martienssen, 2005). At present,

several hundred distinct miRNA families are known in metazoan

animals (Griffiths-Jones et al., 2005; Hertel et al., 2006), and a few

dozens have been described in plants (Griffiths-Jones et al., 2005;

Zhang et al., 2005; Axtell & Bartel, 2005). In contrast to other major

RNA classes, in particular tRNAs, there is no recognizable homo-

logy between different families, so that it is unclear whether they

arose independently in evolution or whether they derive from a

single ancestral microRNA gene.

There are two basic strategies to detecting novel miRNAs. The

simpler one uses sequence homology to experimentally known

miRNAs as well as the characteristic hairpin structure of the pre-

miRNA (Weber, 2005; Legendre et al., 2005; Hertel et al., 2006;

Dezulian et al., 2006). A specialized machine learning approach that

is specifically designed to search for distant homologs of human

miRNA families is described in (Nam et al., 2005). Clearly, this

approach is not capable of finding miRNAs for which no family

member is already known.

Several approaches have focused on detecting novel miRNAs

based on the secondary structure of their precursor, sequence

conservation in related organisms, and the sequence conservation

patterns of the 30 and 50 arms precursor hairpin. The programs

miRscan
1 (Lim et al., 2003b), miRseeker (Lai et al., 2003),

and miralign
2 (Wang et al., 2005) have lead to the discovery of a

large number of novel microRNAs in nematodes (Lim et al.,
2003b), insects (Lai et al., 2003;Wang et al., 2005) and vertebrates

(Lim et al., 2003a). Grad et al., (2003) developed a computational

method for predicting miRNAs in the C. elegans genome using both

sequence and structure homology with known miRNAs. A similar

procedure was employed in the plant-specific harvester

approach (Dezulian et al., 2006). Berezikov et al. (2005) use phy-

logenetic shadowing to find regions that are under stabilizing selec-

tion and exhibit the characteristic variations in sequence

conservation between stems, loop, and mature miRNA. In this

case, secondary structure is used in a later filtering step. Genomic

context also can give additional information: Mirscan-II, for

example, takes conservation of surrounding genes into account

(Ohler et al., 2004). Altuvia et al., (2005) utilize the propensity

of miRNAs to appear in genomic clusters (often in the form of

polycistronic transcripts) as an additional selection criterion.

MicroRNA detection without the aid of comparative sequence

analysis is a very hard task but unavoidable when species-specific

miRNAs are of prime interest. The miR-abela
3 approach first

searches for hairpins that are robust against changes in the folding

windows (and also thermodynamically stabilized) and then uses a

support vector machine (SVM) to identify microRNAs among these

candidates (Sewer et al., 2005). A related technique is described by

Xue et al. (2005). The program PalGrade scores hairpins in a

somewhat similar way (Bentwich et al., 2005). A quite different

�To whom correspondence should be addressed.
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approach starts with the analysis of overrepresented patterns in

phylogenetic footprints located in the 30UTRs of mRNAs. These

motifs constitute putative microRNA target sites and are used to

guide the search for corresponding pre-miRNA candidates (Xie

et al., 2005).

Advances in computational RNomics have most recently made

it feasible to perform genome-wide surveys for non-coding RNAs

that are not a priori restricted to particular RNA classes. Programs

such as qrna (Rivas & Eddy, 2001), EvoFold (Pedersen et al.,
2006), and RNAz (Washietl et al., 2005b) attempt to discover evo-

lutionarily conserved RNA secondary structures in given multiple

sequence alignments. Two distinct approaches have been realized:

EvoFold and qrna are based on SCFGs (stochastic context

free grammars) to evaluate the probability that the aligned

sequences have evolved under the constraint of conserving sec-

ondary structure. RNAz, in contrast, is based on energy-directed

RNA folding and assesses both thermodynamic stabilization of

the secondary structure relative to a randomized control and

structural conservation as measured by the relative folding energy

of an alignment consensus consensus (Hofacker et al., 2002). A

support vector machine (SVM) is then employed to classify the

multiple sequence alignment as ‘‘structured RNA’’. Both RNAz

and Evofold have been applied to surveying the human genome

providing evidence for tens of thousands of genomic loci with

signatures of evolutionarily conserved secondary structure

(Washietl et al., 2005b; Pedersen et al., 2006) and detected tens

of thousands of putative structured RNAs. Further RNAz surveys

have been conducted for urochordates (Missal et al., 2005), nema-

todes (Missal et al., 2006), and yeasts (Steigele et al., 2006).

These surveys produced extensive lists of candidates for

functional RNAs without using (or providing) information on

membership in a particular class of RNAs. The large number of

putative ncRNAs (from a few thousands in invertebrates to about

100000 in mammals) prompts the development of efficient auto-

matic tools for their further classification and annotation.

With the exception of a small number of evolutionarily very

well conserved RNAs (in particular rRNAs, tRNAs (Lowe &

Eddy, 1997), the U5 snRNA (Collins et al., 2004), RNAse P and

MRP (Piccinelli et al., 2005)), most ncRNAs are not only hard to

discover de novo in large genomes, but they are also surprisingly

hard to recognize if presented without annotation. Indeed, given

an alignment not more than a few hundred nucleotides in length

that is known to contain an conserved secondary structure, it should

be very easy to decide whether these sequences belong to a known

class of ncRNAs or not. Conceptually, this is a simple classification

task that should be solvable efficiently by most machine learning

techniques.

In the case of non-coding RNAs, however, machine learning

approaches severely suffer from the very limited amount of

available positive training data and the fact that negative training

data are almost never known at all. Even for the most benign case,

microRNA precursors, there is only a few hundred independent

known examples, namely the miRNA families listed in the

mir-base (Griffiths-Jones, 2004; Griffiths-Jones et al., 2005;

Hertel et al., 2006). Over-training is thus a serious problem.

As a consequence, it is necessary to restrict oneself to a small

set of descriptors. This constraint, however, makes the choice of

the descriptors a crucial task. Since most ncRNAs have well-

conserved secondary structures, it seems natural to include

structural descriptors in the classification procedure. RNA structure

prediction, however, is less than perfect even when covariation

information from the alignments can be used (Hofacker et al.,
2002). This is true in particular when the exact ends of structured

sequence within the multiple sequence alignment are not known.

In this contribution we present an SVM-based classificator

for microRNA precursors that is designed to evaluate the informa-

tion contained in multiple sequence alignments. The program

RNAmicro is designed specifically to work as a ‘sub-screen’ for

large-scale ncRNA surveys with RNAz or Evofold. The goal of

RNAmicro is thus a bit different from that of specific surveys for

miRNAs in genomic sequences: in the latter case one is interested

in very high specificity so that the candidates selected for experi-

mental verification contain as few false positives as possible.

RNAmicro, in contrast, tries to provide an annotation of the

RNAz survey data, so that we are interested in a more balanced

trade-off between sensitivity and specificity similar to that of anno-

tating protein motifs in known predicted protein coding genes.

2 METHODS

RNAmicro consists of (1) a preprocessor that identifies conserved ‘almost-

hairpins’ in a multiple sequence alignment, (2) a module that computes a

vector of numerical descriptors from each ‘almost-hairpin’, and (3) a support

vector machine used to classify the candidate based on its vector of

descriptors.

2.1 Detecting ‘Almost Hairpins’

The outer loop of RNAmicro extracts windows of length L in 1-nucleotide

steps from the input alignment. For each window, consensus sequence and

consensus structure are computed using the RNAalifold algorithm

(Hofacker et al., 2002) implemented in the Vienna RNA Package

(Hofacker et al., 1994; Hofacker, 2003). The automaton in Fig. 1 is then

used to analyze the consensus secondary structure, which is obtained in ‘dot-

parenthesis’ notation4.

Alignment windows whose consensus structure does not contain a stem

with at least 10 base pairs or which contains two or more hairpins with at

least 5 base pairs each are classified as ‘not a miRNA precursor’ without

further analysis. Otherwise, the starting position and the length ‘ of the

S0 S1 S2

S3S4end

.

(

0

(
.

.(

)

)

(

.

0

.

(

)

0

Fig. 1. Secondary structure automaton. The automaton reads an RNA

secondary structure string in dot parantheses notation, recognizes all

substructures, and stores their start positions and lengths.

4In this string notation for secondary structures, each unpaired nucleotide is

represented by a dot, while base pairs correspond to matching pairs of

parentheses.
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‘almost-hairpin’ which constituted the pre-miRNA candidate, are recorded

and the corresponding alignment window is used to compute the descriptors.

This filter, which on purpose is not very stringent, thus also accepts stem-

loop structures with short ‘branches’ as candidates. Some important animal

microRNAs are known to have structures of this type, for example let-7.

2.2 Descriptors

The lengths ls and lh of stem and hairpin loop regions recognized by the

automaton form the first two descriptors provided the alignment window

passes the structure filter. In addition we use the G+C content.

The second class of descriptors summarizes the thermodynamic properties

of local sequence interval. MicroRNA precursors are known to be more

stable than other RNAs with the same sequence composition (Bonnet

et al., 2004; Clote et al., 2005). We thus use the average �zz of the energy

z-scores

z ¼ ðE � hEirandomÞ/s ð1Þ

where E is the folding energy of the given sequence. The mean hEirandom

and s of the distribution of randomized sequences is computed from a

regression model as described by Washietl et al. (2005b) instead of using

a shuffling procedure. Zhang et al. (2006) reported two folding energy scores

that efficiently distinguish pre-miRNAs from other ncRNAs. The ‘adjusted

mfe’ is defined as e ¼ 100 · E/‘; the ‘mfe index’ h is the ratio of e and the

G+C content. We use their average values �ee and �hh as descriptors.

Structural conservation can be assessed by the structure conservation
index (Washietl et al., 2005b), i.e. the ratio of the average folding energy

of the aligned sequences and the energy of the consensus secondary struc-

ture. We use here �EE and Econs separately.

An important characteristic of pre-miRNAs is the difference in the

sequence conservation between the mature miRNA, which may be contained

at either the 30 or the 50 side of the stem-loop structure, other parts of the

stem, and the hairpin loop region, respectively, see e.g. (Lim et al., 2003b;

Lai et al., 2003). We compute the average columnwise entropies S50 , S30 , and

S0, separately for 5
0
and 3

0
sides of the stem region and the hairpin loop. For a

region (i.e., a subset of alignment positions) j we define

Sj ¼ �
1

lenðjÞ
X
i2j

X
a¼A‚ C‚ G‚ U

pi‚alnpi‚a ð2Þ

where pi‚a is the fraction of a nucleotides at sequence position i. Since the

mature miRNA is typically extremely well conserved, we determine

the sequence window of length 23 with the lowest entropy Smin and use

this value as an additional descriptor, Table 1.

2.3 SVM implementation

For classification we used a support vector machine as implemented in the

libsvm package, version 2.8, (Chang & Lin, 2001). Descriptor vectors

were scaled linearly to the interval ½ � 1‚ þ 1� before training using the

binary version of svm-scale which is included in the libsvm package.

The SVM was then trained using a radial basis function (RBF) kernel with

g ¼ 2 and probability estimates. Default settings as listed in the README

file of the libsvm package were used for all other parameters. The RBF

kernel was used based on the recommendation of the libsvm documenta-

tion and positive experience with this kernel in the RNAz program. As we

shall see below, these settings give satisfactory results in our context.

For alignments of length at most L, a single classification is performed.

For longer alignments, we used a sliding window of length L with step-size 1.

In this case, only the best (w.r.t. to SVM classification confidence value p)

non-overlapping windows of length L were retained for each input

alignment.

2.4 SVM Training

Due to the relative sparseness of the available training data we used a

stepwise training scheme. The positive training set is constructed from

the union of animal microRNAs contained in the miRNA registry 6.0

and orthologous and paralogous sequences that have been obtained by a

homology search in all metazoan genomes (Hertel et al., 2006). This set

consisted of 295 alignments of distinct microRNA families composed by

2 up to 20 sequences from nematodes, insects, and vertebrates. Care was

taken to avoid any sequence similarity between different alignments by using

the family definition of (Hertel et al., 2006), which identifies several groups

of microRNAs with different mirbase numbers as homologs. The antago-

nistic data was obtained by randomly shuffling the columns of each true
miRNA alignment until the consensus sequence of the shuffled alignment

folded again into a hairpin structure. This was successful for all but one true

miRNA alignment. We have to rely at least in part on artificial examples

since it seems hard to obtain a large collection of mutually independent

evolutionarily conserved hairpin structures that are known not to be pre-

miRNAs. The artificial set of negatives was complemented by a collection of

483 tRNA alignments which also passed the hairpin check. Note, however,

that tRNAs are fairly similar to each other and hence cover only a relatively

small part of the descriptor space.

In order to assess the quality of the descriptors, we divided both the

positive and the negative set randomly into two halves, one used for training

the SVM and the other used as test set. Consequently, there was no signifi-

cant phylogenetic bias in the training set versus the test set.

We used RNAmicro with three different window sizes, L ¼ 70‚100‚130,

to scan the input alignments. An alignment is classified as putative

microRNA if at least one window of at least one of the three values of L

is classified with p > 0:5 by the SVM. We achieve a sensitivity of about

90% (134/147) and a specificity of about 99% (381/383) on the test dataset,

Table 2. As an alternative training and testing we divided the available data

into 90% for training and tested if the remaining 10% were classified cor-

rectly. This yields in a sensitivity of about 84% (26/31) and a specificity of

about 99% (153/155).

Since the different training schemes yield consistent results and the

training and test alignments are unrelated at sequence level, over-training

thus does not seem to be a serious issue. We therefore trained the SVM using

the entire positive and negative sets. We then tested the program on the

results of RNAz screens of nematodes (Missal et al., 2006) and seasquirts

(Missal et al., 2005). Although we could classify almost all known miRNAs

that were contained in these data as miRNA, we found that in addition a

Table 1. Descriptors used for SVM classification

Property # Descriptors

Structure 2 ls, lh
Sequence composition 1 G+C

Sequence conservation 4 S50, S30, S0, Smin

Thermodynamic stability 4 �EE, �ee, �hh, �zz

Structure conservation 1 Econs

Total 12

See text for definitions.

Table 2. Initial training and performance of RNAmicro SVM

Classification Test sets

Positive Negative

miRNA 134 2

not miRNA 13 381

Total 147 383

Half of the positive and negative sets were used for training and testing, respectively.

Hairpins in a Haystack

e199



significant number of other known ncRNAs was mis-classified as pre-

miRNAs. This indicates that our initial negative set does not sufficiently

cover the descriptor space. The reason is that hairpins are common motifs in

many other ncRNAs and that several other ncRNA families are also known

to be thermodynamically very stable (Clote et al., 2005).

We therefore extracted alignments of noncoding RNAs from the Rfam

database, focusing on a subset of snoRNAs, rRNAs, additional tRNAs, and

RNAseP sequences and scored those with RNAmicro. False positives were

added to the negative set and RNAmicro was retrained and tested with the

50% method as described above. The sensitivity was still around 90% while

the specificity dropped to 78%. Thus, the mis-classified alignment slices of

the negative input alignments were added to the training set. This procedure

was iterated until no significant improvement was achieved on the Rfam

dataset. This procedure is not statistically sound, of course. The alignments

from the RNAz surveys contain in part different combinations of species

and have been produced with different methods than those used for training,

so that we can at least check the sensitivity of the model on the RNAz-

alignments of the known microRNA precursors. Furthermore, other known

ncRNAs in these data serve as a negative control.

3 APPLICATIONS

Three extensive surveys of metazoan genomes using RNAz

(Washietl et al., 2005b) have been published recently. The screen

of vertebrate genomes (Washietl et al., 2005a) was based on the top

5% conserved multiz alignments (Blanchette et al., 2004) as

determined by phastcons (Siepel et al., 2005). For nematodes

and urochordates, alignments were constructed using clustalw

based on initial blast hits, see (Missal et al., 2005, 2006) for

details. In all three cases, only non-repetitive non-protein-coding

sequences were investigated.

In order to identify putative miRNAs among them we screened all

individual alignment slices that were classified as potentially struc-

tured RNA with SVM classification confidence of pRNAz > 0:5. Note

that in all three studies individual alignment slices are combined to

single ‘RNAz hits’ when they overlapped on the genome of the

species. Hence the number of alignment slices is much larger

than the number of ‘RNAz hits’ reported in these studies. Redun-

dancies arising from miRNAs that appear in more than one

alignment slice have been removed. The Venn diagrams in

Fig. 2 summarize our classification.

It is reassuring that most of the RNAmicro predictions have high

confidence values in the original RNAz screens: For example,

3850 (70%) of the 5440 pRNAmicro > 0:5 candidates in the mamma-

lian screen have pRNAz > 0:9. Conversely, Only 204 (14%) of the

1491 pRNAmicro > 0:9 have pRNAz < 0:9. At least a rough estimate for

the false discovery rate can be obtained from the distribution of the

classification confidence values. For the three RNAz surveys we

expect that about 1/5 to 1/4 of the putative ncRNAs are false posi-

tives at p > 0:5 classification confidence (not shown).

Berezikov et al. (2005) predicted 976 miRNAs by scanning

whole-genome human/mouse and human/rat alignments. Their

method, however, highlights evolutionary recent microRNAs so

that it is not too surprising that there is relatively little overlap

between these candidates and the RNAz screen (Washietl et al.,
2005a), which focuses on evolutionary well-conserved RNA

structures.

In order to compare our prediction with related classification

methods, we re-evaluated the positive RNAmicro predictions

using the SVM approach by Xue et al. (2005), which is designed

for finding miRNAs ab initio in genomic sequences. Their proce-

dure employs a very restrictive check for hairpin structures which in

particular rejects the majority (180) of the 249 known microRNA

precursors. Only 3077 of our 5440 p > 0:5 candidates and only 953

of our 1481 p > 0:9 candidates pass the hairpin filter. Of these,

1590 and 657, resp., are scored as microRNAs. Screening the

pRNAz � 0:9 subset with mir-abela returned 981 candidates,

of which RNAmicro classifies 515 as microRNA precursors.

Several computational searches for miRNAs have been per-

formed for nematodes. Grad et al. (2003) predicted 222 microRNA

candidates (beyond those known at the time of publication) for

C. elegans. Since most of the candidates are not conserved in

C. briggsae, these sequence were not in the input set of

RNAz survey. Thus, this set shows little overlap with our classi-

fication. Nevertheless it is interesting to note that the estimated total

number of miRNAs is comparable. In contrast, based on the

5440 1491

RNAmicro
P > 0.5 P > 0.9

RNAz

208481

177

00

2

25
41

72

10 21

33

miRNA registry 7.1

Berezikov et al. 2005

203014 3826 1260

38

846

104 31

RNAmicro
P > 0.5 P > 0.9

339 18 4

RNAz

other RNAs

54 252888

1 2 01

miRNA registry 7.1

3332352 158

RNAmicro

Caenorhabditis elegans
(a)

Ciona intestinalis
(b)

Homo sapiens
(c)

P > 0.5 P > 0.9

19

00

6

8
6

9

2 7

2

45

626 31 5

1251462680

RNAz

miRNA registry 7.1

Grad et al 2003

other RNAs

206

3672

Fig. 2. Venn diagrams of RNAmicro-classifications of RNAz survey data with a RNAz cutoff of 0.5. The subsets of structured RNAs that are classified as

miRNA candidates byRNAmicro are shown with bold outlines for p¼ 0.5 and p¼ 0.9 confidence levels. The subset of known microRNAs are shown with a grey

background. Red numbers are other known ncRNAs or UTR elements that constitute known false positives in the 0.5 < p� 0.9 and the p > 0.9 confidence classes,

respectively. Numbers below the Venn diagram are the total number of RNAz alignments that were screened by RNAmicro, and the total numbers of signals

classified as positive at confidence values p¼ 0.5 and p¼ 0.9, respectively. (a) Data from a pairwise screen of the nematoda C. elegans and C. briggsae (Missal

et al., 2006). In this case many known ncRNAs are contained in the data set allowing at least a rough estimate of false positive rates. (b) In the case of the two

urochordates Ciona intestinalis and Ciona savignyi only 4 miRNAs are known. (c) For the screen of mammalian genomes comprising sequences that are

conserved at least in human, dog, mouse, and rat (Washietl et al., 2005a) almost all known non-coding RNAs were not available in the input alignments because

they are marked as repetitive (tRNAs, snRNA, some microRNAs), so that a meaningful estimate for the false positive rate cannot be derived.
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results of experimental verification of mirscan predictions, Lim

et al. (2003b) and Ohler et al. (2004) conclude that the overwhelm-

ing majority of C. elegans miRNAs should have been found already.

Ohler et al. (2004) reported upstream sequence motifs

specific to independently transcribed miRNAs in C. elegans and

C. briggsae. We have therefore searched 2000 nt upstream

for approximate occurrences of these patterns using mast. We

find that both approximate patterns are substantially overrepre-

sented in sequences classified as miRNAs relative to the

remainder of the data, (Fig. 3). This provides additional statistical
evidence that a substantial fraction of the RNAmicro-predictions

indeed are microRNAs. As noted by Ohler et al. (2004), these

sequence patterns, which are presumably transcription factor

binding sites, do not occur associated with intronic miRNAs. We

find that 176 (50%) of the 351 C. elegans candidates are located in

introns (Fig. 4).

In the human data, 4245 candidates are not associated with known

protein-coding genes, while 1107 candidates (20%) are located in

introns (of which 36 are known microRNAs). This is in agreement

with a recent study reporting that intronic microRNAs are much

more frequent than previously thought (Ying & Lin, 2006). The

remaining 88 sequences map to exons of known genes and are

probably false positives.

MicroRNAs have a tendency to appear in clusters, probably

because they are frequently processed from a polycistronic tran-

script. This fact has been utilized by (Altuvia et al., 2005; Sewer

et al., 2005) to identify additional miRNAs in the vicinity of known

ones. Using a rather conservative distance cutoff of <1000 nt

between adjacent miRNAs, we found 143 clusters of miRNA

candidates in the human genome, which contain 316 individual

candidate sequences. Among them are 58 known miRNAs (accord-

ing to mirbase 7.1) in 33 clusters. Most prominently, we recover

the extensive imprinted cluster at human locus 14q32 discovered by

(Lagos-Quintanta et al., 2002) (in total, we found 54 candidates in

multiple tight clusters between positions 100M and 101M of the

hg17 assembly) and the paralogs of the mir-17 cluster (Tanzer &

Stadler, 2004). In C. elegans we find 30 clusters with 131 members,

in C. intestinalis there are 5 clusters with 10 members. Note that

these are conservative estimates since in some cases, such as the C.
elegans mir-42 cluster, it is known that the distance between clus-

tered miRNAs can be larger.

4 DISCUSSION

In contrast to other related approaches to miRNA detection,

RNAmicro does not directly search a genome or genomes. Instead

it is designed to classify the raw results of large-scale comparative

genomics surveys for putative RNAs that are conserved in both
sequence and secondary structure. Consequently, RNAmicro

uses a different tradeoff between sensitivity and specificity. In

the spirit of protein annotation methods, we aim for very high

sensitivity rather than minimizing the expected number of false

positives. As classificators become available for other classes of

ncRNAs and common UTR motifs, conflicting class assignments

from different classificators will eventually help to improve the

specificity of miRNA detection.

Clearly, the performance of RNAmicro depends on the sensi-

tivity and specificity of the initial screen for structured RNA can-

didates. However, RNAz exhibits a sensitivity of more than 80% at

99% specificity already on pairwise alignments (Washietl et al.,
2005b, Table 2). In practice, it recovered 157 of the 163 human

microRNAs in the input alignments that were known when the

RNAz survey was performed (Washietl et al., 2005a). We therefore

argue that this first step does not dramatically influence the overall

sensitivity for microRNAs. Instead, the main limitations rather lie in

(a) the coverage and quality of the input alignments and (b) the

phylogenetic conservation of microRNAs, which of course limits all

comparative approaches.

We have applied RNAmicro to three recent RNAz-bases

studies of mammalian, nematode, and urochordate ncRNAs. In

each case a large number of novel miRNA candidates have been

detected. We have therefore investigated whether there is confound-

ing evidence that a significant fraction of these predictions should be

true positives: In C. elegans, for example, we find a strong asso-

ciation of RNAmicro predictions with a miRNA specific upstream

motif previously reported by Ohler et al. (2004).. Furthermore, we

found several hundred miRNA candidates that occur in tight

genomic clusters. In particular in the human data, a large number

of predictions are located within 1000 nt of a known microRNA. In

line with recent reports (Ying & Lin, 2006),, we furthermore

observed a substantial fraction (20% in human, 50% in C. elegans)

of candidates are located in introns. Thus we argue that a large part

of the RNAmicro candidates corresponds to real microRNAs. It is

well conceivable that we have seen only a small fraction of the true

miRNA repertoire to due to small expression levels and expression
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Fig. 3. Distribution of two closely related upstream motifs (A) and (B) re-

ported for both C. elegans and C. briggsae (Ohler et al., 2004, Fig.2). We plot

the fraction of RNAmicro candidates for which mast (Bailey & Gribskov,

1998) recovers at least one copy A or B within 2000 nt upstream of the miRNA

candidate as a function of the mast E-value cutoff. For small cutoffs, the

miRNA specific sequence elements are overrepresented in true data versus a

control set of RNAz hits that were not classified as microRNAs.
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Fig. 4. Typical example of a pair of related putative intronic microRNAs in

C. elegans extracted from the USCS genome browser. The gene Y37E3.8

is a hypothetical protein of unknown function. The ‘mountain range’ on

the bottom displays the sequence conservation between C. elegans and

C. briggsae.
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patterns restricted to a few cell-lines (Ambros, 2004; Bartel & Chen,

2004; Mattick, 2004).
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ABSTRACT

Motivation: This study presents a novel investigation of the effect of

kinetic control on cotranslational protein folding. We demonstrate the

effect using simple HP lattice models and show that the cotranslational

folding of proteins under kinetic control has a significant impact on the

final conformation.Differencesarise if nature is not capableof pushinga

partially folded protein back over a large energy barrier. For this reason

we argue that such constraints should be incorporated into structure

prediction techniques. We introduce a finite surmountable energy

barrierwhich allowspartially formed chains to partly unfold, and permits

us to enumerate exhaustively all energy pathways.

Results: We compare the ground states obtained sequentially with

the global ground states of designing sequences (those with a unique

global ground state).We find that the sequential ground states become

less numerous and more compact as the surmountable energy barrier

increases. We also introduce a probabilistic model to describe the

distribution of final folds and allow partial settling to the Boltzmann

distribution of states at each stage. As a result, conformations with

the highest probability of final occurrence are not necessarily the

ones of lowest energy.

Availability: Software available on request

Contact: fhuard@efs.mq.edu.au

1 INTRODUCTION

There have been several definitions of cotranslational folding, but it

has been elegantly stated that ‘‘co-translational folding has occurred

if, following extrusion from the ribosome, the native structure is

achieved more quickly than if the full-length, unfolded polypeptide

were diluted from chemical denaturant into the same folding milieu

as that in which protein biosynthesis occurred’’ (Baldwin, 1999). It

is recognised that some proteins can fold rapidly and cotranslation-

ally both in eukaryotic and prokaryotic cells (Basharov, 2003;

Braakman et al., 1991; Fedorov and Baldwin, 1997; Fedorov and

Baldwin, 1997; Kolb, 2001; Kolb et al., 2000; Netzer and Hartl,

1997) and there is recent evidence that some proteins become

in vivo biologically active as the polypeptide chain is being trans-

lated (Nicola et al., 1999). We also know that cotranslational fold-

ing can occur spontaneously without additional cellular components

(Sanchez et al., 2004). Interestingly, nitinol wire, known to

remember its annealed shape, has been used to model behaviour

of biopolymers and showed that in some cases the native state could

only be reached sequentially (Keller, 2003).

Levinthal pointed out that the protein folding process cannot

search the entire conformation space due to its vast size. Since

proteins are known to fold in the order of milliseconds, we must

assume that they follow a restricted set of pathways to reach their

native conformation (Levinthal, 1968; Levinthal, 1969). Hence

folding is assumed to be under kinetic control, that is, the folding

pathway of a protein is unlikely to incorporate folding to a state

which would be less thermodynamically stable. It was advanced

that protein folding obeys thermodynamical laws and therefore

has a native state which is the ground state of lowest free energy

(Anfinsen, 1973). It has been theoretically demonstrated

(Govindarajan and Goldstein, 1998) that a sequence whose native

state has originally a higher energy than the lowest energy state,

when submitted to evolution under kinetic control, will most often

evolve towards a sequence whose native state is the lowest energy

conformation. Thus folding under kinetic control does not neces-

sarily violate the thermodynamical hypothesis.

Surprisingly, state-of-the-art protein folding prediction methods

do not incorporate a cotranslational aspect (Bujnicki, 2006); in the

latest Critical Assessment of Techniques for Protein Structure

Prediction meeting (CASP, 2004) none of the chosen methods

exploited the sequential nature of folding. Cotranslation has already

been investigated in simulations of biopolymers (Bornberg-Bauer,

1997; Fernandez, 1994; Morrissey et al., 2004), but the effect of

kinetic control remains unexplored. The method we propose aims

at filling this gap; we investigate the effect of energy barriers on

cotranslation.

We fold proteins sequentially, mimicking nature as closely as

possible. By a ‘‘sequential folding’’ we will refer to the path of

intermediate and final conformations simulated as the nascent poly-

peptide chain is elongated. A ‘‘sequential ground state’’ is a con-

formation of lowest energy obtained once all residues are added. We

simulate protein fold evolution, as the polypeptide chain length

increases, by sequentially elongating the length of protein to be

folded, starting from the N-terminus. Amino acids are added one

by one at the C-terminus of the chain and each time the chain length

increases by one residue, the conformation already simulated is

permitted to change. The point here is that the new fold must be

a ‘‘restricted evolution’’ of the previously predicted fold. By this we

mean that the simulation of the newly elongated chain does not start

with a random or fully extended conformation, but with the previous

model obtained as a base, to which is added the new residue. The

latter is added in a fully extended conformation. We also investigate

the possibility of adding more than one residue at a time. The final

fold of the protein is obtained once all residues are added.

Essential here is the concept of a surmountable energy barrier

(Baker, 1998; Guo et al., 1997; Sohl et al., 1998), the orchestrator of

kinetic control. The surmountable energy barrier enables us to partly

avoid kinetic traps, and represents the maximum energy gain�To whom correspondence should be addressed.
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possible for the protein at each step of its folding process. It is

essentially the unfolding energy available in the system. In the

following cases of folding under kinetic control, this surmountable

energy barrier is assumed to be finite. Rationale for the imposition

of a surmountable energy barrier comes from a number of sources.

We know that�20% of proteins require intervention of chaperones,

which play an important role in cotranslation (Frydman, 2001; Hartl

and Hayer-Hartl, 2002). It is believed that the primary role of

chaperones is to prevent aggregation of nascent polypeptides.

The surmountable energy barrier aims at representing the restriction

on the folding pathways induced by chaperones. We also know that

folding space is restricted by the structure of the ribosome itself

(Ban et al., 2000; Ramakrishnan, 2002; Wilson et al., 2002). In

particular, the fold of polypeptides is constrained by the ribosome

exit tunnel (Jenni and Bany, 2003; Nakatogawa and Ito, 2002)

which favours a-helical secondary structures (Ziv et al., 2005).

We know that some codons are less frequent than others, inducing

different translation rates (Andersson and Kurland, 1990; Curran

and Yarus, 1989) and that codon substitutions can lead to lower

specific activity (Komar et al., 1999). Slow codons, usually

positioned between domains, can induce a delay required for correct

folding of the N-terminus domain (Komar and Jaenicke, 1995). Slow

codons can also enhance the formation of secondary structures by

preventing domains from interacting with each other (Purvis et al.,
1987). To model the variation in translation rate imposed by codon

selection, we introduce parameter s which represents the number of

residues added each time the polypeptide chain is elongated. This

creates a primitive ‘‘elongate-pause’’ iterative extension process.

We also attach a probability to all partial and fully extended

conformations. It has been observed that the biologically active

state of some proteins does not correspond to their lowest energy

conformation (Sohl et al., 1998). We introduce a probabilistic model

which captures two factors. The first factor is the number of kineti-

cally controlled energy pathways which can lead to the conformation

(relative to the number of possible conformations for the considered

sequence). The second factor is the Boltzmann equilibrium distri-

bution for the current set of partial configurations. We balance the

two factors using a ‘‘thermodynamic permission factor’’ b. This

measures the extent to which the Boltzmann distribution is reached.

We investigate whether kinetic control together with partial move-

ment to the Boltzmann distribution can result in a sequential ground

state whose energy may be a local minimum in the thermodynamic

energy path of the protein, as observed experimentally.

HP lattice models have proven a useful tool for modelling protein

folding in a simple manner (Chan and Dill, 1993; Chan and Dill,

1994; Dill et al., 1995; Pande et al., 1997; Shakhnovich, 1998),

predicated on the assumption that protein folding is ruled by

hydrophobic collapse. Here we use them to assess the impact of

sequential folding. Sequences involving only two types of monomer

(hydrophobic H and polar P) are considered, with monomer posi-

tions restricted to either a two or three-dimensional lattice. Simple

models have been used to simulate globular protein folding incorp-

orating cotranslation and restrictions on the folding space, mod-

elling the ribosome as an inert wall (Sikorski and Skolnick, 1990). It

was found that a-helical proteins preferred to assemble parallel to

the wall, and four member b-barrels slightly preferred assembly

perpendicular to the wall. Sikorski and Skolnick ‘‘never observed a

successful case of co-translational folding’’ and did not consider

kinetic control. They used a Monte Carlo algorithm to search the

conformation space and pass through local minima, whereas we

develop a fully deterministic approach and exhaustively search the

conformation space.

In summary, we explore the consequences of following a sequen-

tial route to the final fold. In particular, we study the influence on

final conformations of the height of the surmountable energy barrier

d and the number of residues s added at each iteration. We find that

under kinetic control the sequential ground state of a protein can

differ from the global one (Figure 1). The global state of minimum

energy can be reached only with a sufficiently high surmountable

energy barrier.

We then present the impact of the variation of the main para-

meters (extrusion length and surmountable energy barrier) on the

compactness and multiplicity of the folds. For a given sequence, we

observe that final conformations are more compact and less

numerous as we increase the surmountable energy barrier.

Finally we enrich our analysis and introduce a probabilistic model

based on partial movement to Boltzmann equilibrium at each stage.

This enables us to attach a probability to all partial or final con-

formations obtained for a particular sequence.

2 METHODS

2.1 Principles

Designing sequences We use designing HP sequences in our study.

These are sequences with a unique ground state of lowest energy. Irbäck

et al. (Irbäck and Troein, 2002) present a list of all designing sequences with

up to 24 residues. This provides us with reference sequences against which

we can test the sequential folding algorithm.

HP Lattice models We use models which fold on a two-dimensional

lattice with residues either hydrophobic or polar. They are said to be in

contact if they are adjacent in space but not in sequence. The total energy of

the chain is determined by the number of contacts in the conformation

simulated.

We let n be the number of residues in the full chain. To study the impact of

the variation of the chain length, n takes the value 16 or 24. Evidence has

been given that such lengths are capable of mimicking relevant protein

behaviour (Chan and Dill, 1993; Chan and Dill, 1994; Dill et al., 1995;

Pande et al., 1997; Shakhnovich, 1998).
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Fig. 1. Conformations obtained for the sequence HPPPPHPPPHPHPPHH.

Conformation G represents the global ground state, the unique conformation

which has an energy of minus five for this particular sequence. Conformation

S is that obtained sequentially, with energy of minus four, when the surmoun-

table energy barrier is zero.
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Sequential Folding Since we work with relatively short lengths n, the

number of monomers s added at each iteration is chosen to be one or two.

Sequences of length 16 can have a maximum of nine contacts, so it is

reasonable to perform simulations with d, the surmountable energy barrier,

equal to zero, one or two.

The first s monomers are laid down, locating them in a conformation with

minimum energy, at the same time retaining all configurations within energy

d of this minimum. We then have a first set of local conformations of length s

and proceed to expand these by adding s monomers to all of these partial

configurations, retaining those with minimum energy and all within energy d

of this new local minimum. Parameter d remains the surmountable energy

barrier, so leading to a new set of local conformations of length 2s. This

procedure is repeated until all monomers are used. A configuration with

minimum final energy is termed a ‘‘sequential ground state’’, and the one of

lowest energy the ‘‘global ground state’’.

A conformation Cl, of length l, is extended by s residues using s steps of

the three possible single step directions (Figure 2). These three possible

directions are—in relative moves—forward, left and right. Only conforma-

tions which are self-avoiding and non equivalent are retained. Two confor-

mations are deemed equivalent if one can be obtained either by rotation or

reflection on the lattice from the other. At each step we obtain a maximum

of three new conformations of length l+s. The process is then repeated with

each one of these conformations of length l+s, and so on until we generate

conformations of length n. If n is not a multiple of s, then the algorithm is run

for bn=sc steps; the last iteration handles the remaining residues.

2.2 Measures of fold compactness

As explained in the introduction, we wish to study the impact of folding

sequentially, considering the surmountable energy barrier d, the number of

residues added at each iteration of the algorithm s and length of the poly-

peptide chain n. To assess the final fold we use several measures.

Radius of gyration We calculate the radius of gyration of conforma-

tions, as used in real protein structure prediction (Rohl et al., 2004; Simons

et al., 1997; Simons et al., 1999), using

Rg ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1

X
jhi
½ðxi1�xj1Þ2 þ ðxi2�xj2Þ

2�

vuut
where xi ¼ (xi1, xi2) represents the two coordinates of point i and n is the

number of residues in the conformation.

Moment of inertia We use the moment of inertia (MI) as an indicator of

the compactness of the structure. It reflects the variance of distances from

residues to the centre of mass of the conformation,

MI ¼ 1

n

Xn

i¼1

ðxi�mÞ2 ¼
1

n

Xn

i¼1

½ðxi1�m1Þ
2 þ ðxi2�m2Þ

2�

where m ¼ ðm1‚m2Þ with m1 ¼ 1
n

Pn
i¼1 xi1 and m2 ¼ 1

n

Pn
i¼1 xi2

We also use a MI restricted to hydrophobic residues. In this case we term

the result the hydrophobic moment of inertia (HMI).

Contact signature We define the contact signature S of a conformation

to be the average distance in sequence between two residues in contact.

So we have

S ¼
P

i<j dði‚ jÞDði‚ jÞ
Ncontacts

where d(i,j)¼j-i is the distance in sequence between the residues at position i
and position j and D(i,j) equals one if residues i and j are in contact and zero

otherwise; Ncontacts is the number of contacts in the chain.

3 RESULTS

We use HP models to investigate the difference between the mini-

mum energy state of a controlled sequential folding and the globally

minimum energy state. A difference in these two end states will be

found if nature is incapable of pushing a partially formed protein

back over a sufficiently high free energy barrier. We explore the

influence on this difference of n, d and s.

For a particular sequence, the number of final sequential
conformations at the minimum energy level decreases as the
surmountable energy barrier increases We focus on 149 ran-

domly selected designing sequences of length 16 whose unique

global ground state is known. We extrude one residue at a time,

so s is equal to one. We first set the surmountable energy barrier d at

zero. We observe that for 48 sequences (32.2%) we obtain a unique

sequential ground state, which is not necessarily the global ground

state. The number of sequences with a unique sequential ground

state increases to 95 (63.8%) as we raise d to one. These results

suggest that for a given sequence, the number of final conformations

decreases as the surmountable energy barrier increases.

As we increase d, the number of local conformations (as

described in methods) retained at each step of the elongation

increases. Those which are kept have an energy within d of the

lowest. If more conformations are simulated, the probability of

retaining the global ground state of energy rises. With a surmount-

able energy barrier sufficiently high, it is possible to enumerate all

conformations and then be sure of obtaining the global ground state.

Increasing the number of residues extruded at a time has a similar

effect. Adding more than one residue at a time increases the number

of intermediate conformations simulated as well as the odds of

retaining the global ground state.

For the sequence HPPPPHPPPHPHPPHH, for example, a sur-

mountable energy barrier of one is sufficient to access the global

state (Figure 3).

Conformations become tighter as the surmountable energy barrier
increases Given a particular sequence there are many final

sequential folds (with the same energy) for a given s and d. We

measure the compactness of the structure with the radius of gyration

Rg. We determine the average Rg over all such conformations

sequentially generated for a particular sequence. As d increases,

the average Rg decreases. We find that for 88% of the sequences, this

average Rg remains the same or registers a decrease when we

increase d from zero to one, with s equal to one. An example is

given in Figure 4.

We also evaluate an average hydrophobic moment of inertia

(HMI) of all sequential ground states obtained for a particular

a b

Fig. 2. The different ways to extend a conformation, adding one residue (a) or

two (b) at a time. The plain line represents the extremity of the conformation

already simulated, and the dashed lines the possible extensions.
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sequence. We find that the hydrophobic core forms as the surmount-

able energy barrier increases. We then calculate the difference

between this average HMI and the HMI of the global ground

state of minimum energy. We observe that as d increases the average

HMI of the sequential ground states simulated moves closer to the

global HMI. We observe that as d increases, the energy level of final

conformations simulated tends to be closer to the energy level of the

unique global ground state. The global ground state has the maxi-

mum number of contacts possible; hence it generally also has the

tightest hydrophobic core. So the closer the conformations are to the

global ground state, the tighter their hydrophobic core is likely to be.

In all of the 149 sequences simulated, we observe that 65% (97) have

an average HMI which decreases when we increase d from zero to

one, and 19.5% (29) have an average HMI which remains the same.

Sequentiality favours short range contacts The further the energy

of the sequential path is from that of the global path, the more

localized the contacts become. We randomly select 242 sequences

of 24 residues and run simulations with d equal to zero and s equal to

one. For each sequence we then evaluate the average of the sequen-

tial contact signatures, and calculate the difference with the global

contact signature. We find that in 89.7% of the cases, the average

sequential contact signature is less than the global. We also notice a

positive relation when we plot the biggest energy gap for each

sequence against the difference in contact signature (Figure 5).

These results confirm a previous study which showed that cotrans-

lationality favours local contacts (Morrissey et al., 2004).

Some sequences are not foldable sequentially with a low
surmountable energy barrier The method explores exhaustively

all possible conformations accessible sequentially. Some particular

sets of intermediate conformations may result in non-extendable

conformations. These are conformations which have folded into a

state that cannot be extended to reach the full length conformation.

It is possible to avoid these dead-end conformations by increasing

the surmountable energy barrier. An increase in d permits a higher

number of intermediate conformations to be retained at each itera-

tion of the elongation, and thus reduces the chance that an iteration

results only in conformations which cannot be extended. We assume

that these conformations which cannot be modelled sequentially

with a low surmountable energy barrier cannot represent proteins

which have mutated through evolution. We conclude that biological

sequences must evolve to avoid sequences which can fall into

such traps.
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Analysis of energetic pathways of sequentially folded
proteins We focus on the 10-mer HPHPPHPPHH. We simulate

the ground states obtained with a surmountable energy barrier d¼0,

adding one residue at a time, so s¼1. This sequence corresponds to

the shortest designing sequence available for which the unique

global ground state fold differs from the global ground state

under the preceding conditions. Figure 6 shows two of the confor-

mations obtained sequentially and that of the global ground state.

The global ground state can only be reached with a surmountable

energy barrier of one.

Figure 7 shows the energy paths of the sequential ground states

and the global ground state. When the sixth residue is added, the

best fold modelled sequentially has one more contact than the path

towards the global ground state of energy. Since the surmountable

energy barrier is zero, the path to the global ground state is not

retained. Having a null probability of occurrence, the ground state is

eliminated from the pool of potential final folds (Figure 8).

Definition of a probabilistic 2D simple lattice model The sur-

mountable energy barrier allows a set of conformations to

be retained at each elongation of the chain, and these may have

different energies. As a consequence, there may also be a set of

final conformations for a given sequence. We want to be able to

attach a probability to each of these conformations, partially or fully

elongated.

We know that some proteins in their native state are not in their

lowest Gibbs free energy state, and fold to a state more stable than

the native one (Baker, 1998; Sohl et al., 1998). Baskakov et al.
showed for instance that the folding of mouse prion protein was

under kinetic control when folding to its a-helical native conforma-

tion, separated by a large energy barrier from a more thermo-

dynamically stable b-sheet-rich isoform (Baskakov et al., 2001).

Therefore we accept that the intermediate conformations accessed

by the polypeptide, as it is elongated, may also not be in a lowest

free energy state. In order to model this we do not permit the

distribution of conformations to reach the Boltzmann energy

distribution completely and we introduce a ‘‘thermodynamic

permission factor’’ b (0 � b � 1). This factor is a coefficient

permitting movement to the Boltzmann equilibrium probability

of every conformation, partially or fully extended.

We now model the probabilities of intermediate conformations

along the different energy pathways. The probabilistic model

defines a distribution for each intermediate and final model

which is the sum of two components, an initial probability weighted

by 1-b and the Boltzmann probability weighted by b. The initial

probability is the parent conformation probability divided by the

number of offspring of this parent conformation, so is determined

by the different elongation paths. If several conformations, after

elongation, result in the same offspring conformation, the latter has

a chance of occurrence which is the sum of the probabilities of the

common offspring. As we assume that the pool of intermediate

conformations may not reach the Boltzmann equilibrium, the

Boltzmann equilibrium distribution is weighted by b.
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Given a surmountable energy barrier d we have, for a chain of

l residues, a known distribution of nl intermediate conformations

Cl
i, i¼1, . . . , nl with known probabilities pl

i. We elongate all inter-

mediate conformations of length l by s residues. There arises a new

set of nl+s intermediate conformations of length l+s.

We assume that all newly modeled Clþs
i conformations of length

l+s have an immediate probability Ilþs
i which is followed in time by

a final probability Flþs
i . We know that a given conformation Cl

i can

give birth to a number bl
i of kinetically permissible different con-

formations of length l+s, and that a given conformation Clþs
i can

have alþs
i different ancestors of length l.

We define the initial probability of Clþs
i which has alþs

i ¼ a
ancestors Cl

i1, Cl
i2, . . . , Cl

ia by

Ilþs
i ¼

Xa

j¼1

Fl
ij

bl
ij

We define the final probability of Clþs
i by

Flþs
i ¼ ð1 � bÞ · Ilþs

i þ b ·
eElþs

i =kT

Qlþs

where Elþs
i is the number of contacts of Clþs

i and

Qlþs ¼
Xclþs

h¼0

glþsðhÞe�h«/kT

where Ql+s is the partition function and gl+s(h) is the density of

states, which is the number of all sequential conformations of length

l+s with h contacts, cl+s is the maximum number of contacts among

all conformations of length l+s, T is the temperature and k is the

Boltzmann constant.

Application of the probabilistic model We apply the probabilistic

model to the 10-mer HPHPPHPPHH. We study the impact of b and

the temperature T on the distribution of conformations at each step

of the elongation process, using d¼1 and s¼1. Figure 9 (A-I) shows

the nine final conformations obtained; Table 1 shows the final

probabilities of these nine conformations. We see that the proba-

bility of being in the lowest state of energy (conformation C)

decreases as we raise T and lower b. With T¼0.8 and b¼0.25
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Fig. 9. The nine final conformations obtained sequentially for the sequence

HPHPPHPPHH using s¼1 and d¼1.

Table 1. The probability of the nine folds obtained for HPHPPHPPHH

Configuration Energy Prob.

T¼0.2,

b¼0.75

Prob.

T¼0.2,

b¼0.25

Prob.

T¼0.8,

b¼0.25

A �3 0.058 0.274 0.2

B �3 0.048 0.196 0.152

C �4 0.737 0.281 0.139

D �3 0.03 0.05 0.093

E �3 0.03 0.048 0.089

F �3 0.03 0.048 0.089

G �3 0.03 0.048 0.087

H �3 0.03 0.048 0.087

I �3 0.005 0.008 0.06
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Fig. 10. A graphic showing the probability that the 10-mer HPHPPHPPHH is

in the lowest state of energy (�4) as temperature and thermodynamic permis-

sion factor change. We observe that the probability decreases as the tempera-

ture rises and as the thermodynamic permission factor b drops. When we

increase the temperature we allow more energy for unfolding, favouring states

which have a higher energy than the ground state. As b decreases to zero, we

allow the distribution at each elongation stage less freedom to settle to the

Boltzmann distribution, favouring higher energy states. Note that a b of zero

results in a model which is independent of temperature, whence the non-zero

probability of a final conformation is solely determined by the initial prob-

abilities at each stage.
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we have conformations A and B more likely to occur than the lowest

energy conformation C. Figure 10 shows the probability that the 10-

mer HPHPPHPPHH is in the lowest energy state as T and b vary.

Consequences of cotranslational folding of real proteins Should

cotranslational folding prove to be the norm, then we can make

predictions about the effect on protein structure:

(i) The N-terminus may be more likely to be buried; the

C-terminus, being ‘‘held’’ by the ribosome, may be more

likely to be peripheral in the final structure.

(ii) Protein structure may favour local contacts.

(iii) The active state of a protein may not be the lowest energy

state.

(iv) Designed sequences may often fail to produce the desired

structure because cotranslational folding is not taken into

account. Therefore designing artificial proteins with local

interactions vectorised from the N- to the C- terminus may

be advantageous.

(v) New folds of lower energy may be found if we relax kinetic

control, increasing the surmountable energy barrier.

CONCLUSION

We have modelled the folding of proteins cotranslationally and

under kinetic control, with the help of simple lattice models. We

selected intermediate conformations, within the surmountable

energy barrier, as the polypeptide chain elongated. We saw that

the globally minimum energy, that with the maximum number of

contacts, was not always accessible with a low surmountable energy

barrier. As we increased this barrier, we obtained final sequential

conformations which were more compact and less numerous. A

sufficiently high barrier enabled us to reach a final conformation

which had the maximum number of contacts.

We attached a probability to each of the intermediate and

final folds obtained. We introduced a thermodynamic permission

factor, capturing the property that intermediate and final confor-

mations under constraints may not always reach the Boltzmann

equilibrium. We found that folds with lowest energy were not

always the ones with highest probability. We summarized our

results in Table 2.

The study is restricted to short, two-dimensional designing

sequences. Modelling could be improved through use of longer

sequences, folding three-dimensionally. The thermodynamic per-

mission factor modelled various in vivo constraints on the folds,

summarizing these constraints in a single parameter. Future devel-

opments could include use of a length-dependent thermodynamic

permission factor. Finally, we know that the ribosome imposes

spatial restrictions on the fold; these should also be taken into

account.
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ABSTRACT

Genetic variation analysis holds much promise as a basis for

disease-gene association. However, due to the tremendous number

of candidate single nucleotide polymorphisms (SNPs), there is

a clear need to expedite genotyping by selecting and considering

only a subset of all SNPs. This process is known as tagging SNP

selection. Several methods for tagging SNP selection have been

proposed, and have shown promising results. However, most of

them rely on strong assumptions such as prior block-partitioning,

bi-allelic SNPs, or a fixed number or location of tagging SNPs.

We introduce BNTagger, a new method for tagging SNP selection,

based on conditional independence amongSNPs. Using the formalism

of Bayesian networks (BNs), our system aims to select a subset of

independent and highly predictiveSNPs. Similar to previous prediction-

based methods, we aim to maximize the prediction accuracy of

tagging SNPs, but unlike them, we neither fix the number nor the

location of predictive tagging SNPs, nor require SNPs to be bi-allelic.

In addition, for newly-genotyped samples, BNTagger directly uses

genotype data as input, while producing as output haplotype data of

all SNPs.

Using three public data sets,we compare the prediction performance

of our method to that of three state-of-the-art tagging SNP selection

methods. The results demonstrate that our method consistently

improves upon previous methods in terms of prediction accuracy.

Moreover, our method retains its good performance even when

a very small number of tagging SNPs are used.

Contact: lee@cs.queensu.ca, shatkay@cs.queensu.ca

1 INTRODUCTION

A major interest of current genomics research is disease-gene
association, that is, identifying which DNA variations are highly

associated with a specific disease. In particular, single nucleotide

polymorphisms (SNPs), which are the most common form of DNA

variation, as well as sets of SNPs localized on one chromosome—

referred to as haplotypes—are at the forefront of disease-gene

association studies (Halldörsson et al., 2004b; Crawford and

Nickerson, 2005). However, in most large-scale association studies,

genotyping all SNPs in a candidate region for a large number of

individuals is still costly and time-consuming. Thus, selecting a sub-

set of SNPs that is sufficiently informative but still small enough to

reduce the genotyping overhead is an important step toward disease-

gene association. This process is known as haplotype tagging SNP
(htSNP) selection, and it poses a current major challenge (Crawford

and Nickerson, 2005; Johnson et al., 2001).

Several computational methods for htSNP selection have been

proposed in the past few years. One widely-used approach is based

on the block structure of the human genome (Daly et al., 2001;

Gabriel et al., 2002). That is, the human genome can be viewed as

a set of discrete blocks such that within each block, there is a very

small set of common haplotypes shared by most of the population

(i.e., 80–90%). Based on this idea, these methods aim to identify

a subset of SNPs that can distinguish all the common haplotypes

(Gabriel et al., 2002), or at least explain a certain percentage of them

(Johnson et al., 2001; Avi-Itzhak et al., 2003). Another popular

htSNP selection approach (Ao et al., 2005; Carlson et al., 2004),

rooted in linkage disequilibrium (LD), is based on pairwise asso-
ciation of SNPs. This approach tries to select a set of htSNPs such

that each of the SNPs on a haplotype is highly associated with one of

the htSNPs. This way, although the SNP that is directly responsible

for the disease may not be selected as an htSNP, the association of

the target disease with that SNP can be indirectly deduced from its

associated htSNP.

Bafna et al. (2003) and Halldörsson et al. (2004) proposed a some-

what different approach. They consider htSNPs to be a subset of

all SNPs, from which the remaining SNPs can be reconstructed.

Thus, they aim to select htSNPs based on how well they predict the

remaining set of the unselected SNPs, referred to as tagged SNPs,

and reconstruct the complete haplotypes using htSNPs. To quantify

the confidence with which one group of SNPs can predict another,

they suggested a new measure called informativeness. With the

same predictive aim, Halperin et al. (2005) also proposed a new

measure, directly evaluating the prediction accuracy of a set of

SNPs. By limiting the number of predictive SNPs or restricting

them to a w-bounded neighborhood (where w is a fixed window

size � 30), both methods can identify the optimal (under these

restrictions) set of htSNPs satisfying their respective figure of merit.

These last two methods are not based on the block structure of

the human genome. Thus, they do not assume prior block partitioning

or limited diversity of haplotypes. Furthermore, they can use a com-

bination of several SNPs to predict the others. Therefore, predictive

methods typically select a smaller number of htSNPs than pairwise

association methods (De Bakker et al., 2006). However, despite their

advantages, these predictive methods still suffer from several limi-

tations. All of them can only be applied to bi-allelic SNPs (i.e., ones�To whom correspondence should be addressed.
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having only two different allelesl), and their performance is limited

by restrictions such as the small-bounded location or the fixed

number of htSNPs for each prediction. In addition, most of them

require haplotype information of htSNPs to reconstruct newly-

genotyped samples.

In this paper, we present a new method, BNTagger, for selecting

htSNPs based on their accuracy in predicting tagged SNPs, that is

not limited by previous restrictions. In addition, we provide

a haplotype-reconstruction framework for newly-genotyped sam-

ples. To identify a predictor-predictee relationship among SNPs,

we utilize conditional independencies among SNPs in the frame-

work of Bayesian networks. Bayesian networks (BNs) have been

previously used for haplotype block partitioning (Greenspan and

Geiger, 2003) and haplotype phasing (Xing et al., 2004), but to our

knowledge, this is the first time that they are applied to htSNP

selection. BNTagger uses three main steps:

(1) Identifying the conditional independence relations among

SNPs.

(2) Selecting htSNPs using two heuristics.

(3) Reconstructing the complete haplotypes for newly-genotyped

samples.

Similar to other predictive methods, our system aims to select

htSNPs maximizing the prediction accuracy for the remaining

tagged SNPs. However, it has several unique aspects. First, unlike

all previous work (Bafna et al., 2003; Halldörsson et al., 2004;

Halperin et al., 2005), we do not fix the neighborhood nor the

number of predictive htSNPs for each tagged SNP. Although

SNPs within close physical proximity are assumed to be in

a state of high linkage disequilibrium (LD), recent studies have

reported that the levels of LD vary across chromosomal regions

(Reich et al., 2001; Daly et al., 2001). Therefore, as noted by Bafna

et al. (2003), ‘‘. . . it is neither efficient nor desirable to fix the
neighborhood in which htSNPs are selected’’. Moreover, it is real-

istic to assume that a different number of htSNPs may be needed for

predicting each tagged SNP.

Second, our system is not restricted to the case of bi-allelic SNPs.

While most SNPs are indeed bi-allelic, there are SNPs that can take

on more than two nucleotides. While these cases may be rare, it is

still unknown whether disease variants are rare or common haplo-

types (Crawford and Nickerson, 2005). Thus, it is desirable to

impose as few restrictions as possible on htSNP selection

(Palmer and Cardon, 2005).

Third, for newly-geneotyped samples, we directly construct hap-
lotype data of all SNPs using genotype data of htSNPs. As pointed

by Halperin et al. (2005), the accuracy of haplotype phasing based

only on htSNPs is limited due to the reduced LD among htSNPs.

Therefore, it is reasonable to assume that reliable haplotype data are

not available in the case of newly-genotyped samples. However, we

note that, unlike Halperin’s method, which uses genotype data as

input and as output as well, we directly output the haplotype data of

all SNPs for new samples. Thus, subsequent haplotype phasing for

the reconstructed samples is unnecessary.

We applied our method to three public data sets (Daly et al., 2001;

Rieder et al., 1999; Nickerson et al., 2000). Based on leave-one-out

and on 10-fold cross validation, our results demonstrate that using

our selection method, about 2.9%–11.5% of the total SNPs are

sufficient to predict the others with 90% accuracy. We also compare

our prediction performance to that of recently published htSNP

selection methods (Bafna et al., 2003; Halldörsson et al., 2004;

Lin and Altman, 2004; Halperin et al., 2005). The results

show that our method extracts fewer htSNPs while achieving the

same level of prediction accuracy. Moreover, our method retains its

good performance even when a very small number of htSNPs is

used.

In section 2, we formulate the problem of htSNP selection in

the context of prediction accuracy, and introduce the basic notations

that are used throughout the paper. Section 3 briefly provides the

necessary background on Bayesian networks, focusing on the con-

cepts most relevant to our algorithm. Our selection and haplotype

reconstruction algorithms are described in section 4. Section

5 reports our evaluation results. Section 6 summarizes our findings

and outlines future directions.

2 PROBLEM FORMULATION

A haplotype represents the allele information of contiguous

SNPs on one chromosome, while a genotype represents the com-
bined allele information of the SNPs on a pair of chromosomes.

Thus, the allele information of haplotypes takes on values from

{a, g, c, t}, while that of genotypes takes on values from {a/a,

a/g, a/c, a/t, . . . , t/c, t/t}. When the combined allele information

of a pair of haplotypes, hj and hk, comprises the genotype gi, we

say that hj and hk resolve gi. For example, the two haplotypes hj ¼
(a, g, a, c) and hk ¼ (a, c, c, a) resolve the genotype gi ¼ (a/a, c/g,

a/c, a/c). We also refer to haplotypes hj and hk as the complementary
mates of each other to resolve gi, and consider them to be

compatible with gi.

Let D be a data set consisting of n haplotypes, h1, . . . , hn, each

with p different SNPs, s1, . . . , sp. The set D can be viewed as an n by

p matrix. Each row, Di�, in D corresponds to haplotype hi, while

each column, D�j, corresponds to a SNP sj. Dij denotes the jth SNP in

the ith haplotype. We view each SNP as a discrete random variable,

Xj, that takes on values from a finite domain {a, g, c, t}. Thus,

we define the finite set V ¼ {X1, . . . , Xp}, in which each random

variable Xj corresponds to the jth SNP on a haplotype in the

data set D.

Given the set V of random variables corresponding to the p
SNPs, our goal is to find a subset T � V, such that the size of

T, jTj, is smaller than some pre-specified constant k, and SNPs

in T can best predict the remaining unselected ones, V � T. As

defined earlier, the selected SNPs are referred to as haplotype

tagging SNPs (htSNPs), and the unselected ones are referred to

as tagged SNPs. Suppose that our htSNP set T consists of q
SNPs, T ¼ fXt1 ‚ . . . ‚Xtqg. To predict the allele of a tagged

SNP Xj given the alleles of the htSNPs, T, we use the posterior

probability of Xj conditioned on the set T, PrðXj jXt1 ‚ . . .XtqÞ. That

is, the allele whose conditional probability is the highest given

the alleles of the predictive htSNPs is taken to be the allele of

the tagged SNP. When multiple maximum probability solutions

exist, the most common allele of Xj is selected. To capture the

idea that this prediction can be either correct or incorrect, we intro-

duce the following indicator function Pf.

1The nucleotide 2 {a, g, c, t} at a position in which a SNP occurred is called

an allele.
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DEFINITION 1. Prediction Indicator Function: Given a predictive
htSNP set, T ¼ fXt1 ‚ . . . ‚Xtqg, a predicted tagged SNP, Xj 2 V � T,

and a haplotype, Di�, a prediction indicator function Pf (Xj, T, Di�)
is defined2 as

Pf ðXj‚T‚Di�Þ ¼

¼

1 : if Dij ¼¼
arg max
x2fa‚ g‚ c‚ tg

PrðXj ¼ x jXt1 ¼ Dit1 ‚ . . . ‚Xtq ¼ Ditq
Þ;

0 : otherwise:

8>><>>:
We note that the prediction of each tagged SNP is assumed to

depend on the values of the htSNPs, but not on the other predicted

tagged SNPs. Hence, prediction can be applied in any order. Using

this prediction indicator function, we formally define our objective

as follows:

DEFINITION 2. Maximally Predictive htSNP Set: Given a set of
p SNPs, V ¼ {X1, . . . , Xp}, a constant k, and a prediction indicator
function Pf, a maximally predictive htSNP set, T ¼ fXt1 ‚ . . . ‚Xtq

g,
for a set of haplotypes D is defined as a subset T of V, (T � V),
satisfying two criteria:

1Þ j T j < k‚ and

2Þ T ¼ argmax
T0�V

Xp

j¼1

Xn

i¼1

pf ðXj‚ T0‚ Di�Þ:

That is, T is the subset of SNPs that is likely to predict correctly the

largest number of SNPs in V� T. BNTagger utilizes the framework

of Bayesian networks to effectively compute the posterior proba-

bility in Pf and to select a set of htSNPs. In the next section, we

briefly introduce the necessary background on Bayesian networks.

3 BAYESIAN NETWORKS

A Bayesian network (BN) is a graphical model of joint probability

distributions that captures conditional independencies among

its variables (Jensen, 2002). Given a finite set V ¼ {X1, . . . , Xp}

of random variables, a Bayesian network has two components:

a directed acyclic graph, G, and a set of conditional probability

parameters, Q¼ {�1, . . . , �p}. Each node of the graph G corresponds

to a random variable Xj. An edge between two nodes represents

a direct dependence between the two random variables, and the lack

of an edge represents their conditional independence. Using the

conditional independence encoded in the structure of the BN

(Jensen, 2002), the joint probability distribution of the random

variables in V can be computed as the product of their conditional

probability parameters:

PrðVÞ ¼
Yp
j¼1

�j ¼
Yp
j¼1

PrðXj j paðXjÞÞ‚

where pa(Xj) denotes the parent nodes of Xj. The BN formalism

enables the computation of the posterior probability of a target

variable when the values of some of the other variables are

observed. This computation process is typically referred to as BN
inference. Suppose that we have observed the values of q variables,

Xt1 ¼ e1‚ . . . ‚Xtq ¼ eq‚ in a BN. Based on this information, the

conditional distribution of Xj can be computed from the joint pro-

bability of V by marginalizing out all unobserved variables except

Xj, denoted as M ¼ V � fXj‚ Xt1
‚ . . . ‚Xtqg (Jensen, 2002). Let m

denote any of the possible instantiation of the random variables in

M. The posterior probability of Xj can thus be calculated as:

PrðXj jXt1 ¼ e1‚ . . .‚Xtq ¼ eqÞ

¼

X
m

PrðM ¼ m‚ Xj‚ Xt1¼ e1‚ . . .‚ Xtq ¼ eqÞ

PrðXt1¼ e1‚ . . .‚Xtq
¼ eqÞ

¼

X
m

Y
Xk2V

PrðXk j paðXkÞÞ�

PrðXt1 ¼ e1‚ . . .‚ Xtq ¼ eqÞ ‚

ð1Þ

where the summation is over all possible combinations of values m
assigned to all the unobserved variables in M, and the value of every

observed variable, Xti , is set to ei in Pr(Xk j pa(Xk))
�.

The Markov blanket is another central concept in Bayesian net-

works. The Markov blanket of Xj includes the parents of Xj, the

children of Xj, and the other parents of Xj’s children (Jensen, 2002).

In a BN, Xj is conditionally independent of all other variables given

its Markov blanket. This typically speeds up the calculation of the

posterior Pr ðXj jXt1 ¼ e1‚ . . . ‚Xtq ¼ eqÞ since when the Markov

blanket of Xj is observed, only this information needs to be

taken into account for computing the distribution of Xj.

Numerous BN inference algorithms have been developed to com-

pute this posterior probability exactly or approximately. We use

the Generalized Variable Elimination algorithm implemented in

JavaBayes (Cozman, 2000) to compute the posterior probability

used in our prediction indicator function Pf.

To use the BN inference algorithm, we must first identify

the structure (G) and parameters (Q) of the BN representing the hap-

lotype data D. This process is referred to as BN learning. Structure
learning aims to find the graph structure G which maximizes the

conditional probability of G given the data D, as follows:

G ¼ argmax
G0

PrðG0 jDÞ ¼ argmax
G0

PrðD jG0Þ · PrðG0Þ
PrðDÞ

¼ argmax
G0

PrðD jG0Þ · PrðG0Þ:

We use the Minimum Description Length (MDL) score (Lam and

Bacchus, 1994) to reflect the above probabilistic scoring. In the

same vein, parameter learning in a BN aims to find Q which maxi-

mizes the conditional probability of Q given the data D, Pr(Q jD).

We use a maximum-likelihood approach to estimate Q.

4 METHODS

BNTagger aims to select a set of htSNPs that predicts the tagged SNPs

with the highest accuracy. However, finding this set of htSNPs in the general

case has been proven to be NP-hard (Bafna et al., 2003). To effectively

identify the set of highly predictive SNPs, T, we use several heuristics,

utilizing the framework of a Bayesian network (BN) and the conditional

independence captured in it.

Figure 1 provides a simple example for how BNTagger utilizes the

conditional independencies among SNPs to select htSNPs. The sample

here consists of ten haplotypes with four SNPs each (Figure 1(a)); the

BN structure that represents conditional independencies among the four

SNPs along with the probability parameters is found via BN learning,

and shown in Figure 1(b). For simplicity, the conditional probabilities are2For any SNP Xtl 2 T‚ Pf ðXtl ‚ T‚ Di�Þ is taken to be 1 always.
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shown only for alleles occurring in the sample. The other probabilities are

considered here to be zero.

To select htSNPs given a Bayesian network, BNTagger starts with an

empty htSNP set T, and sequentially examines the average prediction accu-

racy for each SNP (node) based on the current set, T. If the prediction

accuracy for a SNP, Xj, is smaller than a pre-specified threshold, BNTagger

adds Xj into T as a new htSNP, because Xj is not well-predicted by the current

htSNPs in T. Clearly, the order in which SNPs are evaluated is very

important, since it can directly affect the selected set of htSNPs and their

prediction performance. Unlike other methods that sequentially examine

SNPs in the order of their chromosomal location, BNTagger examines

the SNPs in the topological order (from parents to children) in the BN.

For example, in Figure 1(b), BNTagger first examines the root X4, then

its children X3, X1, and so on. Thus, when the prediction accuracy for

each SNP Xj is evaluated, given T, the htSNPs in the current set T are all

ancestors of Xj. This has two advantages:

First, the parent-child relation in the BN encodes the direct dependence

between these nodes, that is, the state of child nodes depends primarily on the

information of their parents. For example, Figure 1(c) shows the prediction

accuracy3 for SNP X3 assuming each of the other SNPs, X1, X2, or X4 as an

htSNP, as well as when assuming no htSNP is used. All the prediction

accuracies are higher when htSNP information is given than when it is

not. Moreover, the best prediction accuracy is achieved when the parent

of X3, that is X4, is used as a predictor.

Second, as shown in Definition 1, BNTagger calculates the prediction

accuracy for each SNP Xj using the posterior probability of Xj given the allele

information of the htSNPs. To calculate this posterior, the product of the

conditional probabilities in the BN must be computed as was shown in

Equation (1). However, if the set of htSNPs contains no descendants of

Xj and the parents of Xj are already in the set of htSNPs, the posterior

probability is the same as the conditional probability parameter of Xj,

due to the conditional independence encoded in the BN. For instance, in

Figure 1(c), the best prediction accuracy for the SNP X3 is simply the

maximum of its conditional probability parameters, Pr(X3 jX4), shown in

Figure 1(b).

As a result, the conditional independence structure and the conditional

probability parameters in the BN guide BNTagger to find a set of highly

predictive htSNPs, and expedite the evaluation procedure. We note though

that in order to use the BN components, BNTagger must first build them. Once

the BN is constructed and the htSNPs are selected, we also provide a recon-

struction framework for newly-genotyped samples; as mentioned earlier, the

main purpose of prediction-based htSNP selection is to reconstruct the original

set of SNP information based on the selected htSNPs.

To summarize, BNTagger consists of three stages: I. Identification of the

conditional independence relations among SNPs; II. htSNP selection; and

III. Reconstruction of haplotype information for newly-genotyped samples.

In the first stage, BN learning is used to identify a graph structure, G, and

a set of conditional probability parameters, Q, that best explain the given

haplotype data, D. In the second stage, a heuristic search is applied to the

identified BN model to find a set of htSNPs. The third stage provides the

haplotype reconstruction framework for subsequent association studies.

These three stages are depicted in Figure 2, and are further described in

the following subsections.

4.1 Identification of conditional independence

relations among SNPs

To use a Bayesian network as described above, its structure and parameters

must first be learned. We implemented the Sparse Candidate algorithm

(Friedman et al., 1999), which accelerates BN learning by restricting the

parents of each node to a small subset of candidates. To select candidate

parents for each node, we use the non-random association among SNPs,

known as linkage disequilibrium (LD). Disease-gene association studies are

typically based on the assumption that LD exists between a disease allele and

adjacent SNPs (Crawford and Nickerson, 2005), thus it is widely used for

quantifying relationships between SNPs in population genetics. Numerous

LD measures have been used. Among them, we use the multi-allelic4 exten-

sion of Lewontin’s linkage disequilibrium (LD) measure, D0 (Hedrick,

1987), which is one of the most commonly used measures for multi-allelic

SNPs (Aulchenko et al., 2003).

We explain it here in detail. Let X1 be an m-allelic SNP, and X2 be an n--

allelic SNP. Let f 1
i be the relative frequency of the ith allele for SNP X1, while

f 2
j be the relative frequency of the jth allele for SNP X2. Let fij be the relative

joint frequency of the ith allele occurring for SNP X1 and the jth allele occurring

for SNP X2 (where i ¼ 1, . . . , m and j ¼ 1, . . . , n). Formally, the multi-allelic

extension of Lewontin’s LD, D0, is defined as:

D0 ¼
Xm
i¼1

Xn

j¼1

f 1
i · f 2

j




 f ij � f 1
i · f 2

j

Dmax




‚
where Dmax is the maximum value of LD between the ith and the jth alleles. In

principle, D0 measures the difference between the observed (fij) and the

Fig. 1. A Bayesian network of SNPs and examples of prediction accuracy

values.

3The prediction indicator function Pf (Definition 1) is used in the equations

in Figure 1(c).

4Most LD measures assume SNPs to have only two different alleles. Multi-

allelic LD measures extend these bi-allelic LD measures, by allowing SNPs

to have more than two different alleles.
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expected frequency of haplotypes under independence ðf 1
i · f 2

j Þ, normalized

by the maximum LD (Dmax), and weighted by the expected joint frequency

under independence ðf 1
i · f 2

j Þ:
Using the measure D0, BNTagger first considers candidate parents for

SNP Xj from the set V� {Xj}, whose pairwise disequilibrium with Xj, as

measured by D0, is in the top g percent (here, g ¼ 10). The search for the

optimal graph structure is performed using greedy hill climbing with random

restarts. After N iterations (N¼ 25,000), we select the graph structure with

the best MDL score (Lam and Bacchus, 1994). The conditional probability

parameters Q ¼ {�1, . . . , �p} are computed using maximum-likelihood

estimation given the identified structure and the data.

4.2 Haplotype tagging SNP selection

Given the SNP-independence structure and the parameters constructed in

the previous stage, we now identify a set of htSNPs, T, for the haplotype data,

D. Since a different combination of htSNPs can be used to predict each

tagged SNP, we also identify a set of predictive htSNPs, TXj � T, for each

tagged SNP Xj.

As was demonstrated earlier, given the haplotype data, D, and the

current set of htSNPs, T, we sequentially examine the average prediction

accuracy for each SNP, Xj. If the prediction accuracy for the SNP Xj is

smaller than a pre-specified threshold, a, Xj is added to the set of htSNPs,

T. Otherwise, Xj is considered a tagged SNP, and the current htSNP set, T, is

kept as its candidate set of predictive htSNPs, TXj
. We call this procedure

sequential search. When a new htSNP is added to T during the sequential

search, we re-evaluate the prediction accuracy for previously examined

tagged SNPs using the updated T. If the prediction accuracy for the re-

examined tagged SNP is increased by using the new set T, its previously

assigned candidate set of predictive htSNPs is updated to the new T. We call

this procedure revising search.

In brief, BNTagger sequentially identifies a global set of htSNPs, T,

based on their prediction accuracy, and iteratively updates the predictive

set of htSNPs, TXj
, for each tagged SNP, Xj. To efficiently conduct these

procedures, BNTagger uses two heuristics. First, we topologically sort the

nodes in the BN, which yields the levels of nodes as defined below, and

conduct sequential search in this topological order.

DEFINITION 3. A level of node Xj in a Bayesian network is
defined as:

levelðXjÞ ¼
1 : if paðXjÞ ¼ f;

max
Xk2paðXjÞ

ðlevelðXkÞÞ + 1 : otherwise:

(

The sequential search is conducted in the order of the levels from low to

high. This way, the level of htSNPs in T is never greater than that of

the currently examined node. As mentioned before, there are two advantages

to this ordering: the value of child nodes depends primarily on the infor-

mation of their parents, and when parents are htSNPs, the child’s posterior

probability is obtained directly from the network’s parameters.

The second heuristic is for expediting the identification of predictive htSNPs

for each tagged SNP. That is, if the current set of htSNPs, T, shows a prediction

accuracy greater than a pre-specified threshold, b, for SNP Xj, we do not re-

evaluate it any more. We formally define the current htSNP set T as the pre-

diction blanket of Xj, and use it as the final set of predictive htSNPs for Xj. This

second heuristic stems from an empirical observation that when the prediction

accuracy for tagged SNP, Xj, given the current set T, is sufficiently high, new

htSNPs often do not significantly improve the accuracy. This phenomenon was

also observed by others (Ackerman et al., 2003). Thus, it is typically unnecessary

to examine the effect of every new htSNP on the tagged SNPs that are already

well-predicted. The loss in accuracy is typically negligible. Moreover, the poten-

tial overfitting of predictive htSNP selection to the training data D is also reduced.

Formally, we define the prediction blanket as follows:

DEFINITION 4. Given a prediction indicator function, Pf, and
a constant b, the current set of htSNPs, T ¼ fXt1 ‚ . . .‚Xtqg, is defined
as the prediction blanket of Xj if the average prediction accuracy for
Xj, over all haplotypes Di� given T is greater than b, that is:�

1

n

Xn

i¼1

Pf ðXj‚T‚Di�Þ
�
> b:

As a matter of fact, in a Bayesian network, re-evaluation can be

avoided whenever TXj
is the Markov blanket of Xj, as information

about newly-added htSNPs does not affect the posterior probability of

Xj given its Markov blanket. However, it is unlikely that all parents, all

children, and all spouses of Xj (i.e., the complete Markov Blanket of Xj) will

be included in the current htSNP set T, unless T is very large. Thus, our

prediction blanket can be viewed as a relaxed version of the Markov blanket

in the context of prediction. The selection algorithm is summarized in

Table 1.

4.3 Reconstruction of newly-genotyped samples

The ultimate purpose of prediction-based htSNP selection is to reconstruct

the information for all SNPs on a haplotype, using only the selected htSNPs

in newly-genotyped samples (for instance, in new association studies). We

propose a practical framework for this reconstruction. Our reconstruction

algorithm takes genotype data of htSNPs as input, infers their resolving

haplotypes5 based on the previously used haplotype data set D, predicts

Fig. 2. Outline of haplotype tagging SNP selection and reconstruction in

BNTagger.

5As defined in the first paragraph of Section 2.
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the alleles of tagged SNPs using the Bayesian network model built in stage I,

and outputs the haplotype information of all SNPs.

Suppose that our htSNP set T, as identified in stage II, consists of

q SNPs, that is, T ¼ fXt1 ‚ . . . ‚Xtqg: Let g ¼ ðxt11
/xt12

‚ . . . ‚xtq1
/xtq2
Þ be a

new genotype, consisting of the combined allele information of the q htSNPs.

To deduce the haplotype information of g, we first select the most common

haplotype in D, whose htSNP information is compatible with g. The

complementary mate of the haplotype can then be automatically constructed.

If we cannot find any haplotype compatible with g in D, we create a new

haplotype whose alleles are assigned as the major allele for each hetero-

zygous htSNP. Let h0n be the new haplotype, and h
0

ni
be its ith element (where

i ¼ 1, . . . , q). Given g ¼ ðxt
11

/xt
12

‚ . . . ‚xtq1
/xtq2
Þ hni can then be defined as:

h0ni
¼

xti1 : if xti1 ¼ xti2 ;

argmax
x2fxti1

‚ xti2
g

PrðXti ¼ xÞ : otherwise:

8<:
The prior probability, Pr(Xti

), can be computed using our Bayesian network

model. Again, its complementary mate can then be automatically con-

structed. In either case, the inferred two haplotypes for g are separately

used for predicting the alleles of each tagged SNP. We call this procedure

incremental haplotype reconstruction.

The principle of incremental haplotype reconstruction is based on Clark’s

parsimony approach (Clark, 1990). That is, it tries to resolve an ambiguous

genotype using one of the already identified haplotypes. Moreover, rather

than picking any compatible haplotype, it selects the most common one,

since common haplotypes are the most likely candidates under the random

mating assumption. Our haplotype reconstruction for the htSNP genotype

thus follows the widely-used maximum parsimony approach. However, it

differs from conventional algorithms in utilizing the existing haplotype

information of all previously known SNPs, rather than directly phasing

those in the genotype. We believe that utilizing this prior haplotype informa-

tion is necessary. As noted earlier, haplotype phasing based on the set of

htSNPs might not be as reliable as haplotype phasing based on the original

set of SNPs due to the reduced linkage disequilibrium among htSNPs

(Halperin et al., 2005).

Once the haplotype information of htSNPs is deduced, we use the same

prediction rule introduced in Section 2 to predict the tagged SNPs. That is,

the allele whose conditional probability is the highest given the alleles of the

htSNPs is taken to be the allele for each tagged SNP. When multiple solu-

tions exist, the most common allele of the tagged SNP is selected.

5 RESULTS

5.1 Evaluation methods

We compare the performance of our method with that of three state-

of-the-art htSNP selection methods: 1) the Eigen2htSNP method

based on principal component analysis (PCA) (Lin and Altman,

2004); 2) the Block-free method based on dynamic programming

(Bafna et al., 2003; Halldörsson et al., 2004); and 3) the STAMPA

method based on dynamic programming (Halperin et al., 2005). Lin

and Altman (2004) tested Eigen2htSNP with two options: varimax
and greedy, and predicted each tagged SNP using the one htSNP

whose correlation coefficient with the tagged one is the highest.

Bafna et al. (2003) and Halldörsson et al. (2004) tested the Block-

free method with two window sizes: 21 and 13, and used the major-

ity vote of htSNPs to predict each tagged SNP. Halperin et al. (2005)

also relied on the majority vote of htSNPs for prediction, but unlike

the previous two methods, they used the genotype data of htSNPs

rather than haplotype data.

All these methods aim to select a set of highly predictive htSNPs

for the unselected, tagged SNPs. Therefore, they have all been

evaluated using prediction accuracy. Accordingly, this is the

measure we use here for a fair comparison. We note that the pub-

lished results (Bafna et al., 2003; Halldörsson et al., 2004; Lin and

Altman, 2004; Halperin et al., 2005) were all based on different data

sets. To compare BNTagger with each of these methods, we

obtained the data set used to test each method, preprocessed it as

described in the respective publication, and applied our algorithm to

it. For evaluation, we use the same evaluation procedure used

by each of the compared methods utilizing leave-one-out for the

Block-free and the STAMPA methods (Bafna et al., 2003;

Halldörsson et al., 2004; Halperin et al., 2005) and 10-fold cross

Table 1. BNTagger: Haplotype tagging SNP selection algorithm

D: training data (n haplotypes with p SNPs)

Pf: a prediction indicator function

V: a set of p SNPs {X1, X2, . . . , Xp}

T: a set of htSNPs fTt1 ‚ . . .‚Ttqg

// predefined constants

a: accuracy threshold for htSNPs

b: accuracy threshold for prediction blanket

level[Xj]: the level of Xj in the BN

status[Xj]: the status of Xj

accuracy[Xj]: the prediction accuracy for Xj

Function SequentialSearch (D, Pf){/� Main function �/
T ¼ f;

8j status[Xj] ¼ ‘unchecked’;

8j accuracy[Xj] ¼ 0;

L ¼ max
j

level[Xj];

for (each level 1 � l � L)

for (each node Xj whose level is l)
accuracy ¼ 1

n

Pn
i¼1 Pf ðXj‚T‚Di�Þ;

if (accuracy < a)

// add this node as an htSNP

status[Xj] ¼ ‘htSNP’;

T ¼ T [ {Xj};

call RevisingSearch(level[Xj]);

else if (accuracy > b)

// the prediction blanket of Xj is found

status[Xj] ¼ ‘blanket_found’;

prediction_blanket[Xj] ¼ T;

else

// store a candidate predictive htSNPs

status[Xj] ¼ ‘tagged’;

prediction_blanket[Xj] ¼ T;

accuracy[Xj] ¼ accuracy;

}

Function RevisingSearch (L) {

for (each node Xk

whose level � L and status ¼ ‘tagged’)

accuracy ¼ 1
n

Pn
i¼1 Pf ðXk‚T‚Di�Þ;

if(accuracy > b)

status[Xj] ¼ ‘blanket_found’;

prediction_blanket[Xk] ¼ T;

else if (accuracy > accuracy[Xk])

prediction_blanket[Xk] ¼ T;

accuracy[Xk] ¼ accuracy;

}
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validation for Eigen2htSNP (Lin and Altman, 2004), as described in

the respective publications. As Lin and Altman (2004) did not

provide their 10-fold split, we ran the 10-fold cross validation pro-

cedure 10 times, each using a randomized 10-way split, to ensure

robustness. In all cases, the average prediction accuracy is used as

the ultimate evaluation measure. The prediction performance of the

compared methods for each data set was directly taken from their

respective publications (Bafna et al., 2003; Halldörsson et al., 2004;

Lin and Altman, 2004; Halperin et al., 2005).

5.2 Test data

Three public data sets, ACE (angiotensin converting enzyme)

(Rieder et al., 1999; Lin and Altman, 2004), LPL (human lipopro-

tein lipase) (Nickerson et al., 2000; Bafna et al., 2003; Halldörsson

et al., 2004), and IBD5 (inflammatory bowel disease 5) (Daly et al.,
2001; Lin and Altman, 2004; Halperin et al., 2005) were used for

evaluation. These data sets were previously used to test the three

compared methods, as reported in their respective publications. We

first analyzed the genetic characteristics of each data set based

on: gene diversity, linkage disequilibrium, and recombination

rate. The gene diversity, (i.e., the probability that two haplotypes

chosen at random from the sample are different (Nei, 1987)), is

measured by ðn/ðn � 1ÞÞ · ð1 �
Pk

i¼1 p2
i Þ‚ where n is the total

number of haplotypes, k is the number of distinct haplotypes,

and pi is the relative frequency of the ith distinct haplotype. Linkage

disequilibrium (LD) between SNPs is estimated by the multi-allelic

extension of Lewontin’s LD, D0 as defined earlier (Hedrick, 1987),

where the statistical significance of the standardized LD parameter

is calculated using the x2 test with one degree of freedom. The

recombination rate of each data set is measured by the four-gamete

test (Hudson and Kaplan, 1985).

The first data set ACE (Rieder et al., 1999) contains 78 SNPs

within a genomic region of 24Kb on chromosome 17q23. Genotyp-

ing was done from 11 individuals. This data set was used by Lin and

Altman to test Eigen2htSNP (Lin and Altman, 2004). Following

their procedure, among the 78 original SNPs only 52 bi-allelic

nonsingletons are analyzed. Partially due to the small number of

SNPs and small sample size, this data set shows high average LD

(0.78) and relatively low gene diversity (0.876). The recombination

rate is also relatively low (19.38%).

The second data set LPL (Nickerson et al., 2000), which was

used by Bafna et al. (2003) and Halldörsson et al. (2004) to test the

Block-free method, contains 88 SNPs spanning 5.5Kb on chromo-

some 19q13.22. Genotyping was performed over 71 individuals.

Following the analysis performed by Bafna et al. (2003), we analyze

only 87 bi-allelic SNPs. Despite the small size of the LPL gene, this

data set has high gene diversity (0.99) and low average LD (0.55),

because it consists of haplotypes from three different populations.

The four-gamete test shows 55.95% recombination or recurrent

mutation.

The third data set, IBD5 (Daly et al., 2001) contains 103 SNPs on

chromosome 5q31, spanning 500Kb. Genotyping was performed over

129 father-mother-child trios from a European population. This data

set was used by Halperin et al. and by Lin and Altman to test the

STAMPA (Halperin et al., 2005) and the Eigen2htSNP (Lin and

Altman, 2004) methods, respectively. Lin and Altman (2004)

analyzed data from all 387 individuals using PHASE (Stephens

et al., 2001) for haplotype phasing. Halperin et al. (2005) analyzed

data of only 129 individuals using GERBIL (Kimmel and Shamir,

2005) for haplotype phasing. Thus, following both of these two

procedures, we created two separate data sets from IBD5, denoted

as IBD5-1 (for Lin and Altman’s) and IBD5-2 (for Halperin’s). Both

these sets have low linkage disequilibrium and high recombination

rates. The summary of all data sets is given in Table 2.

5.3 Test results

We summarize the performance of BNTagger compared with the

three state-of-the-art htSNP selection methods in Figure 3. We also

compute the p-value of the difference in performance, using the

Wilcoxon-ranksum test with 5% significance level. Overall,

BNTagger consistently outperforms other methods on all data

sets. Most importantly, improvement in prediction performance

is most notable when the number of selected htSNPs is small,

the average linkage disequilibrium in a data set is relatively low,

and the gene diversity is high. This is a major advantage of

BNTagger, since most htSNP selection methods have been

known to suffer in those cases (Crawford and Nickerson, 2005;

Johnson et al., 2001; Avi-Itzhak et al., 2003; Ao et al., 2005;

Carlson et al., 2004). In other words, BNTagger retains its good

performance even in what are considered to be hard cases.

The prediction performance of Eigen2htSNP (Lin and

Altman, 2004) is compared with ours using two data sets: ACE

and IBD5-1. For the first data set, ACE, Eigen2htSNP-varimax

shows performance comparable to ours (see Figure 3(a); p-values

are 0.2933 for varimax and 4.88 · 10�2 for greedy), but in the case

of IBD5-1, its performance is considerably lower than ours, as

shown in Figure 3(c) (p-values are 1.9489 · 10�6 for varimax

and 1.5707 · 10�8 for greedy). The prediction performance of the

Block-free method (Bafna et al., 2003; Halldörsson et al., 2004) is

compared with ours using the LPL data set. Their performance

increases substantially with the number of selected htSNPs, as

shown in Figure 3(b), but the performance difference between

ours and the Block-free method is significant when the number

of htSNPs is smaller than 30 (p-values are 4.2 · 10�3 for window

21 and 1.2552 · 10�9 for window 13). The prediction

performance of STAMPA (Halperin et al., 2005) is compared

Table 2. Summary of test data sets

Data Data Source SNP No Haplotype No Phasing Gene Diversity LD (Std) Recombination

ACE Lin and Altman (2004) 52 22 PHASE 0.876 0.78 (0.34) 19.38%

LPL Nickerson et al. (2000) 87 142 known 0.991 0.55 (0.35) 55.95%

IBD5-1 Lin and Altman (2004) 103 774 PHASE 0.981 0.53 (0.27) 94.3%

IBD5-2 Daly et al. (2001) 103 258 GERBIL 0.724 0.41 (0.23) 99.6%
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with ours using the data set that Halperin et al. used, IBD5-2, as

shown in Figure 3(d). Again, BNTagger outperforms STAMPA

(p-value ¼ 0.7 · 10�2), and the difference is significant as the

number of htSNPs gets smaller (below 60).

Overall, as shown in Figure 3, our method uses a small fraction

of SNPs as htSNPs (2.9%–11.5%) to achieve 90% prediction

accuracy for all data sets: 4 htSNPs among 52 SNPs (7.7%) for

data set ACE, 10 among 87 (11.5%) for LPL, 4 among 103 (3.9%)

for IBD5-1, and 3 among 103 (2.9%) for IBD5-2. To achieve 95%

prediction accuracy, we need 8.7%–32.7% of the target SNPs:

17 htSNPs among 52 SNPs (32.7%) for data set ACE, 22 among

87 (25.2%) for LPL, 9 among 103 (8.7%) for IBD5-1, and 13 among

103 (12.6%) for data set IBD5-2. Table 3 summarizes the prediction

performance of BNTagger with respect to the percentage of the

selected htSNPs.

As can be seen in Table 3, BNTagger can be reliably used

even when the maximum number of htSNPs is very small. This is

a major advantage of BNTagger. The explicit goal of htSNP selection

is to save genotyping overhead, typically aiming at a 10–50 fold
reduction in the number of target SNPs in the case of European

samples (Palmer and Cardon, 2005). Thus, it is especially important

to guarantee good prediction performance when the number of

htSNPs is a small fraction of the total number of SNPs. We note

that, unlike other methods, BNTagger can predict the allele informa-

tion of all SNPs even without any htSNPs. In this case, the posterior

probability of the predicted SNP Xj is the same as the prior probability

of Xj. Thus, the prediction used by the function Pf, as shown in

Definition 1, is still applicable even without selecting any htSNPs.

6 DISCUSSION

We presented BNTagger, a heuristic algorithm that uses the

probabilistic framework of Bayesian networks to effectively identify

a set of predictive htSNPs. BNTagger outperforms other state-of-the-

art predictive methods when compared over their own data sets and

prediction measure. Moreover, its improved performance is espe-

cially notable when a small number of htSNPs are selected. We be-

lieve that two main factors contribute to this improved performance:

(1) We do not restrict the htSNPs to any bounded location.

(2) We do not fix the number of htSNPs.

Fig. 3. Prediction performance of BNTagger and the compared methods for test data sets.

Table 3. Prediction accuracy (in %) of BNTagger

Data Set Percentage of Selected htSNPs

0% 5% 10% 25% 50%

ACE 66.7 86.5 92.1 93.7 97.4

LPL 77.2 86.6 89.0 95.0 98.3

IBD5-1 73.3 91.2 95.3 98.4 99.6

IBD5-2 83.6 91.9 94.9 98.0 99.0

P.H.Lee and H.Shatkay

e218



In addition, heuristics based on the conditional independencies

among SNPs guide BNTagger to effectively find an improved set

of htSNPs in terms of prediction accuracy.

Another major advantage of BNTagger is that, after the htSNPs

are selected, it can directly reconstruct the haplotype information

of newly-genotyped samples. BNTagger does not require prior

haplotype phasing of htSNPs, which might not be reliable

(Halperin et al., 2005). Instead, it deduces the haplotype informa-

tion of the new sample based on the haplotype training data that was

originally used for htSNP selection. In addition, BNTagger does not

require SNPs to be bi-allelic nor does it assume prior block-

partitioning. Nevertheless, it shows significant improvement in

prediction performance for data sets with high gene diversity and

relatively low linkage disequilibrium. Thus, we believe that

BNTagger provides the most practical and comprehensive frame-

work for htSNP selection, and can form a reliable basis for subse-

quent disease-gene association studies.

The improved performance of BNTagger comes at the cost of

compromised running time. Currently, its running time varies from

several minutes (when the number of SNPs is 52) to 2–4 hours

(when the number is 103). Most of this time is spent on stage I,

namely, learning the Bayesian network, rather than on htSNP selec-

tion or on haplotype reconstruction. As BNTagger does not partition

the haplotype data (neither through blocks nor through a sliding-

window6), it considers all SNPs at once. That is, the conditional

independence structure among all SNPs is learned simultaneously,

which substantially increases its running time as the number of

SNPs increases. In practice, we argue that based on the clinical

importance of disease-gene association studies (Crawford and

Nickerson, 2005), improved prediction performance takes priority

over running time—when the time is not prohibitively long.

Nevertheless, our future research will focus on improving the

speed of BNTagger, while minimizing loss in prediction perfor-

mance. This will most likely involve the evaluation of alternative

heuristics and optimization criteria. We also plan to provide

BNTagger as an online service.

Currently, BNTagger does not directly set the number of

selected htSNPs. Rather, it selects htSNPs based on their prediction

accuracy compared to a predefined threshold (a). Thus, by adjusting

this threshold, the number of selected htSNPs can be changed.

We intend to revise our selection algorithm so that the number

of htSNPs can be explicitly set, if needed. Finally, we used the

multi-allelic extension of Lewontin’s linkage disequilibrium

(LD), D0 (Hedrick, 1987), to expedite the learning procedure in

stage I. We plan to apply other multi-allelic LD measures, and

examine whether different measures affect the learned networks,

the selected set of htSNPs, and their prediction performance.
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ABSTRACT

Motivation: Protein-protein interactions play critical roles in biological

processes, and many biologists try to find or to predict crucial informa-

tion concerning these interactions. Before verifying interactions in

biological laboratory work, validating them from previous research is

necessary. Althoughmanyefforts have beenmade to create databases

that store verified information in a structured form, much interaction

information still remains as unstructured text. As the amount of new

publications has increased rapidly, a large amount of research has

sought to extract interactions from the text automatically. However,

there remain various difficulties associatedwith the process of applying

automatically generated results into manually annotated databases.

For interactions that are not found in manually stored databases,

researchers attempt to search for abstracts or full papers.

Results: As a result of a search for two proteins, PubMed frequently

returns hundreds of abstracts. In this paper, a method is introduced

that validates protein-protein interactions from PubMed abstracts. A

query is generated from two given proteins automatically and abstracts

are thencollected fromPubMed.Following this, targetproteinsand their

synonyms are recognized and their interaction information is extracted

from the collection. It was found that 67.37% of the interactions from

DIP-PPI corpus were found from the PubMed abstracts and 87.37% of

interactions were found from the given full texts.

Availability: Contact authors.

Contact: janghc@etri.re.kr

1 INTRODUCTION

An uncountable number of protein-protein interactions are buried

in research papers published thus far, and the number of papers

published is growing continuously. Although there are stored data in

verified databases such as BIND (Bader et al., 2001), KEGG

(Kanehisa et al., 2002), SwissProt (Bairoch et al., 2000), and the

Database of Interacting Proteins (Xenarios et al., 2001), these

sources occasionally do not satisfy researchers. Even if the data

is very useful, easily searchable and well structured, these data-

bases nonetheless do not store the whole data, and most of protein

interactions remain as unstructured text from scientific abstracts and

full papers (Blaschke et al., 2001, 2002; Temkin et al., 2003).

Moreover, most of the data exist only in the scientific literature.

They are scattered in throughout the scientific literature and written

in natural language. Accordingly, automated extraction information

from the PubMed abstracts is preferable, and research that con-

solidates the set of known protein interactions using biomedical

literature is necessary (Jenssen et al., 2001; Hirschman et al.,
2002; Rzhetsky et al., 2004; Ramani et al., 2005).

In recent years, many researches have proposed to extract the

information regarding protein interactions with automatic tools.

However key issues such as the detection of protein names are

not completely resolved with the use of such tools, thus they remain

far from perfect (Blaschke et al., 2001, 2002).

Various techniques for recognizing protein names have been

proposed. The use of standardized dictionaries containing the

names and synonyms of proteins has been shown to be effective

for recognizing these entities in text (Blaschke et al., 1999;

Rindflesch et al., 1999, 2000). This technique remains limited as

protein names not present in the dictionaries produce large amounts

of false negatives. Others have proposed approaches using tem-

plates capable of recognizing common naming patterns for

proteins (Fukuda et al., 1998; Ng et al., 1999; Yu et al., 2002).

These techniques have also been shown to generate a large number

of false positives by recognizing words that match the templates but

are in fact not proteins. Alternative approaches have proposed

machine learning methods (Proux et al., 1998; Hatzivassiloglou

et al., 2001), and statistical methods (Krauthammer et al., 2000;

Tanabe et al.,, 2002). Although these techniques have reported

incremental gains in overall recall and precision over the template

and dictionary based approaches, it has been shown that these

techniques are also limited by the quality and extent of the training

sets used to train the algorithms (Tanabe et al., 2002).

Similar to the limits inherent in the recognition of protein names,

there have been various approaches published for extracting rela-

tionships from scientific literature. Several researches have shown

that template and simple rule based algorithms can be used to

extract interactions (Sekimizu et al., 1998; Blaschke et al., 1999;

Ng and Wong 1999; Thomas et al., 2000; Friedman et al., 2001;

Ono et al., 2001; Wong 2001; Pustejovsky et al., 2002). These

approaches are, however, limited to a set of interactions by the pre-

defined extraction rules or templates. Complicated cases are often�To whom correspondence should be addressed.
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missed by these approaches. Others have proposed the use of parts

of speech analysis (Humphreys et al., 2000), and natural language

based approaches (Rindflesch et al., 2000; Friedman et al., 2001).

Huang et al., proposed a method for automatically generating pat-

terns and extracting protein interactions (Huang et al., 2004; Hao

et al., 2005). Bunescu et al., showed that various rule induction

methods are able to identify protein interactions with higher

precision than manually-developed rules (Bunescu et al., 2004).

Ramani et al., used a set of 230 Medline abstracts manually tagged

for both proteins and interactions to train an interaction extractor

(Ramani et al., 2005). However, machine learning techniques are

also limited by the quality and extent of the training sets used to

train the algorithms.

A lack of standard common corpus, techniques and equations for

reporting recall and precision has made comparative analysis of

different approaches a difficult job (Hirschman et al., 2002).

Most of the current biological knowledge can be retrieved

from the MEDLINE database, which now has records from

more than 4,800 journals accounting for nearly 15 million articles.

These citations contain thousands of experimentally recorded

protein interactions. However, because of the large number

of articles and the lack of formal structure, it is difficult to

retrieve the data. A method to validate given protein-protein inter-

actions from PubMed abstracts with the limits listed above is

proposed.

2 METHODS

The present protein-protein interaction validation system consists of the

following components, as shown in Fig. 1:

(i) A PubMed collector

(ii) A PPI extractor

(iii) A PPI validator

The abstracts collection component generates a PubMed query from the

given two protein names and then collects abstracts from PubMed. The

interaction extraction phase divides abstracts into sentences and recognizes

protein names in sentences. Following this, sentences that have both proteins

are selected, morphologically tagged and syntactically parsed after sentence

simplification. As the last step of the extraction component, interactions

between two proteins are extracted from the syntactically parsed sentences.

The conflict resolution component detects false-positive interactions that

were extracted, removes these false interactions, and decides whether the

wanted interaction exists.

Brill’s transformation-based part-of-speech tagger1 (Brill 2002) was

utilized, and was trained with the GENIA corpus2 (Kim et al., 2003). Its

precision was 98.35% after training with the GENIA corpus and 83.73%

with the WSJ corpus. The Stanford Parser3 version 1.4 with probabilistic

context free grammar (PCFG) was also used.

2.1 PubMed abstracts collection

Simple queries for two proteins were generated in the forms of ‘‘A and B’’.

In addition, two proteins A and B are expanded automatically with their

synonyms. In the query step, users can add additional missed synonyms or

abbreviations. The final query strings are in a form that resembles ‘‘(A or A1

or A2 or . . . or Aa) and (B or B1 or B2 or . . . or Bb)’’ under ‘A1’, ‘A2’, . . .

‘Aa’ and ‘B1’, ‘B2’, . . . ‘Bb’ are the synonyms of protein A and B. Fig. 2

shows a flowchart for the abstract collection phase.

The proposed system searches PubMed through the use of Entrez

Utilities4 and collects PubMed abstracts with parsed ID lists from the results

under the site’s user requirements. If the number of searched abstracts is

small, a user may regenerate the query or may read the abstract directly. The

PubMed collector stores titles and abstract texts from the abstracts fetched

in XML from PubMed.

2.2 PPI extraction

The sentences are parsed syntactically and interactions are extracted from

them. The result of a parser in the form of the Penn Treebank syntactic tags

(Marcus et al., 1994) is then applied. Fig. 3 (a) is an example sentence, and

Fig. 3 (b) shows the parsing result for it. This shows the syntactic tree

structure and how the interaction is extracted between two proteins through

the traversing of the tree. This is similar to finding a path between two leaf

nodes.

Many existing full parsers that are not tuned to the biomedical domain

frequently fail to parse, or their parsed results are often incorrect. This result

occurs as most sentences in the biomedical literature are syntactically

complex, or because words in sentences are tagged incorrectly. The sentence

in Fig. 4 (a) is an example of this. This sentence has 43 tokens when

the parentheses are tokenized and the minus symbols are not tokenized.

To avoid this problem, sentences are made simple by the proposed method

by substituting one word for complex words, i.e., protein names and nouns.

Protein names recognition The protein name extractor tags proteins

using the words that were used for the PubMed query. Capitalized characters

Is there any interaction between HOG1 and PTP2 ?

Query Generation

PubMed Collection SGD-DIP
Synonym

List

PPI Extractor

Conflict Resolution

Protein Names Recognition

Sentence Simplification

Sentence Tagging / Parsing

Protein Interaction Extraction

PPI Validator

PubMed Collector

POS
Tagger

Syntactic
Parser

Result : PTP2 inactivate HOG1

Fig. 1. System overview.

11Eric Brill’s Home Page: http://www.cs.jhu.edu/�brill/RBT1_14.tar.Z
22GENIA corpus: http://www-tsujii.is.s.u-tokyo.ac.jp/�genia/topics/Corpus/
33The Stanford Natural Language Processing Group: http://www-nlp.

stanford.edu/software/lex-parser.shtml

44Entrez Utilities Site: http://eutils.ncbi.nlm.nih.gov/entrez/query/static/

eutils_help.html
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are ignored in the string matching step. Sentences those have both proteins

are selected to extract interactions.

The use of dictionaries containing the names and synonyms of proteins

has been shown to be effective for recognizing entities in free form text

(Blaschke et al., 1999; Rindflesch et al., 1999). However, applications of this

technique remain limited for the reason that protein names not present in the

dictionaries produce large amounts of false negatives. This technique has

reported high rates of recall and precision, and the proposed method relates

to only two proteins at the validation step.

Making sentences simple Biomedical sentences are generally complex.

One reason for this is that named entities in biomedical texts are usually not

simple and consist of many words that have various morphological tags. This

makes it difficult to parse biomedical texts.

One named entity can be divided into different phrases. This causes the

structure to collapse. Accordingly the sentences are made simple by the

following steps. First, recognized protein names are substituted with one

predefined word. Second, noun phrases are substituted with one predefined

word. Third, parenthesis phrases that are not a part of a named entity are

removed. Following these steps, a more simplified sentence is created. The

sentence in Fig. 4 (a) is changed to that in Fig. 4 (b). The new sentence now

has 27 tokens. The parser can then process this sentence correctly. Lexicons

were modified to tag substituted named entity words as NNPs and to tag

substituted noun phrase words as NNs.

Tagging and parsing sentences Before extracting the protein-protein

interactions, sentences are morphologically tagged and syntactically parsed.

The tagging results of an in-domain tagger are better than a tagger embedded

in a full parser, as a tagger can be trained with a morphologically tagged

corpus. However, there is no proper corpus for a full parser in the biomedical

domain; therefore, if the parser can receive the results of in-domain tagger, it

can produce better parsing results.

The parser returns syntactically tagged sentences as shown in Fig. 4 (c).

The tree structure of the sentence in Fig. 4 is shown in Fig. 5. Following

this, the proposed extractor can analyze the entire syntactic structure of the

sentences. Instead of various templates or patterns from the syntactic tags,

the extractor traverses the structured syntactic trees of sentences. The pro-

posed rules can be simple and light, as the syntactic tag set has fewer number

of tags than the POS tag set. The structural complexities of sentences are

simplified into the tree hierarchies.

Extracting protein-protein interactions It is not straightforward to

decide whether extracted paths between leaf nodes of a syntactic tree

structure denote meaningful relationships. However, if two leaf nodes

are proteins, it is easier to decide whether a relationship between them

exists or not. If verbs or nouns are one of the predefined keywords, the

extractor considers them as interaction events. The keywords are

manually listed and based on the research by Temkin et al., and Hakenberg

et al., (Temkin et al., 2003; Hakenberg et al., 2005). The keyword list

was acquired via the Internet, from the homepage of Jörg Hakenberg5.

First, the extractor finds NP tags, and then checks whether NP belongs to

any of these three cases: NP+VP, NP+PP or NP+CC+NP. Most of the

interactions belong to one of these types; others usually belongs the follow-

ing two cases. The first is similar to ‘is-a’ semantically, as in: ‘JAB has

recently been identified as a regulator of JAK2 phosphorylation and activity

by binding phosphorylated JAK2 and inducing its degradation.’ This sen-

tence contains ‘JAB phosphorylates JAK2’ information. The second is

JJ+NNP, as in: ‘CD38-associated Lck’. These two types are processed by

a template-based method.

In Fig. 3, the sentence has NP and VP tags. ‘GAS41’ is the first noun of the

first NP in the top NP. The extractor looks initially at the first NP in the top

NP and finds the first noun, NNP, in it. It finds the verb, VBZ in the VP and

‘binds’ is extracted. Finally, it looks for PP after VBZ and finds NP. ‘NuMA’

is extracted from the NP. This sentence presents in the form of NP+VP.

‘GAS41’ represents the NP phrase, ‘binds’ and ‘NuMA’ represents the VBZ

and PP phrases in VP phrase. This is not a passive form and there is no

negative expression. Therefore, ‘GAS41’ is the subject of the ‘binds’ event

and ‘NuMA’ is the object.

In Fig. 5, a NP+VP structure is detected, and the PPI extractor finds ‘NED’

as a subject and ‘activated’ as an event. From the VP that has VBN ‘acti-

vated’, ‘NEE’ is found as an object. Finally, the subject and object are

exchanged due to the IN, ‘by’ and VBN tags.

Negative expressions can be extracted from the RB or DT tags in any

phrase. Each type of required PP phrases was manually defined. Thus, the

extractor continues to search for one more PP phrase after extracting ‘inter-

action’ and ‘FKBP12’, shown in Fig. 6. ‘RyR1’ and ‘IP3R1’ are found from

the next PP phrase.

HOG1, PTP2 

PubMed
Query Generation

PubMed
Collection

162 abstracts

SGD-DIP
Synonym

List

Query:

PubMed Collector

“(PTP2 or “tyrosine phosphatase”) 
and (HOG1 or “MAP kinase” or SSK3)”

at February 3, 2006

S0004103 : HOG1 or MAP kinase or SSK3 
S0005734 : PTP2 or tyrosine phosphatase

Fig. 2. Abstract collection.

Fig. 3. A sentence and its Penn Treebank syntactic tree.

5http://www.informatik.hu-berlin.de/�hakenber/
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In all cases, a NNP-tagged protein is extracted as a subject or an object

only when it is the first noun in the NP, and this NP is the first NP in its parent

NP or PP. If a protein or a NP follows CC, they and their parent are available

as a subject or an object.

2.3 Conflict resolution

Protein names recognition and their interactions extraction are very com-

plex, and can be ambiguous. As a result of these processes, false positives in

the extracted information may occur. In the proposed method, these are

usually caused by parsing errors or rules for high recall.

Protein names conflict One protein name may indicate more than one

protein that is different in terms of species. The same string can signify

another category. Therefore, it is necessary to confirm that subjects and

objects of extracted interactions are the truly wanted proteins.

Conflicts in protein names are caused by false positively recognized

names, such as different species or categories, abbreviations, inaccurate

boundaries, or homonyms. For now, it is considered that identical strings

indicate identical proteins and that there are no distinctions among species

and categories.

Relation events conflict For interactions, several types of interactions

can be extracted as a false positive, or correctly extracted as two identical

proteins, as shown in Table 1. The most critical conflict comes when they are

opposites. Incorrectly extracted reverse interactions have to be removed.

Currently detected are only conflicts in which some interactions are posi-

tive and others are negative. In addition, interactions by type or polarity are

not distinguished.

Fig. 4. (a) Complex sentence, (b) Simplified sentence, and (c) Parsed sentence in Penn Treebank syntactic tag format.

Fig. 5. Penn Treebank syntactic tree.

Fig. 6. Complex and negative interactions extraction.

Table 1. Extracted relationships between ‘MEK1’ and ‘ERK2’

Subject string Event string Object string PubMed Yapex

MEK1 associate ERK2 2

MEK1 interact ERK2 4 1

MEK1 complex ERK2 2

MEK1 bind ERK2 1

MEK1 activate ERK2 5 1

MEK1 phosphorylate ERK2 4 1

ERK2 phosphorylate MEK1 3 1
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279 abstracts were collected from PubMed with a query ‘MEK1 and

ERK2’, limited to only items with abstracts. The proposed system extracted

20 interactions between ‘MEK1’ and ‘ERK2’ in the abstracts. In the Yapex

testing corpus, five interactions were extracted.

Due to the 20 extracted events, the proposed system can validate that

interaction between ‘MEK1’ and ‘ERK2’ exist. However, understanding

whether two phosphorylation interactions, ‘MEK1 phosphorylate ERK2’

and ‘ERK2 phosphorylate MEK1’, are in conflict is not easy to determine.

In this case, two interactions were correctly extracted when the experimental

conditions were ignored. It is nearly impossible to decide that some inter-

actions are not facts.

3 RESULTS AND DISCUSSION

3.1 Full parsing sentences

The Yapex6 corpus was selected to evaluate the effect of sentence

simplification. The Yapex corpus is used for the purpose of evalu-

ating named entity recognition methods. It consists of 99 abstracts

for training and 101 abstracts for testing. 101 testing abstracts were

utilized for the evaluation. The Yapex testing corpus has 962 sen-

tences, including abstract titles. The number of sentences that have

more than two protein names is 532. The parser processed 439

sentences, and did not process 93 sentences. The percentage of

parsed sentences was 82.5% and the average number of tokens

per sentence was 24.97. The percentage of failed sentences was

17.5% and the average number of tokens per sentence was 49.07.

After sentence simplification, the parser could parse additional

62 sentences, and only 31 of 93 sentences were left out. The average

number of tokens was 26.15 in 501 sentences, and 53.38 words in

31 sentences. The parser success rate is higher when the morpho-

logical tags are given by the tagger. The precision of parsed results

was not evaluated. However, 62 sentences (11.7%) could be parsed

after simplification. This indicates that the sentences could be

parsed more correctly.

3.2 Extracting protein-protein interactions

The BC-PPI7 corpus was selected in order to evaluate the proposed

protein-protein interaction validation method. This corpus consists

of 1,000 sentences, with annotated genes/proteins and interactions.

It contains 255 interactions and 173 sentences contain at least

one interaction. If a sentence includes more than one interaction,

all interactions were counted as answers. Additionally, the present

system tried to extract all.

The value of a recall was calculated to be TP/(TP+FN)�100, and

the value of a precision was calculated to be TP/(TP+FP)�100. TP

indicates the total number of interactions extracted correctly and

tagged in the corpus, TP+FN indicates the total number of inter-

actions tagged in the corpus, and TP+FP indicates the total number

of interactions extracted correctly or incorrectly by the proposed

method. The rate of recall and precision of extraction with the

sentence simplification were 42.74% and 81.34%, respectively.

The BC-PPI corpus has no negatively tagged interaction; hence

any extracted negative interactions were excluded from TP+FP.

The TP was 109, the TP+FN was 255, and the TP+FP was 134,

as shown in Table 3. The proposed method was not evaluated

without the sentence simplification. Extracted protein names can

be scattered over the syntactic tree and the proposed interaction

extraction method does not address this problem.

Some false positively extracted interactions were caused by

parsing fail or error. A parsing failure indicates that the parser

can not parse, and parsing error signifies that it does not parse

correctly. The false positively extracted interactions are caused

by a parsing error, as in: ‘We concluded that the two NF-IL6

sites mediate induction of IL-1 beta in response to the stimuli

LAN, LPS, and TNF-alpha.’ The parser returned ‘the two

NF-IL6 sites mediate TNF-alpha’.

Most missed interactions are caused by semantic problems. The

proposed extractor does not account for semantic relations; as well,

and syntactic tags don’t indicate them. The following sentences are

examples:

(1) ‘‘Receptor activation by the haematopoietic growth factor

proteins interleukin 5 (IL-5) and granulocyte-macrophage

colony-stimulating factor (GM-CSF) leads to phosphorylation

of JAK2 as a key trigger of signal transduction.’’

(2) ‘‘We analyzed the abilities of fibrillins and LTBPs to bind

latent TGF-beta by their 8-Cys repeats.’’

(3) ‘‘In vitro GAS41 bound to the C-terminal part of the rod region

of NuMA.’’

These sentences need to be handled semantically, or errors occur.

For examples, The proposed system was not able to determine that

‘leads to phosphorylation of’ is equivalent to ‘phosphorylate’ in

sentence (1), or that ‘the abilities of fibrillins to bind’ corresponds

to ‘fibrillins binds’ in sentence (2). In addition, it did not determine

that ‘to the C-terminal part of the rod region of NuMA’ meant that

‘to NuMA’ in sentence (3).

Although only a small number of interactions are expressed with

anaphora terms, they were not analyzed, though unquestionably this

should be addressed. The following sentence is an example of this.

(4) ‘‘Deletion of the binding site from MEK1 reduced its phos-

phorylation by ERK2, but had no effect on its phosphorylation

by p21-activated protein kinase-1 (PAK1).’’

Table 2. Parsing before and after sentence simplification

Sentence simplification Full parsing

Success Fail

Before 439(82.51%) 93(17.48%)

After NES 455(85.52%) 77(14.47%)

After NES+NPS 474(89.09%) 58(10.90%)

After NES+NPS+PPR 501(94.17%) 31(05.82%)

NES: named entity substitution, NPS: noun phrase substitution, PPR: parenthesis phrase

removal.

Table 3. Recall and precision for BC-PPI corpus

TP+FN TP TP+FP Recall Precision

255 109 134 42.7% 81.3%

6Yapex corpus: http://www.sics.se/humle/projects/prothalt/
7BioCreAtIve-PPI corpus: http://www.informatik.hu-berlin.de/�hakenber/

corpora/
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3.3 Finding the evidences for PPIs

The DIP-PPI8 corpus was selected to evaluate the proposed

validation method. The DIP-PPI corpus is based on protein-protein

interactions from the DIP9, and is restricted to proteins from yeast.

The full texts are included in the corpus, rather than the abstract

only. DIP uses IDs from the SGD10 for nodes. The DIP-PPI corpus

contains 297 interactions. For protein synonyms, the DIP

synonyms11 from SGD of the DIP-PPI corpus were used, and a

number of missed synonyms and aliases were added from the

SGD Gene Names12.

20 interactions from the DIP-PPI corpus are composed of one

protein. These are interactions in which the first partner and the

second partner have the same SGD ID, and they were excluded from

the validation.

An abstract vs. a full text vs. abstracts In addition, 87 interactions

are valid but the corpus contains no text for these.

107 interactions were totally excluded while 190 interactions

were included to compare the effects of an abstract, a full text

and abstracts for the interactions.

As shown in Table 4, from among 190 interactions, 166 interac-

tions were extracted from the full text given in the corpus, with the

rate of 87% as shown in Table 4 (B). When using only each abstract

instead of the given full text for an interaction, only 83 interactions

were extracted, as shown in Table 4 (A). When using all collected

abstracts for an interaction, 128 interactions were extracted, as

shown in Table 4 (C). These results show that using a number of

collected abstracts for an interaction is more effective naturally

compared to using an abstract, and less compared to the use of

full text versions.

When abstracts collected from PubMed were used, no abstract

was collected for 11 interactions, and no target interaction was

extracted from the collected abstracts for 51 interactions. 13

from 51 had no sentence that had both proteins, and 38 from

51 had more than one sentence that had both proteins; however,

no wanted interaction was extracted.

PubMed returned at least one abstract for 179 interactions, and

abstracts identical to those in the PubMed ID as a given corpus were

searched in 128 of 179 interactions. Coincidentally, 128 of 179

interactions were validated; however, this does not indicate that

the only interaction in which the same abstract was given in the

corpus could be validated.

Co-occurrence: found vs. not found No abstract was collected by

the query generated in this trial for 27 interactions, and at least one

abstract was collected for each of the 250 interactions as shown in

Table 5 (D).

In order to validate an interaction between two proteins, the

proposed system has to find at least one sentence in which both

proteins are present. Among the 250 interactions in Table 5 (E), 221

collections had at least one sentence in which both proteins were

present. 164 of 221 interactions that have more than one sentence

were validated as shown in Table 5 (F). 57 interactions were not

validated from those sentences found in the PubMed abstracts.

In real cases, a user can edit the proposed query for the PubMed

collection. However, the query is generated from the given protein

names automatically.

In case no relationship is extracted from sentences in which two

proteins are present, the co-occurrence information may be useful in

a statistical method. However, this was not calculated at this point.

Although more than thirty sentences in which both proteins were

present were collected, the interaction between the two proteins

could not be validated. Only 11 of 164 interactions were validated

from more than thirty sentences. 153 of 164 interactions were

validated in less than thirty sentences. This indicates that the val-

idation possibility is not very dependent on the number of collected

sentences in which both proteins were present.

From seven invalidated interactions, more than forty abstracts

were collected, but the wanted interactions were not extracted.

From 131 validated interactions, less than thirty abstracts were

collected for each interaction. This signifies that the validation

possibility is not overly dependent on the number of abstracts

collected.

4 CONCLUSION

A PubMed abstract-based protein-protein interaction validation

method is presented. The basic idea of this approach is that sen-

tences in the biomedical literature are simplified after multi-word

substitutions. Additionally, a normal full parser can parse these

Table 5. Number of validated interactions from the PubMed abstracts

number of abstracts

277 interactions (D) (E) (F)

Not Collected 27
9.75%

No Sentence 29 29

10.47% 11.60

Not validated 57 57 57

20.58% 22.80% 25.79%

Validated 164 164 164

59.20% 65.60% 74.21%

Total 277 250 221

100.00% 100.00% 100.00%

(D) total interactions, (E) interactions that abstracts are collected from PubMed and

(F) interactions in which both proteins are found in the sentences

Table 4. Number of validated interactions by one abstract, full text, and a

number of abstracts

190 interactions (A) (B) (C)

Not Validated 107 24 62

56.32% 12.63% 32.63%

Validated 83 166 128

43.68% 87.37% 67.37%

(A) using only one abstract, (B) using full-text and (C) using abstracts collected from

PubMed.

8DIP-PPI corpus: http://www.informatik.hu-berlin.de/�hakenber/corpora/
9Database of Interacting Proteins: http://dip.doe-mbi.ucla.edu/
10Saccharomyces Genome Database: http://www.yeastgenome.org/
11gene/protein names from SGD: http://www.informatik.hu-berlin.de/

�hakenber/corpora/dipppi/
12http://www.yeastgenome.org/gene_list.shtml
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simplified sentences even if the parser is not tuned to biomedical

sentences. In the next step, the proposed system reads the results

from the parser and extracts all existing interactions. For validation,

more than one abstract was used and any extracted interactions that

were false positives were resolved.

When the recall performance was assessed through the use of the

DIP database of protein–protein interactions, the recall for IntEx

and BioRAT were approximately 27% and 20%, respectively

(Corney 2004). The recall in this study is 44% when only one

abstract is used.

The proposed method validated protein-protein interactions at a

rate of 43.68% through the use of one given abstract for an inter-

action, 67.37% through the use of collected PubMed abstracts, and

87.37% through the use of a given full-text paper. This value is

different from the normal recall rate. For collected abstracts with

proper sentences, the proposed method validated interactions in

nearly 75% of the cases. Additionally, for a case in which at

least one abstract was collected, the proposed method validated

at a rate of 65%.
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ABSTRACT

Motivation and results:Motivated by the ability of a simple threading

approach to predict MHC I—peptide binding, we developed a new

and improved structure-basedmodel for which parameters can be esti-

mated from additional sources of data about MHC-peptide binding. In

addition to the known 3D structures of a small number of MHC-peptide

complexes that were used in the original threading approach, we

included three other sources of information on peptide-MHC binding:

(1) MHC class I sequences; (2) known binding energies for a large

number of MHC-peptide complexes; and (3) an even larger binary

dataset that contains information about strong binders (epitopes)

and non-binders (peptides that have a low affinity for a particular

MHC molecule). Our model significantly outperforms the standard

threading approach in binding energy prediction. In our approach,

which we call adaptive double threading, the parameters of the

threading model are learnable, and both MHC and peptide sequences

can be threaded onto structures of other alleles. These two properties

make our model appropriate for predicting binding for alleles for which

very little data (if any) is available beyond just their sequence, including

prediction foralleles forwhich3Dstructuresarenotavailable.Theability

of ourmodel to generalizebeyond theMHC types forwhich trainingdata

is available also separates our approach from epitope prediction meth-

ods which treat MHC alleles as symbolic types, rather than biological

sequences. We used the trained binding energy predictor to study viral

infections in 246HIV patients from theWest Australian cohort, and over

1000 sequences in HIV clade B from Los Alamos National Laboratory

database, capturing the course of HIV evolution over the last 20 years.

Finally,we illustrate short-,medium-, and long-termadaptationofHIV to

the human immune system.

Availability:http://www.research.microsoft.com/�jojic/hlaBinding.html

Contact: jojic@microsoft.com

1 BACKGROUND AND DATASETS

The development of computational methods that predict protein

folding and binding is of considerable interest to the scientific

community. In addition to furthering our understanding of basic

chemical-physical principles that govern the complexity of protein

structure, results in this area may also lead to important medical

applications. Current research in this area focuses on complex

physics-based models using a large number of particles to describe

not only the proteins, but also the solvent molecules that surround

them.

This paper is motivated by the following observation: Protein

binding is at heart of many biological processes which have been

heavily studied at a higher level, and so a number of studies have

provided indirect sources of information that could be mined to infer

unknown parameters of a physics-based binding model. For exam-

ple, many of the binding configurations bear significant similarities,

and therefore the known structures of representative protein com-

plexes can be useful in inferring geometry of binding or binding

strength for new proteins. In addition, in some cases, there are pub-

licly available datasets of experimental binding energies (or affini-

ties) for mutated proteins and certain molecules. Other biological

experiments are concerned only with the result of a binding process

within a more complex system, and so their results may provide only

binary information (whether or not the proteins of interest bound or

not in a specific context). If interpreted jointly, these diverse sources

of data could significantly contribute to our understanding of a

system, improve our ability to predict binding partners, and may

eventually allow us to manipulate interactions of interest.

Here we focus on one example of such joint data interpretation

grounded in a simple physics-based binding model whose purpose is

the prediction of the binding energy of peptides to Major Histo-

compatibility Complex (MHC) class I molecules. MHC class I

molecules participate in the detection of foreign proteins expressed

within cells. Proteins in the cell are processed to peptides of 8-11

residues length, and some of them are loaded onto MHC molecules

which travel to the cell surface and present them to other compo-

nents of the immune system. In particular, presented peptides may

be recognized by cytotoxic T cells, which can destroy the cells

deemed to be operating improperly because they present unexpected

MHC-peptide complexes. The ‘‘unusual’’ complex can be formed

as a consequence of a variety of events, such as cell damage, mut-

ation (e.g., cancer), or viral infection, and more recently, organ

transplantation.

Due to the importance of this process, it has been experimentally

studied in a variety of ways. We describe how we used these studies

to train a novel adaptive double threading model of MHC-peptide

binding which does not only point out peptides with very low

binding energies (good binders, or potential epitopes), but also

ranks the peptides with intermediate levels of binding. Adaptivity

and double threading make our model appropriate for predicting

binding for alleles for which very little data (if any) is available

beyond just their sequence, including prediction for alleles for

which 3D structures are not available. Armed with this tool, we
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are able to demonstrate the effects of immune pressure on HIV

sequence evolution within a host and on a population level.

To train the model we can use the following types of data:

MHC I sequence data. We focus here on human MHC class I

molecules: they are encoded in three regions of the human genome,

labeled A, B, and C. These regions are among the most variable in

the human genome, with dozens to hundreds of different MHC

variants in each region. Since each individual inherits genes

from two parents, each of us has at least three and up to six different

MHC molecules operating in our cells. As different MHC molecules

typically bind to different peptides, it has been very important to

immunologists to classify MHC types. For example, organ trans-

plant recipients may reject organs of donors with non-matching

MHC types, as the cells in these organs will present MHC-peptide

complexes that are new to the immune system of the recipient.

Modern MHC typing is performed by sequencing, and the sequence

data for all known MHC variants is available.

MHC-peptide complex structure data. The importance of

peptide-MHC interactions to the immune response has motivated

crystallographers to solve the structures of a range of different

MHC-peptide complexes. In several cases, the structural variability

of a specific MHC allele could be assessed by solving the structure

of this allele when bound to a range of different peptides. An

example of such a MHC-peptide complex structure and sequence

is given in Fig. 1.

The present study is based on a dataset of 37 different MHC-

peptide complex structures that was also used by (Furman et al.,
2000). The structures were downloaded from the RCSB protein data

bank (Berman et al., 2000: http://www.rcsb.org/pdb/).

MHC-peptide binding affinities. The relative binding ability

of different peptides to a specific MHC molecule can be directly

assessed by competition experiments. The peptide concentration

that leads to 50% inhibition of a standard peptide, IC50, is mea-

sured, and the relative binding energy can be described as the ratio

between the IC50 of the standard peptide and that of a test peptide

(Sette et al., 1994). The result of such experiments is a set of

relative binding energies (negative logarithms of the relative con-

centrations), for different MHC-peptide combinations. This study

used a dataset of 870 different combinations from Furman et al.,
2000, which capture a large range of different binding energies, as

discussed in Section 3.

Known good binders (epitopes) and nonbinders. Viral or

cancer epitopes, and other excellent binders are often discovered

by EliSPOT essays that capture the reaction between T-cells of

exposed patients with peptides containing suspected epitopes.

Other peptides are known to evoke only very low reactivity in

binding essays. Large databases of known epitopes, as well as

nonbinders, for various MHC molecules are publicly available.

We have used the SYFPEITHI database (Rammensee et al.,
1999: http://www.syfpeithi.de/), Los Alamos National Laboratory

Fig. 1. 3D structure ofMHCA0201 bound to peptide GILGFVFTL (PDB code 1hhi; Madden et al., 1993). The centers of the peptide residues are marked in

3D space by triangles and the centers of MHC’s residues are marked by circles. Residues in the peptide binding groove of the MHC (i.e. within 4A of the peptide)

are marked by filled circles. The lower panel shows the MHC A0201 sequence, with groove sites indicated by increased font size.
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HIV Database (http://www.hiv.lanl.gov/) and the MHCBN Data-

base (Bhasin et al., 2003: www.imtech.res.in/raghava/mhcbn/

third.html). These databases provided us with ‘‘binary’’ energy

data for many peptides (by simply indicating if a peptide is a strong

binder, or a non-binder with respect to a particular MHC type).

2 THE BINDING ENERGY MODEL

Our binding energy model is based on the geometry of MHC-

peptide complexes, and is motivated by the threading approach

(Jones et al., 1992). Its implementation in (Furman et al., 2000)

is here augmented by including learnable parameters. We demon-

strate that these parameters can be estimated by using all of the

described data jointly.

In general, threading aims at evaluating the compatibility of a

certain protein sequence with a certain protein structure: The

sequence is threaded onto the structure, and a list of contacting

amino acid pairs is extracted, based on contacting residue positions

(defined as residues in close proximity, e.g. that have at least one

pair of atoms less than 4.5A apart). In order to allow estimation of

the binding energy of any peptide with an MHC molecule whose

structure in complex with some other peptide is known, we assume

that the proximity pattern to the peptide in the groove does not

change dramatically with the peptide’s sequence.

Assuming that energy is additive, and that the pairwise potentials

depend only on the amino acids themselves—and not on their context

in the molecule—the energy becomes a sum of pairwise potentials

taken from a symmetric 20·20 matrix of pairwise potentials between

amino acids. These parameters are computed based on the aminoacid

bindingphysics,or fromstatistical analysesofamino acidpair contact

preferences in large sets of available protein structures. Several sets of

pairwise potentials have been described in the literature, each derived

in a different way (for review see Melo et al., 2002). Obviously, the

choice of pairwise potential matrix can dramatically alter perfor-

mance of the energy predictor (Furman et al., 2000).

The advantage of the original threading-based approach lies in

its independence on binding data. In this approach, as long as a

structure of the MHC-peptide complex is available, an allele can in

principle be characterized without the need of multiple tedious

binding experiments. However, the very same data used for

verification of the original threading approach could be used to

refine it in a data-driven way. Furthermore, over the last few

years a large amount of additional data about binding peptides

has been produced for a range of different alleles. Combining

the threading approach with a machine learning philosophy of fit-

ting to data, we show that it is possible to estimate a pairwise

potential matrix and also learn additional parameters that make

the results less sensitive to approximations made in the original

threading model.

In order to motivate the parameterization of our model, we start

with a slightly more general mathematical definition of the basic

threading model, which predicts the binding energy E as a function

of the structural template m, the MHC sequence s, and the peptide

sequence e, as

Eðm‚s‚eÞ 	
X

i

X
j

fsi‚ ej
hðdm

i‚ jÞ‚ ð1Þ

where i and j are sequence positions in the MHC molecule and the

peptide respectively, f are the pairwise potentials discussed1, and

dm
i‚ j is the distance between the i-th MHC residue and the j-the

peptide residue in the m-th 3D structure (as we have different

structures for different molecules)2. Finally, in the threading

approach, function h is simply the step function

hðdÞ ¼ 1‚ d � dthr

0‚ d > dthr
:

�
ð2Þ

The threading model is based on the rational approach, which uses

physical models to predict the binding energy for a new MHC-

peptide complex when a crystal structure (indexed by m) and the

sequence of both the MHC molecule and the peptide (s and e,

respectively) are given.

In order to use the abundant direct or indirect information about

binding to improve the threading model, and to allow reliable pre-

dictions even in the absence of the known structural templates, we

make a few adjustments to this model. First, we consider parameters

f as hidden variables, with the previously published pairwise poten-

tial matrix serving as a basis of the prior on f to avoid over training.

Second, instead of the step function, we use a soft step (sigmoid),

hðdÞ ¼ 1

1þ e�aðd�dthrÞ
ð3Þ

increasing the robustness of the predictor to slight variations in the

geometry of the structural model (residue pairs with a close-to-

threshold distance might suddenly be turned off if the distance is

only slightly above the threshold). The parameters of h can be

learned, setting the threshold (dthr) and the softness a of the step.

Finally, we add weights wm
j to allow our model to adapt to the errors

introduced by the strong assumption that all close residue pairs (as

defined by h) will contribute to the energy independently. A strin-

gent threshold parameter will produce a very sparse set of pairs i, j
that contribute to the energy, and in this case each pair can be

assumed to contribute independently. However, many important

interactions might be missed by applying a stringent threshold.

A loose threshold on the other hand will result in the inclusion

of non-relevant residue pairs (amino acid pairs that in fact do

not significantly interact in the structure). Including these additional

contributions into the energy function might blur the signal. In

addition, residues will likely interact simultaneously with several

neighbors, which could question the additive model.

In order to address this problem, we add MHC-specific weights

wm
i‚ j to the threading equation with altered function h:

Eðm‚s‚eÞ 	
X

i

X
j

wm
i‚ jfsi‚ ej

hðdm
i‚ jÞ‚ ð4Þ

For these weights we use a Gaussian prior favoring wm
i‚ j ¼ 1. The

model is designed so that it reduces to standard threading when

priors are strong enough to ignore the dataset of energies E for

various peptide and MHC combinations. However, in our experi-

ments the priors are left weak enough so that the data can dominate

the learning process, and the priors simply serve as a measure

against over-fitting.

Note that several variants of the model can be derived from

this basic form, depending on how many parameters we want to

1f is a 20 · 20 matrix of potentials for different pairs of amino acids.

2In fact, the 3D structure of a MHC-peptide complex may vary slightly for

different peptides, in which case a consensus distance is used. See Furman

et al., 2000 for details
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train and how much data we have. For instance, the weights w
can be shared across all MHC types, leaving only the sequence s
of a molecule to define its behaviour in the model. Furthermore, a

single consensus geometry for all types can be used, removing

index m from the model completely. Another way of reducing

E(m, s, e) to simply E(s, e), is to treat structure index m as a

hidden variable and infer it with help of proper priors, sequence

similarity, or in cross-validation during training. The simpler vari-

ants, more capable of generalization, are especially interesting

when the goal is prediction of binding energies for new alleles

for which no binding data is available. In fact, all forms of this

model are based on a physics-based approach which primarily

uses the protein sequences into account when evaluating the

binding affinity. The MHC type is not primarily captured by its

symbolic name (e.g., A0201), but by its sequence as shown in Fig. 1.

Thus, applications beyond epitope or energy prediction for each

molecule in isolation are possible, e.g., studying the effect of MHC

mutations on the efficacy of the immune system in different

infections.

We assume Gaussian noise in the energy data (perhaps there

are better models motivated by the physics of the process), and

we fit the model by standard variational learning, which is needed

because of the bilinear dependence of E on f and w. As the optim-

ization criterion becomes quadratic (ignoring parameters of h for

a moment), the variational inference essentially iterates between a

linear regression to find f variables (penalized appropriately by

the prior) and a regression that estimates weights w, again taking

into account the Gaussian prior favoring wi‚ j ¼ 1. Refinement of

step function parameters (dthr and a) is interleaved with these two

steps. For MHC molecules for which we do not have the 3D struc-

ture on which to define di‚ j, we use the available structure of a

related MHC molecule with the highest sequence similarity. This

is motivated by the fact that across all MHC molecules, the geo-

metry of the groove (i.e. the residues that are in proximity of the

peptide) does not change significantly, even when the amino acid

content is significantly different.3 If we view this model as genera-

tive, then m can be considered as a hidden variable influencing

the sequence s, thus allowing inference of m from s. In principle,

in inference of m, both s and d should be taken into account, but

we avoided that in our initial experiments for simplicity. The

prior parameters can be tuned through cross validation on the

training set.

The dataset of binding energies can be directly used in training

our model, but the dataset of known good binders and non-binders

requires a treatment of missing energy values. We simply used the

lowest binding energy in the binding energy dataset for good bin-

ders (epitopes), and similarly, the highest binding energy for the

non-binders. Alternatively, the spread between the binding energies

of the binders and non-binders can be maximized, or a cost function

different than quadratic can be used which punishes bad but not

good binding energies for good binders, and does the opposite for

non-binders.

It is important to note that we fit all MHC-peptide complexes

together, as f parameters are shared across all data. The wm
ij parame-

ters, on the other hand, are specific to a particular MHC geometry

(obtained by crystallography). Joint training helps energy prediction

for individual MHC types (training only on a limited number

of MHC molecules degrades the performance of the predictor on

the test data even for the MHC molecules included in training). Also

note that the model is set up so that it would provide an energy

prediction after training even for MHC molecules for which no

data other than their sequence is given. The f parameters estimated

from the existing data would then be used together with uniform

weights wm
ij ¼ 1, as dictated by the prior.

3 MODEL PERFORMANCE ON DIFFERENT
TYPES OF DATA

In this section, we empirically illustrate how the model behaves

in different situations, such as the usage of binary and/or

continuous energy data, with different training set sizes and

MHC compositions.

The experimental binding energies (or equivalently IC50 ratios,

whose negative log corresponds to energy) for peptides in the set

used in this section covered a large range, with only some of the

peptides having very low energies (epitopes). To illustrate, we

divide peptides into three categories: good binders (IC50 ratio

>0.1), non-binders (IC50 ratio <0.0001), and intermediate binders

with values in between, as suggested by Furman et al., 2000. Table 1

summarizes the data in terms of the MHC molecules, peptide

lengths and the binding strength.

In order to compare our method to standard threading, we

report the performance of our predictor in terms of peptide ranking

measured by Spearman correlation factor, as proposed by Furman

et al., 2000. This measure varies between �1 and 1, with values

close to one indicating that sorting the peptides by their predicted

energies produces a similar ranking as sorting by the experimentally

measured energies. In a first step, we verified that the numbers

obtained by the original threading approach (Furman et al.,
2000) could be reproduced. In contrast to the threading approach,

the method presented here requires training, and for this purpose,

the data was divided 100 times into random training/testing parti-

tions (70% for used for training, with the data distribution for both

sets kept similar to the above table), and we report the average

performance, as well as the variance across the experiments.4

Table 2 indicates that our model outperforms the threading model

when the direct and indirect information about MHC binding is used

to train the model.

Note that for our model the potentially most influential type of

data are binding energy measurements (i.e. IC50 values), but this

Table 1. Summary of the IC50 dataset used in Sect. 3

Good binders Intermediate Non binders

A0201, peptide length 9 62 254 202

A0201, peptide length 10 27 138 100

A6801, peptide length 9 21 74 35

B2709, peptide length 9 11 11 44

3In fact, different MHC molecules align well and only 10% of the residues

show sequence variability. The ‘‘groove’’ residues, however, are the most

variable with about 30% of them showing sequence variability, even

between two molecules coded in the same region of the genome (A, B or C).

4Threading approach, on the other hand, is rational, not data-driven and so it

uses no training data and provides a single number as an output.
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kind of data is scarce and is not available for many protein binding

problems (but see Sect. 5 about the recent availability of this data for

some MHC types). It is therefore of interest to investigate whether

the present approach could also be applied to MHC types not

experimentally tested in this way, by using information from

related, experimentally scrutinized alleles. For this purpose, we

evaluate the ability of our model to predict binding energies

when some types of training data are not available for MHC

types of interest. For each of three MHC types (A0201, A6801

and B2705), two models of nonamer binding were trained: the

first using only the experimental binding energies for the remaining

two MHC molecules (simulating the situation where the peptide

binding to a new MHC allele is modeled), and the second using both

the experimental binding energies for the remaining two MHC

molecules and 869 binary energies for all three MHC types (simu-

lating the situation where binary data is available for the allele of

interest, e.g., through related research, such as epitope discovery, or

tracking evolution of a pathogen; but the direct IC50 experiments

are not available). In all cases, of course, the test set of known

binding energies, was unrelated to the training data. These experi-

ments are summarized in Table 3 and they illustrate how much the

peptide preference of a particular allele can be characterized by

including binding data for other MHC alleles.

As can be seen, without the information about the specific allele

in the training set (column 1), the performance is reduced to values

similar to the original threading approach, highlighting the signifi-

cant contribution of this source of information (compare to Table 2).

Note that this experiment could not be performed for A0201 due to

insufficient data (around 100 examples, whereas just the number of

parameters in the potential matrix is over 200). On the other hand,

addition of binary energies from the alleles significantly improved

the prediction (see column 2), indicating good generalization capa-

bilities of the model. It is important to note that this experiment was

performed on a small dataset in order to study the effects of prior

knowledge (3D structure, MHC sequence, and threading model) as

well as the value of binary data. In the next section, we revisit the

issue of predicting binding for an allele based only on its sequence

and the IC50 data for other alleles, but this time using much more

data that recently became available.

In order to further evaluate the performance of our method on

the data for which only binary energies are known, we used the

whole set of binding energies in Table 1, all available 3D structures

(for inference of m, when the structure of an MHC molecule is not

known), and some of the binary data for training, leaving the rest of

the binary data for testing. Again, the training and testing sets are

chosen randomly 10 times, and both average performance and the

standard deviation are reported. The training set spanned 9 MHC

types (A0201, A6801, B2705, A1101, B3501, B5301, A0301,

B4402, and B0702), with peptides of lengths 9–10. Since both

threading and our method output binding energy, and not a binary

decision, we compared the two in terms of ROC curves obtained by

varying the good-binder (or epitope) threshold and measuring the

number of false positives and false negatives. Our method again

significantly outperformed threading (some examples are in Fig. 2),

and produced results almost as good as the recently published

state of the art in (binary) epitope prediction5 (Heckerman et al.,
2006) (more figures available at www.research.microsoft.com/
�jojic/hlaBinding.html). Note that for A0301 and B0702 we did

not have crystal structures, and yet, our adaptive double threading

approach was able to adequately predict peptide binding based on

the known sequence of the allele, and a structure of a related allele.

Additional examples of predictions based on structures of related

alleles, compared to predictions based on the actual crystal structure

are available at the above web site.

While the results in this section indicate that the use of binary

data is justified, we should point out the important caveat. The

epitope data in literature comes form different sources, and some

ways of experimentally discovering epitopes do not capture only

MHC binding but also other processes that lead to immune reaction

(e.g., cleavage and T-cell binding). This means that any tunable

model, including ours, when trained on lots of binary data, may

capture some of these other effects, becoming better at predicting

known epitopes, but worse in predicting strictly MHC binding. At

the same time, the constrains in the model structure make our model

more suited to modeling IC50-derived energies, then to general

purpose classification, and may thus limit its performance in binary

epitope classification, when this classification includes factors

other than MHC-peptide binding.

For example, when we trained a recently published epitope

predictor (Heckerman et al., 2006) on binary data only, we find

that this method produces good binary classification results, but

without significant correlation of the epitope probabilities with

true binding energies for intermediate binders in the test set. On

the other hand, the model presented here when trained on the same

binary data, still recovers peptide ranking for intermediate binders

with statistical significance, but with much less accuracy than is the

Table 2. Comparison of the standard threading and the trained bilinear model

Threading Bilinear model Standard deviation

A0201, 9mers 0.57 0.78 0.03

A0201, 10mers 0.61 0.82 0.03

A6801, 9mers 0.20 0.67 0.13

B2705, 9mers 0.39 0.71 0.09

Table 3. The ability to predict binding for one type by training on other two

(transfer)

Full transfer Partial transfer

A0201 NA 0.6067 (196 + 869)

A6801 0.23 (584) 0.2974 (584 + 869)

B2705 0.33 (648) 0.5958 (648 + 869)

Full transfer refers to the use all the available training data (continuous and binary) for

two MHC types and predicting binding on the third based on its sequence. Partial transfer

refers to using all available data for two types as well as the binary energies (but not

continuous) of the third type to predict binding energies in the test set for the third type.

The results are quantified in terms of Spearman correlation factor between predicted and

true binding energies. The numbers in parenthesis are the numbers of training samples

(continuous+binary) in different experiments. Full transfer for A0201 could not be

performed as removing all A0201 data did not leave enough data for training. See

Sect. 5 for results on larger datasets.

5Epitope prediction algorithms specialize on binary classification and

usually do not predict well the quality of binding for intermediate binders.
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case when the model is trained on IC50 data. We found that on the

binary classification task on epitope data, in comparison to

Heckerman et al., 2006, the bilinear model suffers a 1% increase

in false positive and false positive rates due to its bias towards

capturing only the MHC-peptide binding component of being an

epitope. This indicates that the tunability of the model makes it

possible to tradeoff its energy predictions with its epitope classi-

fication capabilities, but it the model may not necessarily extract

the single effect (MHC-peptide binding) fully. We are now inves-

tigating ways to separate the effects of MHC binding from other

effects in binary data and train a combined predictor.

Next, in Sect. 4 we investigate if the predictive power of our

model can be used to study the global changes the immune system

causes in pathogens, once the model is trained on all available

binary and continuous data. Then, in section 5 we evaluate our

model on the recently published dataset of IC50 energies.

4 VIRUSES EVOLVE TO MODULATE THEIR
BINDING TO MHC MOLECULES

MHC A0201 is one of the most frequent MHC types, especially in

the Western world. Using our model, we computed the average

binding energy of all HIV 9mers (taking each overlapping peptide

from all proteins of the current consensus sequence for clade B) and

found it to be equal to 9.74 (the units are of no importance, only the

ranking of energies matters). On the other hand, the average binding

energy in a randomized HIV is 9.3. The randomized HIV contained

the same set of proteins with same lengths but with random ami-

noacid sequences. The difference in average binding energies has a

very strong statistical significance (p < 10�5 based on 50 different

randomizations), and can be explained by viral evolution—higher

average binding energy translates into a smaller total number of

presented peptides which trigger immune reaction. Similar patterns

should be expected from other viruses, variable enough to use

mutation as an escape mechanism. (It is possible that less variable

viruses, evolving over a very long time, may still have the same

property, and we are planning on investigating this next.)

It has been shown previously that some HIV mutations correlate

(weakly) with the MHC types of the host (Moore et al., 2002). The

binding energy estimators that we developed allow us now to begin

to explain these correlations. In Fig. 3, we demonstrate significant

correlation (p < 0.05) between the average A0201 binding energy

and the viral load in the A0201 positive patients from the WA cohort

obtained by Moore et al., 2002 (as would be expected, in A0201

negative patients we do not find any correlation).

For each chronically infected and untreated A0201 positive

patient in the cohort, we plot the patient’s viral load v.s the sum

of 9mer and 10mer average binding energies for A0201 (each

patient’s HIV was sequenced providing a source of 9mers and

10mers for this computation). The virus whose peptides bind

well to a particular MHC molecule is typically under strong immune

pressure in patients with this MHC type, and is forced to mutate

away from its fittest form towards a form that binds less well to

MHC. But, as HIV damages the immune system, the high viral

load in the figure indicates a removal of the pressure to escape

A0201 binding. Therefore, the negative trend in the figure could

be explained by reversion of the viral sequence towards the wild

type with higher replicative fitness and lower adaptation to

A0201, in patients whose immune system is starting to fail, but

other alternative explanations are possible (such as that the inter-

mediate binders in the sequence, become better binders as that

serves some purpose to the virus, which after all, infects the

immune system). We are investigating these trends further

experimentally.

Finally, in Fig. 3, we also track the average binding energy of

MHC A0201 to HIV peptides over the last 23 years. The sequences

of various proteins from over 1000 patients were obtained from the

Los Alamos National Laboratory database. To smooth out the

sampling density over time, all sequences were grouped into 3

year time intervals: 1982–1984, 1985–1987, . . . , 2003–2005. The

apparent upward trend is statistically weak, but may still indicate

that HIV as a population is adapting to the immune systems of

the host population. Recently, a trend of HIV fitness attenuation

has also been indicated (Arien et al., 2005) which would be con-

sistent with this. In order to find out if the trend of modulation
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Fig. 2. ROC curves produced by varying the epitope binding energy threshold and computing the number of false positives and false negatives on the SYFPEITHI

database. Note that for B3501 only binary energy data was available, while for A0301 no crystal structure was available (The known structure of the MHC

molecule with the highest sequence similarity was used, as described in the text.) For the standard threading approach, we used two previously proposed matrices,

labeled ‘bet’ and ‘miy’ (Furman et al., 2000, Betancourt et al., 1999, Miyazawa et al., 1985), while for our trained bilinear model (‘bil’), we also provide standard

deviation curves computed over different data splits into training and testing. Over all MHC types, the area under the ROC curve was between 2.5 to 15 times

lower for the bilinear model than for either of the threading models.
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of MHC binding is significant, we plan to take all MHC alleles into

account.

5 PERFORMANCE OF THE MHC-PEPTIDE
BINDING MODEL ON A RECENTLY
PUBLISHED LARGE DATASET OF
IC50 VALUES

Recently, Peters et al., 2006 have assembled a large database

of experimentally acquired binding energies for a range of MHC

molecules. The experiments were performed at the Sette and Buus

labs, and Peters et al., 2006 go on to also test a variety of published

algorithms that can predict MHC-peptide binding. Their published

dataset may prove to be the most useful community resource for

studying MHC-peptide binding so far. In particular, a very useful

feature of their dataset is that the data has been acquired relatively

uniformly, with some potential variability due to the fact that the

experiments were performed in two different labs.6 The data con-

sists entirely of IC50 values for 49 different MHC class I alleles,

both human and animal. Here, we focus on human alleles from

this dataset (the total of 35 A and B alleles), for which the total

of 29,371 IC50 values for different MHC-nonamer combinations

were tested. Peters et al., 2006 show that among the tools available

in their labs and on the web, the best performing tool is a neural

network proposed by Nielsen et al., 2003.

Such a rich dataset and comprehensive comparisons provide

several opportunities for additional evaluations of our approach.

In particular, as discussed in Sect. 3, the use of heterogeneous data

improves overall results, but may skew our model away from solely

predicting MHC-binding energy and towards partially capturing

additional effects present in the binary experimental data. Nielsen

et al., 2003 consists solely of the continuous binding energy mea-

surements, and can thus be used to better asses some of the inter-

esting properties of our model. In addition, the amount of data

reduces the effects of regularization priors.

5.1 Predicting binding for new alleles: adaptive

double threading

First, we asses the ability of our model to predict binding for a

new MHC allele, for which no other data is available but its

sequence. This is possible as our trained model performs double

threading: not only does it thread a peptide onto the known structure

and content of the particular MHC molecule, but it can also use

another MHC molecule’s structure to thread the new allele’s

sequence and the peptide on it. When the 3D structure for the allele

of interest is available, it is used, but otherwise the best structure

from the available database of structures is used (inference of

variable m in the model).

To illustrate this empirically, we first focused on the well stud-

ied allele A0201, and trained our model on three data subsets and

tested the trained models on A0201 test sets in five-fold cross-

validation. The first model was trained on IC50 training data for all

35 available molecules in the dataset. The second model was

trained on all the data for 34 molecules, but no data whatsoever

for A0201 allele, including its 3D structure. The third model is

trained on an even more limited dataset which further excluded all

A02 types (in this data, A0202, A0203 and A0206), leaving 31

alleles for training. The first model, which was exposed to around

2400 binding energies for A0201 in each fold, achieved the Spear-

man correlation factor of 0.82, which is comparable to the best

result (0.83) reported in Peters et al., 2006, and better than all

other techniques tested there. However, a more interesting obser-

vation is that the second model, which had no exposure to A0201

data in training, still predicted A0201 with the Spearman correla-

tion at 0.8, which is only slightly lower than that of the first model.

It is important to note that the model did not have the A0201

structure available, and so it could not reduce to standard thread-

ing. The model chose to use the structure of the most similar

available allele by sequence similarity (A1101). Furthermore,

the third model, which had no exposure to any of the A02

types in training, nor the A02 3D structures, still predicted binding

with Spearman correlation factor of 0.42. All results are strongly

significant with p values virtually zero. Similarly, the Spearman

correlation factor for A1101 binding prediction goes from 0.79 to

0.61 when all A1101 data is excluded from training, and only
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Fig. 3. HIV-MHC A0201 binding energy trends as a function of viral load in individual patients, and the time of sampling.

6In fact, the authors provide a brief analysis of this potential source of error in

the paper.
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A1101 sequence is fed to the trained model, but not its structure.

This illustrates that our model degrades gracefully as the data

related to a particular allele is removed from training, as long

as the data for other alleles is available. Therefore, the model

is leveraging data for multiple alleles in each of its predictions,

and can potentially be used to predict binding for new alleles,

given only by their sequences.

5.2 Geometry estimation

The known 3D structure of several alleles is the basis of our

bilinear model and it affects the predictions through terms hðdm
ij Þ

in (4). For large pairwise distances dij, these terms will be virtually

zero, thus making the appropriate amino acid pairs irrelevant in

prediction. Another way of thinking about the effect of these dis-

tances is as a way of regularizing the combined set of parameters

uij ¼ wijhðdm
ij Þ in the model Eðm‚s‚eÞ 	

P
i

P
j um

ijfsi‚ ej
, in which

distance function is merged with the weights for the pairs. But, if

enough data is available, this regularization should not have to be

so strongly informed by the structure, and could instead be based

on usual norm-regularization. Since our model is grounded in

physics, so estimated weights uij may in fact capture the relevant

structure: wherever the distances are large the importance of the

pair should be low, and thus the inferred weight should be close

to zero.

To test this hypothesis, we selected 8 diverse A alleles and trained

the model without the step function h, and with regularization of the

norm of u. We limited the pairs i, j only to those that involved

variable sites on the MHC molecule (as the conserved sites will have

no discriminating effect in training). Then, we compared the learned

pairwise weights uij with the appropriate Euclidean distances dij

between allele and peptide residues in the consensus A0201 struc-

ture. Indeed, the Spearman correlation factor between the absolute

value of the estimated weights uij and distances dij in the 3D struc-

ture was negative (�0.16), as expected, and the result is statistically

significant (p < 0.05). Therefore, by training our model, it is pos-

sible, at least to a certain extent, to recover relevant parts of the

3D structure of the binding configuration.

We also note that we have experimented with a simple linear

version of the model for binary prediction, which learns directly the

products vi‚ j‚ si‚ ej
¼ um

ij fsi‚ ej
, without constraining the weights to

satisfy a bilinear form. Such a model is forced to learn a weight

for any combination of amino acids at any pair of positions in the

MHC molecule and the peptide, and is thus vastly over-

parameterized. Therefore most of the weights should be equal to

zero to avoid over-training. However, we have found that, when

nonzero weights are selected using a wrapper method (Kohavi et al.,
1997), the linear model makes binary predictions as well as the

bilinear model, and it also tends to choose i, j pairs with small

distances for its nonzero weights, thus performing some structure

estimation, as well. We are extending these experiments to the non-

binary case.

5.3 Comparison to other techniques

We have also trained our model have trained our model on the

nonamers for 35 human alleles on the same folds as Peters et al.,
2006 and compared with the techniques they analyzed in five fold

cross validation. These techniques treat each different MHC allele

in isolation from other, which means that they tend to get punished

for not using all available data when the allele is not supported by a

large amount of training data. On the other hand, when a lot of data

for an allele is available, these techniques may have an advantage as

they do not have to sacrifice performance on one allele in order to

better capture the others and generalize.

Our model achieved an overall test Spearman correlation factor

of 0.75, in line with the best performer of Peters et al., 2006, which

was a neural network proposed by Nielsen et al., 2003, and whose

Spearman correlation factor on this data was 0.76. In terms of binary

classification, the Nielsen et al., 2003 beats our model in 18 out

of 35 alleles in this data, with our method typically outperforming

when the available training data for an allele is small, as would

be expected given the ability of our model to generalize over dif-

ferent alleles. Both our model and Nielsen et al., 2003 seem to

outperform all other techniques compared in Peters et al., 2006

by a significant margin. It should be noted again, however, that

this data consists of a consistently measured IC50 values for dif-

ferent peptides, and for binary classification tests, only the test data

is binarized by thresholding.

The full set of comparisons is available at:

http://www.research.microsoft.com/�jojic/hlaBinding.html.

6 CONCLUSIONS

We have introduced a new model of MHC-peptide binding, which

rather than focusing on binary classification of epitopes, can be

used to estimate a high range of binding energies for high resolution

MHC types (four digits, based on MHC sequencing). Both in

terms of peptide ranking and binary classification performance,

our model significantly outperforms the threading model which

was the basis of our bilinear model with hidden variables. In indi-

vidual allele predictions, our model is comparable to the best

among the models in the recent comprehensive study (Peters

et al., 2006). Furthermore, as the model is physics-based there is

a potential for its use in settings where the existing models cannot

be used. For example, we demonstrated that we can predict

binding for new alleles and infer (to a certain extent) the geometry

of the binding configuration from binding energy data. The predic-

tive power of our model enabled us to capture HIV evolution pat-

terns in response to the immune pressure of the human hosts (the

threading model alone did not show statistically significant trends).

We are now investigating medium- and long-term evolutionary

response of other pathogens to the pressure created by the cellular

arm of the human immune system. The model can also be used to

provide binding energies for epitome learning (Jojic et al., 2005).
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Comparative genomics reveals unusually long motifs in

mammalian genomes
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Between short regulatory motifs and long ‘ultraconserved’ regions
lies a whole spectrum of functional elements that remains
uncharted.

– Manolis Kellis, RECOMB Regulatory Genomics satellite

workshop, December 2005

ABSTRACT

Motivation: The recent discovery of the first small modulatory

RNA (smRNA) presents the challenge of finding other molecules

of similar length and conservation level. Unlike short interfering

RNA (siRNA) and micro-RNA (miRNA), effective computational and

experimental screening methods are not currently known for this

species of RNAmolecule, and the discovery of the one known example

was partly fortuitous because it happened to be complementary to a

well-studied DNA binding motif (the Neuron Restrictive Silencer

Element).

Results: The existing comparative genomics approaches (e.g., phylo-

genetic footprinting) rely on alignments of orthologous regions across

multiple genomes. This approach, while extremely valuable, is not

suitable for finding motifs with highly diverged ‘‘non-alignable’’ flanking

regions. Here we show that several unusually long and well conserved

motifs can be discovered de novo through a comparative genomics

approach that does not require an alignment of orthologous upstream

regions. These motifs, including Neuron Restrictive Silencer Element,

were missed in recent comparative genomics studies that rely on

phylogenetic footprinting. While the functions of these motifs remain

unknown, we argue that some may represent biologically important

sites.

Availability: Our comparative genomics software, a web-accessible

database of our results and a compilation of experimentally validated

binding sites for NRSE can be found at http://www.cse.ucsd.edu/

groups/bioinformatics.

Contact: ppevzner@cs.ucsd.edu

INTRODUCTION

One of the most important decisions the early embryo must make

is how to form a central nervous system. Recent studies of this

developmental decision led to the Default Model of neural induc-

tion that postulated that all ectodermal cells would adopt a neural

fate in the absence of intracellular signalling (Munoz-Sanjuan

and Brivanlou, 2002). Shortly after the proposal of the Default

Model, Chong et al. (1995), and Schoenherr and Anderson

(1995) discovered a repressor of neuronal specific genes in

non-neural cells and characterized the Neuron Restrictive Silencer

Element (NRSE) that is the target DNA binding sequence of this

repressor (Schoenherr et al., 1996). The NRSE motif is somewhat

unique in that it is unusually long and has the highest information

content among all known vertebrate motifs in TRANSFAC Win-

gender et al. (2001) (with a sufficient number of experimentally

confirmed binding sites). Recently, our group (Lunyak et al., 2002)

and Bruce et al. (2004) independently used bioinformatics appro-

aches to extend the small set of experimentally confirmed NRSE

sites to a large set of putative NRSE sites in several vertebrate

genomes. But without the foreknowledge of NRSE’s consensus

sequence, could NRSE have been discovered computationally?

More generally, if there are other still unknown NRSE-like motifs

with unusually high information content, could they be discovered

computationally? The recent discovery of the first small modulatory

RNA (Kuwabara et al., 2004) and its relationship to NRSE implies

that the solution of this problem may be important not only in the

context of motif finding, but also in the context of finding other

smRNAs.

The NRSE motif is very long (20 bp) and conserved

(80% identity), which should make it an ideal target for de novo
motif finding algorithms (e.g., MEME (Bailey and Elkan, 1994)).

However, since one knows nothing about which genes an undis-

covered motif may regulate, forming an appropriate input sample

a priori is impossible. Moreover, an instance of NRSE may be

millions of nucleotides from the gene that it regulates (Lunyak

et al., 2002; Schoenherr et al., 1996), rendering standard motif search

algorithms useless even when coupled with perfectly accurate gene

expression analyses.

Recent studies have demonstrated that comparative genomics can

overcome the inherent difficulties in searching for transcription

factor binding sites (Xie et al., 2005; Kellis et al., 2003; Lenhard

et al., 2003). However, most existing comparative genomics

approaches rely on phylogenetic footprinting, in which one first

constructs alignments between orthologous regions of different gen-

omes and then identifies motifs in these conserved regions. Thus, if

the motif to be discovered does not participate in the alignment of

the orthologous regions, it will not be discovered. Moreover, even

if all of the NRSE occurrences were captured in the alignments,

they would still remain undiscovered since most phylogenetic foot-

printing techniques assume that many instances of a motif within a

genome are identical or nearly so (see, e.g., Xie et al., 2005). While

this assumption holds true (indeed, this assumption is essential) for

6-10 bp transcription factor binding sites, there are hardly any

identical instances of the NRSE motif. In fact, out of 22 putative

NRSE sites discovered in promoter regions without requiring�To whom correspondence should be addressed.
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alignments, only 9 are found in alignments. The remaining 13 either

were aligned with gaps (6) or occur in regions that could not be

aligned (7) according to the MLAGAN (Brudno et al., 2003) mul-

tiple mammalian alignments (human, mouse, rat, dog and chimp).

We believe that a search for motifs of this longer size is important

for two reasons. First, cataloguing long motifs in the promoter

regions of mammalian genomes may help in determining if the

recently-discovered instance of a non-coding RNA transcriptional

regulator (Kuwabara et al., 2004) is but one of a much larger class

of such molecules. The observed effect of adding NRSE dsRNA to

an adult neural stem cell is that the cell begins to take on the

neuronal characteristics, in part because the protein complex that

normally binds to NRSE and behaves as a transcriptional inhibitor

of neuron-specific genes becomes a transcriptional enhancer of

those genes. Since this operates at the transcriptional level and

can enhance gene expression, the mechanism of smRNA must be

distinctly different from that of siRNA or miRNA which are both

post-transcriptional. Second, the recently discovered juxtaposition

of multiple master regulator binding sites (e.g., Oct4 and Sox2) is

known to influence the fate of embryonic stem cells (Remenyi et al.,
2004; Boyer et al., 2005) and the combined unusually long binding

sequences may be an important signature of combinatorial gene

regulation. Conversely, if we deliberately search for long motifs

and find nothing, we will have more confidence in the current

selection of parameters for motif-finding algorithms.

Below we present a comparative genomics approach that discov-

ers the NRSE motif—along with others whose functions remain

unknown—using neither prior information about which genes might

be coregulated nor a detailed alignment of orthologous promoter

regions. Our results suggest that NRSE is one of several ‘‘long and

conserved’’ motifs that have been systematically missed by existing

comparative genomics approaches (e.g., Xie et al., 2005; Ettwiller

et al., 2005).1

Recently, Bejerano et al. (2004) discovered long substrings

(>200 bp) from vertebrate genomes that were surprisingly well

conserved. In this study we discover 	 20 bp long strings that

are surprisingly well conserved across orthologous regions of

various mammalian genomes. Like Bejerano et al. (2004), we do

not speculate as to the function of the motifs we find, but instead

provide evidence that they are not statistical artifacts. However,

the fact that the NRSE motif appears at the very top of our list

is an indication that other motifs in the list may also be functional.

Unfortunately, since NRSE is the only known long mammalian

motif with such a high degree of conservation, we cannot expect

to find other motifs in our list that have known biological roles.

A detailed biological analysis of these motifs and the genes they

occur near would be a logical next step.

THE COMPARATIVE MOTIF FINDING PROBLEM

An l-mer is a string of length l in the four letter alphabet {A, T, G,

C}. An (l, d)-motif is an l-mer with an associated distance, d, that

specifies a maximum allowable number of mismatches. An (l, d)-

motif M occurs in a sequence s if there exists a substring in s that

is within d mismatches to M or to the reverse complement of

M, denoted M. We may also represent a motif in the alphabet

{A, T, G, C, N}, where N represents a ‘‘don’t care’’ position.

In this case, an (l, d)-motif with t N’s can be thought of as a gapped

(l � t, d � t)-motif where the locations of the t gaps are known.

Suppose we have a family of sequences, S ¼ fSj
i : 1 � i � n‚

1 � j � mg, such that Sj
i represents the ‘‘i-th sequence in species

j’’. We assume that sequences S1
i ‚ . . . ‚Sm

i in all m species are some-

how related, e.g., represent upstream regions of orthologous genes

in m species. For a given (l, d)-motif M, let Mj
i be 1 if M occurs in Sj

i

and 0 otherwise. One way of framing the traditional motif finding

problem (Bailey and Elkan, 1994; Brazma et al., 1998) is to search

for all M such that
P

i

P
j Mj

i is large (e.g., larger than a predefined

threshold), though in practice one also imposes a constraint on

the information content of the resulting profile. However, the

Motif Finding problem loses sight of the relationships between

S*
i , which contains important comparative genomics information

about motifs. Instead of
P

i

P
j Mj

i, we rely on ScoreðM‚SÞ ¼P
i

Q
j Mj

i, in effect forcing the motif to occur in related sequences

across all species. When a motif M has a non-zero score, we call it a

P-motif in sample S. The Comparative Motif Finding problem is to

find all P-motifs M whose score exceeds a predefined threshold t.

No efficient algorithms are yet known for the Comparative Motif

Finding problem. The exhaustive search approach (see, e.g.,

Elemento and Tavazoie, 2005) is likely to be too time-consuming

for long motifs. Indeed, solutions to the Comparative Motif Finding

problem do not necessarily represent sample strings, i.e. strings that

appear in some sets Sj
i from S. Nonetheless, finding all sample

strings with Score(M, S) > t is a simpler problem, and we use

an efficient heuristic to solve it.

Our approach to solving the Comparative Motif Finding problem

is to list all sample strings from one species that represent P-motifs

and cluster the P-motifs to reveal frequently occuring ones. The

algorithm we propose has three basic steps: (i) enumeration, which

identifies all P-motifs corresponding to sample strings; (ii) aggrega-

tion, which clusters frequent P-motifs into a single consensus rep-

resentation; and (iii) concatenation, which assembles overlapping

frequent P-motifs into a single motif representation. An example of

steps (i) and (ii) in the case of the discovered NRSE motif is shown

in Fig. 1.

Enumeration proceeds by checking whether each sample string

w from Sj
i occurs, with d or fewer mismatches, in each of the strings

S*
i (or S*

i ).2 Limiting P-motifs to sample strings at this stage biases

the algorithm towards underreporting motifs; that is, this algorithm

will be unable to discover a motif that is overrepresented in the

sample but does not explicitly appear in it. However, if this does

occur, one would expect some sample string to be an adequate

substitute for the ‘‘true’’ motif. The algorithm is summarized in

Methods and in Fig. 3.

Aggregation takes into account the fact that the enumeration step

will rarely discover identical l-mers that represent the same motif

due to mutations. Therefore, to discover over-represented motifs we

aggregate P-motifs by performing a clustering procedure on the

similarity graph whose vertices represent P-motifs found at the

enumeration step. Vertices in this graph are connected by an

edge if the Hamming distance between them is no more than

1This is not a criticism of existing comparative genomics techniques, but

simply a reflection of the fact that they were not designed for the discovery

of long motifs.

2As one would expect transcription factor binding sites to exhibit few inser-

tions or deletions, the Hamming distance model used here does not account

for indels.
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d/2. Connected components (connected subgraphs) in this graph

represent instances of similar P-motifs. We remark that after

aggregations, P-motifs are no longer constrained to be sample

strings.

It turned out that many (l, d) -motifs we discover actually rep-

resent parts of slightly longer motifs (this could happen if a binding

site is slightly longer than l). In the concatenation step, we connect

any two motifs that share significant sequence overlap, thus forming

a (possibly) longer motif. Motifs that have a small number (in our

application, fewer than 10) of supporting sequences are discarded as

not highly overrepresented, and any 50 or 30 terminal columns in

a motif that have fewer than some threshold number of sequences

are dropped from that motif, resulting in a motif of some length l0

that may be different than l. Afterwards, columns that do not have

a clear consensus nucleotide (i.e., at least 50) are labelled as N.

Thus, the resulting motif descriptions are not necessarily contiguous

(l, d)-motifs in the four letter nucleotide alphabet, but (l0, d)-motifs

with t gaps, i.e., (l0 � t, d � t) gapped motifs.

As an example, consider the de novo discovery of a motif with a

consensus sequence that is nearly identical to the known NRSE

(Fig. 1). The enumeration of (20, 4)-P-motifs from orthologous

upstream promoter regions of genes in human, mouse, and rat res-

ults in more than 1 million strings; however, the overwhelming

majority of these P-motifs formed isolated vertices in the similarity

graph and were therefore immediately discarded as statistical arti-

facts. Very few of the remaining connected components had more

than 20 vertices. Interestingly, one particular connected component

with 22 P-motifs had a consensus sequence that matched the known

NRSE motif. This consensus sequence could then be combined with

the consensus sequences from other connected components that are

50 and 30 shifts of this motif, ultimately leading to a 21 bp motif

with 3 ‘‘don’t care’’ symbols, TNCAGCACCNNGGACAGCGCC.

To compare our de novo prediction against experimentally validated

NRSE sites, we compiled a list of known sites reported in the

literature (see Methods); the logo representation of the validated

NRSE binding sites is shown in Fig. 1b. Not surprisingly, there

was substantial agreement between instances of the predicted motif

and experimentally validated NRSE sites. Remarkably, our de novo
predictions correctly identified two ‘‘wobble positions’’ in the

middle of the NRSE motif, and also extends the canonical NRSE

motif by four somewhat less conserved positions on both the 30 and

50 ends.

In this study the motif width, l, is set to 20 and the number of

allowable mutations, d, to 4. In theory, this algorithm could be used

for other values of l and d, though the biologically relevant range of

parameters is small. One would expect that the motif width would

be less than 30 characters, and d can be chosen accordingly given

l so that the expected number of occurrences of an (l, d)-motif would

be kept low in the size of the sequence analyzed. Changing the

threshold t represents the trade-off between sensitivity (fewer false

negatives) and specificity (fewer false positives).

RESULTS

We applied the above motif discovery algorithm on 5 Kb-long

orthologous upstream sequences from human, mouse, and rat.

The de novo discovery of motifs turned up 606 that were further

subjected to statistical tests (see Methods). After filtering, the res-

ulting list contained the 35 motifs shown in Table 1. NRSE appears

among the top motifs in this list, thus indicating that our method

is indeed capable of finding long motifs in mammalian genomes

without prior information about which genes a motif regulates.

Any attempt at de novo motif discovery is likely to find some

motifs that are functional and many more that are not functional. We

approach the problem of distinguishing between these two cases by

considering three factors.

First, if the occurrences of a motif are not conserved in the human,

mouse, and rat genomes, then that motif is probably not functional.

We show that most motifs we find exhibit much higher conservation

in all three species than one would expect by random chance, an

argument in favor of their functionality.

Second, NRSE is an ‘‘ancient’’ motif that is conserved across

frog, chicken, and mammals. This implies that the orthologous

instances of NRSE motifs in human and rodents (separated by

	 80 million years of evolution) should be more conserved than

the paralogous instances in human that presumably had more time to

evolve. Indeed, instances of the NRSE motif exhibit significantly

higher conservation between human/mouse/rat genomes (5% diver-

gence on average) than between different instances of the NRSE

Fig. 1. An example of the motif discovery algorithm as it recapitulates the

NRSE motif. Sample strings that are P-motifs are enumerated from ortho-

logous upstream regions. (a) Similar P-motifs appear as connected compo-

nents in the similarity graph. Although the diameter of this connected

component is large, the maximum pairwise Hamming distance within the

component is small. Consider vertices 6 and 7: the path length between these

vertices in the graph is 6, indicating a possible Hamming distance of 12

between the vertices, but the Hamming distance is 6. (b) The consensus

sequence of the connected components is shown immediately beneath the

table. For purposes of comparison, the motif logo for experimentally deter-

mined NRSE sites is shown beneath that. Vertices shown in gray are 9 strings

found in MLAGAN mammalian alignments; dashed edges show that the

subgraph induced by these vertices comprises four small connected compo-

nents (the largest one has 6 vertices) instead of one large component on 22

vertices. The remaining strings either had gaps in the MLAGAN alignments

or occurred in regions deemed unalignable (i.e., no aligned blocks spanned the

region).
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motif within the human genome (13% divergence on average).

Nearly all of the motifs that we discovered exhibited this property.

Such a phenomenon is unlikely for spurious motifs, so this provides

another argument in favor of the hypothesis that at least some of

the motifs we report are functional.

Third, since the existing repeat masking is imperfect, there is a

chance that the motifs we discover are parts of unmasked repeats

shared by human, mouse, and rats. While human and rodents share

few highly diverged repeats, three of the motifs that we discover

represents an l-mer from the known repeat families. Thus, one can

conclude that the motifs we discover are not parts of unmasked

transposable elements.

A common assumption in comparative genomics is that if a motif

is functional, then it will be conserved. That is, if our algorithm

outputs a sequence motif that does not appear in orthologous

sequences more often than can be expected at random (while

accounting for the total number of times it occurs in the genome

overall) then it can immediately be rejected as noise. However,

restricting the definition of conservation to include only bases

that are in aligned regions causes unacceptable loss of potentially

functional sites for the long motifs that are the focus of this study.

Therefore, we define blocks (e.g., gene regions) of sequence that are

presumably related through evolution without specifying the exact

mapping between basepairs. If a motif occurs in the orthologous

block in each species, it is considered a conserved instance.3

Specifically, we extend the region around each gene g (from the

list of genes representing orthologous triples) to the interval [gleft,

gright] where gleft is the position ‘‘halfway’’ between the start of

g and the end of previous gene and where gright is the position

Table 1. The significant long motifs found by the algorithm. Motifs that overlap significantly with experimentally confirmed NRSE sites are labelled as such.

Columns: Score, the ranking score (Score(M, G)-np)
ffiffiffiffiffi
np
p

; # H, the number of hits in human blocks; # HMR, the number of hits in orthologous human, mouse, and

rat blocks; inter/intra dH the inter-species (/intra-species) hamming distance averaged over instances of the motif that occurred in conserved blocks in all three

species. The marked instances of the NRSE motif may overlap (e.g., motiffs 17 and 20 overlap by 17 nucleotides)

# NRSE? Consensus Score # H # HMR inter/intra dH

1 x GNGNTCAGCACCNCGGACAG 308.2 101 20 1.6/0.7

2 GNGCATNCTGGGANTTGTAG 212.7 154 26 1.6/0.6

3 GCNGCGCGGTCCCTTTAAGA 211.5 92 12 4.7/0.8

4 ANAGGGNTTCTCNCCTGTGTG 211.5 360 97 2.6/1.7

5 GGAGCTGGAGAAGGAGTTNCACTT 201.4 155 23 6.2/1.3

6 x TNCAGCACCNNGGACAGCGCC 198.6 498 131 2.9/1.2

7 GCNGCCGTTGCCATGGANAC 193.8 157 25 3.1/0.7

8 CCNCGGCGCCGCCATCTTGA 189.2 168 24 4.7/0.9

9 GCGNGGCANTCTGGGANTTGT 182.1 146 20 3.2/1.5

10 CGCCGCCGCCATGTCCGNGG 181.8 229 22 5.0/1.1

11 GCTGGCANCCGCCGCCGCNG 178.2 133 10 3.4/0.7

12 GCNGNGGACTACAACTCCCA 168.0 125 12 3.1/1.3

13 CCNNGGGCGCCGCCATCTTGC 163.5 339 51 4.8/1.0

14 CAGCCAATCAGCGCNCGGCG 162.2 194 20 4.9/1.8

15 CGCGGNGCACGCCGGGAAGC 153.3 208 14 4.7/1.6

16 CTACAANTCCCANAAGGCAC 147.5 222 31 3.4/1.3

17 x TTCAGCACCANGGACAGCTC 125.4 1078 299 4.7/2.0

18 GCGCTGCAGCCGCTGCNGNG 125.1 203 14 3.4/0.8

19 CCCGCGTCTCCATGGCNACG 123.9 207 17 4.8/1.3

20 x TNCTTCAGCACCACGGACAG 116.9 688 145 4.5/2.0

21 GCNCAGCCAATCAGCGGGCG 96.6 187 11 4.9/1.8

22 CNTGCTGCNGCGGCCGCCGC 96.3 274 18 2.8/0.8

23 TGCNTTCTGGGAGTTGTAGT 93.4 881 178 4.6/2.1

24 GGCCNCCAGAGGGCGNAGNGG 91.5 214 10 3.4/0.5

25 GACTNCATTTCCCGGCAGGC 91.2 444 44 4.5/1.7

26 GCGCNGCCAATCAGCGCGCGG 88.5 362 28 6.5/1.8

27 CGGCCATGTTTGTNAGGGGC 83.8 183 16 4.6/1.7

28 GNANAAACTACAACTCCCAG 81.7 205 21 3.2/1.5

29 AACTACAATTCCCAGAGNNC 80.9 308 36 2.9/1.0

30 GCCGATTGGCCGCCGCCGCG 80.9 363 18 6.4/1.9

31 CGCGGTGCATNCTGGGACTT 78.9 214 19 4.6/2.1

32 ACANCTCCCGGCAGGCNTCGC 77.9 333 20 5.2/1.6

33 GCCGCCGCCGCNGCNGCTGCNG 77.4 469 31 3.2/2.0

34 ATGTAAATCATATGCAAATG 76.4 3395 991 6.6/5.8

35 GGCCTGGTNGCCATGGCAAC 75.9 624 92 5.1/2.0

3This approach only works when the expected number of instances of a motif

in a long sequence block is smaller than 1; this holds for (20, 4)-motifs, but it

does not hold for shorter motifs, hence the need for alignments in existing

studies.
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‘‘halfway’’ between the end of g and the start of the next gene. For

roughly 8% of genes, the resulting intervals [gleft, gright] turned out

to be very long, so we have chosen to trim such intervals to 500 kb

from each side, leaving some regions of the genome uncovered by

the intervals. The resulting collection of intervals is denoted G
(analagous to S) such that ScoreðM‚GÞ is well defined.

We define a score for ranking motifs that is similar to the Motif

Conservation Score (MCS) from Xie et al. (2005). Assume the motif

M appears in bj blocks in species j and that there are a total of n
in each genome. If we randomly mark blocks from each of the m
species with probability bj/n, then the probability of marking any

particular block in all m species is p ¼ ð
Q

j bjÞ/nm. The P-value,

or the probability of observing k or more genes that are marked in

all m species, is then 1 �
Pk�1

x¼0 Fðnp‚xÞ, where F(a, b) is the

Poisson distribution with parameter a evaluated at b. However,

while a P-value of the ranking score is conceptually more useful

than a raw score, it turns out that the P-value usually evaluates to

0 for most of the motifs we report, an indication that the motifs

we find are statistically surprising. The expected number of ortho-

logous triples of a motif occurring, according to this naive back-

ground model, is np and its standard deviation is approximatelyffiffiffiffiffi
np
p

. The ranking score of ðScoreðM‚GÞ � npÞ/ ffiffiffiffiffi
np
p

can be used as

a rough estimate of the importance of a motif M.

From the list of 606 motifs we removed motifs that were

deemed (a) micro-satellites; (b) occurred more than 10,000 times

in the genome; (c) had fewer than 10 conserved hits; or (d) were a

variation on A/T-rich patterns like AAAAAAAAAATTTTTTTTTT.

This procedure resulted in 323 motifs that were further investigated

to check whether there were motifs in the list that appeared multiple

times with minor variations. It turned out that 6 distinct types of

motifs appeared multiple times in the list with slightly different or

overlapping consensus sequences. These 6 motif families comprised

63 motifs thus reducing our list to 323 � 63 + 6¼266 individual

motifs. One of the 6 familes corresponded to motifs that were

correlated highly with experimentally-determined NRSE binding

sites (Sun et al., 2005). These motifs originated from six compon-

ents in the similarity graph whose consensus sequences were suf-

ficiently different to elude the aggregation and concatenation steps

of our algorithm. The remaining motifs did not correspond to known

transcription factor binding site matrices listed in TRANSFAC

(Wingender et al., 2001), to miRNA target sequences listed in

miRBase (Griffiths-Jones, 2004), to known transposable elements,

or to homing endonuclease restriction sites (Roberts et al., 2005).

To validate the test for statistical significance of our findings,

random substrings of length 20 were selected from the same

orthologous set of upstream regions given as input to the motif

discovery algorithm. From the set of sampled substrings, some

set of columns (between 0 and 4 in total) is selected at random

and converted into N characters to account for degeneracy in the

motif set. Thus, the randomized ‘‘noise’’ motifs consist of strings

from the input data set that contain approximately the same pattern

of degeneracy as the discovered ‘‘signal’’ motifs. The ranking score

of the ‘‘noise’’ motifs was calculated for motifs that met properties

(a)-(c) above. As an aggregate, the scores for the random motifs are

statistically different from the scores of motifs output from the motif

discovery algorithm (Mann-Whitney rank sum test P-value less than

1 · 10�7). However, a visual inspection of the box-and-whisker

plot of the scores of the two samples (Fig. 2) reveals that while the

difference between the sample means may be small, the set of

discovered motifs include a large number of outliers (some, but

not all, of which correspond to the NRSE motif) that may represent

novel biologically functional motifs. Those discovered motifs with

ranking score larger than 75 are listed in Table 1. The cutoff score of

75 is conservative because most of the randomly sampled noise

motifs with high score were suspiciously similar to poly-A signals,

which are systematically conserved and thus not informative.

CONCLUSIONS

In one of the first comparative genomics studies, Gelfand et al.
(1999) discovered a number of conserved strings in bacterial gen-

omes that only later were determined to be riboswitches. Similarly,

we have no experimental proof that the strings in Table 1 represent

new regulatory elements. However, we have demonstrated that

these strings are not statistical artifacts and warrant future experi-

mental analysis. While these computational experiments cannot yet

prove whether regulation through smRNAs is a common mechan-

ism in mammalian genomes, they imply that the smRNAs are

probably not as ubiquitous as other ncRNAs.

A recent study (Prakash and Tompa, 2005) makes the important

point that the assignment of orthology is crucial for comparative

genomics approaches. In this study we rely on the publicly available
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Fig. 2. The distribution of ranking scores for the motifs shows that, while the

median score of noise motifs and discovered motifs are different, the overall

distributional properties of the two groups are not that different. However, the

presence of a number of outliers among the discovered motifs is important:

these motifs could be biologically important.
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mapping of orthologous genes, but acknowledge that we would

likely find improved motif predictions if better methods for

determining orthology are developed. Our work also extends the

recent FastCompare (Elemento and Tavazoie, 2005) algorithm by

considering motifs in multiple (rather than pairwise) species and by

not limiting the analysis to short motifs as in that study.

The algorithm as described in this study is most suitable for

sets of species that can be considered evolutionarily equidistant.

We are currently working on extending this algorithm to accomod-

ate more varied phylogenetic relationships (Blanchette and Tompa,

2002).

METHODS

All sequences were repeat masked using the RepeatMasker annotations

in the Ensembl sequence database; all annotations and orthology relation-

ships derive from the Ensembl Core and Compara databases, release 32 on

the assemblies of Homo sapiens, Mus musculus, and Rattus norvegicus
(35e, 34, and 34f respectively). Upstream (5000 bp 50 of transcription

start) genomic sequences from all orthologous gene triplets in the human,

mouse, and rat genomes resulting in 14,355 usable sequence regions.

The pairwise Hamming distance among found motifs was computed

across (inter) species, and within a (intra) species. Assuming an approxim-

ately normal distribution of Hamming distance, the two lists were compared

using Student’s T-test to determine if the inter species distance was

larger than the intra species distance at the 99.9% confidence level. All

motifs listed in Table 1 have a significant difference between inter- and

intra-species Hamming distance. The higher conservation of the motif within

putatively orthologous promoter regions compared to the conservation

within nonorthologous positions within a single species may indicate that

purifying selection is operating on a portion of that motif’s instances.

In the enumeration phase of the algorithm, our method takes a shortcut

and arbitrarily chooses one member in each set as a reference sequence

(human) and enumerates all l-mers in that sequence such that each of the

remaining m � 1 sequences in the set contains an l-mer with no more than

d mismatches to w or �ww. Choosing a reference sequenceintroduces a

small bias into the algorithm.

As mentioned above, the length of strings recorded in the Enumeration

step is l¼ 20, with a distance of d¼ 4. For efficiency, connected components

in the similarity graph with fewer than three l-mers were discarded prior

to the construction of the overlap graph used in the Concatenation step.

Two l-mers v1v2 � � � vl and w1w2 � � �wl overlap if there exists an i-suffix of

v and an i-prefix of w such that dHðvl�i � � � vl‚w1 � � �wiÞ � d where i � 0.8l.

In the application considered here, at least 12 nucleotides were required

to match over 16 consecutive positions. Each vertex in the overlap graph

corresponds to a connected component in the similarity graph, and therefore

represents a potentially large number of enumerated l-mers. The Position

Weight Matrix representation was constructed from each connected com-

ponent in the overlap graph by positioning all related enumerated l-mers

in the appropriate columns. This leads to the case where different columns

in the PWM have different numbers of contributing sequences, and we refer

to that number of l-mers as the support of that column. Any column that has

less than 40 of the maximum support within the motif is discarded; as

expected, this does not discard any internal columns (which would lead

to a motif becoming fragmented). Motifs that had maximum support of

less than t ¼ 10 were discarded as unimportant. Columns that did not

have a 51% majority consensus nucleotide were listed as N.

The enumeration phase requires negligible memory and time

O(nmL2), where m is the number of species, L is each sequence’s length,

and n is the total number of sequence regions scanned. The aggregation

phase requires, in worst case, time and memory proportional to the square

of the number of enumerated strings (which will be much less than nL), and

the concatenation phase requires time and memory proportional to the square

of the number of connected components from the aggregation phase. In

practice, the enumeration phase is run in parallel on a grid and the bottleneck

is the aggregation phase which is done on a single computer.

We compare our predicted motifs against experimentally validated NRSE

sites that have been reported previously (Schoenherr et al., 1996; Sun et al.,

2005). A total of 48 genes are unambiguously identified in the combined

studies, but neither study attempts to identify orthologous sites in multiple

species. Of the 31 genes from the mouse genome identified in Sun et al.

(2005), there are 16 orthologous genes in each of human and rat that

also have a substring that matches the consensus string used in that study

(TYAGMRCCNNRGMCAG with no mismatches). Of the 18 genes in the

human, mouse and rat genomes reported in Schoenherr et al. (1996), there

are 14 orthologous genes in each of the other two species that also have a

substring that matches the consensus used in that study (TTCAGCACCNCG-
GACAGNGCC with 4 mismatches). We combine the set of sites that were

confirmed in a lab with the set of sites that are orthologous to sites confirmed

in a lab into a database of 167 distinct binding sites across the three genomes.

While it is not necessarily true that an orthologous instance of a verified

binding site is also a binding site, it seems a safe bet that a large portion of

them are. We remark that this database necessarily represents a (presumably

small) subset of the biologically active NRSE sites in the genome.
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ABSTRACT

Motivation: Structural similarity search among small molecules is a

standard tool used in molecular classification and in-silico drug

discovery. The effectiveness of this general approach depends on

how well the following problems are addressed. The notion of similarity

should be chosen for providing the highest level of discrimination of

compounds wrt the bioactivity of interest. The data structure for

performing search should be very efficient as the molecular databases

of interest include several millions of compounds.

Results: In this paper we focus on the k-nearest-neighbor search

method, which, until recently was not considered for small molecule

classification. The few recent applications of k-nn to compound

classification focus on selecting the most relevant set of chemical

descriptors which are then compared under standard Minkowski dis-

tance Lp. Here we show how to computationally design the optimal

weighted Minkowski distance wLp for maximizing the discrimination

between active and inactive compounds wrt bioactivities of interest.

We then show how to construct pruning based k-nn search data struc-

tures for any wLp distance that minimizes similarity search time.

The accuracy achieved by our classifier is better than the alternative

LDA and MLR approaches and is comparable to the ANN methods. In

terms of running time, our classifier is considerably faster than the ANN

approach especially when large data sets are used. Furthermore, our

classifier quantifies the level of bioactivity rather than returning a binary

decision and thus is more informative than the ANN approach.

Contact: cenk@cs.sfu.ca

1 INTRODUCTION

Small molecules (with molecular weights� 500) are very important

to the exploration of molecular and cellular functions. They also

play key roles in treating diseases: almost all medicines available

today are small molecules. Identification of small molecules that are

effective at modulating a given biological process or disease state is

a fundamental research challenge we are facing today.

Structural similarity search among small molecules is one of the

standard tools used in conventional in silico drug discovery. Struc-

tural similar chemical compounds are usually similar in their

physicochemical properties and/or biological activities (Maggiora

and Johnson, 1990). Thus, it is common to query small molecules

databases with a probe compound possessing desirable biological

activity to discover chemically similar database entries, which

would have a higher probability to have the bioactivity of interest.

It is also common to perform classification of a compound with an

unknown bioactivity level through a similarity search among

compounds whose bioactivity levels are known.

This important ligand-based drug discovery methodology and

classification approach are associated with two fundamental com-

putational problems that need to be addressed. (1) The notion of

similarity used in search determines the molecules that are extracted

from the database. A notion of similarity which has the highest level

of bioactivity discrimination is very desirable and needs to be deter-

mined computationally. (2) It is desirable to have efficient algo-

rithms for structural and/or chemical similarity search as the

molecular databases of interest include several millions of com-

pounds and linear/brute force search may take significant amount of

time (several days in certain large private databases).

Similarity measures for small molecules

Given a notion of similarity among data elements, it is usually

possible to obtain a corresponding distance measure; searching

for structurally most similar molecules to a query molecule in

this context corresponds to searching for molecules with the small-

est distance to the query molecule. The key premise of this approach

is that the notion of a distance is mathematically well defined and

algorithms for handling distance based classification, clustering and

search are better understood. For example, the search for the most

similar molecule to a query compound becomes the Nearest Neigh-

bor Search (NN) problem in the distance domain. This problem is

well studied in computer science and a number of efficient algo-

rithms are available for it. This paper, thus, aims to map the above

two problems in structural similarity search, i.e. classification and

querying, to corresponding problems in nearest neighbor search.

There are various ways to define the descriptors/parameters for

the chemical structures stored in electronic collections convention-

ally used in the modern computer-aided drug discovery (Brown,

1997; Adamson et al., 1973).

Such parameters either (1) merely reflect the structural organiza-

tion of molecules in qualitative manner, such as those used in the

popular structural fingerprints (employed in NCBI’s PubChem

database), e.g. the existence of a doubly bonded Carbon pair, a

three membered ring, an aromatic atom etc. (MACCS) or (2) reflect

various local and global physical-chemical molecular features

(chemical descriptors) which are quantitative, such as atomic�To whom correspondence should be addressed.
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weight, aromaticity, hydrophobicity, the number of specific atoms,

charge, density, etc. These descriptors serve as independent vari-

ables for modern QSAR (Quantitative Structure-Activity

Relationship) tools including the structural similarity search engines

in chemical compound databases.

Given an adequate set of descriptors, it is desirable to have a

measure of similarity or alternatively a distance measure under

which chemically equivalent molecules have a high level of simi-

larity or small distance, and non-equivalent compounds have a low

level of similarity or large distance. The most common measure of

similarity amongst sets of molecular descriptors is the so called

Tanimoto coefficient (Willett et al., 1998). Given two descriptor

sets (which can be organized in arrays) X and Y, the Tanimoto

coefficient is defined to be the ratio of the number of descriptors

that are identical in X and Y and the total number of descriptors

available for X and Y. The Tanimoto coefficient is in the range [0,1];

a value close to 1 implies similarity and a value close to 0 implies a

dissimilarity among the two descriptor sets compared.

Often a collection of descriptors are represented as a bit-vector

(e.g. structural fingerprints) where each one of the n possible

descriptors is assigned a dimension, i.e. natural number between

1 and n (this is the representation used by PubChem and other

databases). Let B(x) represent the bit-vector corresponding to a

molecule x and let B(x)[i] represent its ith dimension. Given two

compounds x and y, the Tanimoto coefficient T(x, y) is then defined

as Tðx‚yÞ ¼ ð
Pn

i¼1 ðBðxÞ½i�^BðyÞ½i�ÞÞ/ð
Pn

i¼1 ðBðxÞ½i�_BðyÞ½i�ÞÞ.
Although the Tanimoto coefficient provides a measure of

similarity, it is possible to define a Tanimoto distance measure
as DT(x, y) ¼ 1 � T(x, y). Notice that a Tanimoto distance close

to 0 implies a Tanimoto coefficient close to 1, i.e. a high level of

similarity and a Tanimoto distance close to 1 implies a Tanimoto

distance close to 0, i.e. a low level of similarity between x and y.

The Tanimoto coefficient is very popular mostly due to its

simplicity. For real valued descriptor arrays (where each dimension

has a real value) it is also quite common to use the Minkowski

distance of order p, denoted Lp for measuring their similarity. Given

two real valued n dimensional descriptor arrays X and Y, their

Minkowski distance of order p, namely Lp, is defined as

LpðX; YÞ ¼ ð
Pn

i¼1 jX½i��Y½i� j pÞ1/p
. When comparing two struc-

tural fingerprints B(x) and B(y), the Minkowski distance of order

1 is equivalent to the well known Hamming distance (see for

example (Chen and Reynolds, 2002)): HðBðxÞ‚BðyÞÞ ¼Pn
i¼1 jBðxÞ½i� � BðyÞ½i� j :

In order to capture the similarity between compounds more accu-

rately with respect to a particular bioactivity, more sophisticated

distance measures can be used. For example, it is possible to assign

a relative importance to each structural descriptor in the form of a

weight wi 2 [0, 1]. The resulting weighted Minkowski distance of

order 1 can then be defined for two descriptor arrays X and Y as

wL1ðX‚YÞ ¼
Pn

i¼1 wi · jX½i� � Y½i� j :1

Classification methods for small molecules

The descriptor arrays described above can be used for classification

of compounds according to a given bioactivity.

One of the most popular classification techniques is the

MLR (Multiple Linear Regression) (Cramer et al., 1988) method

which quantifies the activity level of a descriptor array X as:

ActivityðXÞ ¼ c +
Pn

i¼1 si · X½i� where c is a constant. If Activity(X)

� t for a (user specified) threshold value t then it is likely that the

molecule is active with respect to the bioactivity of interest. Notice

that the MLR classifier is described by a planar separator in the

multi-dimensional descriptor array space; those points on one side

of the separator are classified as active and those on the other side

are classified as inactive. There are many different optimization

criteria for determining the separator plane, i.e. the coefficients

si. The most widely used one (which we used in our experiments)

is the partial least squares criteria (Geladi and Kowalski, 1986),

which suggests to minimize the sum of the squares of differences

between actual and predicted activity levels of the compounds in a

training set. The separator plane which satisfies this criteria is NP-

hard to compute deterministically but can be approximated through

genetic algorithms, local search heuristics, etc.

Another popular statistical classification method is Linear

Discriminant Analysis (LDA) (Livingston, 1995). Given a set of

descriptor arrays, LDA computes a linear projection of the

descriptor array space into a Euclidean space with 2 or 3 dimensions

(i.e. each descriptor array is mapped to a point in the 2/3-D

Euclidean space). The projection aims to maximize the ratio of

between-class variance and within-class variance. The projection

of descriptor arrays to points in the Euclidean space is followed by

the computation of a line/plane which best separates the active and

inactive compounds, i.e. maximizes the accuracy of the classifier.

For a given query compound with unknown activity, its class is then

simply determined by checking to which subspace its projection

falls into; clearly this can be performed very fast.

It is also possible to perform compound classification via

well known machine-learning techniques such as SVM (Support

Vectors Machines) (Zernov et al., 2003) and, more commonly,

ANN (Artificial Neural Networks) (Zupan and Gasteiger, 1999).

All these QSAR techniques (i.e. compound classifiers) have

their own advantages and drawbacks. Statistical techniques such

as LDA and MLR typically produce lower accuracy compared to the

machine-learning approaches. On the other hand ANN only returns

a binary value for the bioactivity (YES or NO) and provides no

insight into the level of the bioactivity or the importance of

the descriptors with respect to the bioactivity. It also does

not provide a way of probing/similarity search, and can be

somewhat slow.

Our contributions to compound classification

In this paper we focus on the k-nearest neighbor (k-nn) classifica-

tion. which deduces the level of the bioactivity of a query molecule

based on the number (and the bioactivity levels) of active elements

among its k-nn with respect to a distance measure of choice.

Although k-nn classification is a well known data mining method,

it was not considered for small molecule classification until recently

(Zheng and Tropsha., 2000; Itskowitz and Tropsha., 2005). The few

known applications of k-nn method to compound classification aim

to select the most relevant set of chemical descriptors to reduce the

1To the best of our knowledge all recent studies in this direction show how to

assign binary values to weights wi i.e. how to choose the specific descriptors

that are most relevant for the application of interest (e.g. (Zheng and

Tropsha., 2000; Itskowitz and Tropsha., 2005)). As will become clear

later in the paper, we show how to compute optimal real valued weights

so as to improve the predictive power of our classifier.
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size of the descriptor arrays used. The compounds are then com-

pared under the standard (unweighted) L1 or L2 distance.

In this paper we introduce use of the (more general) weighted

Minkowski distance of order 1, namely wL1. For each bioactivity of

interest, we determine real valued weights wi of the wL1 distance so

as to maximize the discrimination between active and inactive

compounds in a training set. (Thus, earlier applications of k-nn

to compound classification can be seen as limited versions

of our approach where the weights wi are set to either 0 or 1.)

We compute the optimal values for weights wi via a linear optim-

ization procedure.

Our experiments show that our k-nn classifier with respect to

wL1 distance provides better accuracy than the LDA and MLR,

sometimes significantly so. Note that, as per LDA and MLR, our

classifier is also based on a projection of molecules to a metric

space. As per MLR (and in contrast to LDA) the number of dimen-

sions in the projection space is equal to the number of descriptors.

However, unlike MLR and LDA, our classifier is not described by a

simple planar cut on the projection space but by a complex surface

defined by the combination of surfaces in the form of balls
with specific data elements in their center. Although our classifier

uses more complex surfaces (which results in higher accuracy) we

can still perform fast classification, thanks to the efficient data

structures we develop for nearest neighbor—see below. Our method

is comparable to the ANN classifier in terms of accuracy. Yet it is

superior to the ANN classifier in the sense that it determines the

level of bioactivity (rather than giving a simple YES or NO answer)

as per the MLR based solutions. It turns out that our classifier is

also faster than the ANN classifier—this we achieve through an

efficient data structure we develop for efficient similarity search as

described below.

Similarity search among small molecules

Efficient data structures for performing nearest neighbor search in

high dimensional metric spaces usually exploit the triangle property

satisfied by the distance measure. The primary example of these

distance based proximity search data structures is the Vantage Point

(VP) Trees (Uhlmann, 1991). In a VP tree, efficient similarity search

in a large data set is achieved through iterative pruning. Among the

data elements, the VP Tree randomly picks a Vantage Point V and

partitions the data set into two equal size subsets according to their

proximity to V. Those which are close to V form the inner partition
and those which are far form the outer partition. The two subsets

are further partitioned via the iterative application of the above

procedure until each subset includes a single data element.

When performing a similarity search, the query element X is first

compared to the Vantage Point of the entire set. If X is sufficiently

close to V the search is performed in the its inner partition. If X is

sufficiently far from V the search is performed in the outer partition.

It is possible the X is neither too close nor too far; in this situation the

search is performed simultaneously in both partitions implying that

no pruning has been achieved.

A modification to traditional VP trees, which we call Space

Covering VP Trees (or SCVP trees) was described by Sahinalp

et al. (Sahinalp et al., 2003) to avoid situations in which pruning

is not achieved. At each level of the SCVP tree there are multiple

vantage points which are chosen in a way that the union of the inner

partitions of these vantage points cover the entire data set. In other

words, each data element is included in at least one of the inner

partitions of a vantage point. Thus a SCVP tree has multiple

branches at each internal node, each representing a vantage point

and its inner partition. No branch exists for representing an outer

partition. If a query element is not close to any of the vantage points

at a given level, it is deduced that there are no similar items to it in

the data set.

The SCVP trees introduce some redundancy in the representation

of the data elements: clearly each data element may be included in

more than one inner partition and thus need to be represented in

more than one subtree. Thus the memory requirements of the SCVP

tree can be fairly large. In case the full SCVP Tree requires more

memory than available, some of the lower levels could be cut out—

after which linear search needs to be employed.

Our contributions to similarity search among

small molecules

In the original SCVP tree construction, the vantage points in

each level are chosen randomly until all search space is covered

(Sahinalp et al., 2003). Clearly, it is desirable to minimize the

number of vantage points that cover the search space. With

fewer vantage points picked at each level, a better space utilization

can be achieved, implying that more levels of the tree can be fitted

in the available memory.

We first prove that the problem of minimizing the number of

vantage points at each level is an NP-hard problem. However, we

show how to approximate the minimum number of vantage points

and thus obtain the optimum allocation of available memory

through a simple polynomial time algorithm. The resulting data

structure, which we call the deterministic multiple vantage point

tree (DMVP tree), when built in full, is guaranteed to have O(log ‘)
levels, where ‘ is the size of the data set. If the maximum number of

children of an internal node at level i is ci, the query time guaranteed

by our data structure is Oð
P log ‘

i¼1 ci. Because ci is typically a small

constant, the query time is only O(log ‘), a significant improvement

over linear/brute force search.

Due to redundant representation of data items, the memory

usage of the DMVP tree can be super-polynomial. In case the

full version of the DMVP tree requires more memory than available,

lower levels of the DMVP trees could be cut out. In this case, when

the search routine reaches the final level built, the pruning in the

respective subspace can be achieved by linear search. We also show

how to obtain the optimum cut so as to minimize the expected query

performance.

Our data structure is not only interesting for classification

purposes; similarity search among small molecules under various

notions of similarity is of independent interest. To the best of

our knowledge, this is the first application of an efficient similarity

search data structure to small molecule data collections. In particu-

lar, all known k-nn classifiers employ brute force search, which

is not scalable with the growth in the size of compound databases

(e.g. PubChem).

We demonstrate that the DMVP tree performs very well in

practice, achieving fast classification and similarity search. We

compare the performance of our data structure against brute

force search in terms of the number of comparisons between

descriptor arrays that we need to perform under the weighted
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Minkowski distance. We also demonstrate how well our classifier

performs against available alternatives in terms of running time.

2 DISTANCE MEASURES FOR SMALL
MOLECULES AND DISTANCE BASED
CLASSIFICATION

Given a chemical compound s, its descriptor array S is defined to be

an n dimensional vector in which each dimension i, denoted by S[i],
is a real value corresponding to the descriptor associated with

dimension i. For a given bioactivity, it is of significant interest

to come up with a distance measure D(S, R) between pairs of

descriptor arrays S and R that correspond to the similarity in

the bioactivity levels of the corresponding compounds s and r: if

the bioactivity levels are similar, the distance must be small and

vice versa. Such a distance measure could be very useful in

the classification of new chemical compounds in terms of the

bioactivity of interest: the bioactivity level of the new

compound is likely to be identical to the bioactivity level of the

set of compounds that have the smallest distance to the new

compound.

A distance measure D forms a metric if the following conditions

are satisfied. (i) D(S, S) ¼ 0 for all S and D(S, R) � 0 for all S
and R (non-negativity). (ii) D(S, R) ¼ D(R, S) (symmetry).

(iii) D(S, R) � D(S, Q) + D(Q, R) (triangle inequality). Metric

distance of interest include the Hamming distance, Euclidean dis-

tance and the Tanimoto distance. Metric distances are of particular

interest due to the availability of efficient data structures they admit

for fast similarity search.

The commonly used QSAR approach estimates the level of

bioactivity of a compound via a linear combination of its

descriptors each of which correspond to a specific dimension of

its descriptor array. In distance based compound classification, it is

thus natural to consider a distance between two descriptor arrays

which is a linear combination of the differences in each one

of the dimensions. More specifically one can define DðS‚RÞ ¼Pn
i¼1 wi · j S½i� � R½i� j where wi, the weight of the dimension i

is a real value in the range [0,1]. It is easy to show that this

distance, which is usually called the weighted Minkowski distance

of order 1 forms a metric.

In this paper we focus on classification of biomolecules accord-

ing to five specific bioactivities: (i) being an antibiotic, (ii) being a

bacterial metabolite, (iii) being a human metabolite, (iv) being

a drug, and (v) being drug-like. The biomolecular data sets

available usually do not specify the level of bioactivity of interest

but rather provide whether a compound is active or inactive. Thus

we only perform a binary classification of compounds for each

bioactivity, although our methods are general to provide a real

valued level of bioactivity.

Our classification method for a given bioactivity first computes

a distance measure for a training data set which separates the

subset of active compounds from those that are inactive. Given a

training set of descriptor arrays T ¼ {T1, T2, . . . , T‘} (each of which

belonging to a compound) we determine the distance measure D,

more specifically compute the associated weights wi, through a

combinatorial optimization approach.

Given the training set T, let TA ¼ fTA
1 ‚TA

2 ‚ . . . ‚TA
mg denote its

subset of active compounds and TI ¼ fTI
1‚TI

2‚ . . . ‚TI
‘�mg denote its

subset of inactive compounds. Clearly T ¼ TI [ TA.

We obtain a linear program for determining each wi as follows.

The objective function of the linear program which is to be

minimized is

f ðTÞ ¼
� Xm

h¼1

Xm
j¼1

Xn

i¼1

wi · j TA
h ½i� � TA

j ½i� j
�

/m2 ð1Þ

+
� Xl�m

h¼1

Xl�n

j¼1

Xn

i¼1

wi · j TI
h½i� � TI

j ½i� j
�

/ðl � mÞ2 ð2Þ

�
� Xm

h¼1

Xl�m

j¼1

Xn

i¼1

wi · j TA
h ½i� � TI

j ½i� j
�

/ðm · ðl � mÞÞ ð3Þ

subject to the following conditions

8TA
h 2 TA

� Xm
j¼1

Xn

i¼1

wi · j TA
h ½i� � TA

j ½i� j
�

/m2

�
� X‘�m

j¼1

Xn

i¼1

wi · j TA
h ½i� � TI

j ½i� j Þ/ðm · ðl � mÞÞ ð4Þ

8i 0 � wi � 1 &
Xn

i¼1

wi � C ð5Þ
where C is a user defined constant.

The objective function f(T) has three components: Component (1)

is the average distance among active compounds and component (2)

is the average distance among the inactive compounds; their sum

provides the within-class average distance. Component (3), on the

other hand, is the average distance between an active compound

and an inactive one; thus it stands for the between-class average

distance. As a result our linear programming formulation aims to

maximize the difference between the average between-class dis-

tance and the average within-class distance. The distance measure

obtained will separate the typical active compound from the typical

inactive compound, while clustering all active compounds and all

inactive compounds as much as possible.

There are three types of constraints on the weights wi in our linear

programming formulation. Constraint (4) ensures that the average

distance among active compounds is no more than the average

distance between active and inactive compounds.2 Constraints

(5) impose bounds on the values of weights wi and their sum.3

A note on the performance. We used CPLEX, an open-source

linear programming solver for computing the distance measure for a

given bioactivity. Because the number of constraints is proportional

to the number of active compounds, which is no more than 1500 for

the bioactivities we considered, the running time for computing all

2A more stringent set of constraints can be imposed on active compounds

such that the distance between a given active compound TA
h and any other

active compound is no more than the distance between TA
h and any inactive

compound. Such a set of constraints can, in principle, can separate active and

inactive compounds into tighter clusters. Unfortunately, the number such

constraints, m2·(‘�m), turns out to be impractical, even for the most

advanced linear program solvers.
3The number of descriptors related to a specific bioactivity is usually no

more than a few, thus it is desirable to simplify the distance measure by

limiting the number of non-zero weights. The final constraint aims to achieve

this by imposing an upper bound on the sum of the weights. Although this

constraint does not guarantee to upper bound the number of non-zero

weights, in practice, the number of non-zero weights obtained are no

more than 2C.
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distance measures of interest was quite reasonable, no more than

2 minutes on a standard 3.2Ghz Intel Pentium D Workstation.

k-nearest neighbor classification of biomolecules

A distance measure defined as above can be used for the classifica-

tion of compounds with unknown levels of bioactivity as the bioac-

tivity level of a compound is likely to be similar to the bioactivity

levels of compounds within its close proximity. Our k-nn classifier
estimates the (binary) bioactivity of a given compound by (1) either

taking the majority of the bioactivities of its k-nearest compounds

w.r.t. the distance measure or by (2) checking whether sum of the

binary bioactivity levels of the k-nearest neighbors normalized by

their distances to the compound is above a threshold value. Under

each approach, it is possible to select the value of k which maxi-

mizes the accuracy of the estimator, i.e. the ratio of the sum of true

positives and true negatives to the size of the training data set.

Once the method of classification is determined it is desirable to

construct an efficient data structure for performing k-nn search. In

the remainder of the paper we first discuss how well our approach

compares with other popular methods for compound classification.

Then we focus on how we construct an efficient k-nn search data

structure for the distance measure we construct and provide some

experimental results.

3 EFFICIENT DATA STRUCTURES FOR
K-NN SEARCH

Typical similarity search methods for large collections of data

elements usually perform iterative partitioning of the data set

into smaller subsets so as to perform efficient querying by

pruning—which is achieved at each iteration by checking out to

which partition the query falls into (Uhlmann, 1991; Yianilos,

1993). The pruning strategy can be made particularly effective

on data collections where similarity is measured with respect to

a metric distance. The partitions in such a metric space are usually

achieved with respect to simply defined planar cuts; given a query

element, it is quite simple to check to which side of the planar cut it

falls into.

Given a set of data elements X ¼ {X1, . . . , X‘} in a metric space

with distance D, similarity search for a query element Y can be

posed in two flavors. (1) Range query: retrieve all items whose

distance to Y is at most some user defined R. (2) k-nn query: retrieve

the k � 1 items whose distances to Y are as small as possible.

One particularly efficient similarity search tool for performing

range queries is the Vantage Point (VP) trees (Uhlmann, 1991;

Yianilos, 1993). Traditionally, a vantage point tree is defined as

a binary tree that recursively partitions a data set into two equal size

subsets according to a randomly selected vantage point Xv as

follows. Let M is the median distance among the distances of

the data elements to Xv. The inner partition consists of the elements

Y such that D(Xv, Y) < M and the outer partition consists of the

elements Z such that D(Xv, Z) � M.

For a given query element Y, the set of data elements Xi for

which D(Y, Xi) � R for the search radius R can be computed as

follows. Let Xv be the vantage point chosen for the entire data set

and let M be the median distance among the distances of the data

elements to Xv. If D(Xv, Y) + R�M then recursively search the outer

partition. If D(Xv, Y) � R < M then recursively search the inner
partition. If both conditions are satisfied then both partitions must be

searched. The correctness of the search routine follows from the

triangle inequality.

A natural extension to the traditional vantage point trees is what

we call the Space Covering VP trees (SCVP Trees) first described

by Sahinalp et al. (Sahinalp et al., 2003). At each level of the SCVP

trees, multiple vantage points are chosen so as to increase the chance

of inclusion of the query region in one of the inner partition of the

vantage points. The original SCVP trees chose the vantage points at

each level randomly. Although this approach can perform quite

well for certain data collections, it can also result in poor space

utilization.

Clearly it is desirable to cover the entire data collection by the

fewest number of (inner partitions of) vantage points. However, the

problem of minimizing the number of vantage points for this

purpose turns out to be an NP-hard problem under all distance

measures of interest (i.e. weighted Minkowski distance of any

order p, wLp); this is proven below. Nevertheless it is possible to

approximate the minimum number of vantage points in any

metric space through a simple polynomial time algorithm as we

show later. As a result we obtain a data structure that determinis-

tically picks the vantage points (whose inner partitions cover the

entire data set) which results in almost optimal redundancy; we call

this data structure Deterministic Multiple Vantage Point tree

(DMVP tree).

We start with showing that the optimal vantage point selection

problem, which we call OVPS problem, is NP-hard for any

weighted Minkowski distance of order p, namely wLp.

THEOREM 1. OVPS problem under the weighted Minkowski
distance of any order p is NP-hard.

PROOF. We establish the NP-hardness of the OVPS problem

under Lp through a reduction from the Dominating Set Problem

which is known to be NP-hard. The decision version of the Domi-

nating Set problem is as follows: Given a graph G(V, E) and an

integer k decide whether there exists a subset V0 of vertices V such

that every vertex in V � V0 has a neighbor in V0. The decision

version of the OVPS problem in Lp is as follows: Given a set S
of points in Lp, a radius r, and an integer k, decide whether there

exists k (vantage) points such that the distance between each point in

the set and at least one of the k points is less than r.

From an instance of the Dominating Set problem we first

construct a jVj dimensional space S where each vertex Vi is mapped

to a point Xi in S as follows.

Xi½j� ¼
1 if i ¼ j
�e if ðVi‚VjÞ =2 E
0 if ðVi‚VjÞ 2 E

8<:
One can calculate upper and lower bounds for the Lp distance

between two vectors Xi and Xh as follows.

LpðXi‚XhÞp ¼
XjV j
j¼1

wi · jXi½j� � Xh½j� j p:

¼
a � 2ð1 + eÞp if ðVi‚VhÞ =2 E

b � 2 + epð jV j � 2Þ if ðVi‚VhÞ 2 E

�
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If for a given p one picks e such that

e <
2p

ðjVj � 2Þ

then

p
p � 1

� �
ep�1 > ep ðjVj � 2Þ

2

which implies that

1 +
�

p
1

�
e + . . . +

�
p

p � 1

�
ep�1 +

�
p
p

�
ep > 1 + ep ðjVj � 2Þ

2

and thus

2ð1 + eÞp > 2 + epð jV j � 2Þ

which implies that

a > b:

In other words, b, the distance between any two vectors whose

corresponding vertices are connected (by an edge) is less than a,

the distance between any two vertices which are not connected. We

now simply pick r so that a > r > b.

We now show that G has a dominating set of size k if and only if

there exists k vantage points for which the distance between each

point in the data set S and at least one of the vantage points is at

most r. Given G, and a dominating set D of size k, we show that

the k points in S that correspond to the k vertices in D, cover the

entire set S. For any vertex Vi =2 D, there must exist a neighboring

vertex Vh 2 D. But if Vi and Vh are neighbors then by the above

argument Lp(Xi, Xh) < r, i.e. Xi is in the radius-r-neighborhood of the

vantage point Xh.

Given S, and k vantage points whose radius-r-neighborhoods

cover all points in S, we show that the k vertices in G that correspond

to the k vantage points form a dominating set. For any point Xi

which is not a vantage point, there must exist a vantage point Xh s.t.

wLo(Xi, Xh) < r. But this implies that Vi and Vh must be neighbors in

G, i.e. Vi must have a neighbor which is in the dominating set.

The generalization of the proof to wLp is not difficult and is not

given here.

COROLLARY 2. OVPS problem under Tanimoto distance is
NP-hard.

PROOF. The Tanimoto distance is no more than L1 on binary

vectors normalized by the number of dimensions (which is a

constant).

An O(log ‘) approximation to the optimal vantage

point selection

The variant of the OVPS problem for which we establish NP-

hardness assumes a fixed radius r for each neighborhood around

a vantage point. One can think of two natural variants of the OVPS

problem: (1) each neighborhood includes a fixed number of points

(e.g. ‘/2 points as per the original VP Tree construction), (2) each

neighborhood has at least ‘/k and at most ‘/k0 points for some k� k0.
It is not difficult to show that these variants are NP-hard as well.

In the remainder of the paper we focus on variant (2) of the OVPS

problem and describe a polynomial time O(log ‘) approximation

algorithm for solving it. Such a solution will also imply an O(log ‘)
approximation algorithm for variant (1) by setting k ¼ k0. The

approximation algorithm is achieved by reducing the OVPS

problem to the weighted set cover problem as follows.

Consider each point Xi in S. We construct the following ‘ sets

for Xi named X1
i ‚X2

i ‚ . . . ‚X‘
i :X

1
i . consists of only Xi. X2

i consists of Xi

and its nearest neighbor. In general, Xj
i consists of Xi and its j�1

nearest neighbors. Let the cost of Xj
i be j.

Now given sets Xj
i, for all 1 � i � ‘ and k � j � k0, each with cost

j, if we can compute the minimum cost collection of sets such

that each Xh 2 S is in at least one such set, we would get a solution

to the variant (2) of the OVPS problem. This problem is equivalent to

the weighted set cover problem for which a simple greedy algorithm

provides an O(log ‘) approximation (e.g. (Chvatal, 1979)). The

greedy algorithm works iteratively: each iteration simply picks a

set where the cost-per-uncovered-element is minimum possible. The

algorithm terminates when all elements are covered.

Optimal fitting of the multiple vantage point tree

in the memory

Although the deterministic multiple vantage point tree improves the

memory usage of the randomized space covering vantage point tree,

it is still possible that the tree may not fit in the main memory. If this

is indeed the case, we try to place a connected subtree (which

includes the root) to the memory. The search again is performed

starting with the root. When an internal node whose children are

not represented in the memory is reached, the search is done in a

brute force manner on the set of points represented by that node.

Clearly it is of interest to obtain the best subtree for optimizing

the query performance of the data structure. For that we use the

following 0 � 1 programming formulation.

Given a Multiple Vantage Point tree T and a node i, let Si be the

number of points in the neighborhood represented by i. During a

search, when a node j is reached, its children i, i + 1, . . . are

considered for further search in linear order; i.e. we first check

whether the query fits in the neighborhood of i, then we check

i + 1 and so on until a suitable vantage point i + h is found. Let

S0i+h be the number of points in the neighborhood represented

by node i + h which are not in the neighborhoods represented by

i, i + 1, . . . , i + h � 1.

Our 0 � 1 programming formulation sets the probability that

node i+h is reached during a search to S0i+h/‘. If the children of

the node i + h are not placed in the memory, i.e. if node i + h is

on the cut-set, the time needed for performing a search on the

neighborhood represented by this node is Si+h. Thus the expected

contribution of node i + h to the query time is Si+h · S0i+h/‘.
Let bi be a binary variable, which takes the value 1 if vertex i

is in the cut-set and is 0 otherwise. Our goal is to minimize the

expected running time of the brute-force search performed for

each query; i.e. our objective function is f ðTÞ ¼
P
8i biSiS

0
i subject

to the following constraints.

For any pair of consecutive sibling nodes i and i+ 1, we must have

bi ¼ bi+1.

We should not exceed the memory M dedicated to the cut-set;

thus
P
8ibiSi � M. Finally, at least one node in every path from the
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Table 1. Binary classification of the bioactivities of the test set according to four classification methods: k-nn, LDA, MLR, ANN

Model T_P T_N F_P F_N SPEC SENS ACCUR PPV NPV

Antibacterial Model, C¼1 Train 269 2610 69 95 0.97 0.74 0.95 0.8 0.96

Test 117 1119 28 39 0.98 0.75 0.95 0.81 0.97

Antibacterial Model, C¼10 Train 224 2538 141 140 0.95 0.62 0.91 0.61 0.95

Test 92 1085 62 64 0.95 0.59 0.90 0.60 0.94

Antibacterial Model, C¼3 Train 201 2526 153 163 0.94 0.55 0.90 0.57 0.94

Test 75 1074 73 81 0.94 0.48 0.88 0.51 0.93

Antibacterial Model, LDA Train 364 0 2679 0 0.00 1.00 0.12 0.12 -

Test 156 0 1147 0 0.00 1.00 0.12 0.12 -

Antibacterial Model, MLR Train 194 564 2115 170 0.21 0.53 0.25 0.08 0.77

Test 61 1129 18 95 0.98 0.39 0.91 0.77 0.92

Antibacterial Model, ANN Train 294 2651 27 70 0.99 0.81 0.97 0.92 0.97

Test 129 1132 16 27 0.99 0.83 0.97 0.89 0.98

Bacterial Metabolite Model, C¼1 Train 311 2537 112 83 0.96 0.79 0.94 0.74 0.97

Test 135 1091 44 33 0.96 0.80 0.94 0.75 0.97

Bacterial Metabolite Model, C¼10 Train 220 2436 213 174 0.92 0.56 0.87 0.51 0.93

Test 98 1038 97 70 0.91 0.58 0.87 0.50 0.94

Bacterial Metabolite Model, C¼3 Train 152 2376 273 242 0.90 0.39 0.83 0.36 0.90

Test 80 1018 117 88 0.90 0.48 0.84 0.41 0.92

Bacterial Metabolite Model, LDA Train 240 2587 62 154 0.98 0.61 0.93 0.79 0.94

Test 90 1088 47 78 0.96 0.54 0.90 0.66 0.93

Bacterial Metabolite Model, MLR Train 301 2525 124 93 0.95 0.76 0.93 0.71 0.96

Test 119 1073 62 49 0.95 0.71 0.91 0.66 0.96

Bacterial Metabolite Model, ANN Train 338 2597 52 55 0.98 0.86 0.96 0.87 0.98

Test 159 1076 59 10 0.95 0.94 0.95 0.73 0.99

Drug Model, C¼1 Train 474 2158 214 197 0.91 0.71 0.86 0.69 0.92

Test 204 928 88 83 0.91 0.71 0.87 0.70 0.92

Drug Model, C¼10 Train 349 2072 300 322 0.87 0.52 0.80 0.54 0.87

Test 151 861 155 136 0.85 0.53 0.78 0.49 0.86

Drug Model, C¼3 Train 305 2026 346 366 0.85 0.45 0.77 0.47 0.85

Test 126 846 170 161 0.83 0.44 0.75 0.43 0.84

Drug Model, LDA Train 0 2372 0 671 1.00 0.00 0.78 - 0.78

Test 0 1014 2 287 0.99 0.00 0.78 0.00 0.78

Drug Model, MLR Train 279 2234 138 392 0.94 0.42 0.83 0.67 0.85

Test 109 951 65 178 0.94 0.38 0.81 0.63 0.84

Drug Model, ANN Train 489 2178 194 182 0.92 0.73 0.88 0.72 0.92

Test 177 978 39 110 0.96 0.62 0.89 0.82 0.90

Druglike Model, C¼1 Train 674 2043 158 168 .93 0.80 0.89 0.81 0.92

Test 281 866 77 79 .92 0.78 0.88 0.78 0.92

Druglike Model, C¼10 Train 560 1959 242 282 .89 0.67 0.83 0.70 0.87

Test 239 842 101 121 .89 0.66 0.83 0.70 0.87

Druglike Model, C¼3 Train 467 1813 388 375 .82 0.55 0.75 0.55 0.83

Test 197 275 168 163 .82 0.55 0.75 0.54 0.83

Druglike Model, LDA Train 683 1917 284 159 0.87 0.81 0.85 0.71 0.92

Test 295 801 142 65 0.85 0.82 0.84 0.68 0.92

Druglike Model, MLR Train 665 1951 250 177 0.89 0.79 0.86 0.73 0.92

Test 282 812 131 78 0.86 0.78 0.84 0.68 0.91

Druglike Model, ANN Train 734 2086 114 107 0.95 0.87 0.93 0.87 0.95

Test 334 891 52 27 0.94 0.93 0.94 0.87 0.97

Human Metabolite Model, C¼1 Train 773 2270 0 0 1.00 1.00 1.00 1.00 1.00

Test 331 972 0 0 1.00 1.00 1.00 1.00 1.00

Human Metabolite Model, C¼10 Train 772 2266 4 1 0.99 0.99 0.99 0.99 0.99

Test 330 972 0 1 1.00 0.99 0.99 1.00 0.99

Human Metabolite Model, C¼3 Train 772 2270 0 1 1.00 0.99 0.99 1.00 0.99

Test 330 972 0 1 1.00 0.99 0.99 1.00 0.99

Human Metabolite Model, LDA Train 773 2270 0 0 1.00 1.00 1.00 1.00 1.00

Test 331 972 0 0 1.00 1.00 1.00 1.00 1.00

Human Metabolite Model, MLR Train 773 2270 0 0 1.00 1.00 1.00 1.00 1.00

Test 331 972 0 0 1.00 1.00 1.00 1.00 1.00

Human Metabolite Model, ANN Train 773 2270 -0 0 1.00 1.00 1.00 1.00 1.00

Test 331 972 0 0 1.00 1.00 1.00 1.00 1.00
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root to a leaf in T must include one vertex in the cut-set. Thus for any

such path P we have
P

i2Pbi ¼ 1.

A 0�1 assignment to bi’s that minimize the objective function

will minimize the expected query time while fitting the data struc-

ture in the main memory.

4 PRELIMINARY EXPERIMENTS

In this section we aim to provide some insight into the comparative

performance of our k-nn classifier, both in terms of accuracy and

efficiency. We applied our classifier to five types of bioactivities:

(i) being antibiotic, (ii) being a bacterial metabolite, (iii) being a

human metabolite, (iv) being a drug, and (v) being drug-like.

The first data set we used is the complete small molecule

collection from (Cherkasov, 2005), which includes 520 antibiotics,

562 bacterial metabolites, 958 drugs, 1202 drug-like compounds,

and an additional 1104 human metabolites. The total number of the

compounds in the data set is 4346. Each compound in the dataset is

represented with a descriptor array of 62 dimensions, which is a

combination of 30 inductive QSAR descriptors (Cherkasov, 2005)

and 32 physicochemical properties such as molecular weight,

number of specific atoms (O, N, S), acidity, density, etc. This

data set was used for testing the classification quality of our

approach. A second data set which enriches the first data set by

the addition of 20000 additional drug like compounds was later used

for testing the running time of our approach. For each bioactivity, a

wL1 distance is determined to establish a model for compound

classification w.r.t. this bioactivity using our k-nn method. Note

that the descriptors of each compound are normalized according

to the observed maximum and minimum values in the data set in

order to remove the bias to parameters with larger values.

The comparative results of the four classification methods,

namely k-nn, LDA,MLR and ANN are provided in Table 1. For

each bioactivity, we provide the sensitivity,specificity and accuracy

obtained by each classifier. We demonstrate the performance of

our k-nn classifier only for k ¼ 1; i.e. given a query compound,

our classifier returns the bioactivity of its nearest neighbor in the

training data set. We constructed the wL1 measure for three different

values of C-the upper bound on the sum of weights, i.e.,Pn
i¼1 wi � C. Setting C ¼ 1 removes the restriction on the sum

of weights and thus computes the wL1 distance that achieves the best

classification. We also set C to 3 and 10 to restrict the number of

non-zero weights, with the aim of focusing only on the C most

relevant descriptors to the bioactivity of interest. As the resulting

non-zero weights turned out to be equal to or very close to 1, these

two classifiers are quite similar to those described in recent papers

(e.g. (Zheng and Tropsha., 2000; Itskowitz and Tropsha., 2005))

that focus on determining the most relevant descriptors for model-

ing a bioactivity of interest.

We used MOE(Molecular Operating Environment) PLS module

for MLR classification and SNNS (Stuttgart Neural Network

Simulator) with default parameters (52 nodes and 420 connection

network) for ANN classification.

LDA classification is performed through the use of standard C

libraries for matrix operations.

For each bioactivity, a training data set comprising of 70 percent

of both the active and the inactive compounds are formed via ran-

dom selection. The remaining compounds are used as the test data
set. Each training data set is used for building the four classifiers

corresponding to the related bioactivity and the test data is used for

the evaluating their performance.

For each bioactivity/classifier pair we report the following test

results: The number of true positives (T_P), the number of true

negatives (T_N), the number of false positives (F_P), the number

of false negatives (F_N), sensitivity (T_P/(T_P+F_N)), specificity

(T_N/(T_N+F_P)), accuracy ((T_N+T_P)/(T_P+T_N+F_P+F_N)),

positive predictive value(T_P/(T_P+F_P)), negative predictive

value (T_N/(T_N+F_N)).

Our similarity search data structure for computing the nearest

neighbor of the query compound is quite efficient, especially

when compared to brute force search. We tested our data struc-

ture under the wL1 distance computed for each of the five bioac-

tivities, on both of the data sets. The crucial parameter that

determines the performance of our data structure is the pruning

it achieves for any given query compound. Thus we determined

the percentage of compounds pruned in the second training data

set (the first training data set enriched with 20000 drug like

compounds), averaged over all compounds in the test data set.

On a 32GB Sun Fire V40Z server (with 2.4 Ghz AMD 64bit

Opteron processor) the respective pruning ratios are as follows.

We achieved (i) 84.4% pruning for being antibiotic, (ii) 84.5%

pruning for being bacterial metabolite, (iii) 86.1% pruning for

being human metabolite, (iv) 81.7% pruning for being drug, and

(v) 81% pruning for being drug-like. This is significant improve-

ment over brute force search.

As a result our k-nn classifier turns out to be very fast. On the

first data set, the running time of our k-nn classifier averaged over

all 4346 compounds (training+test data sets) and all five bioactivi-

ties is 0.3 milliseconds on the above server. In contrast the ANN

classifier requires 39.7 milliseconds on the same data set. On

the second data set (which simply has additional 20000 compounds

in the data structure) the running time of our k-nn classifier

increases only to 1.3 milliseconds (again averaged over the

4346 compounds from the first data set and five bioactivities),

still 30 times better than the ANN trained over a much smaller set.

5 CONCLUSION

We have demonstrated that our k-nn classifier with respect to

wL1 distance obtains better accuracy than the LDA and MLR,

sometimes significantly so. It is comparable to the ANN classifier

in terms of accuracy and is superior in the sense that it is capable of

determining a real valued level of bioactivity rather than giving a

simple YES or NO answer. Our classifier is and it is faster, thanks to

the DMVP tree data structure we develop for fast similarity search.

Our DMVP tree data structure improves the existing vantage point

tree data structures in multiple ways. It provides a deterministic

selection of the optimal vantage points in each level as well as

providing the optimal cut of the tree so as to fit it in the available

memory. Our data structure can be applied to any metric distance

including the wLp distance for any p and the Tanimoto distance. It

performs very well in practice, achieving fast similarity search and

classification.
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ABSTRACT

Motivation: Knots in polypeptide chains have been found in very

few proteins, and consequently should be generally avoided in protein

structure prediction methods. Most effective structure prediction

methods do not model the protein folding process itself, but rather

seek only to correctly obtain the final native state. Consequently, the

mechanisms that prevent knots fromoccurring in nativeproteinsare not

relevant to the modeling process, and as a result, knots can occur with

significantly higher frequency in protein models. Here we describe

Knotfind, a simple algorithm for knot detection that is fast enough for

structure prediction, where tens or hundreds of thousands of confor-

mations may be sampled during the course of a prediction. We have

used this algorithm to characterize knots in large populations of model

structures generated for targets in CASP 5 and CASP 6 using the

Rosetta homology-based modeling method.

Results: Analysis of CASP5 models suggested several possible

avenues for introduction of knots into these models, and these insights

were applied to structure prediction in CASP 6, resulting in a significant

decrease in the proportion of knotted models generated. Additionally,

using the knot detection algorithm on structures in the Protein Data

Bank, a previously unreported deep trefoil knot was found in acetylor-

nithine transcarbamylase.

Availability:TheKnotfindalgorithmisavailable in theRosettastructure

prediction program at http://www.rosettacommons.org

Contact: bort@soe.ucsc.edu

1 INTRODUCTION

In a formal topological sense, knots in protein chains cannot be

defined because the protein backbone, disregarding disulfide

bridges and other sources of backbone crosslinks, does not form

a closed loop. Jane Richardson (1977) was the first to define a

knotted protein chain as one which cannot be fully extended to a

straight line if one were to grab the N- and C-terminus in each hand

and pull. Few protein structures have been observed to contain knots

in their backbones (Nureki et al., 2002), and in most cases where

knots have been observed, they tend to be simple overhand knots

near one terminus (Mansfield, 1994). These knots could in theory

form by threading a short section of the polypeptide chain through a

loop formed by another backbone section. Such knots disappear if a

few residues are trimmed from the terminal ends (Taylor, 2000).

Deep knots, in contrast, occur far from the protein chain termini and

have been rarely observed.

Because knots in protein structures are rare, protein structure

prediction methods should generally avoid introducing knots into

the polypeptide backbone. Most structure prediction methods do

not, however, check for knots. Additionally, few protein structure

prediction methods model the kinetic protein folding process, so the

entropic mechanisms that have been cited as explanations for the

relative absence of knots in protein structures (Taylor, 2000) are not

likely to prevent the introduction of knots in the modeling process.

In fact, algorithms used for structure prediction do introduce knots

in the polypeptide backbone, as demonstrated by predictions made

for the Comparative Assessment of Methods for Structure Predic-

tion (CASP) experiments (Moult et al., 1995). In the CASP 4 protein

structure prediction experiment, one submitted model was assessed

as being reasonably accurate in terms of atomic coordinates, but was

also described by the CASP assessors as an ‘‘impossible structure’’

because it contained a trefoil knot (Tramontano et al., 2001). In the

most recent CASP 6 experiment, the assessors reported that knotted

models were still being submitted and that such knotted models

submitted for comparative modeling targets were rejected out of

hand without additional assessment (Tress et al., 2005a).

Knots in polypeptides can be difficult to detect by visual inspec-

tion alone, as evidenced by the fact that the assessors accepted some

knotted CASP 6 models, presumably because it was not apparent

that these models contained knots. Algorithms for automated knot

detection have been reported (Taylor, 2000) but are too slow for

general use in structure prediction, where tens or hundreds of thou-

sands of conformations may need to be examined in the course of a

single structure prediction. Here we present Knotfind, a rapid algo-

rithm for knot detection, and report its application in the context of

the Rosetta homology-based structure prediction method (Bradley

et al., 2003; Rohl et al., 2004a). Additionally, the algorithm was

applied to experimentally-determined protein structures in the Pro-

tein Data Bank (PDB; Berman et al., 2000) identifying a previously

unreported deep trefoil knot.

2 METHODS

2.1 Knot-detection algorithm

The Knotfind algorithm considers only Ca atoms in a single protein chain

and progressively ‘eliminates’ atoms from the Ca trace to simplify the chain.

Triples of consecutive Ca atoms, i-1, i, i+1, are considered, ordered by
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increasing Cartesian distance between atoms i-1 and i+1. For an individual

triple, if no line segments connecting consecutive Ca atoms j, j+1 (for all j <
i-1 and j > i+1) cross through the triangle defined by i-1, i, i+1, then Ca i is

removed from the chain. If any line segment connecting two consecutive Ca

atoms intersects the triangle, however, then no simplification of this triple is

made and the algorithm proceeds to the triple with the next shortest i-1, i+1

distance. After any Ca is eliminated from the chain, the algorithm returns to

the triple with the shortest i-1, i+1 distance. This procedure is repeated until

the last triple in the distance list has been selected and simplified, if possible.

When the algorithm terminates, if the only atoms left in the chain are the

N- and C-terminal Ca atoms such that chain has been simplified to a straight

line, the protein contains no knots (Figure 1). If, instead, the chain cannot be

fully simplified to a single extended segment, the chain contains one or more

knots and the remaining Ca atoms in the chain define the knotted region. In

cases where a knot is detected, the algorithm is repeated using an alternate

scheme to order the triples for simplification in which the area of the triangle

defined by each i-1, i, i+1 triple is used in place of the i-1, i+1 interatomic

distance to reduce false positives.

To determine if a line segment intersects a triangle, the algorithm

first ensures that the plane containing the triangle and the line containing

the line segment are not parallel, and then determines if both endpoints

of the line segment lie on the same side of the plane. For segments that

intersect the plane of the triangle, the algorithm determines if the intersection

point lies within the triangle, relying on the fact that the sum of the internal

angles of a point inside a triangle is 2p. Thus, any point lying outside

the triangle will have smaller angle sums (http://astronomy.swin.edu.au/

�pbourke/geometry/linefacet). An effective line width of 0.0003 is used in

order to handle round off errors on arccosines in computing angle sums.

The Knotfind algorithm has been implemented in the Rosetta structure

prediction program available at http://www.rosettacommons.org and in the

Undertaker program (Karplus et al., 2005).

2.2 Protein structures

The PISCES server was used to identify 9,553 protein chains in the RCSB

PDB as of February 12, 2006 with less than 90% sequence identity, with

x-ray structures of resolution better than 3.0s and no R-factor filtering (R �
1.0) (Wang et al., 2003). This list was supplemented with four protein chains

that have previously been reported to be knotted (1dmxA, 1fugA, 1yveI, and

2btv), but which did not meet the resolution or sequence identity cutoffs,

giving a total list of 9,557 chains that were examined using the Knotfind

algorithm. Coordinate files were obtained from the RCSB PDB and ATOM

records were compared to the sequence as defined in the SEQRES header to

define regions of missing density. Missing density leading to a significant

chain discontinuity (i.e. multiple residues not at a chain terminus) can make

identification of a knot ambiguous because Ca atoms surrounding the miss-

ing density are artificially connected in a Ca trace. Consequently, structures

with missing density that were reported by the algorithm to be knotted were

visually inspected for confirmation to eliminate those that did not actually

contain a knot. Among the 9,557 chains checked, seven knotted structures

detected by Knotfind could be attributed to significant missing density:

1gkuB, 1jr1A, 1mqsA, 1o6lA, 1u2zA, 1yc0A, and 2bm0A.

2.3 Rosetta decoy sets

For predicted structures, models generated during the course of structure

predictions made for CASP 5 and CASP 6 were utilized. Many structure

prediction methods, including Rosetta, generate large numbers of possible

model structures, referred to as ‘decoys’, from which a final best model is

then selected. Decoy structures for CASP 5 and CASP 6 targets were gen-

erated using the Rosetta homology-based modeling method (Bradley et al.,
2003; Rohl et al., 2004a) during the process of the CASP experiments. The

CASP 5 decoy sets were generated by the Baker group (Group 2) and

exclude decoy sets for any targets for which the de novo Rosetta prediction

Fig. 1. Schematic illustration of the Knotfind algorithm. Starting from the initial Ca trace (trace A), atoms are progressively eliminated from the

chain, effectively simplifying it to a straight line. For steps shown in traces B to F, the central Ca atom in the triple describing the most acute triangle (triangle

shown in blue) is removed. In trace G, the most acute triangle cannot be simplified because two line segments (green) pass through this triangle;

removing the central atom would effectively result in passing the red chain segment through the green segments. Since the red triple cannot be simplified,

the triple forming the second most acute triangle (blue) is targeted for simplification in trace H. In trace I, the red triple still cannot be simplified, but the triple

forming the next most acute triangle (blue) can be, yielding trace J. Trace K is obtained by seven additional atom removals and trace L by nine additional

simplifications.
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method was used (Bradley et al., 2003). A total of 45,366 decoys were

examined here. Decoy sets for individual targets included between 199

and 4,019 decoys. Decoy populations for CASP 6 were those generated

during the course of predictions made by the Rohl group (Group 079),

also using the Rosetta homology-based method. A total of 119,543 decoys

were examined. Decoy sets for individual targets included between 883 and

11,934 decoys. In addition to manually generated Rosetta decoys, models

generated by the automated Robetta server, which utilizes the Rosetta

method, were also examined. Robetta predictions (Group 101) for CASP

6 targets were obtained from the Robetta server (Chivian et al., 2003; Kim

et al., 2004) and are also available from the CASP 6 website (http://

predictioncenter.org/casp6).

All Rosetta decoy sets used here, including models from the Robetta

server, use the same basic Rosetta homology-based structure prediction

method which has been described elsewhere (Bradley et al., 2003;

Chivian et al., 2005). In brief, predictions begin from an alignment to a

parent protein of known structure. Coordinates for aligned regions are taken

directly from the parent structure and serve as a fixed template. Coordinates

for structurally variable regions (SVRs), corresponding to both gaps in the

alignment as well as regions of uncertain alignment, are constructed by

assembling short fragments of known structure. These fragments are selected

from the database of known protein structures based on similarity of

sequence and predicted and known secondary structures. For short SVRs,

geometric fit to the template is also considered. The selected fragments are

combined using a Monte Carlo simulated annealing search by means of a

knowledge-based potential function derived from the observed distributions

of residues in known protein structure along with a gap penalty to ensure

chain continuity in the final model. A more detailed description of the

Rosetta approach and the potential function (Rohl et al., 2004b), and the

SVR modeling method (Rohl et al., 2004a) are described in detail elsewhere.

Differences between the CASP 5 and CASP 6 SVR modeling methods are

described below.

For CASP 5 decoys, a library of possible conformations was selected via a

database search for SVRs shorter than 17 residues. For each decoy, a random

conformation for each short SVR was selected and then long SVRs were

modeled by fragment assembly in the context of the template. For CASP 6

decoys, a library of possible conformations was generated for every SVR,

regardless of length using a combination of database search and fragment

assembly. For short SVR regions with 7 or fewer residues, conformations

were selected directly from the database and used without further modifica-

tion. For SVRs in the length range of 8-12 residues, conformations were

assembled from 3-9 residue fragments in the context of the entire fixed

template. For SVRs greater than 12 residues in length, a reduced template

of four residues, two on each side of the SVR, was extracted, and the long

SVR was modeled in the context of this reduced template by fragment

assembly. For each SVR, regardless of length, 100-200 conformations

were initially selected or generated and each of these library conformations

was then checked using the Knotfind algorithm to eliminate those that

resulted in knots when grafted onto the fixed template. Additionally,

conformations with significant steric clashes with the template or large

chain discontinuities were discarded. Complete models were then con-

structed by combining conformations from these libraries, using a Monte

Carlo simulated annealing search to optimize the Rosetta centroid-based

energy function.

2.4 Undertaker decoy sets

Undertaker decoys for CASP 6 targets were graciously provided by Kevin

Karplus. A total of 2,373 decoys were examined. Decoy sets for individual

targets included between 6 and 115 decoys. The Undertaker program com-

bines fragment assembly and other methods with coordinate information

extracted from alignments to a parent structure in order to generate models

for proteins (Karplus et al., 2005). Rosetta and Undertaker are substantially

different in terms of the optimization strategies and cost functions used, but

share substantial similarity in their approach to conformation modification,

which includes fragment assembly. Undertaker differs from the Rosetta-

based strategy employed for construction of the Rosetta decoy sets used

here in that regions modeled on the basis of homology to a parent of known

structure are not treated as a fixed template in Undertaker, but instead are

subject to conformational modifications.

3 RESULTS

3.1 Knotfind algorithm

The Knotfind algorithm attempts to simulate the process of pulling

the protein chain from both ends in order to determine if the chain

contains a knot. As described by Richardson’s operational defini-

tion, an unknotted chain can be completely pulled into a fully

extended conformation. In the presence of a knot, however, the

chain cannot be fully extended without one segment of the chain

being passed through another segment of the backbone. In the

Knotfind algorithm, the chain pulling is modeled by progressively

removing atoms from the chain. For each atom removal, all other

segments of the backbone are checked to ensure that removal of an

atom does not effectively cause one segment of the backbone to pass

through another.

Simplifying the chain in a series of discrete steps allows the

Knotfind algorithm to be fast, but leaves open the possibility that

the chain trace can become trapped in a partially simplified state that

does not contain a knot but cannot be further simplified according to

Fig. 2. The trapped state obtained for 1ogdA when simplifying triples in

decreasing order of acuteness. Protein chain 1ogdA is shown as a ribbon

and the final state resulting from the Knotfind algorithm, applied with triples

ordered according to i-1, i+1 distance, is shown overlaid with the eight

unsimplified Ca’s indicated by black spheres. At this point, no triple can

be simplified, yet this protein chain does not contain a knot. When triples are

considered in order of their area by Knotfind, the chain completely simplifies.
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the Knotfind algorithm. To minimize the possibility of such false

positives, triples are considered for simplification in order of the i-1,

i+1 distance, allowing the simplification to start with the most local

backbone features before simplifying more global features. Using

this strategy, only one false positive is observed among the 9,557

protein chains examined here. The trapped chain configuration for

this chain, 1ogdA, is shown in Figure 2. As described in the Methods

above, chains that cannot be fully simplified in the first pass of the

algorithm are subjected to a second check during which triples are

ordered according the area of the triangle that each defines, con-

sidering smallest area first. When used in isolation, this area-based

ranking method resulted in four false positives (1e2kA, 1y6vA,

2a65A, 2c5aA). When the two methods are applied sequentially,

no false positives are observed in the set of PDB chains examined,

or in any of the knotted decoy structures that were visually

inspected.

One of the main advantages of the Knotfind algorithm is its speed.

Despite using two different triplet-ordering schemes in cases where

the first scheme does not result in a completely simplified chain, the

algorithm as implemented in Rosetta requires on average less than

0.01 seconds for a single chain. When using Rosetta to evaluate the

9,553 chains from the PISCES server, incorporating the Knotfind

algorithm added fewer than 90 seconds to the overall run time on an

Intel(R) Xeon(TM) CPU 2.80GH compared to evaluating the chains

using Rosetta without Knotfind. Most of the time in Knotfind is

spent determining if triples can be simplified by establishing if any

line segments intersect the triangles defined by each triple. The

number of triples checked depends linearly on the length of the

chain in the absence of a knot, while knotted chains require that

more triangles be tested for simplification than would be expected

on the basis of chain length (Figure 3).

3.2 Knots in protein structures

The Knotfind algorithm was initially applied to protein structures in

the RCSB PDB. Twenty-one deeply knotted proteins were found in

the collection of 9,553 protein chains taken from the PDB (�0.2%).

In addition, eighteen proteins were identified to contain shallow

knots which disappear after trimming five to ten residues from

the termini. Of the twenty-one deeply knotted proteins detected,

Fig. 3. The number of triples checked by Knotfind as a function of protein

chain length for the 9553 protein chains taken from the PISCES server.

Colored dots indicate protein chains reported as knotted by one of the triple

ordering schemes used by Knotfind (blue: i-1, i+1 distance; red: triangle area.

See Methods).

Fig. 4. Relationships between knotted proteins detected by Knotfind. Protein

chains are referenced by their PDB codes. Protein pairs sharing sequence

similarity (BLASTp evalue < 1E-05) are indicated by solid lines. Structural

similarity (MAMMOTH evalue < 1E-07) is indicated by dotted black lines.

The pair of sequence similar proteins circled in the top right corner represents

a knotted protein fold that has not been previously reported. The 12 chains in

the box on the lower left are all sequentially similar to each other. Knotted

chains that become unknotted when both ends are trimmed by five residues

are grouped in the shaded lower left corner. The shaded box above it contains

chains that become unknotted when the ends are trimmed by ten residues.

Underlined PDB codes have been previously reported as knotted in the

articles describing the experimental structure determination (Badger et al.,

2005; Lim et al., 2003; Elkins et al., 2003; Komoto et al., 2004; Ahn et al.,

2003; Nureki et al., 2004; Saito et al., 2004; Mosbacher et al., 2005; Tyagi

et al., 2005; Pleshe et al., 2005; Wagner et al., 2005). Articles describing

experimental structure determination have not yet been published for 1lug,

1ns5, 1to0 or 1v6z. PDB codes in italics indicate proteins reported by Taylor

as being knotted (1cmxA, 1dmxA, 1fugA, 1hcb, 1kopA, 1yveI, 1zncA, 2btvB

in Taylor, 2000) (1ipaA, 1k3r, 1qmgA in Taylor et al., 2003a) and 1gz0

(Taylor et al., 2003b). Note that (Taylor et al., 2003a) additionally reports

six ‘‘accession numbers for knotted proteins’’ that were not found to be

knotted here either by the Knotfind algorithm or by visual inspection. One

case, 1g0z, is likely a typographical error for 1gz0, which is later reported as

knotted in (Taylor et al., 2003b). The other five proteins, 1mt6, 1mvh, 1h3i,

1ml9, and 1mlv were later reported to not contain true knots according to the

algorithm of Taylor in (Taylor et al., 2003b).
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most have been previously reported, or a knot in a protein with

sequence or structural similarity has been previously reported.

Novel deep trefoil knots were detected, however, in two acetylor-

nithine transcarbamylases, 1js1, and 1yh0/1yh1, which are similar

in sequence and structure to each other. These proteins are not

sequentially or structurally similar to any other previously reported

knotted proteins (Figure 4). The trefoil knot in 1js1 and 1yh1 is

shown in stereo in Figure 5.

Interestingly, the knot in aceytlornithine transcarbamylase is

found in the acetylornithine binding domain, where two loops, a

proline rich loop and the 240s loop, appear to be threaded through

one another (residues 173-183 and 236-259 respectively in 1js1 (Shi

et al., 2002); residues 177-188 and 252-278 respectively in 1yh0/

1yh1 (Shi et al., 2005)). These two loops are presumably respon-

sible for specificity for acetylornithine relative to the unacetylated

substrates preferred by the structurally similar, but unknotted,

enzymes ornithine transcarbamylase (36% sequence similarity)

and aspartate transcarbamylase (40% sequence similarity). The

240s loop in acetylornithine transcarbamylase lacks the essential

binding motifs found in the ornithine and aspartate transcarbamy-

lases. Shi et al., (2002) hypothesize that the conformational rigidity

of the proline-rich loop, which contains four prolines not found in

ornithine transcarbamylase, may be responsible for excluding

ornithine from the active site by preventing movement of the

240s loop towards the active site.

3.3 Knots in Rosetta decoys

Approximately 5% of the CASP 5 decoys were found to have knots

(2,163/45,366). During the course of CASP 5, a high frequency of

occurrence of knots had been observed for certain targets, requiring

a significant effort in manual inspection to discard those models

containing knots (Rohl et al., 2004a). This non-uniform distribution

of knotted decoys was confirmed, as some targets showed a high

percentage of knotted conformations, while others had virtually

none (Figure 7A).

To gain a better understanding of the origin of knots in CASP 5

decoys, we also manually inspected the 291 knotted decoys for

target T195 which showed the highest frequency of knot formation.

SVRs judged to be responsible for knot formation fell into one of

three different categories (Figure 6): 1) a single SVR contained a

knot that was entirely localized to this SVR (4 examples) 2) a SVR

Fig. 5. Stereo view of a previously unreported deep trefoil knot in acetylor-

nithine transcarbamylase. (A) Residues 165-266 of 1js1 chain X (324 residues

total) contain a deep trefoil knot where the loop between the yellow strand and

red helix threads through the loop comprised of the blue strand and cyan helix.

(B) Residues 171-285 of 1yh1 chain A (336 residues total) also contain a deep

trefoil knot where the loop between the yellow strand and orange helix threads

through the blue loop.

Fig. 6. Examples of knots observed in Rosetta decoys. (A) A Type 1 SVR

knot from a T195 CASP 5 decoy (only residues 181-217 are shown), where a

knot is entirely localized within a single SVR (residues 188-215, red). The

local template structure is shown in blue. (B) A Type 2 SVR knot from T261

(only residues 58-207 are shown), where an SVR (residues 164-189, shown in

green) threads through a template region (blue). This model was submitted as

Robetta’s top ranked model for the target. (C) A Type 3 SVR knot from a T195

CASP 5 decoy (only residues 181-299 are shown), where two SVRs thread

through one another. The SVR comprising residues 188-215 in shown in

green while the SVR spanning residues 242-253 is shown in red. Template

regions are shown in blue. (D) T202 model 1 submitted by Robetta for CASP 6

(only residues 1-101 are shown). An SVR (residues 69-85, shown in green)

threads through both the template (blue) and through another SVR (residues

49-56 in red), making this both a Type 2 and Type 3 SVR knot.
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threaded through a template region (157 examples), and 3) two

SVRs wrapped around one another (138 pairs). In this analysis,

SVRs of three residues or less were treated as part of the fixed

template due to the fact that their conformation is highly constrained

by the geometric constraints imposed by the template.

Additionally, we analyzed CASP 6 models submitted by the

automated Robetta server in which the methods used in CASP 5

Rosetta CM predictions were implemented (Bradley et al., 2003).

Robetta submitted three models in CASP 6 that contained knots

which it ranked as its best predictions for T202, T203, and T261

(Figure 6). Seven additional Robetta models which were ranked

below the top model also contained knots (T199 Model 3; T202

Model 5; T211 Model 2; T208 Model 2; T235, Domain 1, Model 2

and 4; T261 Model 2). Visual analysis of these structures was

consistent with the hypothesis that knot formation was related to

SVR modeling, and all knots in Robetta models could be classified

as Type 2 and Type 3 as defined above.

Based on our analysis of CASP 5 decoys, we modified our SVR

modeling procedure in an attempt to reduce the frequency of knot

formation in CASP 6 decoy sets. Libraries of conformations were

generated for each SVR and these libraries were screened to elimi-

nate any conformations that resulted in knots when grafted onto the

template structure in the absence of all other SVRs. Applying this

procedure to T195, we found that pre-filtering the conformational

libraries reduced the frequency of knots from 25% (971/3,966) to

approximately 20% (745/3,737) by detecting all Type 1 and Type 2

SVRs. Additionally we applied this modified protocol in CASP 6

predictions and found decrease in the overall frequency of knotted

decoys (�1%, 1,343/119,543) relative to that observed for CASP 5

decoys (5%). Knot frequencies in individual decoy sets are shown in

Figure 7.

3.4 Knots in Undertaker CASP 6 decoys

In order to assess the extent to which knot formation is specific to

the modeling strategy used by Rosetta, we also examined decoy sets

generated by the SAM-TO4 group (Group 166) method for CASP 6

targets using the Undertaker program (Karplus et al., 2005). In

CASP 6, most decoys created by the Undertaker program were

knot-free, but decoys sets for a few targets had a high frequency

of knots. The highest occurrence of knots in Undertaker decoy sets

was found for T228 (12% of decoys knotted), T237 (9% knotted)

and T218 (8%). On these same targets, the Rosetta decoy sets had

knot frequencies of 10%, 6%, and 0%, respectively. In general,

however, there was little or no correlation between the knot fre-

quency in Undertaker decoys and Rosetta decoys across the CASP 6

targets (unpublished data). The Undertaker method does not explic-

itly model regions of the backbone as either part of a template or a

SVR. However, it is similar to Rosetta in that it introduces chain

breaks at points corresponding to gaps in the alignment. Visual

inspection of Undertaker decoys indicated that the majority of

the knots in Undertaker decoys could be explained by threading

that occurred while resolving gaps in the backbone or when merging

two domains that were modeled separately (K.Karplus, personal

communication).

4 DISCUSSION

4.1 Efficacy of the knotfind algorithm

An algorithm for knot detection has been previously described by

Taylor (2000) and applied to detect knots in protein structures in the

PDB. Taylor’s algorithm progressively smoothes the protein

backbone: at each iteration, each atom in the backbone is moved

A B

Fig. 7. Frequency of knotted decoys using Rosetta for targets in CASP. The frequencies of knots in decoys sets for A) CASP 5 and B) CASP 6 targets are shown as

boxplots. Targets have been binned by difficulty using the assignments defined by CASP assessors (Kinch et al., 2003; Tress et al., 2005b). In cases where

multiple domains of one CASP target have different classifications, the decoy set for the target is included in each classification. Categories, in order of generally

increasing difficulty, are comparative modeling (CM); fold recognition, homologous (FR(H)); fold recognition, analogous (FR(A)); and new fold (NF).
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incrementally toward the midpoint of the line segment formed by

the N- and C-terminally adjacent atoms, subject to a clash check that

ensures the protein backbone does not pass through itself. Knotfind

shares the basic approach of trying to straighten out the protein

chain, but does so in a stepwise fashion that avoids the need to

compute new atom positions and enables the algorithm to converge

rapidly.

An additional benefit of not modifying atomic coordinates during

the course of the algorithm is that when a knot is detected in a

protein chain, the knot can be localized in the structure without the

need to interpret a smoothed or distorted chain trace. In cases where

chains cannot be completely simplified to an extended segment, the

coordinates of the remaining Ca atoms can be used to facilitate the

visual identification and analysis of the knot.

One caveat with the Knotfind algorithm is that its performance

with respect to false positives and false negatives has not been

rigorously proven. The triplet-ordering schemes used here are

selected to attempt to minimize the possibility of false positives

by first simplifying local backbone features. Notably, triplet-

ordering schemes that do not target local backbone features

preferentially over global features tend to result in higher occur-

rence of false positives. For example, considering triples from N- to

C-terminal order results in seven false positives (1e2kA, 1e2wA,

1k7hA, 1ohfA, 1p6xA, 1y6vA, 2a65A). Combining two triplet

ordering schemes eliminates all false positives in the set of

PDB chains examined here, suggesting that false positives, while

possible, are likely to be rare.

4.2 Application of knotfind to Rosetta

homology-based structure prediction

The detailed analysis of knotted Target 195 decoys suggests that

three sources of knots can be generated by Rosetta’s comparative

modeling approach: SVRs that knot with themselves, SVRs that

thread themselves with the template, and pairs of SVRs that thread

through each other. The first type of knot is likely introduced by the

high gap penalty used to ensure chain continuity. In our experience,

the introduction of such knots is rare, perhaps not surprisingly as

significant steric clashes generally accompany such knots. Reduc-

tions in the gap penalty accompanied by more efficient methods of

loop closure, such as the cyclic coordinate descent method

(Canutescu and Dunbrack, 2003) can be used to reduce the likeli-

hood of introducing such knots during the modeling process.

Knots of Type 2 and Type 3 are not localized to a single region of

the backbone, but instead are attributed to one section of the chain

threading through another. In the Rosetta-based method, such knots

can be introduced into models because SVR conformations are

selected from databases or are initially modeled only in the context

of local stem geometry. When such conformations are combined

with a fixed template structure, or with models for other SVR

regions, threadings can occur which are difficult or impossible to

resolve. To reduce the occurrence of such knots, we filtered libraries

of SVR conformations during the generation of CASP 6 targets in

order to eliminate conformations that were threaded through the

fixed template structure and observed a significant reduction in

knotted percentage. Interestingly, in some cases such filtering

could also be used to guide alignment choice. For example, if all

or nearly all conformations for a particular SVR, selected on the

basis of fitting the geometric restraints imposed by the template,

result in a knot, the original alignment to the parent structure is

likely incorrect as it implies structurally unfeasible gaps.

While the frequency of knots was significantly reduced by filter-

ing with the Knotfind algorithm in CASP 5 compared to CASP 6,

decoy sets for some CASP 6 targets still show significant occurrence

of knots. Since this filtering step only considered single SVRs in the

context of the fixed template, knots that are introduced by pairs of

SVRs threading through one another (Type 3), are not detected and

are expected to still occur in CASP 6 decoy sets. For CASP 6

predictions, these knotted decoys were eliminated from the final

decoy population in the model selection process using the Knotfind

algorithm. Such knots however, could be eliminated earlier in the

modeling process by pairwise examination of SVR conformations

in the libraries, or by checking complete models early in the

optimization process.

4.3 General application to structure prediction

The Knotfind algorithm can be applied to the benefit of many

structure prediction approaches. The most obvious application of

the Knotfind algorithm is the screening of final models to ensure that

a knotted decoy is not selected. Such screening is particularly

important in an automated method such as Robetta where an expert

does generally not examine final predictions manually. The speed of

the Knotfind algorithm makes it appropriate not just for post-

filtering decoy populations to eliminate knotted structures, but

also for application during the protein structure prediction process,

either as a filter as described here or as part of a scoring scheme used

during optimization. For example, Knotfind is now implemented in

Undertaker as a cost function that is only used when the potential for

knots is high as determined by an expert predictor.

The causes of high knot frequency in some modeling problems is

likely to be specific to the particular method used and the structural

details of the protein being modeled. On the basis of comparison of

knot formation in Rosetta and Undertaker decoys, it seems likely

that the introduction of chain breaks during the modeling process is

a contributing factor to increased probability of knot formation.

Additionally, the location of such chain breaks and the size of

the gap introduced at each discontinuity are likely to be important

factors as well. This conclusion suggests that a knot detection algo-

rithm is likely not only to be applicable to homology based methods

that must model gaps implied by alignments, but in any protein

modeling method that introduces chain breaks during the modeling

process, including for example de novo prediction methods that

have recently been demonstrated to be capable of prediction accu-

racies better than 1s for small proteins (Bradley et al., 2005).
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ABSTRACT

Motivation: In general, most accurate gene/protein annotations are

provided by curators. Despite having lesser evidence strengths, it is

inevitable to use computational methods for fast and a priori discovery

of protein function annotations. This paper considers the problem of

assigning Gene Ontology (GO) annotations to partially annotated or

newly discovered proteins.

Results: We present a data mining technique that computes the

probabilistic relationships between GO annotations of proteins on

protein-protein interaction data, and assigns highly correlated GO

terms of annotated proteins to non-annotated proteins in the target

set. In comparison with other techniques, probabilistic suffix tree and

correlation mining techniques produce the highest prediction accuracy

of 81% precision with the recall at 45%.

Availability: Code is available upon request. Results and used

materials are available online at http://kirac.case.edu/PROTAN

Contact: kirac@case.edu

1 INTRODUCTION

In this paper, we consider the problem of assigning Gene Ontology

(GO) (Gene Ontology Consortium, 2004) annotations to newly

discovered proteins. The GO Consortium has produced a controlled

vocabulary for protein function annotation that is used in numerous

organism-specific protein databases (GO, http://www.geneontology.

org). However, presently not all known proteins are annotated in

these databases, while many others are only partially annotated.

In general, the most accurate gene/protein annotations are pro-

vided by curators who search the literature for articles containing

evidence for a particular annotation. Despite having lesser evidence

strengths, it is inevitable to use computational methods such as text

mining, statistical gene expression analysis and sequence similarity,

for fast and a priori discovery of protein function annotations.

Currently, the primary method for GO function assignment to pro-

teins is sequence similarity analysis which needs homologs in bio-

logical databases (Deng et al., 2004), and transferring functional

assignments between proteins with low sequence identity (below

40%) is found to be unreliable (Letovsky et al., 2003). Recently

several successful text mining-based annotation prediction tools

(Izumitani et al., 2004; Asako et al., 2005) have been developed.

This approach however needs text parsing and metadata extraction

from publications in the literature that describe the functionality of a

target protein, a difficult task on its own. As an alternative to the text

mining approach, recent work (Troyanskaya et al., 2003; Samanta

and Liang, 2003; Deng et al., 2004; Vazquez et al., 2003) has shown

that employing a combination of GO annotation and protein-protein

interaction (PPI) data is also reasonably effective for accurate

prediction of GO annotations for non-annotated proteins.

In this paper, we present a data mining technique that, using

protein-protein interaction data, identifies probabilistic relation-

ships between GO annotations of proteins and annotates target

proteins with highly correlated GO terms of other proteins. The

motivation for our approach comes primarily from the recent dis-

covery (Poyatos and Hurst, 2004; von Mering et al., 2003) that the

relationship between proteins in a protein interaction network is

not only limited to protein pairs (i.e., interaction edges), but also

generalizes to functional modules that are not necessarily protein

complexes. It is now believed (Hu et al., 2005; Sharan et al., 2005)

that proteins in the same functional module have the same (or

similar) functional annotation. Earlier work (Troyanskaya et al.,
2003; Samanta and Liang, 2003; Deng et al., 2004; Schwikowski

et al., 2000; Hishigaki et al., 2001; Vazquez et al., 2003) formalized

the protein function prediction problem differently: they all con-

sidered known protein functions (e.g., GO annotation) as predefined

protein classes, and then employed topological features of protein

interaction networks to classify proteins and to assign the same

function to all proteins in the same class.

Our approach in this paper is to compute the probabilistic sig-

nificance of GO annotation sequences obtained from the annotations

of a sequence of proteins in a protein-protein interaction network.

We develop and evaluate two significance analysis techniques:

(a) correlation mining for annotation pairs (i.e., GO annotation

sequences of length 2), (b) variable-length Markov model for anno-

tation sequences of arbitrary length. After identifying significant

annotation sequences, we predict the annotation of a protein as

follows. (i) Generate (via random walk) GO annotation sequences

where the non-annotated protein (i.e., target protein which is par-

tially or not annotated) interacts with the protein at the tail of the

corresponding protein sequence. (ii) Expand each GO annotation

sequence by adding a GO term to the end of the GO annotation

sequence. (iii) Pick the suffix GO term of the most significant

candidate GO annotation sequence as the GO term prediction for

the non-annotated protein. Our cross-validation prediction experi-

ments with pre-annotated proteins recovered correct annotations

of proteins with 81% precision with the recall at 45%.

Experimentally, we have evaluated the effects of (a) dataset

selection, (b) GO sub-ontology selection, (c) defining random

walk sampling size and (d) setting maximum GO annotation�To whom correspondence should be addressed.
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sequence length on the accuracy of our predictions. In our experi-

ments, highest prediction accuracy is obtained with correlation

mining on BIND dataset (BIND, http://www.bind.ca) (vs. other

datasets using GO as function annotations). Among the three

sub-ontologies of GO (i.e., biological process, cellular component

and molecular function), cellular component ontology produced the

highest prediction accuracy. To compare our results with previous

work (Deng et al., 2002; Schwikowski et al., 2000; Hishigaki et al.,
2001), our prediction methodology performed better than the results

of known methods Markov random fields (Deng et al., 2002),

neighbor-counting (Schwikowski et al., 2000) and chi-square

(Hishigaki et al., 2001) by 6.6%, 31% and 19.7% respectively.

Our work differs from the previous work in two aspects. First, the

previous research on protein function prediction focuses on a par-

ticular protein function set, and builds models based on the direct

interactions of proteins (Troyanskaya et al., 2003; Samanta

and Liang, 2003; Deng et al., 2004; Schwikowski et al., 2000;

Hishigaki et al., 2001; Vazquez et al., 2003). In comparison, we

mine the complete protein interaction network to locate relation-

ships between protein functions (i.e., in our case, GO terms). In

other words, we assign a GO term annotation to a protein P if the

annotation is implied by the existing GO term annotation patterns

(i.e., annotation sequences) of proteins that interact with P. Since the

source of protein interaction data mostly comes from unverified

high-throughput experiments, protein interaction data contains

many false positives (Deng et al., 2003). Our prediction of a GO

term (function) requires a statistically significant usage of that GO

term in a particular pattern. Therefore our methods are not affected

by false interactions/false annotations as long as the corrupt data

does not span a major portion of the interaction data.

Other works that apply patterns (a.k.a., motifs) to infer functions in

protein interaction networks view those patterns as clusters, and

distribute the most significant function in a cluster to non-annotated

proteins (Hu et al., 2005; Sharan et al., 2005). This method success-

fully predicts the annotation of proteins that build a protein complex

since all the proteins in the complex have the same function. How-

ever, it does not offer any prediction for the annotation of a protein

which is not part of a frequent protein interaction motif. In contrast

with (Hu et al., 2005; Sharan et al., 2005), our approach can predict

the function of a protein that interacts with at least one annotated

protein by using annotations of the proteins as well as the topological

features of protein interaction networks.

The rest of the paper is organized as follows. In Section 2, we give

a brief overview of our methodology. In Section 3 we describe

our GO function prediction algorithms. In Section 4, we experi-

mentally evaluate our GO function prediction algorithms.

Section 5 lists the related work. Finally, in Section 6 we give a

summary of our results.

2 METHODS

In protein interaction networks, Hishigaki et al. (2001) and Schwikowski

et al. (2000) note that if interaction partners of a protein P are annotated with

a certain functionality then, with some probability, P is also annotated with

the same functionality. This probability can be used to infer GO functions of

non-annotated proteins. Others (King et al., 2003) found correlations

between GO annotations of proteins, and developed probabilistic techniques

to extend known annotations of proteins with additional GO terms. The same

approach with (King et al., 2003) can be applied to annotations of proteins

spanning over several proteins in a protein interaction network. We integrate,

in this paper, (i) the probabilistic significance of GO annotation sequences

(i.e., a sequence of GO terms that corresponds to the annotations of a

sequence of proteins in a protein-protein interaction network) on protein

interactions and (ii) correlation of GO terms in protein annotations into a GO

term prediction model.

We generalize the relationships between occurrences of GO terms in a

protein interaction network. We make the same assumption of (Schwikowski

et al., 2000; Hishigaki et al., 2001) that the probability of assigning a GO

term to a protein depends on the GO term annotation of neighbor

proteins. Moreover, to differentiate between the near and far neighbors,

we model neighborhood information of a protein in the form of annotation

sequences where prefixes of annotation sequences represent far neighbors,

and suffixes of annotation sequences represent near neighbors.

Let pi,t ¼ Prob (t 2 goann(Pi) jT 2 goann(N-Pi)) be the probability that

protein Pi is annotated with GO term t given the GO term annotations T of all

proteins (except Pi) in network N, where goann(P) represents the GO term

annotation of protein P. Since the annotation of Pi only depends on the

annotation of its neighborhood (i.e., proteins having a path to Pi by following

a sequence of interactions) rather than the whole protein interaction network,

we can compute the same probability as:

pi,t ¼ Prob (t 2 goann(Pi) j observe(O1,Pi) ^ observe(O2,Pi) ^ . . .^
observe(Ok+n+m, Pi)). observe(Oj, Pi) represents the event of observing

the annotation sequence Oj on protein paths such that the tail protein of

Oj interacts with Pi. Observing an annotation sequence on a protein path is

described as follows. Let Oi¼ a1,a2. . .an be an annotation sequence where aj

(for 1<j<n) is a GO annotation of protein Pj in the protein path r ¼ P1,

P2. . .Pn. Oi is an annotation sequence observation of Pi, if Pi interacts with

Pn. We give an example.

Example 1: In Figure 1, protein P has 3 distinct protein paths, namely,

P2-P1, P3-P1 and P4. Let Oi be an annotation sequence observation at

protein P, and O1. . .Ok be the annotation sequences corresponding to the

protein path P2-P1, and Ok+1. . .Ok+n and Ok+n+1. . .Ok+n+m be annotation

sequences corresponding to protein paths P3-P1and P4, respectively.

Then, the probability of P having the GO term annotation t becomes:

Prob ðt 2 goannðPÞ j observeðO1‚PiÞ ^ observeðO2‚PiÞ
^ . . . ^ observeðOkþnþm‚PiÞÞ

Individual observation probabilities, Prob (observe(O1,Pi)), Prob

(observe(O2, Pi)), . . . , Prob (observe(O1,Pi)) are not independent since

they are all observed on the same protein. As a result, there is no easy

way to compute pi,t. We approximate pi,t as an aggregation:

pi‚ t 	 �

Probðt 2 goannðPiÞ j observeðO1ÞÞ‚
Probðt 2 goannðPiÞ j observeðO2ÞÞ‚

. . .‚
Probðt 2 goannðPiÞ j observeðOnÞÞ
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where � is an aggregation function. The conditional probability

Prob(t 2 goann(Pi) j observe(Oj,Pi)) can be approximated as v(Ojt)/v(Oj),

where v(S) is the number of unique protein paths in protein interaction net-

work N that is annotated with the GO annotation sequence S (i.e.,

the frequency of the annotation sequence S in the protein interaction

network), as all proteins are equally likely to have the same GO term anno-

tation as long as they exhibit the same annotation sequences on their neigh-

borhood, according to the assumption that the probability of assigning a GO

term to a protein depends on the GO term annotations of neighboring proteins.

Fig. 1. Protein interaction network example.
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To compute the probability pi,t, we first count the frequencies of possible

annotation sequences. Computing real frequencies of annotation sequences is

computationally infeasible due to the exponential number of protein paths and

annotation sequences. Thus, we reduce the number of GO terms by elimi-

nating the ‘‘uninformative’’ GO terms (i.e., GO terms assigned to a small

number of proteins). Next, we approximate the frequencies of annotation

paths by sampling a sufficient number of annotation sequences. In our experi-

ments, we found that increasing the sample size does not significantly increase

the accuracy of prediction if the sample size is sufficiently large (see Section

4.4). We store the frequencies of annotation sequences in a structure called the

probabilistic suffix tree (PST) (Yang and Wang, 2003). A PST is a trie with

node and edge labels, and a counter at each node which represents the fre-

quency of the corresponding annotation sequence. The PST allows us to keep

the frequency of variable-length protein paths, and to compute the probability

of a GO term, given an annotation sequence. A probability-distribution-

comparison-measure (i.e., a ‘‘divergence’’ measure) is used in the PST to

check whether the following holds:

Prob ðt2 goannðPiÞ jobserveðOj‚PiÞ 	 Prob ðt2 goannðPiÞ jobserveðOk
j ‚PiÞÞ

where Oj
k is a suffix of Oj of length k (to determine that increasing k is not

worth the effort).

To predict the annotation of a given non-annotated protein P using the

PST, we use the following procedure. Using random walk technique, we

sample a sufficiently large number of annotation sequences whose tail is the

annotation of protein P, and therefore, marked as unknown. Next, we run

the known prefixes of the annotation sequence samples on the PST to com-

pute a probability distribution of GO term annotations corresponding to each

annotation sequence. Finally we aggregate all probability distributions to

obtain an annotation prediction set, and pick top k annotations from the set.

See Section 3.2 for details.

For annotation sequences of length 2 (i.e., annotation pairs) we employ

correlation mining technique (He et al., 2004) since it is feasible to employ

all GO terms, rather than a subset of it. We build correlation measures using

the frequencies of co-appearing GO terms assigned to a pair of interacting

proteins. After computing interaction-based correlation between all possible

GO term pairs (see Section 3.1.1 for details), we make a GO annotation

prediction for protein P as follows. We generate a set of GO terms by

inserting the GO annotation of all interaction partners of P into a set S.

For each GO term ti in S, we obtain correlation values between ti and all other

GO terms, and we form a correlation vector Vi whose each dimension

corresponds to the correlation between a GO term and ti. Each correlation

vector Vi represents the effect of GO term ti on prediction of GO annotations

for P, based on the observations made on the training set. Hence, aggregation

V of all correlation vectors V1, V2, . . . , Vn reflect the effects of all GO terms

in S. Finally we pick as our GO annotation prediction set the top k GO terms

with highest correlation values in V (see Section 3.1).

We also apply correlation mining on the GO annotation of proteins with-

out incorporating the protein interaction information. In this case, two GO

terms are highly correlated if they occur together in several protein GO

annotations. We employ the annotation-based correlation of GO terms to

improve the prediction scores obtained as a prediction probability (from

PST) or as a prediction correlation value (from interaction-based correlation

mining). Annotation of protein P by the GO term t1 may increase the pro-

bability of P being annotated by GO term t2 when GO terms t1 and t2 are

highly annotation-correlated. Therefore, if GO terms t1 and t2 are highly

annotation-correlated and t2 has a lower prediction score than t1, we increase

the prediction score of t2 (to a value not higher than the prediction score of t1)

with respect to the strength of annotation-based correlation between t1 and t2.

See Section 4.6 for the details of prediction score improvement using

annotation-based correlation values.

In Section 4, we experimentally evaluate the effect of using PST versus

correlation mining to see if distant neighbors of a protein P have an effect on

P’s annotation. We also evaluate the prediction accuracy improvements

when annotation-based correlation values are employed.

3 ALGORITHMS

3.1 Correlation between GO term pairs

Genes/Proteins sharing common function annotations are found to

be genetically related (Tong et al., 2004). As a result, recent work on

protein function prediction (Schwikowski et al., 2000; Hishigaki

et al., 2001; Deng et al., 2002; Deng et al., 2004) treats each protein

function (e.g., GO terms, FunCat classification) independently, and

determines the function of a protein depending on the distribution of

the function on the neighbors of the protein. Generally, a protein

having one function does not prevent it from having other functions.

Therefore, the available techniques are unbiased while predicting

protein functions. However, for GO annotations, there are correla-

tions between protein function annotations. A protein being anno-

tated by the GO term A may imply an increase in the probability of

the protein being annotated by GO term B when GO terms A and B

are highly correlated (King et al., 2003). Here, we incorporate the

correlation information into a generalized model, and use correla-

tion mining (He et al., 2004) to assign GO terms to proteins. In this

section, we discuss two different correlation types for GO terms,

namely (a) interaction-based-correlation which is the correlation

between two GO terms that annotate two separate interacting pro-

teins and (b) annotation-based-correlation which is the correlation

between two GO terms that annotate the same protein.

3.1.1 Computation of interaction-based GO correlations Defi-

nition (interaction-based co-appearance, co-absence and cross-

appearance): With respect to a particular protein interaction
(P1, P2), (a) two GO terms co-appear if one of the GO terms is
assigned to P1 and the other is assigned to P2, (b) two GO terms
are co-absent if none of the two GO-terms are assigned to P1 or P2,
(c) two GO terms cross-appear if one of the GO terms is assigned
to protein P1 and the other GO term is not assigned to P2.

We compute the interaction-based correlation between two GO

terms that belong to the same ontology class (e.g., biological pro-

cess ontology) by using the protein interaction data (e.g., interaction

pairs in the BIND dataset) as follows. First, we generate a matrix MI

for each GO sub-ontology (i.e., biological process ontology,

molecular function ontology and cellular component ontology) to

keep the interaction-based correlation values between GO terms.

For simplicity, here we explain the algorithm for a single sub-

ontology and a single matrix. Rows and columns of the matrix

MI represent the GO terms of a particular sub-ontology. We fill

each cell in matrix MI with the correlation value between the GO

terms corresponding to the cell by using a correlation measure.

Theoretically, any correlation measure is a possible candidate

for the algorithm (He et al., 2004; Tan et al., 2002). Basically,

we express correlation measure values (see Figure 3 for a list) in

contingency tables (He et al., 2004) (see Figure 2).

We build a frequency matrix by a single scan on the dataset, and

use the frequency matrix to obtain separate contingency tables.

Fig. 2. Computingthecontingencytablefromthefrequencytable forall terms.
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A cell Cij in the frequency matrix denotes the (interaction-based)

co-appearance frequency of term pairs. We also have a special row

and a special column for the null term to count how many times

the terms occur alone. Ci+ and Ci+ represent the column and row

sums of the frequency matrix, respectively. C++ denotes the sum of

all cells. Using the frequency table, the contingency table for

terms ti and tj is computed as shown in Figure 2.

By using the contingency table obtained from the frequency table

and a correlation measure (e.g., Jaccard measure; see Figure 3), we

compute the interaction correlation value of each GO term pair. F11,

F01, F10, F00 in the contingency table represent the co-appearance,

cross-appearance, cross-appearance and co-absence frequencies of

two terms ti and tj, respectively. Other frequencies with the plus sign

are column and row sums of the contingency table. Next, we place

the correlation values for GO term pairs into the correlation matrix

MI. At this stage, a cell in the correlation matrix MI [i, j] contains the

interaction correlation value of two GO terms ti and tj.

We discuss performances of different correlation measures (see

Figure 3) in Section 4.7.

3.1.2 Computation of annotation-based GO correlations Defi-

nition (annotation based co-appearance, co-absence and cross-

appearance): In terms of GO annotations of a protein P, two GO

terms T1 and T2 (a) co-appear if both GO terms are assigned to P,

(b) are co-absent when none of T1 and T2 are assigned to P,

(c) cross-appear if only one of T1 and T2 is assigned to P.

We compute the annotation-based correlations between GO terms

by using GO annotations. This stage is very similar to the com-

putation of interaction-based correlation values. Again, we create

matrix MA where rows and columns of the matrix represent GO

terms of a particular ontology. Next, we generate the frequency

table by processing all proteins in the dataset. Then we create

contingency tables for every pair of GO terms. Finally, we fill each

cell in MA with correlation measure values using the corresponding

contingency table.

3.1.3 GO term annotation using correlation mining Our motiva-

tion to use interaction-based correlations for GO term annotation:

If we obtain highly correlated GO term pairs, we can also predict GO

terms of a non-annotated protein Q. We know the proteins that inter-

act with Q; so we build a set of GO terms as a base GO term set for Q by

unifying the GO terms of the proteins that interact with Q. Using the

base GO term set, we generate a prediction set of Q by selecting the

GO terms that are highly correlated with the base set of Q. In Section

4, we empirically evaluate the validity of the claim that the top GO

terms in the prediction set correctly annotate the protein Q.

We compute GO term prediction scores of a non-annotated pro-

tein P based only on the values in matrix MI as follows. Using the

protein interaction dataset, we generate a set S of proteins that

interact with P. Then we add the GO terms of each protein in S

to a GO term set G. Note that, repetition of a GO term in G is

allowed so that the impact of frequent GO terms in the neighbor-

hood is naturally increased. Next, for each term ti in G, we extract

the corresponding column from MI and generate a correlation vector

Vi. GO terms to be predicted for P must be interaction-correlated

with all the terms in G. Therefore, each GO term in G should

contribute to the GO term prediction scores of P. So, we sum up

all correlation vectors and generate a single vector q as the GO term
prediction score vector for P. Then we normalize the scores in q

(e.g., via dividing the scores by the maximum score) since the

number of GO terms in G varies by protein to protein. As a result,

the final q contains the scores of each GO term determining the

prediction quality of each GO term with respect to P.

3.2 GO term annotation sequences

In section 3.1, we described a correlation mining technique among

GO terms of a protein and its direct interaction partners. In this

section we focus on distant neighbors of proteins, build GO term

annotation sequences, and compute the likelihood of having a

sequence of annotations on a protein interaction path.

The scope of a GO term annotation, namely protein interaction

paths, grows exponentially in the size of the interaction network;

therefore, our approach is to sample and use only a fraction of all

possible protein interaction paths.

In our analysis, we randomly select protein paths and protein anno-

tations to generate a sample of annotation sequences. Our approach is

to select protein paths using random walks in which we randomly pick

a starting protein, and walk over the graph by randomly selecting the

next adjacent protein. We assume that all interactions are equally

likely, ignoring the fact that they do not have the same reliability

(Letovsky et al., 2003). The maximum length of a random walk is not

bounded unless explicitly defined (see section 4.4). We prevent loops

and infinite-length paths by disallowing repetition of proteins on a

path. Each time we finish generating a protein path, we also generate

annotation sequences by randomly selecting a single annotation from

each protein on the path.

To capture statistical correlations of different lengths, we use a

Variable-length Markov Model (VMM) to compute and store like-

lihoods of the annotation sequences. Hidden Markov Model (HMM)

is proven to be a successful tool in the analysis of biological data

(Durbin et al., 1998). An HMM has a fixed number of states,

namely, D states (D-th order Markov model). In our case, we do

not know the optimum length of the function annotation sequences.

Annotation sequences longer than the optimal length (i.e., using

further neighbors of a protein rather than near ones) have less

influence on the annotation of a protein that the sequence belongs

to. Therefore, one cannot pick a good upper bound D, and design the

HMM accordingly. VMMs deal with a class of random processes in

which the memory-length varies, in contrast to a D-th order Markov

model where the length of the memory is fixed. There are many

VMM types and prediction algorithms (Begleiter et al., 2004).

We select the Probabilistic Suffix Tree as our VMM.

The Probabilistic suffix tree (PST) (Begleiter et al., 2004) is a

variation of the suffix tree (Galil and Ukkonen, 1995) for making

predictions using the probabilities assigned to the nodes of PST

in the training phase. The traditional suffix tree (ST) built for a

sequence S is a rooted directed tree where each node represents

a suffix of S and each edge represents a symbol concatenated to a

Fig. 3. A list of correlation measures that are used in the GO term prediction

algorithm.
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suffix. For each node, concatenating the edge labels from root to a

node gives the node label, namely, a distinct suffix of the string S.

The generalized suffix tree (GST) is a suffix tree that combines

suffixes of a set of strings, T ¼ {S1, S2, . . . Sn} (see Figure 4). The

PST model further modifies GST, by adding a counter to each node

which represents the frequency of the string segment in the string set

of GST.

Example 2: Figure 5 shows a PST example built from the training

set S ¼ {abc, aba}. We insert all suffixes of reverse strings in the

training set to a PST. Therefore we have {cba, ba, a, aba, ba, a}

inserted to the tree.

We use the PST to store the frequencies of annotation sequences in

a training set obtained via random walks on a protein interaction

dataset. We use the frequency information to compute the conditional

probability Prob(t jO), i.e., given the annotation sequence O (on a

protein path r), the probability of having GO annotation t (assigned to

theproteinPconnected to theproteinpathr).UsingPSTcounters,one

cancompute theconditionalprobabilityofasymbolan appearingafter

a given sequence a1,a2, . . . , an�1 as follows:

Prob (an j a1,a2, . . . , an�1) ¼ �(a1,a2, . . . , an)/�(a1,a2, . . . , an�1)

where �(s) denotes the frequency of occurrence of segment s in the

training set. Thus, Prob(t jO) is computed as v(O.t)/v(O).

In the PST, we store the shortest significant suffixes of training

sequences when it is possible to represent the whole sequence with

its suffix (see example 3).

Example 3: Let a training set contain 25 occurrences of each

sequence ‘‘bc’’, ‘‘abc’’, ‘‘bd’’ and ‘‘abd’’. When we use the train-

ing sample to compute the probability Prob(c j ab) of having symbol

c followed by ab, we compute v(abc)/v(ab)¼ 25/50¼ 1/2 (note that

both abd and abc contain ab). When we use the shorter suffix

(of length 1), we compute Prob(c j b) and we get v(bc)/v(b) ¼
50/100 ¼ 1/2 (note that b is contained in all sequences). The

probability does not (significantly) change; therefore there is no

need to keep extra nodes in the tree for ‘‘abc’’ and ‘‘abd’’, and

keeping ‘‘bc and bd’’ are sufficient.

Assume S is a string of symbols defined in the alphabet S and the

probability of having the symbol x followed by S is Prob (x j S). In

probabilistic prediction algorithms (Bejerano et al., 2001), the aim

is to have a close prediction probability Prob0(x j S) that is close

to Prob (x j S). The main idea of VMMs is that if the probability

Prob0 (x j yS) that predicts the next symbol x followed by yS,

is not significantly different than Prob0 (x j S), the shorter-length

prediction Prob0 (x j S) can be also used to estimate Prob (x j S).

Using only the shortest significant suffix that determines the next

symbol reduces the memory and computation requirements of a PST.

However, Prob0(an j a1,a2, . . . , an-1) cannot always be computed by

using the frequency count ratio �(a1,a2, . . . , an)/�(a1,a2, . . . , an-1)

since we only store the shortest significant suffixes in PST. There-

fore, each conditional probability is computed by using the longest

available suffix frequencies in the PST. Here, we obtain

Prob0ðan ja1‚a2‚ ...‚an�1Þ¼Prob0ðan jak‚akþ1‚ ...‚an�1Þand
Prob0ðan jak‚akþ1‚ ...‚an�1Þ¼vðak‚ akþ1‚ ...anÞ/vðak‚akþ1‚ ...‚an�1Þ‚

where ak,ak+1, ... , an is the longest observed/stored suffix of the

sequence a1,a2, ... , an in the PST.

We remove insignificant nodes using the weighted Kullback-

Leibler (KL) divergence (Yang and Wang, 2003) to create proba-

bility distributions at each PST node. KL divergence is defined as:

DHðyS‚SÞ ¼ Prob0ðySÞ
X

x

Prob0ðx j ySÞ log
Prob0ðx j ySÞ
Prob0ðx j SÞ

where we compare the log ratios of the child node probability

distribution (given the longer suffix, Prob0 (x j yS)) with parent

node probability distribution (given the shorter suffix, Prob0(x j S)).

Unless the KL-divergence DH(yS,S) exceeds a predefined threshold

s, we use the shorter suffix S (i.e., the parent node) instead of yS
(i.e., the child node), and the node for symbol (i.e., GO term) y at the

leaf level is not created or deleted if it already exists.

Example 4: To build a PST for sequences ‘‘abc’’ and ‘‘aba’’. First

we insert ‘‘cba’’, ‘‘ba’’, ‘‘a’’ and ‘‘aba’’, ‘‘ba’’, ‘‘a’’ to empty tree.

(See example 2). Then, we compute the probability distributions at

each node. For instance, at node 5, we compute the following

distribution (See Figure 6):

Probða j bÞ ¼ vðbaÞ/vðbÞ ¼ 1/2

probðb j bÞ ¼ vðbbÞ/vðbÞ ¼ 0/2

probðc j bÞ ¼ vðbcÞ/vðbÞ ¼ 1/2

Next, we smooth the probabilities at the nodes (See Figure 6).

For instance at node 5, we have:

Probðb j bÞ ¼ 0!0:01

Subtract 0.01/2 from the rest of the two probabilities:

Probða jbÞ ¼1/2� 1/200¼99/200

Probðc jbÞ ¼1/2� 1/200¼ 99/200

Finally, we remove insignificant nodes from the tree. In Figure 6,

the nodes to the left of the boundary line are insignificant nodes

(i.e., their probability distributions are not much different from

their parents’ distributions).

3.2.1 GO Annotation using probabilistic suffix tree After we

build the PST using annotation sequences sampled from the training

protein interaction network, next we predict the annotation of a

non-annotated target protein P as follows. Using the random

walk algorithm, we retrieve a protein path sample set Q starting

Fig. 5. A GST with counters.

Fig. 4. Suffix Tree for ‘‘cba’’.
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at the source protein P. Then we remove P from the ends of protein

paths in Q, and reverse each protein path in Q. Next, we convert

protein path samples Q into annotation sequence samples T by

randomly picking a GO function annotation of a protein for each

protein path in Q. Then we use the PST to derive the probability

distribution of the next symbol for each annotation sequence in T,

and form a vector with the values in the probability distribution.

Next, we aggregate (i.e., average) all probability distribution vectors

to generate a single prediction score vector. Finally, we obtain a list

of GO annotation predictions for P by picking only the top GO terms

with a prediction score above a given threshold t.

3.3 Prediction score improvement

In this stage, we employ annotation based correlation values of GO

terms to improve the prediction scores (i.e., either PST probability

distributions or interaction-based correlation values). Annotation of

protein P by the GO term T1 may increase the probability of P being

annotated by GO term T2 when GO terms T1 and T2 are highly

annotation-correlated. Therefore, if GO terms T1 and T2 are highly

annotation-correlated and T2 has a lower prediction score than T1,

we increase the prediction score of T2 (to a value not higher than the

prediction score of T1) with respect to the strength of annotation-

based correlation between T1 and T2.

In our experiments, we computed the prediction accuracy with

and without using the prediction score improvement based on

annotation-based correlation values. When we enabled score

improvement, we obtained up to 30% improvement in our predic-

tion F-values of some proteins (See Section 4.6).

4 EXPERIMENTS AND RESULTS

To build a protein interaction network for our experiments, we have

used organism-(i.e., yeast) specific interaction datasets of MIPS

(MIPS, http://mips.gsf.de) and GRID (GRID, http://biodata.

mshri.on.ca/grid Breitkreutz et al., 2003), and complete dataset

of BIND. All datasets include both physical and genetic interactions

of their scopes. For comparisons of available techniques, we used

the dataset of Deng et al. (2002) (DENG) and compared our

implementations with their prediction results (DENG, http://

www-hto.usc.edu/msms/FunctionPrediction). In the DENG dataset,

proteins are annotated with pre-defined function classes instead of

GO terms. The MIPS dataset is annotated with a special function

catalog named FunCat (FunCat, http://mips.gsf.de/projects/funcat).

Our experiments with GO term annotation sequences cannot scale

to large numbers of GO terms. Therefore, we reduced the number of

annotations by picking a subset of the annotations which is referred

to as informative nodes in (Zhou et al., 2002). A GO term is viewed

as an informative node in the GO hierarchy: (a) if the number of

proteins that are annotated with this node is less than a threshold,

namely g, and (b) if each of the children of the node is annotated

with less than g proteins. We removed from the datasets all GO

annotations which are not informative. We picked g¼500 in the

BIND dataset and g ¼ 30 in the MIPS and GRID datasets. In the

DENG dataset, protein function annotations are a flat list of function

labels. We directly used DENG data annotations. We also remove

from datasets any protein with no annotations or no interaction

partners in order to arrange a clean cross validation setting. Final

dataset details are listed in Figure 7.

Gene ontology (GO) consists of three graph-structured term

vocabularies, namely biological process ontology (BP), molecular
function ontology (MF) and cellular component ontology (CC)

(Gene Ontology Consortium, 2004; CaseMed Ontology Viewer,

http://nashua.case.edu/termvisualizer). Each ontology in GO

consists of GO terms associated with each other by using either

the is-a and the part-of relationships. Is-a relationship means that

the child GO term is a subclass of its parent. In the current version

of GO, the part-of relationship means that the child is necessarily a

part of its parent. That is, whenever the child GO term is assigned

to a protein, the parent GO term is also assigned to that protein. As

the existence of child terms always require the existence of parent

terms for a protein, this situation is called the True Path rule.
According to the True Path rule, if a protein is assigned a GO

term A, all the GO terms on the paths from the GO term A to

the root GO term R, are implicitly assigned to the protein.

Next, we apply the true path rule, and assume that a protein

is indirectly annotated with all ancestor terms of its direct GO

annotations. Having prepared the datasets, we ran our algorithms

using correlation mining (CM) as well as the probabilistic suffix tree

(PST) on the datasets. We also compared CM and PST with other

known techniques, namely, neighbor counting (Schwikowski et al.,
2000) (NC), chi-square (Hishigaki et al., 2001) (CHI), Markov

Random Fields (Deng et al., 2002) (MRF). For comparison, we

implemented NC and CHI techniques. For MRF comparisons,

we directly used the input and prediction datasets of (Deng

et al., 2002). In NC and CHI experiments, we used only the direct

interactions of proteins (i.e., first level neighbors) since Deng et al.
(2002) shows that using distant neighbors reduce the accuracy of

CHI and NC techniques.

By applying any of the above techniques, we obtain a prediction

set of GO terms. For the predicted GO terms at the deeper levels

of GO hierarchy, if a parent GO term is missing in the predictions,

we either add the parent term to the prediction set or remove the

Fig. 6. A PST with probability distributions at nodes (displaying (a) smooth-

ing by redistribution (b) insignificant node elimination by trimming tree with

a boundary line).

Fig. 7. Dataset details.
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GO term with a missing parent whichever requires minimum addi-

tions or deletions.

We evaluate the prediction accuracy of each technique (e.g., CM)

in a k-fold cross-validation experiment. We randomly divide a

protein interaction network into k clusters and use k-1 clusters as

training data to annotate the excluded cluster whose annotations are

marked as unknown. We repeat the same procedure many times

until the accuracy of the system converges. The value of k does not

significantly affect the performance of CM, NC and CHI techniques

(note that results of MRF is already known) for k � 5. We chose

k ¼ 10, namely 10-fold cross validation to evaluate CM, NC and

CHI techniques. On the other hand, our random walk algorithm for

PST never visits a neighbor of a protein marked as unknown since

we do not allow gaps in annotation sequences. As a result, using a

small k value significantly influences the accuracy of PST due to

having a disjoint training interaction network by excluding

too many proteins. Therefore, in experiments, we used a larger k

value, i.e., k ¼ 50 to evaluate the PST technique.

Since we make experiments on already-annotated proteins, we can

measure the precision and recall values of the annotation predictions.

Let R be the set of (known) annotations of protein P and Q be the set

of annotation predictions. Then, we define precision and recall as:

Precision ðQ‚RÞ ¼ jQ \ Rj/ jQj and Recall ðQ‚ RÞ ¼ jQ \ Rj/jRj

To achieve high accuracy in a prediction, the technique should

have high precision and recall values. Usually there is a tradeoff

between having high precision and high recall. Thus, to evaluate

predictions of different techniques, we use the F-value of the

prediction instead of its precision and recall. F-value is defined

(Shaw et al., 1997) as the harmonic mean of precision and recall

of a prediction set:

F-valueðQ‚RÞ ¼ 2 � PrecisionðQ‚RÞ � RecallðQ‚RÞ
PrecisionðQ‚RÞ þ RecallðQ‚RÞ

After running one of the five techniques on a dataset, we obtain

scores for all GO terms (or other annotation types). We can then

obtain a prediction set by either picking the GO terms with scores

above a given threshold or picking top k GO terms (with top scores).

Since we compare multiple techniques, and using a threshold is not

applicable due to the varying score distributions (i.e., different min,

max, average scores etc. . .) of techniques, instead, we use the fol-

lowing two methods for selecting the value of k for top k cutoff in

an experiment:

(i) For a given k value, we compute the average of the F-values

corresponding to the top k predictions of each protein. We

name this average as the ‘‘Average F-value with Global

Cutoff’’ (AGC). Then we find the maximum of the AGCs

(i.e., maxAGC) corresponding to a k value between 1 and

the number of GO terms, to indicate the accuracy of the

technique.

(ii) For each protein, we find the k value that produces the

maximum F-value for the top k predictions of the protein.

We name this value as ‘‘Maximum F-value with Local

Cutoff’’ (MLC). Then, we average all the MLCs (i.e.,

avgMLC) corresponding to all proteins in order to indicate

the accuracy of a technique.

4.1 Comparison of techniques

In this experiment, we compare protein annotation prediction per-

formances of five techniques, namely, correlation mining (CM),

probabilistic suffix tree (PST), Markov random fields (MRF), neigh-

bor counting (NC) and chi-square (CHI). For each technique, we

compute the MLC value of each protein, and count the number of

proteins where the technique produces the best (or equal to some)

MLC, in comparison with other techniques (see Figure 8). We also

compute the avgMLCs over all proteins (see Figure 9). In Figure 10,

we plot the AGC values versus k that we compute in top-k

prediction experiments.

We compare the techniques CM, PST, MRF, NC and CHI using

the DENG dataset. This dataset contains three annotation classes,

namely, biochemical function (BIO), cellular role (ROLE) and

sub-cellular location (LOC) annotations (See Figures 8 and 9).

We plot the AGC values (Figure 10) for only biochemical function

annotations since the results are similar for other annotation classes.

Our results show that prediction accuracies of techniques are in

the following decreasing order: PST, CM, MRF, NC and CHI. PST

technique annotates 6.6%, 31% and 19.7% more proteins accurately

as compared to MRF, NC and CHI techniques, respectively. CM

technique annotates 22.1% and 11.6% more proteins accurately as

compared to NC and CHI techniques, respectively, and 0.7% less

Fig. 10. AGC versus k in the top-k prediction experiments.

Fig. 8. Comparison of techniques by the number of proteins where a

technique produces the maximum (or equal to some) MLC.

Fig. 9. Comparison of techniques by avgMLCs over all proteins.
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proteins accurately as compared to MRF technique. However, CM

technique produces 1.4%, 4.8% and 10% better avgMLC values

than MRF, NC and CHI techniques respectively. Comparing the

avgMLCs, the PST technique gives the best results, and produces

2.8%, 6.3% and 11.5% better predictions than the MRF, NC and

CHI techniques, respectively. In Figure 10 we show that the AGC

difference between the techniques increases when we reduce the

value of k in top-k prediction experiments. The decreasing accuracy

order PST>CM> MRF>NC>CHI remains in the AGC comparison.

Highest AGC values in experiments (i.e., maxAGC) is obtained for

k ¼ 2 (i.e., top 2 predictions).

4.2 Comparison of sub-ontologies

In this experiment, we compare different GO sub-ontologies in

terms of prediction accuracies of the annotations. The different

ontologies used are biological process (BP), molecular function

(MF) and cellular component (CC). In Figure 11, we list the average

MLCs obtained in BIND and GRID datasets using the PST tech-

nique on different sub-ontologies. Prediction results show that real

scores clearly perform better than random function assignments

validating the correctness of our approach.

In Figure 12, we show AGCs of different GRID dataset sub-

ontologies computed in top-k prediction experiments. Among the

three GO sub-ontologies, we obtain the highest accuracy predictions

using the cellular component sub-ontology (in terms of AGCs for k<15

in Figure 12, and avgMLC values in Figure 11). We explain this

observation as follows. Physical protein interactions occur in the

same cellular component, and protein interaction partners are usually

annotated with the same cellular component annotation. Therefore, GO

terms belonging to the cellular component sub-ontology are usually

highly correlated with themselves. As a result, to predict the annotation

of a protein P, choosing highly correlated GO terms of P’s interaction

partners is equal to transferring most frequent GO terms of P’s inter-

action partners. However, results of BP and MF are close (in terms of

the avgMLCs) and the distribution of BP and MF annotations over a

protein interaction network is too complex to have an explanation.

4.3 Comparison of Datasets

In this experiment, we compare prediction performances of differ-

ent datasets (i.e., BIND, GRID, MIPS and DENG) (See Figure 13).

We compute avgMLC with the CM and the PST techniques on a

given dataset.

Our results show that prediction experiments on the BIND dataset

performs better than GRID and MIPS datasets for the CM tech-

nique, while GRID dataset produces the best PST predictions. This

is due to the fact that GRID and MIPS datasets contain protein

interaction of a single organism (i.e., yeast) while the BIND dataset

is a combination of protein interaction data of several organisms.

Therefore, we explain the prediction accuracy difference between

BIND and GRID datasets by the additional organisms in the BIND

datasets. Since the BIND dataset is a multi-organism dataset and a

protein does not exist in multiple organisms, the BIND dataset is

composed of many disjoint protein interaction networks while

GRID dataset has a smaller number of disjoint portions. Hence,

in PST experiments, shorter annotation sequences become more

significant for the BIND dataset reducing the prediction accuracy

of proteins in long protein paths. On the other hand, the CM tech-

nique does not rely on long protein paths and we are able to use the

correlation information from all organisms together.

We obtained best prediction results (PST and CM) with DENG

dataset. This is because the DENG dataset contains only a small

number of functional annotation types (instead of GO terms) with

high information content (i.e., annotation frequency).

We got the worst prediction results with the MIPS dataset. The

MIPS dataset is annotated with the FunCat functional categories.

FunCat is a hierarchy of functional classes combining functional

categories of different types (molecular functions, cellular locations

etc. . .) in the same hierarchy. Unrelated branches of FunCat proba-

bly reduced the overall prediction performance of this dataset.

Note that, we obtain the avgMLC values of BIND, GRID

and DENG datasets by averaging the MLC values of different

sub-classes (BP, MF and CC in BIND and GRID; BIO, LOC

and ROLE in DENG) since different sub-classes are not related.

4.4 Effect of sampling size

In PST experiments, we repeated the same experiment with differ-

ent sampling sizes using the PST technique on GRID dataset, and

measured avgMLC for each sample size and the number of proteins

giving better MLC values for a given sample size among all sample

sizes. Our results indicate that annotation samples per protein and

the number of protein samples do not change the accuracy as long as

the total number of annotation samples is more than a sufficient

number (i.e., 300,000) (see Figure 14) which is almost 100 times the

number of proteins in the dataset.

In addition to measuring the effective number of annotation samples,

we measure the effective length of the annotation sequences (i.e., the
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Fig. 12. CM performances of GRID sub-ontology annotations, plotting

AGC versus k in top-k prediction experiments.

Fig. 13. Performances of data sources. Values are obtained by averaging

avgMLCs in different sub-ontologies.

Fig. 11. avgMLCs obtained in BIND datasets using CM technique.
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distance of effective neighbors to the target protein). We force

the maximum length of annotation sequences in the PST by training

the PST with a limited-length annotation sequence samples, measure

the avgMLC value for each PST-depth, and compute the number of

proteins giving better MLC values for a given PST-depth size among all

PST-depths. We found that the PST is stabilized with the annotation

sequences of length 5, and longer sequences had no improvement in the

prediction accuracy (see Figure 15). However, reducing the maximum

PST-depth below 5 reduces the prediction accuracy (see Figure 15).

4.5 Presentation of predictions

In this section we present our results obtained by the CM technique

with the BIND dataset, since we obtained the highest avgMLC

values with this dataset (See Figure 13).

The precision/recall values in Figure 16 are obtained by using the

given k values and picking the top k GO terms with highest scores.

The best AGC value (60%) is obtained with k¼ 3 where we pick the

top 3 predictions.

In Figures 17 and 18, we plot the avgMLCs of proteins with the

same number of interaction partners and the same number of GO term

assignments, respectively. As shown in Figures 17-18, the number

interactions that a protein has or the number of GO terms that a protein

is assigned to do not directly influence the accuracy of the predictions.

In Figures 19 and 20, we show the correct prediction rate of

individual GO terms (prediction rate ¼ correct predictions/all

predictions). As shown in Figures 19-20, GO terms with higher

information content (higher number of assignments) can be pre-

dicted with better accuracy. We did not observe any relationship

between information content and prediction accuracy for lower

information content. GO terms with lower depth are predicted

with higher accuracy in general (due to higher information content).

However there are many exceptions that GO terms with higher

depth are predicted with better accuracy than the GO terms with

lower accuracy (see Figure 20).

4.6 Score improvement with annotation-based

correlation values

In this experiment, we observe the effects of using annotation-based

correlations. When we employ annotation-based correlations to

improve the prediction scores of CM technique, we obtain up to

30% improvement in individual protein MLCs. Figure 21 lists the

improvements on the MLCs of the CM experiment on different datasets.

Overall improvement of score update on avgMLCs is small (i.e, 0.1%–

0.4). However, when annotation-based scores are employed, the effect

is observed only on a set of proteins rather than all proteins, and also

we observed no improvement on a large percentage of the proteins.

4.7 Effect of the correlation measure

We observe that, in GO annotations, term frequencies are non-

uniform, showing some Zipf-like distribution (See Figure 22).

Fig. 17. Accuracy of predictions by proteins with the same number of GO

term annotations.

Fig. 18. Accuracy of predictions by proteins with the same number of

interaction partners.

Fig. 15. Effect of PST-depth on prediction performance.

Fig. 14. Effect of sampling size on PST performance.

Fig. 16. Precision vs. Recall in CM experiments using the GRID BP dataset.
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First, non-frequent GO terms may result in the sparseness of the

data. Sparse GO terms cannot be predicted as accurately as the non-

spare ones (see Figure 19), and create noise in data for prediction

of non-sparse GO terms. We prevent sparseness by removing the

‘‘uninformative GO terms’’ (see section 4). Second there may exist

some highly frequent GO terms, occurring in almost every protein

therefore being correlated with almost every other GO term (due to

a correlation measure that is proportional to co-occurrence fre-

quency). Once we remove the uninformative GO terms, F11/FPP

(See section 3.1.1) ratio of frequent terms reduces below 0.1%,

causing no frequent item problems (He et al., 2004).

In this experiment, we compared the prediction performances of

Cosine, Jaccard, H-measure, Support and Confidence measures by

computing the avgMLCs in our datasets (See Figure 23). Cosine

measure performed the best (overall) prediction results except that

the H-measure performs better in the BIND dataset. The difference

between the results of the Cosine and the Jaccard measures is small.

H-measure is better only for the BIND dataset which is our largest

dataset in terms of number of proteins and GO term annotations.

In the BIND dataset, annotation frequencies become similar for

frequent GO terms, and the accuracy of correlation measures

using F11 in their formula (See Figure 3) dramatically reduces in

such large datasets.

4.8 Origin of prediction

In contrast with MRF, NC and CHI; CM and PST approaches utilize

correlations between cross annotations rather than classifying

proteins against a single annotation. In this experiment, we present

a set of protein annotation predictions where CM performs better by

utilizing cross-functional information. We list some selected pre-

dictions on the DENG dataset, to compare different techniques. We

eliminated PST results from the example since PST annotations

employ correlation information of annotation sequences; and due

to space restrictions. Function descriptions and the full list can be

found in the supplemental data available online (http://kirac.

case.edu/PROTAN).

For selected proteins, Figure 24 shows top 5 predictions of different

techniques and the origin of CM prediction scores assigned to the given

predictions. As seen in Figure 24, in function predictions where the

protein has no interaction partners with the same function annotation

(e.g., YPT31 and PHO85), the whole prediction comes from cross-

functional information, and other techniques fail to make an accurate

prediction. Also, there are some cases (e.g., ISY1, SNF7 and NRG1)

where the correct annotation of a protein is not frequent among its

interaction partners, and the CM technique employs cross-functional

information to increase the rank of correct predictions.

5 RELATED WORK

Related work in protein function prediction is listed briefly.

Troyanskaya et al. (2003) builds a Bayesian Network based on

the probabilities that a gene is functionally related to another to

predict functional relationship between genes. Samanta and Liang

(2003) puts forward that two proteins have similar functionality if

they interact with a similar set of proteins, and compares shared

interaction partners of two proteins. Schwikowski et al. (2000) counts

the function annotations of proteins that interact with a non-annotated

protein P in a protein interaction network and annotate P with the

most frequent function annotation. Hishigaki et al. (2001) employs

Chi-square technique on function frequencies of interaction partners

Fig. 20. Rate of correct predictions of GO terms by the depth of the GO

terms in the GO hierarchy. Bigger points show the average prediction rate of

GO terms with the same depth.

Fig. 19. Rate of correct predictions of GO terms by the number of

assignments to proteins.

Fig. 22. Frequency of GO terms in BIND dataset.

Fig. 21. Improvements in avgMLC and individual protein MLCs in CM

experiments, by using annotation-based correlations.
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of a non-annotated protein. Vazquez et al. (2003) changes the prob-

lem of function prediction to a global optimization problem, i.e.,

minimizing the number of protein interactions between protein

pairs that are annotated with different functions. Deng et al. improves

previous techniques with a probabilistic model (2002; 2004). Deng

et al. (2002) defines a Markov Random Field model on yeast protein

interaction network that takes into consideration the fraction of the

functions to be assigned to the proteins. Deng et al. (2004) further

improves the model by defining GO terms as protein functions.

Nabieva et al. (2005) views protein functions as reservoirs and the

protein interaction network as a circuit, then predicts annotations of

proteins by transferring functions, with some probability, from every

other protein in the protein interaction network.

6 CONCLUSION

In this paper, we proposed a novel approach to predict GO anno-

tations of proteins. We use protein interaction networks to find

correlations and probabilistic relationships between GO terms.

We use cross-validation to assess the accuracy of our algorithms.

We experimentally evaluated our techniques and concluded that

probabilistic suffix tree and correlation mining perform the best

among the known techniques in terms of accuracy of predictions.

Correlation mining performs better in large datasets (i.e., high

number of proteins, high number of GO terms) and PST performs

better in smaller datasets (i.e., with non-GO annotations).
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ABSTRACT

Parameter estimation is a critical problem in modeling biological

pathways. It is difficult because of the large number of parameters to

be estimated and the limited experimental data available. In this paper,

we propose a decompositional approach to parameter estimation. It

exploits the structure of a large pathway model to break it into smaller

components, whose parameters can then be estimated independently.

This leads to significant improvements in computational efficiency.

We present our approach in the context of Hybrid Functional Petri

Net modeling and evolutionary search for parameter value estimation.

However, the approach can be easily extended to other modeling

frameworks and is independent of the search method used. We have

tested our approach on a detailed model of the Akt and MAPK path-

ways with two known and one hypothesized crosstalk mechanisms.

The entire model contains 84 unknown parameters. Our simulation

results exhibit good correlation with experimental data, and they

yieldpositiveevidence insupportof thehypothesizedcrosstalkbetween

the two pathways.

Contact: thiagu@comp.nus.edu.sg

1 INTRODUCTION

Computational models and methods are becoming an integral part

of molecular biology. They are being used not only to identify

cellular components, but also to determine how these components

interact with one another. Quantitative modeling of these inter-

actions will play an important role in understanding fundamental

intra- and inter-cellular processes. In particular, quantitative

modeling of the dynamics of biological pathways has drawn much

attention recently (Chen et al., 2003; Matsuno et al., 2003; Ye et al.,
2005). Our focus here is on modeling the dynamics of intra-cellular

signaling pathways.

Thanks to rapid technological advances, the structures of many

signaling pathways are now available. Using this information,

attempts to derive system models that capture the dynamics of

these pathways are beginning to emerge. For such attempts to be

successful, several challenges must be addressed.

First, choosing a modeling framework is important, because it

determines the appropriate level of abstraction at which cellular

components and their interactions can be described. The choice

of the modeling framework is also strongly influenced by the simu-

lation and analysis tools that the framework offers.

Independent of the framework chosen, modeling the dynamics

of a signaling pathway requires the determination of various reac-

tion rate constants that control the biochemical reactions constitut-

ing the pathway. These rate constants are usually called model

parameters. Almost always, only a few of these parameters can

be determined directly through experiments. The rest must be esti-

mated, based on experimental data, e.g., gene expression or protein

concentration measurements. Unfortunately, the amount of data

available is rather limited in quantity and sometimes corrupted

by noise. This, combined with the large number of unknown

model parameters makes the parameter estimation problem com-

putationally difficult and sometimes intractable.

In this work, we adopt the recently introduced Hybrid

Functional Petri Net (HFPN) (Matsuno et al., 2003) as the modeling

framework and propose a decompositional approach to the parame-

ter estimation problem in signaling pathway modeling. The biologi-

cal application driving our study is the Akt and MAPK pathways

and their hypothesized crosstalk mechanisms.

A key advantage of our decompositional approach is that it

exploits the structure of a large pathway model to break it into

smaller components, whose parameter estimation problem can

then be solved independently. This leads to significant improvements

in computational efficiency due to the reduction in the dimension-

ality of the search space and in the number of local minima. For the

Akt-MAPK pathways with 84 unknown parameters, our approach

produced reasonable estimates for all parameters in about 18 hours.

In comparison, the common approach, which estimates all the

parameters together, cannot even finish after running for 4 days.

We present our decompositional approach in the context of the

HFPN modeling framework and evolutionary search (Beyer et al.,
2002) for parameter value estimation. However, it can be easily

extended to other modeling frameworks, such as simultaneous sys-

tems of differential equations, hybrid automata, etc. (Sorribas et al.,
1988, Ye et al., 2005). Our approach is also independent of the

specific search method used for parameter estimation. In fact, one

may choose different search methods for different components, if

this improves computational efficiency.�To whom correspondence should be addressed.

� The Author 2006. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oxfordjournals.org

The online version of this article has been published under an open access model. Users are entitled to use, reproduce, disseminate, or display the open access
version of this article for non-commercial purposes provided that: the original authorship is properly and fully attributed; the Journal and Oxford University
Press are attributed as the original place of publication with the correct citation details given; if an article is subsequently reproduced or disseminated not in its
entirety but only in part or as a derivative work this must be clearly indicated. For commercial re-use, please contact journals.permissions@oxfordjournals.org



We have chosen HFPN as the modeling framework, because it

captures both continuous and discrete behaviors that are inherent in

biological systems. Another advantage for our purposes is that the

underlying graph of an HFPN model naturally captures the

information flow and the dependency relations among the basic

elements of a pathway. This allows us to systematically decompose

a pathway model into components.

We tested our method on the Akt-MAPK pathways, based on

data from 27 experiments. This pathway model has a total of 84

unknown parameters. Our method succeeded in decomposing it

into 6 components, each of which has no more than 25 unknown

parameters, which must then be estimated together. Our estimated

parameters produced fairly good simulation results when compared

with experimental data. We also used our model with its estimated

parameters to check the plausibility of the hypothesized crosstalk

between the protein PDK1 of the Akt pathway and the protein

MEK of the MAPK pathway.

The rest of this paper is organized as follows. In Section 2, we

review background information on the HFPN modeling framework

and the Akt-MAPK pathways. We also provide some pointers to

related work on parameter estimation techniques. In Section 3, we

describe the HFPN model of the Akt-MAPK pathways and encap-

sulate the crosstalk hypothesis in the model. In Section 4, we

present the details of our decomposition method for parameter

estimation. In Section 5, we present simulation results to validate

the estimated parameter values and to test the crosstalk hypothesis.

In Section 6, we discuss some issues and possible improvements of

our current decomposition method. Finally, in Section 7, we sum-

marize the main results and discuss the prospects for future work.

2 THE BACKGROUND

There are many approaches to modeling biological pathways

(de Jong, 2002). We first explain the modeling framework that

we have chosen and then the specific signaling pathway setting

in which we have carried out our parameter estimation work.

2.1 Hybrid functional petri nets

Petri nets are a fundamental model of distributed discrete event

systems (Reisig, 1992). They offer an appealing visual notation

which resembles the graphical notations often deployed by biolo-

gists to depict the components and their interactions in biological

pathways. The Petri net model, however, has a precise semantics

which fixes the meanings of the nodes and the arcs of the model as

well as its dynamics.

A Petri net can be viewed as a bipartite graph with two kinds of

nodes, usually called places and transitions. The places represent

local states and the transitions represent local change-of-states.

Entities called tokens are used to mark the places to specify the

current distributed state of the system. The transitions, according to

a firing rule associated with them, effect local transformations of the

token distribution to model the system evolving from the current

state to a new one. In the graphical representation, the places are

drawn as circles, the transitions as boxes, and the tokens as small

bullets placed inside the places. A standard firing rule is that if all

the places pointing into the transition currently carry at least one

token each, then the transition may fire. When it does so, one token

is removed from each of its input places and one token is added to

each of its output places. To improve modeling power, one can also

associate weights with the arcs so that the firing of a transition can

depend on, remove and add multiple tokens from its surrounding

places. This is illustrated in Figure 1(b). There are a large number of

variations of this basic model, and they have been deployed in

a wide variety of application domains. A recent collection of

such efforts in biological settings can be found in Chen et al.
(2003), Matsuno et al. (2003), Voss et al. (2003), Zevedei-Oancea

et al. (2003).

The classical Petri net is a model of a discrete event system

whereas a crucial aspect of biological pathways is the various

bio-chemical reactions which are best specified as continuous

differential equations. Indeed, both discrete and continuous

features appear to be an integral part of fundamental biological

processes (Lincoln et al., 2004). To account for this, various hybrid
dynamic models have been proposed in the literature (Lincoln et al.,
2004). In the setting of Petri nets, the hybrid version of interest to us is

the Hybrid Functional Petri Net developed by Matsuno et al. (2003).

In an HFPN, places and transitions can be discrete or continuous.

The marking associated with a continuous place can be a real num-

ber, which can change smoothly according to the speed assigned to

the continuous transition(s) to which it serves as an input or output

place. In addition, an edge can be one of three types: normal,

inhibitory, or test. An inhibitory edge points from a discrete place

to a transition, and it specifies that the transition is inhibited from

firing whenever a token is present in the place. A test edge from a

place to a transition specifies that the transition can only fire if a token

is present in the place, but the firing of the transition does not change

the token count on this place. See Figure 2 for HFPN features that are

not present in ordinary Petri nets.

A typical biochemical equation depicting an enzyme catalyzed

reaction can be written as Equation 1. In this reaction, the enzyme E

binds reversibly to the substrate S, before converting it into the

product P and releasing it. The parameters k1‚k2 and k3 are the

rate constants that govern the speed of these reactions.

Sþ E Ð
k1

k2

S · E !k3
Eþ P ð1Þ

The HFPN representation of such a reaction is shown in

Figure 3(a). Each molecular type is represented by a continuous

Fig. 1. (a) The basic components and connections of a Petri net model.

(b) Change in markings of a Petri net due to the firing rules.

Fig. 2. Additional features of an HFPN model.
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place, and its concentration corresponds to the marking associated

with that place. The continuous transitions then represent the reac-

tions. Each continuous transition is associated with a function which

determines the speed of firing. In a biological setting, the rate of a

reaction is often a function of its reactants’ concentration

level (denoted as [E], [S], and [E.S], respectively). In an

HFPN model, this function will be attached to the continuous

transition.

Assuming quasi-steady-state approximations, the HFPN model

can be simplified into Figure 3(b). The function of the transition will

be expressed as the Michaelis-Menton equation Vmax½S�/ðKM þ ½S�Þ
where

Vmax ¼ k3½E� and KM ¼
k2 þ k3

k1

We have adopted the HFPN to model the Akt and the MAPK

pathways and their crosstalk. Our choice of this formalism has been

influenced by the fact that it serves as the front-end of the software

Cell Illustrator with which the HFPN-based models can be simu-

lated (Nagasaki et al., 2003). In many settings, an attractive alter-

native is the hybrid automata modeling framework (Henzinger,

1996) with its direct use of differential equations to capture the

continuous dynamics. This model has an extensive theory and an

emerging set of simulation, analysis, and verification tools (Lincoln

et al., 2004). It has been used to study, for instance, the excitable

behavior of cardiac cells (Ye et al., 2005), Delta-Notch protein

signaling (Ghosh et al., 2001) and quorum sensing in bacteria

(Alur et al., 2001).

2.2 The Akt pathway

The kinase Akt plays an important role in the regulation of cellular

functions. Its downstream targets include kinases, transcription

factors and other regulatory molecules (Khwaja, 1999). Akt has

also been identified as a major factor in many types of cancer.

The schematic describing the Akt pathway, its interactions with

the mitogen-activated protein kinase (MAPK) pathway, and their

downstream targets are shown in Figure 4.

The activation of the Akt signaling pathway is a multi-step

process (Bellacosa et al., 1998). When ligands such as fibroblast

growth factors, epidermal growth factors and insulin bind to

their specific membrane receptors, the cytosolic domains of the

receptors will undergo conformational changes, allowing them to

act as scaffolds for certain types of proteins in the cell. Phospho-

inositide 3-kinase (PI3K) is one such protein that gets recruited

and as a result, its catalytic subunit will be activated. The activated

PI3K will then phosphorylate the membrane phospholipid

phosphatidylinositol-4,5-biphosphate (PIP2) at the 3-OH position

to phosphatidylinositol-3,4,5-triphosphate (PIP3) and this is tightly

regulated by the phosphatase and tensin homolog (PTEN), which

removes the phosphate group from the same position.

PIP3 recruits Akt and the phosphoinositide-dependent kinase-1

(PDK1) to the plasma membrane allowing the phosphorylation

of Akt by PDK1. Akt is activated by a sequential phosphorylation

at its threonine residue 308 (Thr308) and serine residue 473 (Ser473)

by PDK1 and an unknown kinase (named PDK2) respectively

(Nicholson et al., 2002). Activated Akt further phosphorylates

and activates its downstream targets such as Forkhead trans-

cription factor (FKHR) and glycogen synthase kinase 3b (GSK-3b).

Another important molecular target for Akt signaling is Bad, a

protein that regulates apoptosis. Bad can bind to the anti-apoptotic

proteins Bcl-2 and Bcl-XL, allowing the pro-apoptotic protein Bax

to oligomerize at the mitochondria and promote the release of

cytochrome c into the cytosol. This would lead to the activation

of caspases and cell death. Upon phosphorylation by Akt at the

Ser136 residue, Bad is sequestered in the cytosol by 14-3-3 proteins,

thus Bcl-2 and Bcl-XL can bind to Bax, hence preventing the

release of cytochrome c and inhibiting apoptosis. Constitutive

Akt signaling promotes cell survival and proliferation, leading to

the formation of tumors.

2.2.1 MAPK crosstalk The significance of the Akt pathway lies

not only in the several cellular functions it regulates, but also in its

interactions with other pathways (Heldin, 2001). The MAPK sig-

naling cascade is one such pathway that is influenced by compo-

nents of the Akt pathway.

The MAPK pathway is a highly conserved pathway that is linked

to mitogenic responses and cell proliferation. It can be activated by a

wide range of growth factors and hormones and it too has several

target molecules. Some of the signals that activate the Akt pathway

can also activate the MAPK pathway. Upon activation, the tyrosine

residues of the receptor is phosphorylated, serving as docking

sites for proteins such as Grb2 and SOS. The exchange factor

Fig. 3. (a) HFPN representation of the biochemical reaction. Assuming

Michaelis-Menton kinetics, the model can be simplified into (b).

Fig. 4. Schematic of the (a) MAPK pathway, (b) Akt pathway and their

crosstalk interactions. Known crosstalk interactions are marked with dashed

arrows while the hypothesized interaction is marked with a bold arrow.

Computational modeling of the Akt pathway and parameter estimation
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SOS then replaces guanosine 50-diphosphate (GDP) on the Ras

protein with guanosine 50-triphosphate (GTP), thus activating it.

Activated Ras then binds to the protein Raf, triggering a wave of

downstream phosphorylation where Raf activates the MAPK kinase

(MEK) which in turn activates p44/42 MAPK (ERK).

Recent studies show that the Akt pathway can regulate the MAPK

pathway by competitively phosphorylating Raf at Ser259 (Moelling

et al., 2002), preventing further activation. However, this Akt-

MAPK regulation is not entirely inhibitory. PI3K has been shown

to activate Raf via the intermediate protein PAK-1 (Chaudhary et al.,
2000). Recently, Sato et al. (2004) have shown that PDK1 is involved

in the activation of MEK. Moreover, our data also shows that the

repression of PDK1 gene expression using small interference RNA

(siRNA) leads to a decrease in activated MEK and ERK in a prostate

cancer model (Teong et al., 2006). Thus these support our hypothesis

that PDK1 could be involved in the activation of MEK by phospho-

rylating it, as indicated by a bold arrow in Figure 4.

2.3 Parameter estimation

Various techniques based on global optimization have been

proposed for estimating the parameters of pathway models (see,

e.g., (Kikuchi et al., 2003; Moles et al., 2003). However, these

techniques, which usually estimate all the model parameters

together, do not scale up well for large pathway models with

many parameters, due to the high dimensionality of the search

space and the presence of many local minima.

For larger pathway models, it is natural to try to decompose it

into small, independent components and estimate the parameters for

each component separately, thus reducing the computational com-

plexity. The general idea of model decomposition for parameter

estimation has been successfully applied in many domains, e.g.,

Bayesian model learning (Neapolitan, 2003), geometric curve

fitting (Jiang et al., 2005), control of large dynamical systems

(Williams et al., 1998), etc.

In related work on Akt and MAPK pathways (Hatakeyama

et al., 2003), a simplified model based on simultaneous differential

equations is proposed. The model has about 30 unknown rate

parameters, which are estimated with an in-house genetic algorithm.

There is no report of computation time required. It is also not clear

how much experimental data was used and how the estimated

parameters were validated. To ease the computational burden, in

subsequent work (Kimura et al., 2004), the model is decomposed

manually based on the observation that parameters in upstream

components of enzyme catalyzed reactions can be estimated inde-

pendent of parameters in downstream components, if there are no

feedback loops connecting them. Our decompositional approach

uses a similar observation, but is more general, as it is not restricted

to enzyme catalyzed reactions. It is also fully automatic.

3 THE HFPN MODEL OF THE AKT-MAPK
PATHWAYS

We have modeled the Akt pathway and the MAPK pathway as well

as the hypothesized crosstalk as an HFPN model. The full structure

of the model is shown in Figure 5. The parameters associated with

the transitions and the initial protein concentration levels are shown

in Table 1 and Table 2. In Table 1, the four parameters whose values

have been taken from literature are marked with a� while the

remaining parameters have values that have been estimated by

our technique. The sources of information of the four known para-

meters can be found in: http://www.comp.nus.edu.sg/~rpsysbio/

ismb2006.

The model can be viewed as separate modules interacting

with one another via shared nodes. Figure 5(a) models the reactions

that take place when the receptors are activated by external

signals (indicated by the place ‘Serum’). It also includes the reac-

tions of the Akt pathway. A point to note is that under prolonged

activation, the cells become desensitized to the signals and respond

less to it. We have modeled this phenomena as receptor internal-

ization (Reaction 2).

The MAPK pathway is depicted by Figures 5(b),(c) and (d).

After activation by the receptors, Ras will catalyze the phosphory-

lation of Raf. Phosphorylated Raf, denoted as ‘Rafp’, will then

phosphorylate MEK at two sites, forming the doubly phosphory-

lated MEKpp (Figure 5(c)). Finally, ERK will be phosphorylated by

MEKpp in the same manner, as shown in Figure 5(d).

In our model, there are three possible paths for crosstalk inter-

actions: Active PI3K can upregulate the phosphorylation of

Raf via PAK1(Reactions 48 and 18). Akt can inhibit Raf activity

(Reaction 20), and PDK1 can affect MEK phosphorylation

(Reactions 22 and 25) by the hypothesized interactions. The protein

PP2A is an ubiquitous phosphatase which reverses the action of

several kinases in our pathway. Hence it is not considered as exclu-

sively belonging to the Akt pathway or the MAPK pathway.

Figure 5(f) models the activity of the Bcl-2 family members,

which include the proteins Bcl-2, Bad and Bax. As mentioned in

the previous section, these proteins play important roles in regulat-

ing apoptosis. It has also been shown that ERK can regulate Bad

phosphorylation through the activation of the protein P90RSK,

shown in Figure 5(e).

Our model consists of 44 places connected to 51 transitions.

For most of the transitions, their dynamics are driven by Michaelis-

Menton equations (e.g. Reactions 4, 5, 6). The rest are either

association/dissociation reactions (e.g. Reactions 42, 43) or

synthesis/degradation reactions (e.g. Reactions 46, 47) whose

rates are governed by the mass action laws. Each of these reactions

have one or two parameters associated with them.

4 PARAMETER ESTIMATION

Parameter estimation can be viewed as an optimization problem

with differential-algebraic constraints. The input to the problem

consists of the values of state variables at selected discrete time

points. In the present setting, these are steady-state or time-series

measurements of protein concentration levels. The problem is to

determine the values of the m parameters p 2 Rm
þ and all the

unknown protein concentration levels such that they minimize

the following objective function:

JðpÞ ¼
X
i‚ j‚ te

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxijðte‚pÞ�xexp

ij ðteÞÞ
2

w2
ij

vuut ð2Þ

subject to
_xx ¼ f ðx‚ tÞ ð3Þ
hðx‚ tÞ � 0 ð4Þ

pL � p � pU ð5Þ
Here f is the set of differential constraints describing the system

dynamics. h is the state constraints for the variables x 2 x for
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all t 2 ½0‚T�. pL and pU are the lower and upper bound constraints

on the parameters p. The time points te 2 Te � ½0‚T� describe

the set of time instances where experimental data are available.

The expression xijðte‚pÞ is the model predicted value of the

variable xi in experiment j at time te using parameters p while

xexp
ij ðteÞ is the experimental measurement of the same variable.

wij is the weight that is used to normalize the contributions of

each term to the objective function. This value is usually taken

to be the maximum value of xi in experiment j.
A typical parameter estimation algorithm starts by randomly

choosing parameter values from the search space Rm
þ. It uses (3)

to simulate the system according to the chosen parameters

and then uses (2) to compare the results with the input data. The

results of this comparison provide the information to improve the

parameter values through gradient descent or stochastic search

(Pardalos et al., 2002). This process repeats until a better solution

can no longer be found or a pre-specified maximum number of

iterations is reached.

Our optimization problem is highly non-linear and we will

use the evolution strategies algorithm to solve this problem. This

algorithm keeps a working set of m candidate solutions. Each solu-

tion consists of a vector of parameter values. In each iteration, it

randomly selects two parent solutions from the working set and

generates a new one, possibly by interpolating the values of parent

vectors. Thereafter, it alters the values slightly and scores the new

solution by simulating the model according to these parameter

values and applying the objective function. A number of such solu-

tions are generated and from the combined set, the best scoring m

Fig. 5. HFPN model of the Akt and MAPK pathways. The hypothesized crosstalk interaction is emphasized by bold test arcs. The members of downstream

components should include the places of the upstream components which they are directly linked from. However to reduce clutter, we show the components as

separate modules.
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solutions are selected for the next iteration. This carries on for a

certain number of iterations, or until no better solutions can be

obtained (Beyer et al., 2002).

Common approaches to parameter estimation try to estimate

all the parameters together. This leads to a high-dimensional search

space and hence to very high computational complexity. The key

feature of our approach is to exploit the structure of a pathway,

to break down the parameter estimation problem into a series of

smaller problems. The structure of a pathway model determines the

causal links and dependencies between the system variables. We use

Table 1. Rate reactions and their associated parameters. The Michaelis-Menton constants (KM) are given in nM. The maximal rate constants (V) are expressed in

nM.s�1. The first order and second order rate constants (k) are given in s�1 and nM�1.s�1 respectively

No Rate Equation Parameter

1 k1 [R] k1 ¼ 0.01

2 k2 [Ract] k2 ¼ 0.002

3 k3 [Rint] k3 ¼ 0.001

4 k4 [Ract][PI3K]/(Km4 + [PI3K]) k4 ¼ 0.3 Km4 ¼ 78

5 V5 [PI3Ka]/(Km5 + [PI3Ka]) V5 ¼ 46.2 Km5 ¼ 117

6 k6 [PI3Ka][PIP2]/(Km6 + [PIP2]) k6 ¼ 0.05 Km6 ¼ 6170

7 k7 [PTEN][PIP3]/(Km7 + [PIP3]) k7 ¼ 5.5 Km7 ¼ 80.9

8 k8 [PIP3][AKTcyto] k8 ¼ 0.045

9 k9 [PIP3.AKT] k9 ¼ 0.089

10 k10 [PDK1][PIP3.AKT]/(Km10 + [PIP3.AKT]) k10 ¼ 20 Km10 ¼ 80000�

11 k11 [PP2A][PIP3.AKTp]/(Km11 + [PIP3.AKTp]) k11 ¼ 0.037 Km11 ¼ 8800

12 k12 [PDK2][PIP3.AKTp]/(Km12 + [PIP3.AKTp]) k12 ¼ 20 Km12 ¼ 80000�

13 k13 [PP2A][PIP3.AKTpp]/(Km13 + [PIP3.AKTpp]) k13 ¼ 0.04 Km13 ¼ 48000

14 k14 [PP2A][PIP3.AKTpp]/(Km14 + [PIP3.AKTpp]) k14 ¼ 0.163 Km14 ¼ 48000

15 k15 [Ract][Ras]/(Km15 + [Ras]) k15 ¼ 50 Km15 ¼ 20000

16 V16 [Rasa]/(Km16 + [Rasa]) V16 ¼ 15000 Km16 ¼ 7260

17 k17 [Rasa][Raf]/(Km17 + [Raf]) k17 ¼ 0.09 Km17 ¼ 50

18 k18 [Pakp][Raf]/(Km18 + [Raf]) k18 ¼ 0.183 Km18 ¼ 500

19 V19 [Rafp]/(Km19 + [Rafp]) V19 ¼ 78 Km19 ¼ 30

20 k20 [PIP3.AKTpp][Rafp]/(Km20 + [Rafp]) k20 ¼ 0.1 Km20 ¼ 13.2

21 k21 [Rafp][MEK]/(Km21 + [MEK]) k21 ¼ 5.6 Km21 ¼ 7200

22 k22 [PDK1cyto][MEK]/(Km22 + [MEK]) k22 ¼ 0.04 Km22 ¼ 2600

23 k23 [PP2A][MEKp]/(Km23 + [MEKp]) k23 ¼ 0.45 Km23 ¼ 1250

24 k24 [Rafp][MEKp]/(Km24 + [MEKp]) k24 ¼ 5.17 Km24 ¼ 24500

25 k25 [PDK1cyto][MEKp]/(Km25 + [MEKp]) k25 ¼ 0.05 Km25 ¼ 2150

26 k26 [PP2A][MEKpp]/(Km26 + [MEKpp]) k26 ¼ 0.4 Km26 ¼ 4316

27 k27 [MEKpp][ERK]/(Km27 + [ERK]) k27 ¼ 0.089 Km27 ¼ 52000

28 k28 [MKP3][ERKp]/(Km28 + [ERKp]) k28 ¼ 30 Km28 ¼ 160

29 k29 [MEKpp][ERKp]/(Km29 + [ERKp]) k29 ¼ 0.0308 Km29 ¼ 55000

30 k30 [MKP3][ERKpp]/(Km30 + [ERKpp]) k30 ¼ 32 Km30 ¼ 60

31 k31 [ERKpp][P90RSK]/(Km31 + [P90RSK]) k31 ¼ 0.0017 Km31 ¼ 97.6

32 k32 [ROS][P90RSK]/(Km32 + [P90RSK]) k32 ¼ 0.76 Km32 ¼ 181

33 V33 [P90RSKp]/(Km33 + [P90RSKp]) V33 ¼ 468 Km33 ¼ 2.8

34 k34 [P90RSKp][Bad]/(Km34 + [Bad]) k34 ¼ 0.798 Km34 ¼ 10

35 k35 [Pakp][Bad]/(Km35 + [Bad]) k35 ¼ 0.04 Km35 ¼ 30000

36 V36 [Badp112]/(Km36 + [Badp112]) V36 ¼ 821 Km36 ¼ 43300

37 k37 [PIP3.AKTpp][Bad]/(Km37 + [Bad]) k37 ¼ 0.397 Km37 ¼ 20700

38 k38 [Pakp][Bad]/(Km38 + [Bad]) k38 ¼ 0.04 Km38 ¼ 30000

39 V39 [Badp136]/(Km39 + [Badp136]) V39 ¼ 821 Km39 ¼ 43300

40 k40 [PI3Kp][Bax]/(Km40 + [Bax]) k40 ¼ 0.0659 Km40 ¼ 42000

41 k41 [Baxcyto] k41 ¼ 0.0148

42 k42 [Bad][Bcl2] k42 ¼ 0.0561

43 k43 [Bcl2.Bad] k43 ¼ 0.0624

44 k44 [Bax][Bcl2] k44 ¼ 0.002�

45 k45 [Bcl2.Bax] k45 ¼ 0.02�

46 k46 [NOX5] k46 ¼ 0.00038

47 k47 [ROS] k47 ¼ 0.0155

48 k48 [ROS][PI3Kp][Pak]/(Km48 + [Pak]) k48 ¼ 0.14 Km48 ¼ 482

49 V49 [Pakp]/(Km49 + [Pakp]) V49 ¼ 83000 Km49 ¼ 29100

50 k50 [PIP3][PDK1cyto] k50 ¼ 0.0007

51 k51 [PDK1] k51 ¼ 0.98

G.Koh et al.

e276



this dependency relationship to extract pathway components that

can be handled independently.

This decompositional approach can be applied to different

modeling frameworks. Furthermore, it is independent of the specific

search method (Beyer et al., 2002, Kirkpatrick et al., 1983, Moles

et al., 2003) used for parameter optimization. Here we present our

method in the context of the HFPN model combined with evolu-

tionary search (Beyer et al., 2002).

4.1 Pathway decomposition

The goal of pathway decomposition is to extract components

from the pathway model whose parameter estimation problems

can be solved independently. A component is an executable

subgraph of the HFPN model. By an ‘‘executable’’ subgraph we

mean a subgraph that can be simulated as a model by itself, assum-

ing we have the values for the parameters and initial conditions

relative to the nodes in this subgraph. It is not difficult to see that a

component is executable if and only if its set of nodes (places and

transitions) are closed relative to the full model in the following

sense. If a place node is present in the component, all its incoming

transitions must also be present in the component. Furthermore, all

the transitions to which the place is connected via normal arcs must

also be present in the component. This is so since the reactions

associated with these transitions are precisely those that determine

the concentration levels of the protein associated with the place. If a

place is connected to a transition via an inhibitory arc or a test arc

then the reaction associated with the transition does not affect

the concentration level of the place in any way. By similar reason-

ing, if a transition is present in a component, all its input places

must also be in the component.

Since there are many components (the whole model itself is

a component), we must choose them in a systematic fashion so

as to help decompose the parameter estimation problem. To do

so, we first color the nodes of the model. We then compute a

component using the criterion to be described below. We then

solve the parameter estimation problem for this component. This

is followed by updating the colors of some of the nodes. We then

proceed to compute a second component and so on.

As a first step, we assign colors to each place. We assume we have

experimental data that has been produced by K experiments con-

ducted under different conditions. With each place we associate a

K-dimensional color vector. Suppose the jth experiment produces

time series values and/or the steady state concentration level of the

protein associated with the place p. Then the jth component of the

color vector of p is set to be grey. Otherwise it is fixed to be white.

If one or more components of the color vector of a place is grey

then the color of the place is defined to be grey. Otherwise it is

defined to be white.

The transitions are initially colored as follows. Due to the nature

of the reactions being represented by the transitions, each transition

can have one or two rate parameters associated with it. If all the

parameters associated with a transition are known, then the transi-

tion is colored black. If none of the parameters associated with a

transition are known then it is colored white. If one but not both

the parameters associated with a transition are known, then it is

colored grey.

To see how we choose our first component, let H ¼ ðP‚T‚h‚C‚aÞ
be an HFPN where

- P is the set of places,

- T is the set of transitions,

- h : P [ T ! {discrete, continuous} labels the places and the

transitions as being discrete or continuous.

- C � fðP · TÞ [ ðT · PÞg is the set of arcs.

- a : C ! {normal, test, inhibitory} labels arcs as being normal,

test or inhibitory.

Let p be a grey colored place. Then a particular component

containing p-let us denote this component as comp(p)- is defined

to be the least set of nodes of H satisfying the following conditions.

(C1) p 2 comp(p).

(C2) Suppose x2 comp(p)\P and x is colored grey or white and (y, x)

is an arc in H then y is also in comp(p).

(C3) Suppose x2 comp(p)\ T and (y, x) is an arc in H then y is also in

comp(p).

(C4) Suppose x 2 comp(p) \ P, x is colored grey or white, (x, y)

is an arc in H and (x, y) is a normal arc, then y is also in

comp(p)

It is easy to see that comp(p) is indeed a component. Now from

among all components {comp(p)} where p ranges over the set of

grey places, we choose the one which has a minimum number of

white/grey transitions while maximizing the number of grey places.

Thus choosing a component is a non-trivial task. A number of

strategies can be adapted to ease this task but we will not address

them here. In any case, this part of the procedure consumes only a

small fraction of the overall time needed.

Suppose we have chosen the component comp(p0) corresponding

to the grey place as the best according to our criterion. In the model

shown in Figure 5, p0 is PIP3. AKTpp and the component it gen-

erates is highlighted in Figure 5(a). We now apply the evolutionary

search procedure to comp(p0) using a reserved fraction of the

Table 2. Initial concentration of the cellular components

Place Concentration (nM)

R 80

PI3K 100

PIP2 7000

PTEN 0.1

AKTcyto 200

PDK1cyto 1000

PDK2 3

PP2A 150

RAS 18900

RAF 66.4

MEK 36500

ERK 34900

MKP3 2.4

P90RSK 5

BCL2 100

BAD 100

BAX 100

NOX5 2000

ROS 200

PAK 500
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experimental data that provides values for the concentration levels

of the proteins associated with the grey places in comp(p0). This

search involves simulating the component several times, adjusting

the parameters in each iteration to get a better result according to

the specifics of the evolutionary procedure which we will not get

into detail here. During this phase, the estimation procedure might

get stuck in a local minima while significantly differing from the

reported data. Such situations are dealt with in two possible ways.

The first consists of using biological intuition to bump the current

estimated parameter values out of the local minima trap. The second

is to examine the concerned experimental data and discard it as

being too noisy or as being improperly conditioned to be reliable.

At the end of this first phase, all the parameters associated with

the transitions in comp(p0) would have been estimated. We now

color all the nodes in comp(p0) as black.

We now choose a suitable grey place p1 in P � comp(p0) and

compute comp(p1) and repeat the above process. It is worth noting

that when computing comp(p1), black-colored places of comp(p0)

will form the boundary nodes of this new component. This is

because, according to our back-tracing procedure for computing

components, the input transitions of a black-colored place will

not be included in the new component. This implies that each

new component will include only a small portion of components

that have already been computed. This leads to reduced computation

time for each of our parameter estimation task.

After a finite number of iterations all the parameters would have

been estimated and all the nodes would have been colored black.

For the model shown in Figure 5, the sequence of components

chosen is (a), (b), (c), (d), (e) and (f).

We then check the accuracy of the estimated parameters by

simulating the model using the estimated parameters and the

fraction of the experimental data that has been reserved for this

purpose.

5 SIMULATION AND RESULTS

We now describe our results on parameter estimation (Section 5.1)

and on the hypothesized Akt-MAPK crosstalk mechanisms

(Section 5.2).

5.1 Parameter estimation

Using the method described in the previous section, we performed

parameter estimation for the Akt-MAPK pathways. The data for the

estimation problem was obtained from 27 experiments, of which

10 provided time-series data and 17 provided steady-state data. The

27 experiments were performed under 18 different initial condi-

tions. We used data from 23 experiments as inputs to our

parameter estimation procedure and reserved data from 4 time-

series experiments to validate the results of estimation. The data

reserved for validation was not revealed to the estimation

procedure. All the data files that we used are available for download

from http://www.comp.nus.edu.sg/~rpsysbio/ismb2006.

The Akt-MAPK pathways consist of 51 reactions and a total of

88 parameters, of which 4 are known. We assume that the initial

conditions for all the places are known, and this is supported partly

by experimental data. For other situations where not all the initial

values are known, the missing protein concentrations can be treated

as parameters to be estimated as well.

We ran the estimation procedure on a Pentium 4 PC with a

2.8GHz processor and 2.5GB memory. Our procedure broke the

pathways into 6 components (Figure 5(a)–(f)). The average time to

estimate the parameters for each component was about 3 hours, and

the total time to estimate all the parameters was about 18 hours.

For comparison, we also tried to solve the same parameter

estimation problem using the global approach; in other words in

which one tries to estimate all the parameters together using the

evolutionary search method. On the same computational platform,

after running for 4 days, the global method failed to produce a set

of parameters that can produce reasonable simulation results. See

Figure 6 for a comparison.

An obvious measure to assess the accuracy of the parameters

and the reliability of the parameter estimation method is the devia-

tion of the simulation results from experimental data. Figure 7

shows the simulation results of both MEK and ERK activity and

Figure 8 shows the Bad phosphorylation levels for the experiment

where the cells are treated with diphenyleneiodonium (DPI), a

NADPH oxidase inhibitor, in the presence of serum. Due to the

lack of space, we do not show the results for all the proteins here.

Figure 7 shows that the match between the simulation results and

experimental data is good, though not perfect. Given the limited,

noisy data available and the high dimensionality of the search space,

these results represent a reasonable first step. We expect that as we

generate better data both in terms of quantity and quality, a better

match will be obtained. Longer running time for the estimation

procedure may also potentially help.

Among the results obtained, we indeed have cases in which

the match between the simulation results and experimental data

is not good. Figure 8 shows the simulation results and experimental

data for phosphorylated Bad. There is a systematic, constant dif-

ference between them. From a static analysis of the model in

Figure 5, the inhibition of the production of superoxide (ROS)

by treatment with DPI will propagate downstream and we would

expect the level of phosphorylated Bad at Ser112 to decrease

(Figure 5(f)). However, the experimental data points for activated

Bad in Figure 8 are consistently higher than those from the cells

which have not been treated with DPI. This difference could be due

to unknown reactions and needs to be further investigated.

5.2 Effects of PDK1 on MEK and ERK

A key biological motivation for this work was to test the plausibility

of the hypothesized crosstalk interaction between the Akt and the

MAPK pathways. Experiments show that in LNCaP, a prostate

cancer cell line (Horoszewicz et al., 1983), transfected with

PDK1 siRNA, which reduces the total PDK1 in the cell, results

in a significant decrease in the phosphorylation of MEK and

ERK. This suggests a possible crosstalk with PDK1 activating

MEK by phosphorylation. We performed the same simulations,

decreasing the levels of PDK1 (from 1000 nM to 0 nM) to

mimic the knock-down of PDK1 using siRNA. Figure 9 shows

the results of the simulations. ERK activity is being reduced to

negligible levels after decreasing the amounts of PDK1.

However, PDK1 seems to exist in an active conformation

under normal conditions (Vanhaesebroeck et al., 2000). With the

hypothesized interaction, one would assume that in the absence

of external signals, PDK1 will continuously activate the MAPK

pathway, causing uncontrolled growth. This contradicts the current

view that the MAPK pathway is activated by external signals.
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However, simulations show that under serum starved conditions,

PDK1 does activate ERK, but its activation is maintained at a low

basal level of 0.02% (Figure 10). This suggests that PDK1 may

indeed be a necessary but not sufficient condition to fully activate

the MAPK pathway, therefore lending support to the presence of the

interaction.

We also tested the possibility of not having this crosstalk

interaction between PDK1 and MEK by removing it from our

model. Simulations of this pathway configuration revealed that

the ERK activity was kept low throughout even in the presence

of serum. This, we suspect, could be due to the inhibitory effect of

activated Akt (Moelling et al., 2002). To further confirm this obser-

vation, we took into account the fact that our model was based on

the LNCaP cell line which has defective PTEN due to a frameshift

mutation in the PTEN gene. Hence we re-simulated the model (with

the PDK1-MEK interaction removed) with 10 nM of PTEN. This

simulation produced a similar outcome (Figure 11). However, these

simulations should not be taken as a conclusive comparison as the

modified configuration (without the interaction) could not fit the

experimental data.

Although more experiments are needed to confirm the role of

PDK1 in the regulation of MAPK activity, the above simulations

suggest that the interaction is not only present but also necessary for

enabling the MAPK pathway. This also seems to imply that

knocking down PDK1 to reduce Akt activity may affect the proper

functioning of the MAPK pathway.

6 DISCUSSION

Decomposition of a large system into smaller sub-systems is an

effective way to make the parameter estimation problem manage-

able. The method proposed here is our first attempt at systematically

decomposing dynamical models of signaling pathways. It can be

improved in several ways. Currently, we decompose a pathway into

components by using the dependency relations among the places

and transitions of the HFPN model. For inverse problems such as

parameter estimation, information from the downstream compo-

nents can also possibly aid in constraining the search space for

upstream components. At present, we are not taking advantage

of this. It should be possible to use techniques such as constraint

propagation (Tucker et al., 2005) to push up information from

downstream components to upstream components.

Also, our decomposition method is most effective when the flow

of information is one-way or when the feedback loops are short. If

the pathway components are tightly coupled together or if there are

Fig. 6. Comparison of the simulation results of Akt against experimental data

using the parameters estimated with (a) the decompositional method and (b)

the conventional method. (‘&’—experimental data points, ‘—’ simulation

profiles).

Fig. 7. Simulation profiles of (a) MEK and (b) ERK activation levels.

Fig. 8. Simulation profiles of Bad activation levels compared to experimental

data.

Fig. 9. Simulation of MEK and ERK activation levels with decreasing

amounts of PDK1.

Fig. 10. ERK activation levels in the absence of serum.

Fig. 11. MEK and ERK activation levels without PDK1 crosstalk.
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long feedback loops, our method may return the entire pathway as

the first component. One possible way of dealing with this is to use

splines to approximate the concentration profiles of grey places, so

that they can be viewed as black places. By doing so, these places

can then serve as the boundaries for the smaller components that

will be generated.

7 CONCLUSION

In this work, we have built an HFPN model for the Akt and MAPK

signaling pathways and investigated their hypothesized crosstalk

interaction. Pathway simulation results based on our estimated

model parameters exhibit good correlation with experimental

data and support a new hypothesized crosstalk mechanism linking

the Akt pathway to the MAPK pathway.

One main contribution of this work is a decompositional method

for model parameter estimation, based on the HFPN representation.

By breaking a large pathway model into smaller, independent

components, the new method offers significant improvement in

computational efficiency. It shows considerable potential for

scaling up to large pathways with hundreds of parameters, a task

too daunting for conventional methods. As described in Section 6,

there are several improvements that can be made on our current

decomposition method, and we are currently working on them. We

also plan to extend our approach to other modeling frameworks,

such as simultaneous differential equations, hybrid automata, and

stochastic Petri nets. The idea is to capture the dependency relations

among the pathway elements in the form of a dependency graph

similar to the bipartite graph that underlies an HFPN model. On

the biological side, it will be important to study the effectiveness of

our method on other signaling pathways as well as metabolic and

gene regulatory pathways.
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ABSTRACT

Motivation: Novel sequencing techniques can give access to

organisms that are difficult to cultivate using conventional methods.

When applied to environmental samples, the data generated has

some drawbacks, e.g. short length of assembled contigs, in-frame

stop codons and frame shifts. Unfortunately, current gene finders

cannot circumvent these difficulties. At the same time, the automated

prediction of genes is a prerequisite for the increasing amount of

genomic sequences to ensure progress in metagenomics.

Results: We introduce a novel gene finding algorithm that incorpo-

rates features overcoming the short length of the assembled contigs

from environmental data, in-frame stop codons as well as frame

shifts contained in bacterial sequences. The results show that by

searching for sequence similarities in an environmental sample our

algorithm is capable of detecting a high fraction of its gene content,

depending on the species composition and the overall size of the

sample. The method is valuable for hunting novel unknown genes

that may be specific for the habitat where the sample is taken.

Finally, we show that our algorithm can even exploit the limited informa-

tion contained in the short reads generated by 454 technology for the

prediction of protein coding genes.

Availability: The program is freely available upon request.

Contact: Lutz.Krause@CeBiTec.Uni-Bielefeld.DE

1 INTRODUCTION

Novel sequencing methods have recently revolutionized the field

of genome research. The sequencing of samples isolated directly

from the environment allows access to organisms that can not be

cultivated in the laboratory (Breitbart et al. (2002), Tyson et al.
(2004), Venter et al. (2004)). Additionally, the massively parallel

pyrosequencing system which was recently developed by 454 Life

Science, Inc, has dramatically dropped the time and cost constraints

of DNA sequencing (Margulies et al. (2005)). The application of 454

technology provides larger amounts of sequences at a lower cost

compared to traditional DNA sequencing methods. These sequences

are of great value for the identification of novel genes that can not be

found in organisms cultured with traditional methods. The

importance of such approaches is stressed by the fact that only a

fraction of the living organism found in natural environments can be

cultured by conventional methods (Tringe and Rubin (2005)).

The isolation and sequencing of DNA derived from diverse

and mixed microbial communities is known as metagenomics, envi-

ronmental genomics or ecogenomics. Although still in its infancy,

this rapidly developing field has provided striking insights into the

ecology and evolution of natural occurring microbial communities.

Fields such as health and biotechnology have already benefited from

metagenomics (Lombardot et al. (2006), Furrie (2006), Schloss and

Handelsman (2003), Edwards and Rohwer et al. (2005), Edwards

et al. (2006)).

Gene finding in environmental samples

Two different approaches are applied for predicting protein

coding genes in bacterial genomes; intrinsic and extrinsic methods.

Intrinsic methods (e.g. GLIMMER Delcher et al. (1999), GENE-

MARK Besemer and Borodovsky (1999)) analyze sequence prop-

erties of genomes to discriminate between coding sequences (CDS)

and non-coding ORFs (NORFs). These methods exploit the differ-

ent compositional properties of coding and non-coding sequences,

which are mainly caused by a bias on codon usage in the CDS to

optimize the translation efficiency (Gouy and Gautier (1982)).

In contrast, extrinsic methods (e.g. CRITICA Badger and

Olsen (1999), ORPHEUS Frishman et al. (1998)) predict genes

by searching for stretches of DNA that were conserved during

evolution. The success of extrinsic methods can be explained by

the fact that during evolution most of the new genes are formed by

duplication, rearrangement and mutation events of existing genes

(Chothia et al. (2003)).

The prediction of protein coding genes in environmental samples

is problematic for several reasons. One is the low sequence quality

of the assembled contigs which may lead to frame shifts and

in-frame stop codons in the CDSs contained therein. Another prob-

lem is that assembled contigs may be too short to reveal the genome

specific sequence properties, which are crucial in the application

of intrinsic gene prediction methods. These reasons limit their

application to environmental samples. Currently, the majority of

the CDSs in environmental samples are identified based on a
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Species that are abundant in natural environments will also be

over-represented in the samples. These species do not represent a

problem while assembling them, and large stretches of their genomes

can be obtained. But, the under-represented species constitute a

challenge since for those only short contigs with low coverage are

obtained. One problem related to the low coverage is that these

contigs are even more prone to contain in-frame stop codons or

frame shifts. Therefore, applying existing gene finders to environ-

mental samples is fraught with difficulties because they were not

designed to cope with this type of errors and short contigs.

Strategy

The main idea for the novel gene prediction method presented

in this work is to search for stretches of DNA that are conserved

within the environmental sample. Here, the algorithm does not rely

on a pairwise sequence comparison, but instead it combines

information from all BLAST hits at the same time. Conserved

coding sequences are discriminated from conserved non-coding

regions based on their synonymous substitution rate.

In functional proteins, the coding genes show a much higher

number of synonymous substitutions than in non-coding sequences.

The rate of synonymous to non-synonymous substitutions (kS/kA)

reflects the interchange of positive selection and neutral evolution.

Therefore, investigating the number of synonymous and non-

synonymous substitutions can supply valuable information on

whether or not a sequence stretch is under constraint for functional

selection. This information can be used for the identification of

genes in bacterial and eukaryotic genomes (Badger and Olsen

(1999), Nekrutenko et al. (2003a), Nekrutenko et al. (2003b) and

Moore and Lake (2003)).

For the prediction of protein coding sequences contained in a

contig from an environmental sample, first a BLAST search against

a nucleotide database is conducted. For this in principle any nucle-

otide database can be used, e.g databases containing complete

genomes, metagenomes or known genes. To search for novel habitat

specific genes a BLAST search against a database that exclusively

contains all sequences from that sample can be employed. Sub-

sequently, the algorithm needs to discriminate if the BLAST hits

match conserved coding sequences, conserved non-coding regions,

or shadows of CDSs in another reading frame. Additionally, a

CDS may be embedded in long BLAST hits. For this case, the

gene boundaries need to be identified. Given all BLAST hits for a

contig, the algorithm will find the best path through all hits at

the same time. In order to accomplish this task, several different

features are taken into account: (a) the synonymous substitution

rate at each position in the contig, (b) the positions of stop

codons in the contig and (c) the position of stop codons in matching

database sequences. Additionally, the end of BLAST hits are con-

sidered as possible indications for the boundaries of coding regions.

In the gene prediction process the algorithm will avoid in-frame

stop codons, but otherwise will favor regions with a high synony-

mous substitution rate. The outcome of the BLAST hits are used to

assign six scores to each nucleotide, one for each of the six possible

reading frames, reflecting the nucleotides coding potential in this

reading frame. Scores are assigned by counting the number of

synonymous and non-synonymous substitutions at each position

for each of the six reading frames. As a result, a scoring matrix

with scores for each nucleotide in the contig is obtained. Based

on these scores, a dynamic programming method is applied to

find the optimal path through the matrix that maximizes the

overall score (the sum of all scores on the path). The usage of a

combined score for all BLAST hits should result in a superior

performance compared to methods that rely on simple pairwise

sequence alignments. The advantage should be particularly pro-

found when a database of low quality with short contigs and

many frame shifts is used for the BLAST based search for conserved

sequences.

2 METHODS

The gene prediction algorithm

The algorithm can be divided into four phases: (1) a BLAST based search

for conserved sequences (2) the calculation of combined scores (3)

the prediction of coding sequences by dynamic programming and (4) the

postprocessing.

Phase 1: Blast based search for conserved sequences During the

first phase of the algorithm a BLAST search against a nucleotide

database is conducted. Hereby, the contig as well as all sequences in

the database are translated into all six reading frames (if the database

contains known genes only the contig will be translated into all six reading

frames). As the BLAST search is conducted on the amino acid level, each

obtained hit is associated with a specific reading frame in the contig. The

BLAST hits obtained are filtered, hits with kS/kA < 1 are excluded from the

subsequent analysis as these do not indicate the presence of a coding

sequence.

Phase 2: Calculation of combined scores In the second phase of the

algorithm, the remaining hits are used to assess the coding potential of

each nucleotide in the contig. Given a contig c of length n, c[i] denotes

the nucleotide at position i of that contig (1� i � n). A nucleotide c[i] could

be coding in one of the six reading frames k 2 {�3, �2, �1, +1, +2, +3},

or non-coding, denoted by k ¼ 0. For each position i and for each reading

frame k, the number of synonymous and non-synonymous substitutions at

position i are counted (Figure 1). This is done by comparing the nucleotide

sequence of the contig to the nucleotide sequence of all BLAST hits in

this reading frame. The number of synonymous and non-synonymous

substitutions are used to score that c[i] is coding in reading frame k. Syn-

onymous substitutions contribute with a positive score, non-synonymous

substitutions with a negative score. Additionally, the correct ends of the

coding sequences need to be determined. Therefore, stop codons in the

contig are penalized with a negative score in the according frame. For a

given BLAST hit both the contig and the matching database sequence of

the BLAST hit may contain stop codons. To discriminate between real stop

codons and stop codons introduced by sequencing errors, additionally nega-

tive scores are applied for: (a) all stop codons in the database sequences of

the BLAST hits, (b) for ends of BLAST hits, as these also may indicate the

boundaries of genes (Figure 1). Subsequently, each score obtained is

normalized by the number of hits that contribute to that score. Using this

strategy for all BLAST hits in reading frame k, a single combined score that

reflects the coding potential of the contig at position i in this reading frame is

derived. Additionally, for k ¼ 0 a score of zero is assigned to each position i

of the contig. As a result, a scoring matrix sik is derived which provides a

position specific score that the contig is coding in one of the six reading

frames or non-coding (Figure 1).

Phase 3: Prediction of coding sequences Coding sequences

are predicted in the third phase. To assign one of the six reading frames

k (or k ¼ 0 for non-coding) to each position of the contig, the algorithm

searches for the path in the scoring matrix sik that maximizes the sum of all

scores on the path. According to the optimal path, each position i of the

contig is subsequently labeled with the frame k it passes through at

this position. Depending on their reading frame, genes may only start or
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stop at certain positions. Therefore, a valid path may not jump

arbitrarily between frames, but instead underlies certain restrictions.

To be precise, the set V(i, k) of all valid precursors of a frame k at position

i is defined as:

Vði‚kÞ ¼
fj‚0‚ � jg if k ¼ 0

fk‚0‚ � kg if j k j ¼ j
fkg otherwise:

8<:
where j ¼ (i � 1)mod 3+1. Figure 2 depicts the scoring matrix of combined

scores and the calculation of the optimal path. This figure also introduces

several terms used in the following. The optimal valid path for a scoring

matrix sik can be calculated using dynamic programming by the following

recursion:

f iðkÞ ¼ max
k02Vði‚ kÞ

f i�1ðk0Þ þ sik þ 2q if k < 0 and k0 > 0

f i�1ðk0Þ þ sik þ q if k 6¼ 0 and k0 6¼ k
f i�1ðk0Þ þ sik otherwise

8<:
where q is a negative score that is added to leave a gene on the forward

strand or to enter a gene on the reverse strand (2q are added if a gene on the

forward strand is left and a gene on the reverse strand is entered at the same

time). Thus, q is added for each 50 end of a gene on a path. The penalty q was

introduced to predict genes only in areas with sufficient coding evidence.

The calculated value fi(k) is the maximal score of all paths that enter s at

position 1 and pass through k at position i.

Phase 4: Postprocessing During the post-processing phase, the

predictions are joined and frame shifts are identified. When a BLAST search

against a database of short contigs is employed, genes may be covered only

partially by hits which may result in the prediction of several fragments. This

is particularly profound when a BLAST search against reads provided by

the 454 technology is conducted. Therefore adjacent predictions within the

same reading frame are joined if (a) their distance on the contig does not

exceed 400 bp and (b) the sequence of the contig that separates the predic-

tions does not contain an in-frame stop codon.

To identify frame shifts that were introduced by sequencing errors all

adjacent predictions located on the same strand but within a different reading

frame are predicted as frame shifts if (a) their distance on the contig is less

than 200 bp and (b) they do do not have an in-frame stop codon close to the

potential frame shift. As an optional postprocessing step, our algorithm can

also extend predicted CDS to the longest possible ORF available for that

prediction.

Implementation

The algorithm was implemented in PERL using an object oriented approach.

Measuring the performance

To evaluate the performance of the novel gene finder predictions were

compared to known annotated genes. For this purpose, two measurements

Fig. 1. Calculating combined scores. All scores are depicted without normalization. A) all six reading frames of a contig are shown (the continuous lines). BLAST

hits matching the respective reading frames are displayed as blue bars below the reading frame. B) The nucleotide sequence of each reading frame of the contig is

compared with all database sequences matching this reading frame. The number of synonymous and non-synonymous substitutions at each position is used as a

score that the contig at this position is coding in the respective reading frame. C) The number of synonymous substitutions at each position are used as a positive

score. The number of non-synonymous substitutions at each position contribute with a negative score. D) The calculated scores for each position and reading

frame are stored in a matrix. For k¼ 0 a score of zero is assigned to each position i of the contig. Penalties are additionally added to the respective position and

reading frame for stop codons in the contig (S1), in the matching database sequence (S2) as well as for the end of BLAST hits (E1).
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are widely used: sensitivity and specificity. Sensitivity is a measure of the

ability of the algorithm to predict known genes and is defined by

Sens ¼ TP
TPþFN. The specificity is a measure of the reliability of the predic-

tions, given by the ratio Spec ¼ TP
TPþFP. For the evaluation of the performance

predictions were extended to the next 50 stop codon. If an annotated CDS

ends at that stop codon the prediction was counted as true positive (TP).

Otherwise, the prediction was regarded as a false positive. All genes that are

not completely embedded in the contigs are named truncated genes. These

genes may appear at the end or beginning of the assembled contigs, therefore

lacking the start or termination site of the gene. Truncated genes were

excluded from the analysis.

Training GLIMMER on a synthetic metagenome

The prokaryotic gene finder GLIMMER version 3.01b was used to predict

the genes of a synthetic metagenome (described in Materials). For the train-

ing step, all fragments of this metagenome were chained to one continuous

contig. Adjacent fragments were concatenated with a linker sequence con-

taining a stop codon in each of the six reading frames. Subsequently the

GLIMMER ICM model was trained on the chained contig.

3 MATERIALS

Metagenome obtained with pyrosequencing

The performance of the algorithm was evaluated on a meta-

genome of a bacterial community isolated from the Solar Salterns

in San Diego, CA (B. Rodriguez-Brito, R. Edwards, and F. Rohwer,

Unpublished). Total community DNA was purified as described

elsewhere (Edwards et al. (2006)) and sequenced using pyrose-

quencing by 454 Life Sciences, Inc, (Branford, CT). Using the

454 technology 	60 Mb were obtained with an average read length

of 100 bp. The reads were assembled using Phrap (Green (1994)).

This resulted in 80,878 contigs with 16 Mb in total. In the following,

this set is called all contigs. From this set a subset of contigs longer

than 1,000 bp (2,244 contigs with 3.8 Mb in total) was selected,

called hereafter long contigs.

The environmental sample from the Sargasso Sea

For the prediction of protein coding genes in metagenomes, the

environmental sample from the Sargasso Sea (Venter et al.
(2004)) was used as BLAST database during the search for

conserved regions in the first phase of the algorithm. To save com-

putational time, only half (	390 Mb) of the entire Sargasso Sea

sample was used.

Generating a synthetic metagenome

As a proof of concept, the algorithm was evaluated on a set of

nine completely sequenced and annotated genomes (seven Bacteria

and two Archaea, see Table 1). Members from the alpha,

gammaproteobacteria and cyanobacteria groups were selected as

they were reported to be abundant in the Sargasso Sea sample

(Venter et al. (2004)). We also added Archaea to the evaluation

set because they can be regarded as under-represented species in

surface water marine environments. All genomic sequences and

their respective annotations were downloaded from the NCBI

Reference Sequence database (RefSeq) release 15 (Pruitt et al.
(2005)). A synthetic metagenome with known CDSs was created

by splitting the genome of each of the nine organism into fragments

of length 4000 bp. A subset of non-hypothetical genes was created

based on the annotated gene products from the public annotations.

In this set all annotated genes with a gene product description of

‘hypothetical protein’ were excluded. Additionally, artificial

sequencing errors (frame shifts and in-frame stop codons) were

incorporated into all genes of the synthetic metagenome. In

order to perform a systematic evaluation, all artificial sequencing

errors were added to the synthetic metagenome in a controlled way.

In one experiment, in-frame stop codons were added to the center of

each gene of the original synthetic metagenome. In a second experi-

ment frame shifts were incorporated to the center of all genes of the

original synthetic metagenome.

Fig. 2. Predicting coding sequences by calculating the optimal path in scoring

matrix of combined scores. This figure shows the scoring matrix sik for the

first seven positions of a contig. All valid paths in the scoring matrix are

indicated with arrows. A gene is entered, if a path passes through frame k 6¼ 0

with the precursor frame k0 6¼k. Accordingly, a gene is left, if a path that comes

from a precursor frame k0 6¼0 enters a frame k 6¼k0. The bold arrows depict an

example path predicting a 3 bp long gene on the reading frame +3

Table 1. Annotated and published genomes used to create a synthetic

metagenome

Organism Accession number

Bacteria

Alphaproteobacteria

Candidatus pelagibacter ubique HTCC1062 NC_007205

Rhodobacter sphaeroides 2.4.1 chromosome 1 NC_007493

Gammaproteobacteria

Shewanella oneidensis MR-1 NC_004347

Thiomicrospira crunogena XCL-2 NC_007520

Vibrio cholerae O1 biovar eltor

str. N16961 chromosome 1 NC_002505

Cyanobacteria

Prochlorococcus marinus subsp. pastoris

str. CCMP1986 NC_005072

Synechococcus sp. WH 8120 NC_005070

Archaea

Euryarchaeota

Pyrococcus horikoshii OT3 NC_000961

Crenarchaeota

Sulfolobus solfataricus P2 NC_002754

Species names and accessions numbers downloaded form the NCBI database.
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4 RESULTS

Gene prediction in a synthetic metagenome using the

environmental sample from the Sargasso Sea

Our algorithm can be used to identify genes contained in an envi-

ronmental sample by directly searching for conserved regions

within the sample. This approach may elucidate novel unknown

genes present in the environmental sample which may be specific

for the habitat the sample was taken from. The performance of the

algorithm of predicting genes in an environmental sample by

running a BLAST search against the sample itself was evaluated

on the environmental sample data from the Sargasso Sea (Venter

et al. (2004)). But, instead of drawing the contigs for which the

genes are predicted directly from the Sargasso Sea sample, we used

a more controlled and reliable data set. We chose several completely

sequenced and annotated genomes from Bacteria groups that were

also reported to be present in the species composition of the

Sargasso Sea sample (Venter et al. (2004)). The genomes of

these organisms were split into fragments of size 4000 bp, together

forming a synthetic metagenome as a reliable standard of truth.

Subsequently the genes of these contigs were predicted with our

algorithm based on a BLAST search against the Sargasso Sea

sample. To accurately evaluate the prediction performance that

can be expected for a ‘real’ metagenome, sequences from alpha

and gammaproteobacteria which are reported as over-represented

in the Sargasso Sea sample, cyanobacteria which are modest

abundant, as well as sequences from extremely scarce groups

(two Archaea members) were included. The performance of

the algorithm was measured by comparing the genes predicted

for the synthetic metagenome with the known genes from the

public genome annotations. To additionally evaluate the per-

formance for sequencing errors that may frequently occur in

metagenomes, three validation sets were used: (1) synthetic meta-

genome without artificial sequencing errors, (2) synthetic metagen-

ome with in-frame stop codons and (3) synthetic metagenome with

frame shifts.

Experiment 1: Gene prediction in a synthetic metagenome
without artificial sequence errors The sensitivity and specificity

reached by the algorithm for each organism contained in the

synthetic metagenome is shown in Table 2. The results show

that the sensitivity of the method strongly depends on the abundance

of the different groups of Bacteria in the sample. While for the more

abundant alpha, gammaproteobacteria and cyanobacteria an

average sensitivity of 79% for all genes and 89% for the subset

of non-hypothetical genes is achieved, for the Archaea the sensi-

tivity is strongly reduced. The lower sensitivity for the Archaea was

expected because this group is very rare in surface water marine

environments and hence extremely scarce in the environmental

sample from the Sargasso Sea. For the two cyanobacteria contained

in the synthetic metagenome even a sensitivity of more than 94% is

achieved for the non-hypothetical genes. In contrast, with a speci-

ficity between 88% and 99% the algorithm is highly specific for all

groups. On average the specificity is 95%. The considerably lower

overall sensitivity (Sensall) when compared to the sensitivity for

the subset of non-hypothetical genes (Sensnh) can be explained

by the fact that most of the genes labeled as ‘hypothetical protein’

in the public annotations were originally predicted with intrinsic

methods. Many of these genes are either orphans (genes without

sequence similarity to any known gene) or in fact non-coding and

hence wrong annotations.

Experiment 2: Gene prediction in a synthetic metagenome with
artificial in-frame stop codons In the second experiment the

performance of the algorithm was evaluated on genes containing

in-frame stop codons. Therefore, an in-frame stop codon was added

to the center of each annotated gene in the synthetic metagenome. In

addition to the sensitivity and specificity, the percentage of true

positives (TP) that span the artificially added stop codons was

measured. In comparison to the synthetic metagenome without

artificial sequence errors, for the genes with in-frame stop codons

only a slight reduction in sensitivity and specificity was registered.

The sensitivity is reduced by 1.7% for all genes and 1.3% for the

subset of non-hypothetical genes. The reduction in specificity is

0.3%. On average, for 77% of all identified genes (TP) the pre-

diction also spans the added in-frame stop codon (Table 3) and

therefore correctly recognizes the stop codon as sequencing

error. Strikingly, for the synthetic metagenome without artificial

sequence errors only 4 predictions wrongly span a ‘real’ stop

codon terminating the translation. These results demonstrate that

the algorithm is quite robust for the task of identifying functional

genes containing in-frame stop codons, generated by sequencing

errors. These results also reveal the strength of our method to

incorporate several features to determine the boundaries of coding

sequence and to discriminate between ‘real’ stop codons and those

introduced by sequencing errors.

Experiment 3: Gene prediction in a synthetic metagenome with
artificial frame shifts In the third experiment the performance of

the novel algorithm to predict frame shifts introduced by sequencing

errors was evaluated. Therefore, an artificial frame shift was

Table 2. Performance for a synthetic metagenome evaluated on the Sargasso

Sea environmental sample

Organism Sensall Sensnh Specificity

Bacteria

Alphaproteobacteria

C. pelagibacter 91.07 93.76 97.63

R. sphaeroides 62.01 77.62 97.02

Gammaproteobacteria

S. oneidensis 85.36 95.12 90.44

T. crunogena 65.38 79.33 97.54

V. cholerae 69.66 87.66 93.88

Cyanobacteria

P. marinus 93.29 94.42 89.75

Synechococcus sp. 82.99 94.13 87.83

Archaea

Euryarchaeota

P. horikoshii 29.99 66.40 97.77

Crenarchaeota

S. solfataricus 26.69 43.44 98.89

Average 67.38 81.32 94.53

Sensall refers to the sensitivity calculated over all genes contained in the synthetic

metagenome. Sensnh is the sensitivity calculated over all non-hypothetical genes. The

entire Bacteria group represents the most common organisms in the Sargasso Sea sample.

While the Archaea is the extremely scarce set for surface water marine environment.
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added to each of the genes of the synthetic metagenome. For this

data set, those predictions that do not match a fragment of an

annotated gene where counted as false positives (FP). For those

annotated genes of which at least one of its fragments is identified

were counted as true positives (TP). Compared to the synthetic

metagenome with no artificial mutations, the sensitivity and speci-

ficity is again only slightly reduced (Table 4). For this data set, 66%

of the identified genes (TP) were also correctly predicted to have a

frame shift. Noteworthy, for the synthetic metagenome without

artificial errors only 357 frame shifts out of 11,686 true positive

predictions were registered. This finding shows the high reliability

of the method to predict frame shifts. As for the above experiments,

the specificity values obtained by each genome are high, the average

specificity value is 95%.

Gene identification in environmental samples obtained

by 454 technology

At present, the main drawback of the recently developed high

throughput parallel pyrosequencing is the short length of the

reads obtained (	100 bp on average). This is particularly undesir-

able when dealing with environmental data sets, since the sample is

a large mixture of different species. To verify whether our algorithm

is still able to identify genes in metagenomes obtained with the 454

technology, we assembled the 454 reads from the Solar Salterns

sample into contigs and predicted the genes for the subset of all long
contigs. For this verification we performed two experiments: First, a

BLAST search against a database made from the set of all contigs
from the Solar Salterns sample was conducted. Second, a direct

BLAST search against a database of all 454 reads without

prior assembly was employed. To validate the outcome from

both experiments the respective predictions (extended to the

longest possible ORF for that prediction) were compared with

known proteins from the KEGG database (Ogata et al. (1999))

using BLAST.

For both experiments, a high fraction of the predicted genes has

significant BLAST hits against known proteins from the KEGG

database. Remarkably, the number of predicted genes for the

reads without assembly does not differ much when compared to

the contigs (see Table 5). It should be pointed out that when

looking at the BLAST hits against the KEGG database it seems

that many of the predicted genes are fragmented due to internal

frame shifts. Therefore during the BLAST search against the KEGG

database, weaker E-values are obtained for these fragments. The

predicted genes that do not match any known protein in the

KEGG database constitute an interesting set for further studies

as they could be either of false predictions, known genes with no

or only a weak sequence similarity to the genes contained in KEGG,

or more interestingly novel unknown genes. These results for the

Solar Salterns sample demonstrate that the novel algorithm is well

Table 3. Performance for a synthetic metagenome with artificial in-frame

stop codons

Organism Sensall Sensnh Spec SC predicted

Bacteria

Alphaproteobacteria

C. pelagibacter 88.87 92.20 97.58 71.71

R. sphaeroides 61.62 77.18 97.33 73.10

Gammaproteobacteria

S. oneidensis 83.90 94.24 89.58 82.15

T. crunogena 64.95 79.01 97.88 80.23

V. cholerae 68.89 86.94 94.00 79.52

Cyanobacteria

P. marinus 88.97 90.18 88.51 74.71

Synechococcus sp. 78.74 92.69 85.65 70.75

Archaea

Euryarchaeota

P. horikoshii 29.27 65.20 98.69 80.97

Crenarchaeota

S. solfataricus 25.96 42.71 99.02 81.41

Average 65.69 80.04 94.25 77.17

Sensall is the sensitivity calculated over all genes contained in the synthetic

metagenome. Sensnh is the sensitivity calculated over the subset of all non-hypothetical

genes. SC predicted: percentage of true positives (TP) that correctly span in-frame

stop codons.

Table 4. Performance for a synthetic metagenome with artificial frame shifts

Organism Sensall Sensnh Spec Percentage of

TP predictions

correctly identified

as frame shift

Bacteria

Alphaproteobacteria

C. pelagibacter 86.39 89.32 97.73 57.71

R. sphaeroides 56.80 72.08 98.03 92.22

Gammaproteobacteria

S. oneidensis 81.15 90.93 93.02 68.65

T. crunogena 59.69 73.33 98.33 66.67

V. cholerae 71.54 83.05 96.19 69.11

Cyanobacteria

P. marinus 84.65 88.88 92.62 58.77

Synechococcus sp. 72.46 90.39 91.02 79.19

Archaea

Euryarchaeota

P. horikoshii 26.09 54.42 96.45 54.64

Crenarchaeota

S. solfataricus 23.23 39.41 98.80 48.51

Average 62.44 75.76 95.80 66.16

Sensall is the sensitivity calculated over all genes contained in the contigs. Sensn h is the

sensitivity calculated over the subset of non-hypothetical genes

Table 5. KEGG supported predictions. Number of predicted genes for a

metagenome sequenced with 454 technology that have hit in the KEGG

database.

Database Number of predictions Number of predictions with

E-value up to

10�50 10�20 10�10 10�5

KEGG

Contigs 3219 467 1544 2451 2858

Reads 3496 556 1699 2585 3044

Assembled contigs and 454 reads without prior assembly were used for BLAST search.

L.Krause et al.

e286



suited to predict genes in ‘real’ metagenomes, even if these samples

are sequenced using the 454 technology.

Gene prediction in synthetic metagenomes using

contigs and reads derived by pyrosequencing

We further evaluated the performance of the new gene

finding algorithm for sequences obtained with the 454 technology

(see Table 6), taking the synthetic metagenome dataset as a con-

trolled standard of truth. The genes were predicted for the synthetic

metagenomes dataset by employing a BLAST search against two

different databases: one containing all assembled contigs from the

Solar Salterns sample, and another containing all unassembled

reads from the same sample.

In respect to the small size of the database used in the

BLAST search (16 Mb for the assembled contigs and 60 Mb for

the reads without prior assembly) the sensitivity obtained is very

good. The highest sensitivity is reached for Pyrococcus horikoshii,
67% and 63% (for the subset of all non-hypothetical genes) calcu-

lated for the reads without assembly and the assembled contigs,

respectively. Interestingly, these findings indicate that in contrast to

the sample from the Sargasso Sea, the Archaea group is more

abundant in the sample from the Solar Salterns. A second interesting

observation is the good performance when running BLAST against

the 454 reads without assembly, despite the fact that the average

length of the reads is 100 bp. A specificity of 84% is achieved on

average. Moreover, when compared to the assembled contigs the

sensitivity is increased by 	11%. In particular, these results for the

short 454 reads reveal one of the strengths of our method: to con-

sider all BLAST hits at the same time by calculating the optimal

path through the matrix of combined scores instead of analyzing

simple pairwise BLAST hits. This strategy allows us to identify

genes that get only several short hits, even if all of the single hits are

not significant.

Yet, determining the correct boundaries of the CDS when

running BLAST against a small database of 454 reads is difficult,

many genes are only partially covered by hits. As an optional

postprocessing step our algorithm therefore can automatically

extend predictions to the longest possible ORF.

Time efficiency of the novel algorithm

The running time of the novel algorithm highly depends on the

size of the BLAST database since most of the running time is

consumed during the BLAST based search for conserved regions,

for the parsing of BLAST results as well as for the calculation of

combined scores. For the evaluation presented in this survey all runs

of the algorithm were executed on a compute cluster located at the

Center of Biotechnology (CeBiTec), Bielefeld University. The clus-

ter is composed of 128 Sun Fire V20z nodes. Each node has two

1.8 GHz AMD Opteron 244 CPUs and 2 Gb of RAM. The overall

running time was 1 hour and 50 minutes for predicting the genes of

the synthetic metagenome (	24 Mb) when a BLAST search against

half of the Sargasso Sea sample (	390 Mb) was employed. The

running time in average is 28s for the BLAST search, 17s for

parsing the BLAST results and calculating the combined scores

and 1s for predicting coding sequence by dynamic programming

and postprocessing for a 4 Kb fragment when run on a single node

using one CPU.

GLIMMER performance on synthetic metagenome

Most of the contemporary gene finding methods model frequencies

of short oligonucleotides to discriminate between coding and

non-coding sequences (e.g. by using a Markov chain or a Hidden

Markov model). Before these methods can be used for gene

prediction, usually as a first step the model needs to be trained

to learn the organism specific sequence composition of the genome

under study. As most of these methods model average sequence

properties they may fail to adequately learn the oligonucleotide

frequencies of diverse microbial assemblages. Pitfalls of existing

gene finding technologies were examined by employing the state-

of-the art microbial gene finder GLIMMER as an example. GLIM-

MER was trained on the synthetic metagenome itself as described

in the Methods section. Subsequently, the trained GLIMMER was

applied on each fragment. Although GLIMMER is very accurate for

complete genomes (http://www.cbcb.umd.edu/software/glimmer/)

the accuracy for the synthetic metagenome is strongly reduced

(Table 7). Table 7 also points to one substantial problem that

may affect intrinsic methods when applied to environmental

data: the diverse compositional biases of different organisms

contained in the sample. Another problem may be the unequal

abundance of species, as overrepresented species have a stronger

influence during training which may result in an unbalanced model.

Also the synthetic metagenome on which GLIMMER was trained is

unbalanced as it contains fragments from seven genomes with a

low GC content and from two genomes with a high GC content

(GC > 55%). The average GC content is 	47%. The prediction

accuracy of GLIMMER for the synthetic metagenome strongly

depends on whether the fragments come from a genome with a

high or low GC content. While GLIMMER has a good performance

for the genomes with a low GC content, for the two genomes with a

high GC content the performance is highly reduced. For the

Table 6. Performance for a synthetic metagenome evaluated on sequences

obtained by pyrosequencing

Organism Sensr Sensc Sensnhr Sensnhc Specr Specc

Bacteria

Alphaproteobacteria

C. pelagibacter 38.96 28.02 43.92 31.66 85.29 91.54

R. sphaeroides 27.74 19.13 38.03 26.81 70.67 87.18

Gammaproteobacteria

S. oneidensis 25.37 16.19 38.23 25.12 80.86 88.21

T. crunogena 36.21 23.49 46.31 30.29 86.42 93.43

V. cholerae 29.71 18.84 43.19 28.69 82.22 90.70

Cyanobacteria

P. marinus 30.40 20.94 43.08 29.91 89.67 91.53

Synechococcus sp. 23.24 17.01 43.67 31.82 77.14 87.73

Archaea

Euryarchaeota

P. horikoshii 33.61 31.87 66.80 62.60 89.64 94.67

Crenarchaeota

S. solfataricus 26.35 25.15 41.97 41.32 90.34 95.46

Average 30.18 22.29 45.02 34.25 83.58 91.16

Sensr and Sensc is the sensitivity for the synthetic metagenome when blasting against all

454 reads or against all assembled contigs. Sensn h r and Sensn h c is the sensitivity

calculated for the subset of non-hypothetical genes of the synthetic metagenome when a

BLAST search is done against the 454 reads and assembled contigs, respectively.
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genome with the highest GC content (R. sphaeroides) the accuracy

is close to the one expected by a random decision drawn by a

flipping a coin experiment. Owing to the diverse composition,

high species richness and unequal species abundance, real meta-

genomes isolated from natural occurring organism assemblages

possess a considerably higher complexity than the synthetic meta-

genome used in this study. Therefore, it is reasonable to expect that

for real metagenomes the problems that affect intrinsic methods

should be even more profound.

5 DISCUSSION

In this paper we presented a novel algorithm that was designed

to predict genes in environmental samples. The algorithm is robust

for the most common problems encountered when predicting genes

in these data sets: short length of the assembled contigs and a low

sequence quality.

Although, the focus of the algorithm is directed on the detection

of novel genes, our algorithm can also be used to identify known

genes in environmental samples: instead of searching against a

database containing all fragments from the environmental sample

a direct search against a database containing the sequences of

known genes can be conducted.

Our results show that for large samples like the Sargasso Sea, a

high fraction of the gene content can be identified based on the

search for sequence conservation within the sample.

The results further demonstrate that even the short reads

obtained by pyrosequencing can be used to identify protein coding

genes. Therefore, environmental samples sequenced with the 454

technology may be a valuable resource to identify unknown

(habitat-specific) genes. To search for novel genes our algorithm

requires that at least a fraction of reads is assembled into contigs.

Subsequently the complete database of reads can be used to

predict the genes of these contigs. Our results therefore suggest

the following strategy to identify novel (habitat-specific) genes

in environmental samples: to sequence part of the sample with

conventional methods to obtain longer fragments that can be assem-

bled into contigs and additionally to sequence large amounts of

data at low cost with the 454 technology to increase the size of

the database that can be used to search for conserved sequences.

As our method relies on sequence similarities for the prediction

of protein coding genes when running BLAST against the sample

itself, the method strongly depends on the size and species com-

position of the sample. The sensitivity of the algorithm may be

improved by incorporating general sequence properties of coding

sequences or proteins.
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ABSTRACT

Motivation: Membrane dipping loops are sections of membrane

proteins that reside in the membrane but do not traverse from one

side to the other, rather they enter and leave the same side of themem-

brane.Weappliedacombinatorial patterndiscoveryapproach to sets of

sequencescontaining at least one characterised structure described as

possessing amembrane dipping loop. Discovered patterns were found

to be composed of residues whose biochemical role is known to be

essential for function of the protein, thus validating our approach.

TMLOOP (http://membraneproteins.swan.ac.uk/TMLOOP) was

implemented to predict membrane dipping loops in polytopic mem-

brane proteins. TMLOOP applies discovered patterns as weighted

predictive rules in a collective motif method (a variation of the single

motif method), to avoid inherent limitations of single motif methods in

detecting distantly related proteins. The collectivemotif method applies

several, partially overlapping patterns, which pertain to the same

sequence region, allowing proteins containing small variations to be

detected. The approach achieved 92.4% accuracy in sensitivity and

100% reliability in specificity. TMLOOP was applied to the Swiss-Prot

database, identifying 1392 confirmed membrane dipping loops,

75 plausible membrane dipping loops hitherto uncharacterised by

topology prediction methods or experimental approaches and 128

false positives (8.0%).

Contact: j.g.l.mullins@swansea.ac.uk

1 INTRODUCTION

Membrane dipping loops

Polytopic membrane proteins are embedded membrane proteins

composed of a bundle of a-helices that completely span the mem-

brane. These transmembrane a-helices are generally connected by

extramembrane loops of various lengths. However, crystallized

structures of membrane proteins such as aquaporins or potassium

channels have shown that membrane dipping loops (sometimes

called re-entrant loops) can also interconnect a-helical transmem-

brane regions at the same side of the membrane. These loops are

characterised by their particular structure: the N-terminal section

of the loop partially transverses the lipid bilayer but with the

C-terminal section then returning to the same side as the N-terminal

section of the loop. It has been suggested that membrane dipping

loops play major roles as selectivity filters in the aquaglyceroporin

family (Gonen, et al., 2004; Harries, et al., 2004; Murata, et al.,
2000; Ren, et al., 2001; Savage, et al., 2003; Stroud, et al., 2003;

Sui, et al., 2001), potassium channels (Doyle, et al., 1998;

Jiang, et al., 2002; Jiang, et al., 2003; Kuo, et al., 2003; Long,

et al., 2005; Nishida and MacKinnon, 2002; Zhou, et al., 2001),

chloride channels (Dutzler, et al., 2002; Dutzler, et al., 2003) and

also act as gates of membrane pores, such as in the glutamate

homolog transporter (Yernool, et al., 2004), and the protein con-

ducting channel (Van den Berg, et al., 2004). Prediction of mem-

brane dipping loops from protein sequence has proved difficult as

such regions are frequently amphiphilic, containing hydrophobic

sections that are too intermittent to be identified as membrane

regions. Membrane dipping loops require interactions with adjacent

highly hydrophobic helices to become inserted in the membrane and

minimise the energy penalty imposed by location of polar or charge

residues in a low dielectric environment. In-silico topology predic-

tion approaches often fail to predict membrane dipping loops in

polytopic a-helical membrane proteins due to their residue com-

position differing with that of membrane spanning segments. To

date, the bioinformatics approaches of our group, working on the

dipping loops of glycerol channels, in collaboration with Stefan

Hohmann and colleagues, have relied upon homology modelling

(Bill et al., 2001), and comparison of test sequences with those of

known loops in terms of secondary structure and the propensity

scoring of successive residues to reside in a or b conformation

(Hedfalk et al., 2004; Karlgren et al., 2004; Tamas et al., 2003),

underpinned by extensive laboratory work including measuring

channel efflux, mutagenesis and genetic screening. Here we

describe the development of a novel and reliable approach to the

difficult problem of predicting dipping loops directly from sequence

that may be generically applied to membrane proteins.

Pattern discovery

By evolution, conserved nucleotides and residues are often indic-

ative of a common structural or functional role either at the gene or

protein level. Sequence similarity detection methods have been

successfully applied in fields such as gene discovery, splicing pre-

diction, phylogenesis, protein structure and function prediction or

gene expression analysis. Multiple sequence alignment techniques

have become the routine approach to measuring sequence similarity

and identifying important residues (Altschul, et al., 1990; Pearson�To whom correspondence should be addressed.
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and Lipman, 1988). These alignments can be used to develop dif-

ferent motif representation techniques such as single (Falquet, et al.,
2002) or multiple motif methods (Attwood, et al., 1999; Henikoff,

et al., 1999; Wu and Brutlag, 1995), profiles (Bucher, et al., 1996)

and hidden markov models (Baldi, et al., 1994; Eddy, 1996; Krogh,

et al., 1994). However, multiple sequence alignment methods have

proved to be computationally very expensive (Wang and Jiang,

1994), and the accuracy of the alignment diminishes when distantly

related sequences need to be aligned. An alternative approach was

based on pattern discovery methods using an unaligned set of

sequences. The problem of detecting all possible patterns in a set

of sequences has also proven to be computationally expensive but

heuristics and restrictions in the architecture of patterns (e.g.

maximum length, number of non-wild elements) (Jonassen,

et al., 1995; Rigoutsos and Floratos, 1998; Sagot, et al., 1995)

have made it possible to analyse large set of biological sequences

and discover structurally and functionally important patterns

(Darzentas, et al., 2005).

We have applied a pattern discovery software, TEIRESIAS

(Rigoutsos and Floratos, 1998), to various sets of protein sub-

families or families, depending on the residue conservation in

the dipping loop region, where at least one of their members has

been crystallized and its structure described in the PDB_TM data-

base (Tusnady, et al., 2004) and/or in the literature as having at least

one membrane dipping loop. The pattern discovery process is

carried out using three different types of analysis: i) exact pattern

discovery, ii) pattern discovery using a chemical equivalency set

and iii) pattern discovery using a structural equivalency set. Our

program, TMLOOP, uses the discovered patterns as weighted pre-

dictive rules to predict potential membrane dipping loops in poly-

topic membrane proteins. This software was used to explore the

performance of a single motif method compared to a variation of

this approach, called the collective motif method approach. Single

motif methods require exact pattern matching to find structural or

functional relatedness and therefore can miss distant relatives which

contain small variations of the pattern (Scordis, et al., 1999). The

collective method is based on the use of different patterns, partially

overlapping, which belong to the same motif and therefore distant

relative proteins containing small variations of the most common

patterns can be co-detected.

2 METHODS

Data collection

Crystallized membrane proteins containing membrane dipping loops in their

structure were identified in the PDB_TM database (Tusnady, et al., 2004;

update 24/10/05). The predicted membrane dipping loops in each of the

membrane proteins listed in the PDB_TM database were cross-referenced to

the literature corresponding to the crystallized structures. Although these

papers accurately describe the three-dimensional structure of membrane

proteins, the boundaries of the lipid bilayer can only be approximated as

membrane proteins need to be extracted from the membrane to elucidate

their structure. Therefore, most of the loops predicted in the PDB_TM

database as membrane dipping loops were found to be described but

some loops were not identified in the literature and were considered as

potential loops. Some structures contain additional membrane dipping

loops that were not listed in the PDB_TM database and so these loops

were also considered. In addition, a manual identification of membrane

dipping loops in PDB structures of membrane proteins of known 3D struc-

ture (the Stephen White laboratory at the University of California, Irvine,

http://blanco.biomol.uci.edu/Membrane_Proteins_xtal.html) was carried

out to guarantee that all PDB structures containing a membrane dipping

loop had been included. All identified membrane dipping loops were ulti-

mately manually confirmed by being viewed in RasMol (Sayle and Bissel,

1992). In the PDB_TM database 50 structures containing membrane dipping

loops and 69 membrane dipping loops were identified. The literature

described 5 additional membrane dipping loops in 3 determined structures.

No additional structures with membrane dipping loops were manually

identified. Of the 50 PDB structures considered, 46 structures were used

in this study as membrane proteins containing membrane dipping loops.

Members of protein families covered by the crystallized structures contain-

ing dipping loops were obtained from the Swiss-Prot database (Boeckmann

et al., 2003), regardless of their taxonomic group, using the Uniprot/Swiss-

Prot family/domain classification. At this stage, the functional and structural

annotation of proteins obtained from the Swiss-Prot database was analysed

and entries with inappropriate or insufficient functional annotation were

discarded from each set. In order to avoid redundancy, protein families

were filtered based on the sequence identity of the members composing

the set (Hobohm, et al., 1992). A bioinformatics tool, Non-Red (Liakopoulos

and colleagues, Department of Cell Biology and Biophysics at the University

of Athens, http://athina.biol.uoa.gr/bioinformatics/NON-RED/), was used

to avoid redundant protein sequences in each set, by removing one of a

pair of sequences with homology higher than a user-defined level. Here,

Non-Red was used with a setting of the minimum alignment length to

80 and the minimum identity level to 95%. Therefore pairs of sequences

sharing a sequence identity of 0.95 or higher were avoided by removing the

protein sequence of the given pair more similar to the remaining proteins in

the set. The filtered set was defined as the gold standard set for the study.

Where the protein containing a dipping loop belonged to a particular sub-

family, it was important to ascertain whether the structural motif was con-

served only in that particular subfamily or instead was a common feature

present in other subfamilies or in the entire protein family. ClustalW

(Chenna, et al., 2003) was used to analyze the residue conservation in the

sequence region pertaining to the dipping loop motifs across the entire pro-

tein family set. When no clear differences in residue conservation was

observed between subfamilies it was taken that the membrane dipping

loop was a structural motif conserved across the entire protein family. By

contrast, when there was little or no conservation across the different protein

subfamilies, loops were included in the pattern discovery process as members

of the particular subfamily only, as there was no evidence that the given

membrane dipping loop was conserved throughout the entire protein family.

Isolation of membrane dipping loop regions

For each crystallized protein containing one or more membrane dipping

loops a set of similar proteins was assembled as described above. These

sets were composed of membrane protein sequences that belonged to

the same (sub)family as the crystallized membrane protein found in the

PDB_TM database. However, there was no information in the correspond-

ing Swiss-Prot file relating to the location of the membrane dipping loops.

The determination of the location of these structural motifs in non-

crystallized protein sequences was achieved by aligning the non-crystallized

protein sequences, using ClustalW, against the sequence corresponding to

the relevant crystallized membrane protein, also known as the reference

sequence. The structural motif was then mapped onto the reference sequence

and the equivalent motif located in the remaining sequences in the align-

ment. The beginning and end of each membrane dipping loop were obtained

from the PDB_TM database and checked manually. In order to minimise

potential errors in identifying the ends of each membrane dipping loop, or

possibly missing the appropriate section, 5 residues before the predicted

starting position and 5 residues after the predicted ending position were

considered. Within each set, all sequences were then reduced to the region

corresponding to the particular membrane dipping loop detected in the

crystallized membrane protein. At this stage, for each membrane dipping

loop detected, a set of partial sequences was assembled.

Prediction of membrane dipping loops
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Pattern discovery using TEIRESIAS

The TEIRESIAS algorithm (Rigoutsos and Floratos, 1998) may be used to

discover patterns in an unaligned set of nucleotide or amino acid sequences.

This software performs unsupervised pattern discovery and reports maximal

patterns without enumerating the entire solution. The algorithm restricts the

pattern discovery process by limiting the search to patterns with user-defined

parameters: the minimum number of literals in any pattern, the maximum

extent of an elementary pattern and the minimum support required for a

pattern (L, W and K respectively). For the purposes of these analyses L

was set to 3 as it has been shown to be the minimum value for which the

convolution stage successfully operates during the pattern discovery process

(Rigoutsos and Floratos, 1998), W was set to the length of the structural

motif to be analyzed in each set (normally between 20-30) in order to detect

conserved pairs of residues located in different halves of the structural

motif but that may be closely associated in 3D in the membrane, and K

was set to the 70% of the sequences contained in each set. The pattern

discovery process was carried out using three different types of discovery:

i) exact (identical) pattern discovery, ii) pattern discovery using a chemical

equivalency set and iii) pattern discovery using a structural equivalency set.

Each set was analysed individually using TEIRESIAS, and the dipping

loops considered in each set were classified into three different structural

categories: helix-in-turn-loop-out, loop-in-turn-helix-out and helix-in-turn-

helix-out. These sets were also clustered if sharing structural similarities or

assembled from the same protein family and analysed together using TEIR-

ESIAS to find common patterns in structurally related membrane dipping

loop motifs and common patterns in membrane dipping loops possibly

caused by ancestral gene duplication events.

Pattern validation

The patterns detected by TEIRESIAS were not in themselves guaranteed to be

selective as it is not possible to include negative control sets in the pattern

discovery process. Therefore, it may be possible to discover patterns from one

particular set in other sets of membrane proteins, whose structure does not

actually contain a dipping loop, leading to predictive rules with

poor specificity. To validate the patterns, an additional tool was implemented,

named PATTERNTEST, whose function was to validate the patterns obtained

using TEIRESIAS against positive and negative control sets assembled by the

user. The patterns discovered for each set were validated against protein

sequences belonging to the remaining sets of membrane dipping loop motifs

and against the negative control set composed of 363 membrane proteins

known not to have membrane dipping loops in their structure. This set was

assembled using sequences pertaining to crystallized membrane proteins

whose structure was visually checked during the data collection process,

and protein families contained in the Swiss-Prot database known not to

have membrane dipping loops in their structures (e.g. GPCR family). The

subsequent patterns discovered by TEIRESIAS, but found to be present in

membrane proteins with a different dipping loop motif and/or membrane

proteins without a dipping loop motif and/or in proteins with the correspond-

ing dipping loop motif, but having the pattern outside this motif, were elim-

inated as candidate predictive rules for TMLOOP.

TMLOOP

A predictive tool was implemented, named TMLOOP, to predict membrane

dipping loops in polytopic membrane proteins. TMLOOP uses patterns

discovered by TEIRESIAS and validated by PATTERNTEST as weighted

predictive rules where the weight was calculated by dividing the number of

sequences in the training set containing a particular pattern by the total

number of sequences in the training set. The software requires a set of

user-defined parameters to run the prediction: i) I is the minimum inter-

loop length required between two contiguous loops, where two different

patterns would predict the same loop only if the distance of both matches in

the sequence is lower than I; ii) S, the minimum pattern support, which

restricts the patterns used for the prediction such that only the patterns whose

support is equal or higher than S would be used as predictive rules; and iii) C,

the minimum prediction confidence, which restricts the report of protein

matches to those predictions with a score equal or higher than C.

TMLOOP was evaluated by tenfold cross-validation. During the evalu-

ation process, the single motif approach, using the pattern with the highest

support for each set, and the collective motif approach were compared and

different values of I, S and C were tested to set up the optimum conditions to

maximize the sensitivity and specificity of TMLOOP (Table 2, Figure 1).

Swiss-Prot database prediction

TMLOOP was applied to the Swiss-Prot database using the single

motif method and the collective motif method (using values of I, S and

C reporting the maximum predictive score during evaluation), a consensus

prediction of membrane dipping loops was also undertaken (table 3). Pre-

dicted loops were classified as true positives, false positives or possible loops

that may merit to be experimentally studied. In order to identify possible

hitherto undesignated loops, it was required to identify structural or func-

tional relatedness to the corresponding crystallized protein type known to

have a similar membrane dipping loop. This was achieved by: i) searching

for structural evidence of the loop or functional relatedness in Swiss-Prot

annotation and/or in the IUBMB enzyme nomenclature database and/or in

the TCDB transport classification database (Saier et al., 2006, http://www.

tcdb.org/); ii) looking for distant relationships using BLASTP with an

E-value cutoff of 100 (Darzentas, et al., 2005); iii) local residue conservation

analysis using ClustalW; and iv) relative position of the predicted loop in

sequence to the positions of the transmembrane regions in sequence.

3 RESULTS

Pattern discovery and validation of patterns

The 12 sets of partial sequences corresponding to membrane

dipping loops found in potassium channels, secY/SEC61 alpha

family, aquaglyceroporin family (two loops), sodium/dicarboxylate

symporter family, ClC chloride channel family (four loops), psaF

family and FecCD subfamily from the binding-protein-dependent

family, were analysed using TEIRESIAS individually and com-

bined as described above. Table 1 summarizes the pattern discovery

analyses carried out and the subsequent validation of patterns. Only

patterns whose support is �70% were collected.

TMLOOP evaluation by tenfold cross-validation

TMLOOP sensitivity and specificity was tested using different

values of I, C and S. TMLOOP was also evaluated using predictive

rules for the sole pattern with the highest support found for each

training set. Table 2 and Figure 1 summarise the evaluation results

(I was set to a default of 30, shown to be the most appropriate

minimum inter-loop length, data not shown).

Prediction of membrane dipping loops in

Swiss-Prot database

TMLOOP was used to predict membrane dipping loops in polytopic

membrane proteins listed in the Swiss-Prot database (version 48.0).

The database contained 194,317 protein entries where 29,127 were

polytopic membrane proteins (15.0%). TMLOOP was run with two

different sets of parameters: i) the single motif approach, using

the individual pattern with the highest score for each membrane dip-

ping loop analysed (I¼30, while the parameters C and S were not

relevant for this prediction; and ii) the collective method approach,

usingTMLOOPwith themost optimalparameters ofCand Sobtained

fromtheevaluationbytenfoldcross-validation(I¼30).Theresultsare

shown inTables 3 and 4 (and supplementary information can be found

at http://membraneproteins.swan.ac.uk/TMLOOP/Supplementary).
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4 DISCUSSION

Referencing of discovered patterns

The patterns discovered by TEIRESIAS and validated with

PATTERNTEST were considered in the light of the crystallo-

graphic structures and literature. These patterns were frequently

found to belong to structural motifs, which were described as essen-

tial for the function of the protein. Furthermore the biochemical

roles of several of the residues described in these patterns have been

described in experimental studies, validating our approach. The

dipping loop motifs found in potassium channels, aquaglyceropor-

ins and loops 1 and 3 in ClC chloride channels have been described

Table 1. Training sets and pattern discovery of membrane dipping loops

Gold standard sets Pattern discovery and validation Single motif method

Membrane dipping loop set No. of

sequences

No. of patterns No. of validated

patterns

Top scoring pattern Support

Helix-in-turn-loop-out

K+ channel

134 382, 103, 5 35, 10, 0 [ST]..[ST].G[FY]G 0.89

Helix-in-turn-loop-out

secY/SEC61 alpha family

75 12, 0, 0 0, 0, 0 No patterns found -

L1: Loop-in-turn-helix-out

Aquaglycerolporin family

49 863, 73, 22 167, 21, 6 SG.H.N...[ST] 0.96

L2: Loop-in-turn-helix-out

Aquaglycerolporin family

49 249, 32, 19 24, 1, 1 [ILMV]NP.R.....[ILMV] 0.94

Helix-in-turn-helix-out

Binding protein dependent transport

system permease family

25 7506, 479, 31 82, 43, 11 [AG].[ILMV].F[ILMV]

[AG]L[IMV].P.[ILMV]

0.96

L1: Helix-in-turn-helix-out

Cl� channel family

35 936, 46, 14 29, 5, 3 [ILMV]G..GP.V 0.86

L2: Helix-in-turn-helix-out

Cl� channel family

35 2419, 97, 63 98, 35, 28 [AG].[AG].G[ILMV]...

[FY].....[AG]..F..E

1.0

L3: Helix-in-turn-helix-out

Cl� channel family

35 610, 45, 10 9, 7, 2 P.G...P....G...G 0.91

L4: Helix-in-turn-helix-out

Cl� channel family

35 3751, 137, 26 66, 0, 0 [AG]..........[ILMV]...

[ILMV][ILMV]..E[ILMV]T

0.91

Helix-in-turn-helix-out

psaF family

16 182, 41, 13 27, 16, 9 A......G..WP..A 1.0

L1: Helix-in-turn-helix-out

Na+: dicarboxylate symporter family

46 3613, 347, 63 134, 19, 11 [ILMV]............T.S[ST]...[ILMV]P 0.89

L2: Helix-in-turn-loop-out

Na+: dicarboxylate symporter family

46 14887, 1327, 103 324, 142, 17 [ILMV].......[ILMV].......S.G..[AG][ILMV]....

.[ILMV].[ILMV]......[ILMV]

0.96

L1: Loop-in-turn-helix-out

L2: Loop-in-turn-helix-out

Aquaglycerolporin family

98 333, 6, 5 27, 0, 0 [ST]G...NP[AG] 0.86

L1: Helix-in-turn-helix-out

L3: Helix-in-turn-helix-out

Cl� channel family

70 106, 0, 0 0, 0, 0 No patterns found -

L2 Helix-in-turn-helix-out

L4: Helix-in-turn-helix-out

Cl� channel family

70 244, 0, 0 0, 0, 0 No patterns found -

L1: Helix-in-turn-helix-out

L2: Helix-in-turn-helix-out

L3: Helix-in-turn-helix-out

L4: Helix-in-turn-helix-out

Cl� channel family

140 0, 0, 0 0, 0, 0 No patterns found -

L1: Helix-in-turn-helix-out

L2: Helix-in-turn-loop-out

Na+: dicarboxylate symporter family

92 124, 2, 0 0, 0, 0 No patterns found -

Helix-in-turn-loop-out loops 255 0, 1, 0 0, 0, 0 No patterns found -

Helix-in-turn-helix-out loops 227 0, 0, 0 0, 0, 0 No patterns found -

All dipping loops 565 0, 0, 0 0, 0, 0 No patterns found -

Columns one and two describe the different sets of membrane dipping loops assembled. Columns three and four give the number of patterns obtained by chemical ([A,G], [E,D], [F,Y],

[K,R], [I,L,M,V], [Q,N], [S,T]), structural equivalence ([C,S], [D,L,N], [E,Q], [F,H,W,Y], [I,T,V], [K,M,R]) and exact discovery respectively. No common patterns were observed

between membrane dipping loops across the different structural categories, with the exception of L1 and L2 of the aquaglyceroporin family. Columns five and six describe the single

motif method where column five lists those patterns found with the highest support, and column six shows the corresponding pattern support.
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as selectivity filters. The residues contained in patterns belonging to

these selectivity filters have been extensively described and the

discovered patterns were found to be refined motifs of those already

proposed (e.g. the GYGD motif in potassium channels and the

NPA motif in the aquaglyceroporin family). Loops 2 and 4 in

ClC chloride channels have been proposed to link the two repeated

halves within each monomer and make contacts with each other at

the interface between monomers (Estevez and Jentsch, 2002).

However, the precise functional relevance of specific residues is

not clear. The most common patterns found in our analysis had

support of 1.0 and 0.91 for loops 2 and 4 respectively, indicating

important roles for particular residues.

In the case of the sodium / dicarboxylate symporter family

both loops were proposed to act as gates in the membrane (Yernool,

et al., 2004). The composition of patterns found in loop 1 were in

agreement with the motifs identified in experimental studies, though

a proline described previously as being conserved was not included

in patterns relating to loop 2. This conserved proline is suggested

to act as an anchor together with the serine-rich motif corresponding

to loop 1. Further analyses showed that this proline was only con-

served in 23 out of 46 sequences.

No patterns corresponding to discrete motifs could be found

using TEIRESIAS for the detected dipping loops in the SecY/

SEC61 alpha family, which transports soluble proteins across

the membrane and passes membrane proteins into the membrane.

The dipping loop found in this protein family is also known as

the channel plug (Van den Berg, et al., 2004) and it has been

suggested to block the pore in the closed state, in the open state

the channel opens by displacement of the plug which moves away

from the pore towards the plug-pocket (Collinson, 2005; Van den

Berg, et al., 2004). Despite the overall importance of this motif no

Table 2. Evaluation of TMLOOP by tenfold cross-validation

S Top score

pattern

70 80 90

C 0.01 Sensitivity Av 95.64 92.87 43.24 87.05

Sd 2.58 2.98 5.57 3.2

Specificity Av 95.93 98.18 98.88 100

Sd 6.93 4.42 0.46 0

0.1 Sensitivity Av 90.57 92.43 43.09 87.05

Sd 3.05 2.48 5.56 3.2

Specificity Av 95.25 100 100 100

Sd 2.36 0 0 0

0.3 Sensitivity Av 85.93 87.09 41.36 87.05

Sd 3.85 3.73 5.69 3.2

Specificity Av 100 100 100 100

Sd 0 0 0 0

0.5 Sensitivity Av 77.35 84.76 41.07 87.05

Sd 5.19 4.28 5.04 3.2

Specificity Av 100 100 100 100

Sd 0 0 0 0

0.7 Sensitivity Av 63.55 76.78 38.45 87.05

Sd 5.83 4.16 5.14 3.2

Specificity Av 100 100 100 100

Sd 0 0 0 0

Two different approaches were carried out : i) using the pattern for each membrane

dipping loop set with the highest score (top score approach, which is a single motif

approach, in orange) using an I value of 30; and ii) using various values of S (minimum

pattern support) and C (minimum prediction confidence) with a fixed I value (minimum

inter-loop length) of 30 (collective motif approach, in blue). The results shown with the

white background are the data relating to the optimal performance of TMLOOP.The top

score approach, which proved to be a conservative approach, gave a confidence of 1.0 for

each prediction since here TMLOOP uses just one rule per membrane dipping loop

considered and therefore the prediction is based upon exact single pattern matching

(either yes or no).

TMLOOP Evaluation
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Fig. 1. Comparison of the performance of single and collective motif

methods tested by tenfold cross-validation.

This graph shows the prediction performance (considering both the sensi-

tivity and specificity) of each TMLOOP analysis (i. the single motif method in

red, ii. the collective method –S (minimum pattern support)¼ 70, I (minimum

inter-loop length) ¼ 30- in blue, iii. the collective motif method –S ¼ 80,

I¼ 30- in black and iv. the collective motif method –S¼ 90, I¼ 30 in green)

carried out at various levels of minimum prediction confidence (C). The

collective method (S ¼ 80, I ¼ 30) showed the highest predictive score at

a minimum confidence value C of 0.1. The C value of 0.3 is considered to be

the threshold, below which the most accurate prediction method is the col-

lective motif method and above which the single motif method performs

better.

Table 3. Prediction of dipping loops in the SwissProt database

True

positives

False

positives

Potential

loops

Single motif

method

Membrane

dipping loops

1209 117 32

Proteins 581 115 32

Collective motif

method

Membrane

dipping loops

1392 128 75

Proteins 605 128 75

Consensus

prediction

Membrane

dipping loops

1204 78 31

Proteins 576 78 31

The table summarises the analysis of the SwissProt database using TMLOOP (a) when

only the pattern with the highest support is used (single motif approach) and (b) when all

patterns whose support is�80 are used and only predictions with score�0.1 are reported

(collective motif approach). The I value (minimum inter-loop length) was set to 30 for

both methods. The last two rows (in red) show the consensus prediction considering both

approaches.
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evidence of residue conservation was found in the multiple

sequence alignment or in dipping loops in the pattern discovery

process.

No experimental evidence has surfaced to describe the func-

tional role of dipping loops belonging to the FeCD subfamily in

the binding-protein-dependent permease family and in the PsaF

family. However, the dipping loop region in the FeCD subfamily

has been suggested to be important for binding the periplasmic

binding protein BtuF (Locher, et al., 2002). The highest support

found for a pattern corresponding to the membrane dipping loop

in the FeCD subfamily (0.96) showed the importance of this motif

for the function of the protein and supported the suggestion made

by Locher et al. On the other hand, members of the PsaF family

form part of the photosystem I (PSI). This family has been suggested

Table 4. Newly predicted dipping loops in the SwissProt database

Swiss-Prot accession code Definition Predicted membrane dipping loop

Q9H2Y9 Solute carrier organic anion transporter family,

member 5A1

helix-in-turn-helix-out ClC choride channel loop-1

like loop

Q8KWT2, Q8KWS7, P39642 Putative bacilysin exporter bacE Loop-in-turn-helix-out Loop 1 & 2 aquaporin like

Q9NRA2, Q8BN82 Sialin (Solute carrier family 17 member 5) helix-in-turn-helix-out ClC choride channel loop-1

like loop

Q58902 Hypothetical protein MJ1507 helix-in-turn-loop-out K+ channel like

Q64SU9 Hypothetical transport protein BF2680 helix-in-turn-helix-out ClC choride channel loop-1

like loop

Q7UH36 Hypothetical transport protein RB4869 helix-in-turn-loop-out K+ channel like

Q8AAG5 Hypothetical transport protein BT0500 helix-in-turn-helix-out ClC choride channel loop-1

like loop

Q57943 Hypothetical protein MJ0523 helix-in-turn-helix-out ClC choride channel loop-4

like loop

Q8NSS8 Hypothetical transport protein Cgl0590/cg0683 helix-in-turn-loop-out K+ channel like

P74635 Hypothetical protein slr0753 helix-in-turn-helix-out ClC choride channel loop-1

like loop

P0AAC6, P0AAC7 Inner membrane protein yccA helix-in-turn-helix-out Na+: dicarboxylate

symporter loop-1 like loop

P38745 Hypothetical 61.2 kDa protein in APM2-DUR3

intergenic region precursor

helix-in-turn-loop-out K+ channel like

P37643 Inner membrane metabolite transport protein yhjE helix-in-turn-loop-out K+ channel like

P54181 Hypothetical protein ypnP helix-in-turn-loop-out K+ channel like

Q9V7S5 Putative inorganic phosphate cotransporter helix-in-turn-helix-out ClC choride channel loop-1

like loop

P0A629, P0A628 Phosphate transport system permease protein

pstC-1

helix-in-turn-helix-out ClC choride channel loop-1

like loop

P10603, P27182 ATP synthase C chain helix-in-turn-helix-out ClC choride channel loop-1

like loop

P0A304, P0A305 ATP synthase C chain helix-in-turn-loop-out K+ channel like

Q8YGH4, Q8G1E6 Pyrophosphate-energized proton pump helix-in-turn-loop-out K+ channel like

P34299, Q8LGN0, Q9C5V5, O81078,

Q9ULK0, Q61627, Q62640

Glutamate receptor precursor (glutamate-gated ion

channel)

helix-in-turn-loop-out K+ channel like

Q58671 Probable Na(+)/H(+) antiporter 3 (MjNapA) helix-in-turn-loop-out K+ channel like

Q15629, Q01685, Q15629, Q91V04,

Q9GKZ4

Translocation associated membrane protein 1 helix-in-turn-loop-out K+ channel like

Q8XED4, Q8FCT7, P33650, Q57IW8,

Q5PLZ1, Q83ST5, P74884, Q57986,

P73182

Ferrous iron transport protein B helix-in-turn-loop-out K+ channel like

Q97QP7, Q54875, Q59947, Q59986 Immunoglobulin A1 protease precursor helix-in-turn-loop-out K+ channel like

Q09917 Hypothetical protein C1F7.03 in chromosome I helix-in-turn-loop-out K+ channel like

Q8IZK6, Q8K595 Mucolipin-2 helix-in-turn-loop-out K+ channel like

P91645, Q13936, Q01815, P15381, P22002,

Q24270, Q01668, Q99244, P27732,

O60840, Q02789, P07293, Q9JIS7,

Q13698, O57483, Q02485, O73700,

Q25452, P22316

Voltage-dependent calcium channel alpha-1

subunit

helix-in-turn-loop-out K+ channel like

O28069 (top score pattern approach) Hypothetical protein AF2214 helix-in-turn-helix-out ClC choride channel loop-4

like loop

A list of proteins, including the corresponding Swiss-Prot accession codes, containing plausible membrane dipping loops according to TMLOOP. Proteins listed were predicted by using

either the single motif approach (I ¼ 30) and/or the collective motif approach (S ¼ 80, C ¼ 0.1 and I ¼ 30).
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to mediate plastocyanin docking and fast electron transport

kinetics in the eukaryotic PSI (Haldrup, et al., 2000; Hippler,

et al., 1999). By contrast, in cyanobacteria PsaF proteins have

been suggested to contribute to structural features on the surface

of PSI and bind carotenoids which serve as a light harvesting and

photo-protecting molecule (Jordan, et al., 2001). The highest

support of patterns found in the dipping loop region (1.0) of

PsaF proteins belonging to both cyanobacteria and eukaryote

cells showed that this region was universally conserved across

the taxa indicating potential residues with an essential and common

functional role in both cyanobacteria and eukaryote cells.

TMLOOP evaluation

The main problem of single motif methods, is that prediction of

a structural motif or functional category depends upon exact match-

ing with a single pattern. Therefore distantly related proteins con-

taining small variations of the pattern can not be detected. With

TMLOOP, a single motif method (using the single pattern with the

highest support found for each membrane dipping loop) can

be employed to predict a particular membrane dipping loop, or

instead, a set of partially overlapping patterns, may be used as

weighted predictive rules (a collective motif method). The single

motif approach and the collective motif approach using various

combinations of C and S (I parameter was set to 30 in both

approaches) were evaluated by tenfold cross-validation. The sens-

itivity and specificity of each method was calculated (table 2) and a

single prediction performance score (a product of % sensitivity and

% specificity divided by 10,000) was plotted against increasing

minimum prediction confidence (C) values (Fig. 1).

Both methods performed well during the evaluation, however

the single motif method approach was shown to be more accurate

as C parameter increased. This is reflected in figure 1 where the C

value of 0.3 is observed to be the threshold at which the accuracy

of one method prevails over the other. When C values lower than

0.3 are considered the collective method is found to be the most

accurate predictive method whereas when C values higher than

0.3 are considered the single motif method is the most accurate.

The reason why the prediction accuracy of TMLOOP dropped

significantly when S was set to 90 in the collective motif approach

(table 2 and figure 1) was simply because some of the sets of

patterns did not have a single pattern whose support was 0.90 or

higher and therefore no patterns were considered for the prediction

of the given membrane dipping loop. The evaluation showed that

the collective approach (S ¼ 80, C ¼ 0.1, I ¼ 30) was the most

accurate method where TMLOOP achieved maximum values of

sensitivity and specificity of 92.4% and 100% respectively (predict-

ive score ¼ 0.92, table 2 and figure 1). Although the single motif

method was found to be a better approach with higher values of C,

it also proved to be a conservative prediction. The flexibility of the

collective motif approach allowed TMLOOP to detect 91.4% of the

dipping loops contained in the two pore domain potassium channel

family (in contrast to the 40.3% obtained by the single motif

approach, data not shown), where each member of the family

has been proposed to have two membrane dipping loops and the

second loop showed small variations in sequence compared to

the first dipping loop (successfully predicted by the single motif

approach).These results reflect the strength of the collective motif

method in being able to predict motifs similar but not identical to

those used in the gold standard set.

This approach, where the dipping loop is specifically targeted,

has distinct advantages over the baseline approach of identifying

proteins that possess membrane dipping loops by ‘‘association’’

through global sequence similarity searching, where large portions

of sequences may be common, but not the loop region, and vice
versa. A thorough comparison of the targeted pattern approach with

similarity search approaches is underway. This new approach has a

further advantage in that it also predicts the specific residues

composing the dipping loop, and the loop type. It is envisaged

that the full value of TMLOOP will be realised through its use

in conjunction with transmembrane region topology prediction

programs.

Prediction of membrane dipping loops in the

Swiss-Prot database

TMLOOP was applied to the Swiss-Prot database to predict

membrane dipping loops in polytopic membrane proteins.

Prediction was carried out by the two different approaches

mentioned above: the single motif method approach using only

the pattern with the highest support for each membrane dipping

loop analyzed (I ¼ 30); and the collective motif approach using

TMLOOP with S, C and I set to 80, 0.1 and 30 respectively which

maximized the predictive score during the tenfold cross-validation.

The single motif method was shown to be a more conservative

method whereas the collective motif method detected more poten-

tial membrane dipping loops not tested yet by experimental

approaches (table 3). A good example of these highly plausible

membrane dipping loops was found in the voltage-dependent

calcium channel a-1 subunits (table 4) where a potassium-like

membrane dipping loop (helix-in-turn-loop-out) was predicted

(prediction score was 0.138). The low prediction score may be

indicative of a distantly related structural motif that while not neces-

sarily acting as a selectivity filter for potassium ions, may work for

calcium ions in a similar fashion.

In conclusion, we have undertaken a full characterisation of

all membrane dipping loops known to date. We have detected

conserved patterns, with both high sensitivity and specificity, for

most of these membrane dipping loop types. The corresponding

literature highlighted some of the residues contained in these

patterns as essential for the function of the protein, thus supporting

our pattern discovery approach. We have implemented a tool to

predict membrane dipping loops using a variation of the single motif

method approach, named the collective motif approach, which

was shown to be capable of detecting distantly related membrane

dipping loops. Evaluation of TMLOOP by tenfold cross-validation

showed impressive levels of both sensitivity and specificity.

TMLOOP was successfully applied to the Swiss-Prot database

predicting 75 plausible membrane dipping loops not detected

previously by other methods. The program is available for use

at http://membraneproteins.swan.ac.uk/TMLOOP (supplementary

information can be found at http://membraneproteins.swan.ac.uk/

TMLOOP/Supplementary).
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ABSTRACT

Motivation: The problem of identifying victims in a mass disaster

using DNA fingerprints involves a scale of computation that requires

efficient and accurate algorithms. In a typical scenario there are

hundreds of samples taken from remains that must be matched to

the pedigrees of the alleged victim’s surviving relatives. Moreover

the samples are often degraded due to heat and exposure. To develop

a competent method for this type of forensic inference problem, the

complicated quality issues of DNA typing need to be handled appropri-

ately, the matches between every sample and every family must be

considered, and the confidence of matches need to be provided.

Results: We present a unified probabilistic framework that efficiently

clusters samples, conservatively eliminates implausible sample-

pedigree pairings, and handles both degraded samples (missing

values) and experimental errors in producing and/or reading a geno-

type. We present a method that confidently exclude forensically

unambiguous sample-family matches from the large hypothesis

spaceof candidatematches, basedonposterior probabilistic inference.

Due to the high confidentiality of disaster DNA data, simulation exp-

eriments are commonly performed and used here for validation. Our

framework is shown to be robust to these errors at levels typical in real

applications. Furthermore, the flexibility in the probabilistic models

makes it possible to extend this framework to include other biological

factors such as interdependent markers, mitochondrial sequences,

and blood type.

Availability: The software and data sets are available from the

authors upon request.

Contact: epxing@cs.cmu.edu

1 INTRODUCTION

Rapid advances in genotyping technology and mathematical

theories of pedigrees have enabled their application in traditional

forensic applications such as victim or perpetrator identification and

paternity testing common place, even when family structures are

complex or sample mixtures and mutations are involved (Mortera

et al., 2003). A natural next step is to enlarge the scale of genetic

forensic inference to mass disasters, such as airplane crashes,

terrorist bombings, or battlefields, in which hundreds or even

thousands of remains, usually highly degraded, have to be identified

for all the victims according to DNA evidences from candidate

family members (Egeland et al., 2000; Lauritzen and Sheehan,

2003). In addition to issues related to the increased scale of the

problem, such a problem also poses new technical challenges such

as the presence of errors in the genotypes and pedigrees, incomplete

genetic information, and the need for decision making with very

high confidence. (This last issue is typical of forensic cases, where

seemingly low probability event such as incorrect victim/family

matching can have serious legal consequence, and must be deter-

mined with a confidence much more stringent than usually adopted

in experimental biology.)

DNA typing has long been used in forensic investigations, but until

a decade ago, mass disaster victim identification has generally relied

on dental and medical records, fingerprints, and even photographic

evidence and personal effects (Ballantyne, 1997). These techniques

require comparison between ante mortem (AM) information for the

victim and post mortem (PM) information of the remains. However,

in most mass disaster scenarios, AM information is not available for

all victims and bodies are not intact, rendering such methods inef-

fective. Whitaker et al. (1995) established the use of short tandem

repeat (STR) typing, or microsatellite markers, in mass disaster

identification, and Olaisen et al. (1997) applied it to victim identi-

fication in the 1996 Spitsbergen aircraft accident, in which it proved

to be highly reliable. A thirteen STR loci fingerprint set called the

Combined DNA Index System (CODIS) is now in routine usage by

the FBI, and has become a major tool in difficult disaster victim

identification cases (Hsu et al., 1999; Cash et al., 2003).

While the basic problem of computing the likelihood ratio that

a given sample is part of a given pedigree versus the null hypothesis

of a random sample has been extensively studied (Olaisen et al.,
1997), the inference problem of matching many pedigrees

against many samples has not. Specialized software tools have

been developed for large scale mass disaster identification (Cash

et al., 2003) including the use of mitochondrial DNA (mtDNA) and

single nucleotide polymorphism (SNP), but the matching algo-

rithms utilized only rank the likely samples for each victim, and

rank the likely victims for each sample. The complex interactions

of all family evidence and all samples are not explored, and a great

amount of expert involvement is still required. Moreover there

is currently no systematic solution that addresses all the complicat-

ing factors: body part clustering, arbitrary pedigrees and their

vetting, experimental genotyping error for the samples, partial

genotypes due to heat and pressure damage of the DNA, and

confidence of a cluster to family match based on other likely and�To whom correspondence should be addressed.
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unlikely family. This paper presents an architecture for the problem

and a probabilistic framework that incorporates these uncertainties

and scales to the required problem sizes.

We consider the following problem. We are given N family

pedigrees for which the genotypes for some members are known,

and the (potentially partial) genotypes of M samples belonging to

the victims of a mass disaster. The problem is to match, with high

confidence, the samples to the variable nodes (the purported victim

reported by the family) of the pedigrees. Furthermore, we address

how to screen out unambiguous matching outcomes and extract the

truly ambiguous cases that merit costly personalized forensic

investigation.

We approach the problem in two phases. First the samples

are clustered into groups that have the same genotype. This reduces

the problem of matching M samples to N pedigrees, to a smaller one

of matching J � M sample clusters to N pedigrees. During

clustering possible errors in the STR data must be considered,

especially when the DNA is degraded or when thousands of geno-

types have been collected. We include a model for the types of

errors that can occur in our probabilistic framework. In second

phase, the cluster samples are matched to the variable nodes in

the pedigrees. Forensic conclusions must be satisfactory from a

legal perspective, as the purpose is to confirm the death of the

victim, to return the remains to the families for closure, and in

some cases to identify some of the victims as the perpetrators

(in the case of terrorist acts). Therefore one can only make con-

clusions if there is a very small probability, typically 10�6 or

smaller, of being wrong. We present a method to calculate the

confidence of a certain match considering its likelihood ratio and

other competitors for the slot. Then a forensically impossible match

can be removed with high confidence.

Due to high confidentiality in disaster DNA data, simulation

experiment is commonly performed so that true identity is

known. We run three experiments with different simulation settings,

and show that our algorithm is robust even with a lot of missing

information and noise.

2 PRELIMINARIES

Consider M forensic samples from a mass disaster scene. Let s1,

s2,. . .sM denote the set of sample genetic states (to be specified

shortly) retrieved from the M DNA samples, each from one of

the forensic samples. Suppose there are N families that have

filed missing person reports regarding this case (for presentation

simplicity, we assume each family reports only one missing person,

although generalization to multiple missing persons is feasible with

our approach presented in the following), and have donated DNA

samples as genetic references for victim identification. Let f1, f2 . . .
fN denote the set of familial genetic states (defined in the sequel)

obtained from these families.

Typically, body remains from a mass disaster and samples from

donors are genetically characterized by a standard profile of K
microsatellite markers. Each allele of such a marker corresponds

to a numerical (in fact, discreet) reading from an electrophoresis

gel; formally, we define each marker to be a random variable, and

each of its alleles to be one of the realized states of this variable. For a

forensic sample j, its sample genetic state (SGS) sj
 (sj1, sj2, . . . , sjK)

denote the genotype profile of K markers, where sjk 
 ðs0
jk‚s1

jkÞ rep-

resents an unordered pair of alleles of marker k from sample j. There

are two alleles for each marker as human somatic cells are diploid,

that is, there is a copy of a chromosome inherited from each parent.

The superscripts ‘‘1’’ and ‘‘0’’ correspond to the parental origin of

the alleles, i.e., paternal and maternal. Similarly, for each donor, we

define dj 
 (dj1, dj2, . . . , djK) to be his/her genotype profile. Each

family, say family i, may have multiple donors related by a pedigree
Ti, therefore the familial genetic state (FGS) of a family with ni

donors is denoted by f i 
 fd1‚ . . . ‚dni
; Tig. In typical mass disaster

scenarios, multiple forensic samples (e.g., body remains) may belong

to the same victim; therefore the samples can be grouped into clus-

ters: i.e., s1, s2, . . .sM) c1, c2, . . .cJ, where cj ¼ ðcj1‚ . . . ‚cjmj
Þ and mj

denotes the size of cluster j (for simplicity, in the sequel we overload

the symbol cj to also represent the set of indices of SGSs belonging

to cluster j). The forensic inference problem we concern

here is that of determining the number of victims in the disaster,

and the correct mapping between the victims and the reporting fami-

lies.

In forensic applications, the microsatellite markers are chosen to

be independent from each other (e.g., on different chromosomes).

Via population censuring, the a priori probability (i.e., population

frequency) of every allele of a microsatellite marker can be deter-

mined. Thus, given no familial information, the probability of an

SGS of a forensic sample can be defined by the product of marker-

specific genotype probabilities (by assuming the alleles are random

samples from the population):

pðsjÞ ¼
YK
k¼1

pðsjkÞ‚ ð1Þ

where

pðsjkÞ ¼
ðpk‚ s0

jk
Þ2 ifs0

jk ¼ s1
jk

2pk‚ s0
jk
pk‚ s1

jk
ifs0

jk 6¼ s1
jk

‚

(
and pk,a denotes the population frequency of allele a of marker k.

The dependencies among donors from a family are captured by

a pedigree. In our current setting, we consider only sexual inheri-

tance among family members (i.e., donors plus the purported vic-

tim), and leave out nonsexual inheritance such as the mitochondria

inheritance (incorporating such information is feasible in our frame-

work and will be pursued in future research.) As illustrated in §3.4,

a pedigree can be used to define the probability of the FGS of a

family via a probabilistic graphical model (Pearl, 1988; Cowell

et al., 1999). Note that a pedigree contains members who are not

donors, nor victims, in order to specify the relations between the

donors and the victim. These members represent the hidden vari-

ables in the graphical model, and will be marginalized out when

computing the the FGS probability. For example, when the donor is

the victim’s brother, parents must appear on the pedigree even

though their DNA samples are not available. The pedigree may

have arbitrary structures, which are assumed to be correct after

passing the validity check.

3 BODY IDENTIFICATION

To formulate a likelihood-ratio matching criteria for body identi-

fication, let’s first assume that we have N reporting families and

J victims (J will be determined by sample clustering as described

in §3.2), and J ¼ N. That is, each family has exactly one victim

which corresponds to one cluster; and there is a one-to-one

Probabilistic forensic inference for mass disaster victim identification
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alignment between the family pedigrees and the sample clusters.

Our goal here is to find the optimal matching between {cj} and {fi}.

We will discuss how to relax the ‘‘J ¼ N’’ and ‘‘one-to-one corres-

pondence’’ assumptions later.

3.1 Matching via likelihood ratio

The matching between families and sample clusters can be repre-

sented by an N · N matching matrix z, of which an element zij

indicates the matching status between sample cluster j and family i:

zij ¼
1 if cj is assigned to f i

0 otherwise
:

�
In case of one-to-one matching, z must satisfy the following

constraints: XN
i¼1

zij ¼ 1 8j‚
XJ

j¼1

zij ¼ 1 8i: ð2Þ

Let p(cj j fi) denotes the conditional probability of a cluster given

a matching family, p(cj) denotes the marginal probability of a

cluster given no matching, and p(fi) denotes the marginal probabil-

ity of an FGS of family i. Assuming different families and different

sample clusters are genetically independent given their matching

configurations, the conditional probability of all FGSs {fj} and

clusters of SFSs {cj}, given the matching matrix z, is:

pðfcjg‚ff ig j zÞ ¼
Y

j

pðcj j ff ig‚zÞ
Y

i

pðf iÞ

¼
Y

ij

pðcj j f iÞzij
Y

j

pðcjÞ1�Sizij
Y

i

pðf iÞ

¼
Y

ij

pðcj j f iÞzij
Y

i

pðf iÞ:

Note that according to the constraints of one-to-one matching

in Eq. (2), we have 1 � Sizij ¼ 0.

The likelihood ratio of an overall matching specification z versus

a null hypothesis (that all families and samples are unrelated) is:

LRðzÞ ¼ pðfcjg‚ff ig j zÞ
pðfcjgÞpðff igÞ

¼
Q

j

Q
i pðcj j f iÞzijQ
j pðcjÞ

¼
Y

ij

pðcj j f iÞ
pðcjÞ

� �zij

:

ð3Þ

Let Lij 
 p(cj j fi)/p(cj), and take the logarithm of LR, we have

log LRðzÞ ¼
XJ

j¼1

XN
i¼1

zij logLij: ð4Þ

We postulate that an optimal body identification corresponds to a

z that maximizes the likelihood ratio of matching family-clusters

versus randomly generated {cj} and {fi}. In the sequel we describe

algorithms for identifying the sample clusters from the SGSs of

samples, and for solving the optimal matching.

3.2 Sample clustering

The first problem in body identification is to determine the total

number of victims in the case, and group body remains for each

victim. We determine whether two samples, si and sj, are from the

same victim or not based on the ratio of their joint probabilities

under the two circumstances:

LRðsi‚sjÞ ¼
pðsi‚sjÞ

pðsiÞpðsjÞ
¼ pðsi j sjÞ

pðsiÞ
¼
YK
k¼1

pðsik j sjkÞ
pðsikÞ

The conditional probability p(sik j sjk) of genotypes will be

referred to as an error model, which will be specified in §3.2.2.

3.2.1 The union-find clustering algorithm Let each sample in

the case be represented by a node, we can define an undirected

graph over all samples of interest. Two nodes are connected if

LR(si, sj) > �c, where �c is a user-specifiable threshold. As a common

practice in mass disaster forensic identification, any two samples

with more than two genotypes differences are immediately consid-

ered disconnected. Sample clustering is done by partition this graph

into connected subgraph, which can be implemented efficiently

using a union-find algorithm. We defines three operations:

make-set—creates a set, union—merges two sets, and find—

returns the host set of a node. The algorithm proceeds as follows:

(1) make-set creates a set for each node

(2) For two nodes of each edge, iterate the following

� find the corresponding sets,

� union the two sets (if they are connected by cross-set edges).

This process will converge to a clustering of samples, without a

prior specification the number of clusters, but a threshold control-

ling the tightness of the clusters. This is a desirable feature in

forensic inference because usually the legal agents would need

to leverage their forensic experience and determine tolerable risk

of legal decisions circumstantially. Once the clustering is complete,

we extract a consensus SGS ĉcj for each cluster cj based on a

maximum likelihood principle. That is, given the consensus ĉcj

that corresponds to the true genetic state (TGS) of a victim, the

conditional probability of all SGSs of this cluster (i.e., this victim) is

maximized:

ĉcj ¼ arg max
t

pðtÞ
Y
l2ci

pðsl j tÞ

¼ arg max
t

YK
k¼1

�
pðtkÞ

Y
l2cj

pðslk j tkÞ
�

‚

where the marker-specific conditional probability p(slk j tk) is given

by the error model described bellow.

3.2.2 The error model The error model defines the probability

distribution of a marker-specific sample genotype given the true

genotype, p(sk j tk). For two alleles a 6¼ b of any markers (i.e., locus),

we define five error types:

(1) Measurement error: Allele a is misread as a ± 0.1 by the

technician

(2) Calibration error: True genotype is (a, b) but calibration ladder

is off by one, so instruments shows (a + 1, b + 1) or (a�1, b�1)

(3) PCR Shutter error: True genotype is (a, a) but instruments

shows (a, a ± 1)

(4) Threshold error: True genotype is (a, b) but the b signal falls

below threshold, so instruments shows (a, a)

(5) Mutation error: Allele a mutates to allele b
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The probability of measurement, calibration, shutter, and thresh-

old error are constants, denoted as em, ec, es, et respectively. Based

on the stepwise mutational model (Valdes et al., 1993) for micro-

satellite, the probability of a mutation from a to b is p(b j a) ¼
0.5m(1 � a)ajb�aj�1, where m is the mutation rate (probability

of any mutation) and a is the factor by which mutation decreases

as distance increases. Although this mutation distribution is not

stationary (i.e. it does not ensure allele frequencies to be constant

over the generations), it is simple and commonly used in forensic

inference. Shutter, threshold, and calibration errors are defined on

genotypes, but measurement and mutation errors are defined on

alleles and have to consider two combinations, pðs0
k j t0

kÞpðs1
k j t1kÞ

and pðs0
k j t1

kÞpðs1
k j t0

kÞ. To summarize, for sk 6¼ tk, we have:

pðsk j tkÞ ¼

ec if s0
k � t0k ¼ s1

k � t1
k ¼ ±1

es if s0
k ¼ s1

k ¼ t0k‚ j s1
k � t1

k j ¼ 1

et if s0
k ¼ t0

k ¼ t1k
maxðqðs0

k ; t
0
kÞqðs1

k ; t
1
kÞ‚qðs0

k ; t
1
kÞqðs1

k ; t
0
kÞÞ

otherwise

‚

8>>>><>>>>:
where the allele error function q(b; a) is defined as

qðb; aÞ ¼
1 if b ¼ a
em if j b � a j ¼ 0:1
0:5mð1 � aÞa j b�a j �1 otherwise

:

8<:
The p(sk j tk) is a conditional probability that must sum to one.

Thus, we define the "consistence" probability p(sk ¼ tk j tk) as one

minus all error probabilities, which is large comparing to the overall

error probability (since the probabilities of each error type are

always set to be very small):

pðsk ¼ tk j tkÞ ¼ 1 �
X
sk 6¼tk

pðsk j tkÞ:

3.3 Pedigree inference

The conditional probability of a TGS given the FGS of a matching

family, p(ĉcj j fi), can be derived by pedigree inference. As discussed

in Lauritzen and Sheehan (2003), the joint distribution of {ĉcj, fi}

defined by an arbitrary pedigree can be specified by a probabilistic
graphical model (Pearl, 1988; Cowell et al., 1999), or more spe-

cifically, a Bayesian network (Pearl, 1986).

Recall that an FGS fi is a two-tuple of donor genotypes

fd1‚ . . . ‚dni
g and a familial pedigree Ti. Based on Ti, we can con-

struct a particular Bayesian network, known as allele network, or

gene pedigree (Lauritzen and Sheehan, 2003), for all the alleles

from all members (donor and non-donor) of the family and from the

purported victim. Assuming that markers are independent and fol-

lowing the same pedigree, we construct an allele network for a

single marker, say microsatellite k, as follows. For each individual,

we introduce two allelic nodes, u0
k and u1

k (which are unobserved),

denoting the maternal and paternal allele of this individual, respec-

tively; and a genotype node ug
k , which are observed for the donors

and hidden for the non-donors in the family. Since the genotype is

determined jointly by the two alleles, we have arcs pointing from

each allelic node to its corresponding genotype node (Fig. 1 and

Fig. 2). Due to Mendelian inheritance, the marker alleles in a dece-

dent is dependent on that in his/her direct parents, thus we also have

arcs pointing from the allelic nodes of a parent to the allelic nodes of

the children. Note that the allelic nodes of individuals that are

founder of the pedigree do not have any arcs pointing to them.

For those individuals who are donors in a family (i.e., their genotype

states are available from their DNA samples), we denote their

corresponding genotype nodes as observed variables, shown as

shaded circles. The genotype of the purported victim is also

observed via sample clustering, but need to be matched correctly.

In Fig. 1 and Fig. 2 we use circles with thick border to denote the

genotype of a candidate victim. Because markers are independent in

our case, each marker has a separate allele network with the same

structure but different donor evidence (i.e., marker-specific geno-

types). The joint probability of multiple markers is the product of all

locus-specific marker probabilities defined by the allele network.

Specifically, we use the following conditional distributions in our

allele network model:

(1) Founder distribution: pðue
kÞ ¼ pk‚ ue

k
, where e 2 {0, 1} repre-

sents the parental index of the allele, pk,a is the population

frequency of allele a.

(2) Meiosis distribution: For an allele te
k inherited from a parent

with genotype sk ¼ fu0
k‚u1

kg, we have

pðtek j u0
k‚u1

kÞ ¼
0:5 if tek ¼ u0

k or tek ¼ u1
k‚ and u0

k 6¼ u1
k‚

1 if tek ¼ u0
k‚ and u0

k ¼ u1
k‚

0 otherwise:

8<:
(3) Genotype distribution: pðug

k j u0
k‚u1

kÞ, which is specified by the

error model defined in §3.2.2.

Given the allele network, and the above conditional distributions

of a node in the network given its graph parents (not to be confused

with biological parents), one can write down the joint distribution

of all nodes, i.e. the victim and the FGS, as a product of all node-

specific conditionals following a natural node ordering (e.g., from

founder to decedents) (Pearl, 1988). From this joint probability

we can derive conditional probability p(xF j xE) of a set of variables

F ( V conditioned on a set of observed variables E ( V. F is called

Fig. 1. A simple pedigree and its allele network, shaded nodes as donors and

bold nodes as victim.

Fig. 2. A pedigree of three generations and its allele network.
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query nodes, E is called evidence nodes and V is the totality of all

nodes. The junction tree algorithm (Lauritzen and Spiegelhalter,

1988) can perform exact inference efficiently on a network of

reasonable size, which is sufficient for our purpose.

3.4 Viterbi match: optimal body identification via

linear programming

Given the conditional probabilities of TGSs of sample clusters and

the FGSs of their matching families, p(ĉcj j fi), now we are ready to

tackle the optimal matching between sample clusters and families.

Let us view the match matrix z as a representation of the edge

configuration of a bipartite graph in which the clusters {ĉcj} corre-

spond to nodes in one partite, and the families {ĉcj} correspond to the

nodes in the other partite. Associating each edge between {ĉcj} and fi

with a weight equal to log p(ĉcj j fi)/p(ĉcj), then the total cost of the

matching, LR(z), corresponds to the sum of weights of edges in the

bipartite graph. Finding an optimal matching is equivalent to the

classical maximum weight bipartite matching problem. We can

solve this bipartite matching problem by mixed integer linear

programming (LP):

max
XJ

j¼1

XN
i¼1

zij log Lij

zij 2 f0‚1g‚
XN
i¼1

zij ¼ 1 8j‚
XJ

j¼1

zij ¼ 1 8i:
ð5Þ

There are many efficient algorithms and implementation for

solving the above LP, and we use the open source Gnu Linear

Programming Kit (GLPK) (Makhorin, 2001). Note that this

approach gives a globally optimal mapping assignment between

(equal number of) clusters and samples, analogous to finding the

Viterbi path in hidden Markov model (but in this case an optimal

matrix). Thus, we call the resulting body identification results a

Viterbi match.

4 POSTERIOR MATCH AND MATCHING
DISAMBIGUATION

The one-to-one constrain assumed so far in our algorithm is not

always valid. In fact, since we cluster samples based on a tightness

threshold rather than a given fixed number of clusters, we can not

easily enforce N ¼ J. In practice, a cluster may be unmatched, i.e.

not assigned to any reporting family (e.g., due to poor sample

quality, or nonexistence of the true claiming family); conversely,

a family may also be unmatched (e.g., because no remain of the

victim is found).

We assume each sample either comes from one family, or it is a

random sample from the population. However, samples from one

victim may be clustered into multiple clusters due to heterogeneity

of the physical and measurement quality of different samples. To

accommodate these flexibilities, we relax the normality constraints

onthecolumnsandrowsofmatchingmatrixz, so thatmultipleclusters

can be matched to one family, or no clusters or family get matched:XN
i¼1

zij 2 f0‚1g 8j: ð6Þ

Furthermore, instead of seeking an overall estimate of z, we

would like to have a confidence measure of each of the judgments

(i.e., match or not-match) specified by z. From a forensic per-

spective, only matches with small enough probability should be

considered (forensically) impossible, and excluded from legal con-

sideration. In the sequel, we show how to calculate the posterior

probability of a matching given cluster and family data; and then we

show that, with this probability, how to screen out unambiguous

matching outcomes and extract the truly ambiguous cases that merit

costly personalized forensic investigation.

4.1 Posterior probability of a many-to-one matching

Now we derive the posterior probability of a matching given cluster

TGSs and family FGSs, p(z j {cj}, {fi}). According to the Bayes’

theorem, we have:

pðz j fcjg‚ff igÞ ¼
pðzÞpðfcjg‚ff ig j zÞ

pðfcjg‚ff igÞ
: ð7Þ

Since we do not know the matching a priori, p(z) can be taken as

uniform. Following the notations in §3.1, let p(fi) and p(ĉcj) denote

the marginal probabilities of a given family, and a cluster TGS,

respectively; and let p(ĉcj j fi) denote the conditional probability a

cluster TGS ĉcj given its matching FGS fi (i.e., zij¼ 1). Following the

new constrain given by Eq. (6), and since the cluster TGSs are

independent of each other given a matching z, the conditional

probability of each cluster TGS given a matching is:

pðĉcj j ff ig‚zÞ ¼
�
pðĉcj j f iÞ if 9i : zij ¼ 1

pðĉcjÞ if
P

lzlj ¼ 0
‚ ð8Þ

Therefore the joint conditional probability of the TGSs and FGSs

given z is

pðfĉcjg‚ff ig j zÞ
¼ pðfĉcjg j ff ig‚zÞpðff ig j zÞ
¼
Y

j

pðĉcj j ff ig‚zÞ
Y

i

pðf iÞ

¼
Y

ij

pðĉcj j f iÞzij
Y

j

pðĉcjÞ1�Slzlj
Y

i

pðf iÞ

¼
Y

ij

½pðĉcj j f iÞ
pðĉcjÞ

�zij
Y

j

pðĉcjÞ
Y

i

pðf iÞ

¼
Y

ij

Lzij

ij

Y
j

pðĉcjÞ
Y

i

pðf iÞ:

Thus, Eq. (7) reduces to:

pðz j fcjg‚ff igÞ ¼
1

A

Y
ij

Lzij

ij ‚ ð9Þ

where A is a normalizing constant summing over all z. Using the

fact that we are summing over all possible z under limitation (6),

we can derive normalizing constant in closed form:

A ¼
X

z

Y
j

Y
i

Lzij

ij ¼
Y

j

ð1þ
X

i

LijÞ: ð10Þ

According to Eqs. (10) and (9), now we have a close-form

expression for the posterior probability of a matching given the

clusters and families data:

pðz j fcjg‚ff igÞ ¼
Q

ij L
zij

ijQ
j ð1þ

P
i LijÞ

: ð11Þ
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4.2 Individual posterior match and matching

disambiguation

To qualify a candidate match, cj versus fi, we compute the posterior

probability of a match as follows. Let Zij denote the set of all matrix

z in which zij ¼ 1, i.e. all possible matching that assigns cj to fi:

Zij ¼ fz : zij ¼ 1g‚ ð12Þ

Similarly, let Zc
ij denote the complement of this set. Now the

posterior probability of an individual posterior match (IPM)

given TFSs of all samples clusters and FGSs of all reporting families

can be computed as:

pðzij ¼ 1 j fcmg‚ff lgÞ ¼
X
z2Zij

pðz j fcmg‚ff lgÞ ð13Þ

To disqualify a candidate pair, cj and fi, on the basis that they are

extremely unlikely to be a true match, we define our decoupling
confidence (DC) of this pair to be the posterior probability mass of

the set Zc
ij, which can be computed as follows:

pðz 2 Zc
ij j fcmg‚ff lgÞ

¼ 1 � pðz 2 Zij j fcmg‚ff lgÞ
¼ 1 �

X
z2Zij

pðz j fcmg‚ff lgÞ

¼ 1 �
X
z2Zij

1
A

Y
m

Y
l

Lzlm

lm

¼ 1 � 1
A Lij

Y
m 6¼j

�
1þ

X
l

Llm

�

¼ 1 �
Lij

Q
m 6¼j

�
1þ
X

l
Llm

�
Q

m

�
1þ
X

l
Llm

�
¼ 1 � Lij

1þ
X

l
Llm

:

Given the posterior probabilities of all IPMs, and the values of

all DCs, now we can not only extract maximum a posterior (MAP)

matches as in § 3, but also perform a matching disambiguation for

the given {cm} and {fl}. Essentially, for the later task we exclude a

candidate match with DC higher than a specifiable threshold 1� �m.

Different values can be assigned to �m based on the situation of the

disaster, and �m ¼ 10�6 is commonly used in mass disaster scenes,

meaning that by excluding the chosen pair of cluster TGS and

family FGS, in less than one out of a million cases we missed

a true match. If the DCs of all family-cluster pairs are higher

than 1 � �m, then we are confident the cluster is unmatched, i.e.

no family claims this victim.

After the aforementioned impossible-match exclusion, if there

is zero or only one possible family for a cluster, this cluster is

unambiguous and is considered determined. Otherwise, if a remain-

ing cluster-family pair passes an IPM threshold, it is still considered

a valid match. Finally, the clusters that still have ambiguity, i.e.,

with two or more possible families of IPM lower than the threshold,

will be reported to human expert for further forensic investigate.

5 EXPERIMENTS

Due to high confidentiality of forensic DNA fingerprint data, a

common practice in forensic science is to validate the models

and algorithms via computer simulation experiments, for which

the true matchings are known. Following convention, thirteen

FBI CODIS markers are used. In each experiment we simulate

N core families from a single population, by generating two random

parents based on population allele frequencies, and generating one

child from the parents. The victim is the child in three simulations,

and in two other simulations the victim is one of the parents. Allele

frequencies pk,a are assumed to be known and correct. Then we

generate several TGSs for each victim, using the error model with

different values of the parameters (to simulate different level of

noise). The number of SGSs generated from a victim is distributed

uniformly in an interval, [M(0), M(1)]. Throughout the experiments,

the parameters used for sample generation are intentionally set to

be different from the ones used in our later inference, so that our test

is unbiased and objective. For each marker, there is a probability of

eu that the genotype is missing. The simulating parameter eu is set

to be high, to represent that some samples are heavily degraded.

However we require that the total number of available markers to

be greater than 4 to make our cases forensically realistic—for situ-

ations where the recovered markers are less than or equal to 4, DNA

evidence are usually dismissed due to lack of reliability. We per-

formed five experiments with different simulating parameters, as

described below:

(1) N ¼ 100, [M(0), M(1)] ¼ [3,7], so on average 500 samples.

Victim is the child, and donors are the two parents. Simulation

parameters are eu ¼ 1/10, em ¼ ec ¼0.001, es ¼ et ¼ 0.004.

(2) A noisier setting, N¼ 100, [M(0), M(1)]¼ [3, 7], so on average

500 samples. Victim is one of the parents, and donors are the

child and the other parent. Simulation parameters are eu¼ 1/4,

em ¼ ec ¼ 0.001, es ¼ et ¼ 0.004.

(3) Similar to simulation 2 but with even more noise: N ¼ 100,

[M(0), M(1)] ¼ [1, 9], so on average still 500 samples, but the

cluster sizes vary more. The values of the simulation para-

meters are now higher, eu ¼ 1/3, em ¼ ec ¼ 0.002, es ¼
et ¼ 0.008.

(4) Similar to simulation 1 but contains 500 families and on

average 2500 samples (1,250,000 potential matches).

(5) Similar to simulation 1 but contains 1000 families and on

average 5000 samples (5,000,000 potential matches).

The parameters used during computational inference in all four

experiments are the same: em ¼ 0.00025, ec ¼ 0.00025, es ¼ 0.001,

et ¼ 0.001, which may be different from the parameters for sample

simulation. The clustering LR threshold is �c ¼ 500. All experi-

ments are repeated 9 times and their results are averaged.

5.1 Results on optimal body identification

Since our clustering is stringent, the number of resulting clusters is

always greater or equal to the number of families (N � J), and the

assumption of one-to-one mapping behind the Viterbi matching via

LP no longer holds. We can still apply LP by enforcing the same

optimization and constraint terms in Eq. (5), which means we still

require one matching family for each cluster and one matching

cluster for each family, but some clusters may be unmatched.

We perform optimal body identification using Viterbi matching

via LP and MAP matching. We measure the performance by aver-

age false-negative rate (FN) and false-positive rate (FP), where FN

is the ratio of undiscovered true matches to all true matches, and FP
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is the ratio of incorrect predictions to all predictions. The results are

shown in Table 1.

Overall, LP has low FP, but the FN is very high, mainly due to

incorrectness of the one-to-one assumption in the model. MAP has

slightly higher FP, but the FN is much lower. In simulation 1, MAP

has zero FN and FP. Overall, both algorithms have good perfor-

mance, even in the presence of noise and incomplete information.

We are not aware of existence of any algorithm or software for this

kind of forensic task in earlier and current literature.

5.2 Results on matching disambiguation

In a matching disambiguation task, our goal is to reduce as much as

possible the amount of human effort in forensic inference by remove

impossible cluster-family matches and high-confidence matches

from a given mass disaster case. In this section, we compare the

disambiguation results using the individual posterior match method

with the ones using a conventional approach that excludes a can-

didate match by thresholding the likelihood ratio, e.g., a candidate

match from cj to fi is excluded (i.e., deemed impossible) if Lij <
�m ¼ 10�6. Such threshold means that the relative probability of a

cluster-family match is only 10�6 compared to an alliterative

hypothesis that they are unrelated.

We found that the accuracy of disambiguation via the posterior

methods is significantly better than that of the conventional LR

thresholding approach, as shown in Table 2. The threshold �m is

set to be 10�6 in both algorithms. In our experiments, the accuracies

are measured by: (1) the average percentage of remaining ambigu-

ous clusters; (2) the average percentage of remaining ambiguous

matching families for each cluster; and (3) the ratio of ambiguous

family-cluster matches over all candidate matches. After applying

the posterior match disambiguation algorithm, the remaining

ambiguous clusters are almost always single samples. On average,

the 500 samples were reduced to only 1, 5, and 13 ambiguous

samples, in simulation 1, 2, and 3, respectively; and each ambiguous

cluster has 6, 8, and 10 ambiguous candidate matching families,

respectively. In simulation 4, 2500 samples and 500 families were

reduced to 5 samples, each having 21 candidate families. In simu-

lation 5, 5000 samples and 1000 families were reduced to 6 samples,

each having 33 candidate families. Under the same noise level,

larger sample size results in better reduction rate. The results of

LR thresholding is generally much worse, about 3 to 12 fold

increase in cluster ambiguity, and 3 to 5 fold increase in overall

ambiguity.

A close examination of our results showed that these ambiguities

all occurred in samples with severely degraded markers, typically

with only 5 of the 13 marker readable. Under these circumstances,

a family becomes a candidate match to a sample even when only

3 of the markers are compatible with that of the samples within an

error range. In practice, such genetic samples would automatically

be ruled legally insubstantiative even before computational forensic

inference is conducted, and would require additional forensic evi-

dence. Thus, our disambiguation results presented above is in fact a

worst-case result, and the actual rate of disambiguation in real life

can be much better if we are willing to insist on more stringent

requirement for the quality of the DNA samples (e.g., by requiring

more than half of the markers can be clearly typed). It is noteworthy

that a domain expert does not need to examine the ambiguous

families of each cluster one by one. An expert can determine the

true family from evidences other than DNA, or determine the

sample as unidentifiable, or repeat the DNA sampling.

5.3 Analysis of disambiguation threshold

The major difference between the posterior disambiguation and

the LR-based method is that posterior disambiguation relates the

LRs of all possible families versus a candidate cluster when infer-

ring about each single matching. That is, for one cluster, if several

likely matching families already exist, other families with lower

LRs will be considered less likely, whereas in the conventional

LR-based disambiguation, each candidate matching is assessed

independent of other candidates. We illustrate this difference in

disambiguation criteria in Figure 3. The histogram of all the log

LR of simulation 1 and 2 is shown in Figure 3A and 3C. For the log

LR of all possible families corresponding to a well-typed (i.e., with

most markers measurable) cluster, as shown in Figure 3B and

3E, usually there are only a few (in this case, only one) candidate

matches having LR above 10�6, so the two methods make little

(or no) difference because of nearly inexistence of between-match

influences. However, for a degraded cluster illustrated in Figure 3C

and 3F, there are many candidate matches with large LRs and

they influence each other. Consequently the disambiguation via

posterior inference tends to assess other candidates to be less

likely than would have been suggested by the LRs alone. This

effectively results in a criterion more stringent than 10�6. The

LR thresholding approach, on the other hand, still use the same

threshold on LR. As shown in Figure 3C and 3F, the posterior match

Table 1. Optimal body identification performance of LP and MAP

LP MAP

Sim FN FP FN FP

1 0.0109 0.0 0.0 0.0

2 0.0130 0.0 0.0043 0.0043

3 0.0567 0.0112 0.0225 0.0225

4 0.0099 0.0004 0.0020 0.0020

5 0.0073 0.0002 0.0021 0.0021

Comparison of average false-negative (FN) and false-positive (FP) rate of LP and MAP

algorithm. LP denotes the Viterbi match via LP based on one-to-one mapping assumption

in § 3.4, and MAP denotes the MAP match based on many-to-one mapping in § 4.2.

Table 2. Comparison of disambiguation by posterior threshold and by

LR threshold

Posterior LR thresholding

Sim Clusters Families Matches Clusters Families Matches

1 0.01 0.06 0.0007 0.03 0.07 0.0019

2 0.04 0.08 0.0034 0.48 0.04 0.0190

3 0.12 0.10 0.0119 0.53 0.07 0.0371

4 0.01 0.04 0.0004 0.08 0.02 0.0013

5 0.01 0.03 0.0002 0.14 0.01 0.0010

Results of disambiguation by posterior and LR threshold. ‘‘Clusters’’ denote the average

percentage of remaining ambiguous clusters. ‘‘Families’’ denote the percentage of

ambiguous candidate matching families for each of these clusters. ‘‘Matches’’ denotes

the ratio of ambiguous family-cluster matches over all possible matches. Parameter

settings of the three simulations are described in 5.
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method can reduces the ambiguity by a half or even more for

degraded clusters.

In traditional forensic identification cases, which do not deal

with DNA sample clustering but consider mostly high-quality

anonymous samples, the LR of the correct identification tends to

be very high, and there is usually no ambiguity. To see the differ-

ence in a mass disaster case, it is instructive to take a close look

at the dataset and the ambiguous clusters and families reported by

our algorithm. When there are fewer than 7 markers in a sample,

typically there are indeed many ambiguous family pedigrees that

cannot be excluded from a forensic perspective. For example, con-

sider the highly degraded samples, of which an example is shown

in Table 3. Typically such samples can have multiples plausible

matching families, and the matches listed in Table 3 are only a

few of all the likely matches. The ambiguity problem become very

serious when the quality of the samples gets really poor, e.g., with

fewer than 5 usable markers available. Essentially, the evidence

become not enough for body identification—given only three

or four markers, there could be too many perfect matches. In

this case, the power of any computational and/or manual forensic

inference diminishes, and we must seek additional evidence. We

discuss some of the options in the next section.

6 DISCUSSION

Extending our probabilistic forensic inference methods to include

other evidence is straightforward. For example, sometimes, in the

forensic samples there also exist sequence data from the two seg-

ments of the hyper-variable control regions (e.g., regions 16,024 to

16,365 and 73 to 340) of the 16,569bp human mitochondria DNA

(mtDNA). Because mtDNA has far more copies than the genome,

they are often sequenceable when the genome is degraded and not

sequenceable. Inheritance of mtDNA is maternal only, so there is

much less uncertainty. But the mtDNA is less variable compared to

microsatellites in genomic DNA. For example, while there are in

principle 10 or more possible SNP differences in the mtDNA

between any two individuals, a match is not conclusive due to

high degeneracy of these polymorphism in human population.

For example, about 7% of all Caucasian males have the same

mtDNA sequence. Nevertheless, mtDNA can still be used to elimi-

nate impossible matches, i.e., we can remove cluster-family

matches with inconsistent mtDNA, and further reduce ambiguity.

Occasionally, there will also be alleged direct sample evidence

for a victim from a personal effect, such as a comb or tooth brush, in

which case the genotype is available for the victim in the relevant

family pedigree. Similarly, other factors like gender and blood type

can be easily included using probabilistic rules.

In mass disaster scenes it is important to validate pedigree struc-

ture and donor evidence. For example, there may be an error in some

donor’s genotype, making it inconsistent with other donors’ geno-

type. There is also the rather delicate issue that sometimes

paternity or other blood relationships are not true. This kind of

error can be detected by calculating the marginal probability of

the evidence based on the allele network model. Families with

probabilities under a threshold can be picked out and given to

experts for examination. A family may have several victims in a

mass disaster site. In this case one can introduce duplicated pedi-

grees one for each alleged victims. Each pedigree has the same

structure and donor genotypes, but has different victim node.

One must be careful about now the incorrectness of independence

assumption for all pedigrees and for all the victim samples. For

example, if a father and his son are both victims, their genotypes are

not independent. This could slightly complicate the probabilistic

inference computation for LR-based Viterbi match and posterior

match.

Finally, it is noteworthy that, although in current forensic

applications, genetic markers are usually chosen as independent
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Fig. 3. The histogram of log likelihood ratio of simulation 1 and 2. A–C is

based on simulation 1 and D–F is based on simulation 2. The x-axis is

common logarithm of likelihood ratio, and the y-axis is number of families

or matches. Vertical blue solid line denotes 10�6 threshold, and red dotted line

denotes the effective threshold of disambiguation corresponding to the poster-

ior match criteria. Specifically, we have: A. Distribution of all sample clusters

of simulation 1. B. LR distribution of a well-typed cluster of simulation 1.

C. LR distribution of a degraded cluster of simulation 1. D–F. The LR

distributions of all sample clusters, a normal cluster, and a degraded cluster,

respectively, in simulation 2.

Table 3. Case study of a highly degraded sample

Errors Log LR Description THO1 D7S820 VWA

Sample (7,8) (8,11) (14,15)

0 1.70 True mate (6,9) (10,11) (13,15)

True child (8,9) (8,10) (13,15)

0 1.00 Mate (6,7) (10,11) (15,17)

Child (7,8) (11,11) (15,17)

1 �1.66 Mate (7,9) (9,10) (18,18)

Child (6m,9) (10,11) (15,18)

2 �4.12 Mate (9,9.3) (8,11) (17,18)

Child (7,9) (8,9s) (18,18t)

A highly degraded sample of which three typed markers are shown. THO1, D7S820, and

VWA are three markers in the CODIS system. The symbols as, at, amn denotes shutter,

threshold, mutation error respectively. All the pedigrees have one of the parents as the

victim and the other parent and a child as the donors. Among candidate families with high

LR, four representative matches are listed here. Note that many different combinations

are qualified for a match.
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(e.g. the thirteen CODIS markers reside on different chromosomes),

our probabilistic framework presented in this paper does not rely

on the assumption that markers are independent. In extremely

degraded disaster scenes, using single nucleotide polymorphism

(SNP) for identification may be helpful (Cash et al., 2003); and

for SNPs with high linkage disequilibrium, the markers are no

longer independent. In such cases we can create an allele network

with linkage probability, by adding a meiosis variable which cou-

ples different markers (Lauritzen and Sheehan, 2003). Under such

circumstances, the allele network will become more complex and

approximate inference or sampling may be necessary (Jordan et al.,
1999; Xing et al., 2003).

In conclusion, we have presented a probabilistic modeling

and inference framework for mass disaster victim identification.

We expect that this framework can be easily generalized to handle

more complicated forensic inference problems, and leverage richer

forensic evidence or expert knowledge. It offers a promising

platform to develop automatic expert system for a wide-range of

forensic and genetic inference applications.
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ABSTRACT

An important but difficult problem in proteomics is the identification

of post-translational modifications (PTMs) in a protein. In general,

the process of PTM identification by aligning experimental spectra

with theoretical spectra from peptides in a peptide database is very

time consuming and may lead to high false positive rate. In this

paper, we introduce a new approach that is both efficient and

effective for blind PTM identification. Our work consists of the following

phases. First, we develop a novel tree decomposition based algorithm

that can efficiently generate peptide sequence tags (PSTs) from an

extended spectrum graph. Sequence tags are selected from all

maximum weighted antisymmetric paths in the graph and their reliab-

ilities are evaluated with a score function. An efficient deterministic

finite automaton (DFA) based model is then developed to search a

peptide database for candidate peptides by using the generated

sequence tags.Finally, a point processmodel—anefficient blind search

approach for PTM identification, is applied to report the correct peptide

and PTMs if there are any. Our tests on 2657 experimental tandem

mass spectra and 2620 experimental spectra with one artificially

added PTM show that, in addition to high efficiency, our ab-initio

sequence tag selection algorithm achieves better or comparable

accuracy to other approaches. Database search results show that

the sequence tags of lengths 3 and 4 filter out more than 98.3%

and 99.8% peptides respectively when applied to a yeast peptide

database. With the dramatically reduced search space, the point pro-

cess model achieves significant improvement in accuracy as well.

Availability: The software is available upon request.

Contact: {chunmei,cai}@cs.uga.edu

1 INTRODUCTION

It is a challenging problem to determine the amino acid sequence

of a protein peptide from a tandem mass spectrum. The problem

becomes more difficult when the spectrum contains post-

translational modifications (PTMs). Existing computational meth-

odologies for solving this problem can be classified into two major

categories: database search based approaches and de novo peptide

sequencing. Database search based tools such as SEQUEST (Eng

et al., 1994) and Mascot (Perkins et al., 1999) compare a query

spectrum with spectra from peptide sequences in a database and

output those with high correlation scores as sequencing candidates.

When the query spectrum contains PTMs, it becomes very difficult

to select the correct peptide sequence since calculation becomes

prohibitively slow, due to the enumeration and scoring of all pos-

sible modifications for each peptide from the database. In contrast,

de novo sequencing methods (Chen et al., 2001; Dancik et al., 1999;

Fernandez et al., 1995; Han et al., 2005; Hines et al., 1992; Liu

et al., 2006; Ma et al., 2003; Searle et al., 2004; Taylor et al., 2001;

Yan et al., 2005) aim to infer a peptide sequence from its spectrum

directly without looking up a protein database. However, the accur-

acy of de novo sequencing is highly sensitive to the quality of the

input spectrum. Usually it cannot infer a full length peptide

sequence due to missing peaks, which consequently limits its

application in practice.

Most of existing approaches (Perkins et al., 1999; Tanner et al.,
2005; Wilkins et al., 1999; Yates et al., 1995) for identifying PTMs

assume a limited set of modification types. These modification

types can be modeled with pseudo amino acids; approaches develo-

ped for spectra free of PTMs can thus be directly applied to those

with PTMs. However, spectra with unknown types of modifications

may be erroneously processed with this method. Recently, a few

approaches have been proposed for blind PTM identification (Tsur

et al., 2005; Yan et al., 2006). In particular, (Tsur et al., 2005)

proposes a dynamic programming algorithm to solve this problem.

Alternatively, (Yan et al., 2006) introduces a point process model to

process a spectrum, in which all possible optimal alignments

between two spectra are obtained feasibly by computing the cor-

relation of their corresponding processes. Both approaches are

effective and able to detect unknown types of modifications. How-

ever, due to the large size of the search space, the optimal spectral

alignment may be very time consuming and both approaches may

suffer high false positive rate and computing inefficiency.

Recently, the idea of database filtration based on peptide

sequence tags has been introduced to speed up peptide database

search (Frank et al., 2005a; Tabb et al., 2003). For example,

GutenTag (Tabb et al., 2003), which is based on a fragmentation

model, generates many short sequence tags that are possibly con-

tained in the peptide for a spectrum and compares the spectrum with

ones from peptide sequences in a database that contain at least one

of the selected tags. PepNovo (Frank et al., 2005a, b) evaluates the

reliability of sequence tags on de novo sequencing results with a

machine learning based approach and uses high reliable sequence

tags to filter out most of the peptide sequences in a peptide database.

With the reduced search space, the correct peptides can thus be�To whom correspondence should be addressed.
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identified efficiently with the conventional database search

methods. Apparently, the methodology of combing de novo
peptide sequencing and database search can dramatically improve

the efficiency of peptide identification without sacrificing too

much sensitivity. It thus may represent a promising approach for

rapid and reliable peptide identification. However, the presence of

PTMs significantly increases the difficulty of both de novo
sequencing and database search. It is unclear what performance

of these tools could be for generating correct peptide sequence

tags and further finding out the correct PTMs through database

search, in the presence of PTMs.

In this paper, we introduce an ab initio approach to sequence tag

selection, which when further combines with the point process

model (Yan et al., 2006) yields an efficient and accurate method

for blind PTM identification. We have observed from our previous

work (Liu et al., 2006) that the sequence tags can be selected from

the maximum weighted antisymmetric path in a spectrum graph.

Due to missing peaks or the shift of peaks in a spectrum that

contains PTMs, a de novo sequencing algorithm may not be able

to find a fully connected antisymmetric path that explains the spec-

trum. Nevertheless, it is possible to find all maximum weighted

antisymmetric paths between certain pairs of vertices in the spec-

trum graph to obtain partial knowledge of the amino acid sequence

of the spectrum. To efficiently implement this idea, we propose a

novel tree decomposition based algorithm that can efficiently

and effectively find all maximum weighted antisymmetric paths

in a spectrum graph. We use the notion of extended spectrum
graph that contains additional edges to describe the relationships

between pairs of complementary vertices. Such a graph can deal

with spectra with the presence of both b-ions and y-ions and ensure

the antisymmetric property of the paths.

The algorithm has two major components. The fundamental

component computes the maximum weighted antisymmetric

paths connecting each pair of vertices contained in each tree

node from a tree decomposition of the spectrum graph. Different

tree decompositions are then generated from the fundamental com-

ponent to find all maximum weighted antisymmetric paths between

certain pairs of vertices. The time complexity of the algorithm is

O(6tn(n + m)), where t is the tree width of the tree decomposition

and is usually small, n is the number of peaks in the spectrum, and

m is the number of maximum weighted antisymmetric paths.

Sequence tags (Frank et al., 2005a, b) are then selected from all

maximum weighted antisymmetric paths and their reliabilities are

evaluated with a score function.

We implemented our algorithm and applied it to PTM identifi-

cations. We first generated sequence tags from 2657 experimental

yeast spectra downloaded from the Open Proteomics Database

(OPD) (Prince et al., 2004). We compared the accuracy of the

sequence tags with those generated by the popular tool PepNovo.

Our experiments shows that our ab initio tag generation algorithm is

significantly faster than PepNovo with comparable accuracies. We

then manually added PTMs to 2620 spectra from the same data

set and used our program to generate sequence tags and filter a yeast

peptide database with a deterministic finite automaton (DFA) based

model. The point process blind search model was then applied to

the selected candidate peptides to identify the PTMs. Our experi-

ments on the spectra with PTMs show that, compared with the

results without database filtration, this combined approach can

achieve significantly improved accuracy with 10 times and 80

times of speedups using the filtration of sequence tags of lengths

3 and 4 respectively.

2 MODELS AND ALGORITHMS

2.1 Extended spectrum graph and sequence tag

selection problem

Although a spectrum may contain a few different types of ions,

there are two mostly common ion types: N-terminal ions and

C-terminal ions. For simplicity, we use b-ions and y-ions to

represent them respectively. We assume S ¼ {s1, s2, . . . , sm} to

be an experimental spectrum with complementary ions added if

they are missing in the original experimental spectra. The possible

mass values for the partial peptide for a peak si in the spectrum S
form a set Vi ¼ {si + d1, si + d2, . . . , si + dk}, where dk is the

mass offset of ion i in the form of ion type k. Each of the mass

values in Vi can be represented with a graph vertex and a vertex set

V ¼ fv0g [ [m
i¼1 Vi [ fvng can thus be generated for S, where v0

and un are two additional vertices with zero mass and the parent

peptide mass respectively. A spectrum graph (Dancik et al., 1999)

can be constructed upon V by connecting a directed edge

from u to v if the mass difference between them is the

mass of a single amino acid and the mass of u is less than that

of v. u is an in-neighbor of vertex v and v is an out-neighbor of

vertex u.

Based on a stochastic model for ions and peaks in a

spectrum, vertices and edges in a spectrum graph can be assigned

weights. Traditional approaches for de novo sequencing determine the

amino acid sequence of a peptide by finding the maximum weighted

path in the spectrum graph that connects v0 and vn. However, since a

valid sequencing path only contains either b-ions or y-ions, it is

necessary to identify pairs of vertices that cannot appear in the

same sequencing path. A pair of vertices are complementary if a

sequencing path can contain at most one of them. A path in a spectrum

graph is antisymmetric if it contains at most one vertex from each pair

of complementary vertices. A valid sequencing path is thus the

maximum weighted antisymmetric path that connects v0 and vn. To

address this issue, in addition to the directed edges in a spectrum

graph, we also connect complementary vertices in the spectrum

graph with undirected edges, yielding an extended spectrum graph
(Liu et al., 2006). We show later in the paper that these undirected

edges are important to ensure the antisymmetry of the paths found by

our algorithm. Figure 1(a) through (c) show the spectrum of a short

peptide and an de novo antisymmetric sequencing path contained in

the corresponding extended spectrum graph.

For most of the spectra that contain PTMs, an antisymmetric

path that connects v0 and vn may not exist in each of the

corresponding spectrum graphs. As an example, Figure 1(b)(d)

show a shift of peaks and the spectrum graph of the peptide with

a PTM on one of its amino acids. However, we observe that parts

of the amino acid sequence of the peptide can be obtained from

maximum weighted antisymmetric paths between certain pairs of

vertices. A path P in a spectrum graph is maximum weighted
ntisymmetric if it satisfies the following constraints:

(1) P is antisymmetric,

(2) if u, v are the two ends of the path, any antisymmetric path P1

that connects u and v has a weight no larger than that of P,

C.Liu et al.
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(3) there does not exist an antisymmetric path P2 in the graph such

that P � P2.

2.2 Tree decompositions and path finding

DEFINITION 2.1 (Robertson et al., 1986) Let G¼ (V, E) be a graph,

where V is the set of vertices in G, E denotes the set of edges in G.
Pair (T, X) is a tree decomposition of graph italic G if it satisfies the
following conditions:

(1) T ¼ (I, F) defines a tree, the sets of vertices and edges in T
are I and F respectively,

(2) X ¼ {Xi j i2 I, Xi � V}, and 8 u 2 V, 9 i 2 I such that u 2 Xi,

(3) 8(u, v) 2 E, 9 i 2 I such that u 2 Xi and v 2 Xi,

(4) 8i, j, k 2 I, if k is on the path that connects i and j in tree T,

then Xi \ Xj � Xk.

The tree width of the tree decomposition (T, X) is defined as
maxi2I jXi j � 1. The tree width of the graph G is the minimum
tree width over all possible tree decompositions of G.

As shown in Figure 2(a)(b), tree decomposition provides a

new topological view on a graph. Based on a tree decomposition

of a graph, many NP-hard optimization problems can be efficiently

solved with a generic dynamic programming framework (Arnborg

et al., 1989). In this framework, partial optimal solutions on sub-

graphs induced by vertices contained in subtrees can be extended

and combined to obtain optimal solutions for larger subgraphs. In

particular, partial optimal solutions can be combined with an

exhaustive search performed only on vertices contained in a single

tree node. The computation time needed by such a dynamic pro-

gramming approach is thus dominantly determined by the tree width

of the tree decomposition. Our testing results on 2657 experimental

spectra show that the tree widths of extended spectrum graphs are

generally around 5, which is sufficiently small for designing an

efficient algorithm based on this framework.

The path-finding algorithm is based on the tree decompositions

of the extended spectrum graph. The core part of the algorithm

consists of two major components. In particular, in a given tree

decomposition, the fundamental component finds the maximum

weighted antisymmetric paths that connects each pair of the vertices

contained in each tree node. To find all maximum weighted anti-

symmetric paths connecting certain pairs of vertices in the graph,

the algorithm generates different tree decompositions and applies

the procedure of the fundamental component to each of them. The

overall time complexity of the algorithm is O(6tn(n + m)), where t is

the tree width, n is the number of vertices in the spectrum graph, and

m is the number of maximum weighted antisymmetric paths in the

spectrum graph.

2.2.1 The Fundamental Component The algorithm arbitrarily

selects a tree node as the root of a tree decomposition and maintains

a dynamic programming table for each tree node. It then proceeds

from leaves of the tree to the root to fill in all the dynamic pro-

gramming tables. The table for each tree node stores the weight of

the partial maximum weighted antisymmetric path connecting each

pair of vertices in the tree node.

For a tree node with t vertices, the dynamic programming

table contains 2t + 1 columns, of which the first t columns store

the selection of each vertex in the node to form a subpath and the

other t � 1 columns are used to store the connection state between

each pair of consecutive selected vertices in the tree node. Two

additional columns V and L store the valid bit and the maximum

weight of the partial antisymmetric path associated with a combina-

tion of selections and connection states in the same table entry

respectively.

The selection value of a vertex in a tree node is 1 if it is selected

to be in the partial optimal path and 0 otherwise. The value of a

connection state could be one of the integers in set {0, 1, . . . , l},

where l is the number of children of the tree node. The connection

state for a pair of consecutive selected vertices in the tree node is

0 if they are contiguous in the path and is i (i > 0) if the vertices on

the path between the pair of vertices are covered by the subtree

rooted at the ith child. The number of possible combinations of

selections and connection states can thus be up to (2(l + 1))t. How-

ever, since we can remove tree nodes with more than two children

by generating extra tree nodes, the table for a tree node with t
vertices may contain up to 6t entries. The valid bit for a given

entry is set to be 1 if there exists a partial antisymmetric path

that follows the combination of selections and connection states

in the entry.

To determine an entry in the table for a leaf node, the

algorithm exhaustively enumerates and directly computes the valid-

ity and the maximum path weight for every possible combination of

Fig. 1. (a) A tandem mass spectrum for a short peptide AMRL; for simplicity,

only b and y-ions are included. (b) the spectrum for the same peptide, but with

a PTM on amino acid M. (c) The extended spectrum graph for the spectrum in

(a) and a longest antisymmetric sequencing path; dashed undirected edges

connect complementary vertices. (d) The extended spectrum graph for the

spectrum in (c), the original antisymmetric path for sequencing is discon-

nected due to the modification.

Fig. 2. (a) An example of a graph. (b) A tree decomposition for the

graph in (a).
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selections and connection states for vertices in the node. For an

internal node, the algorithm refers to the tables of its children to

determine the validity and the maximum path weight for each of

its table entry. Figure 3 provides an example for computing the

table entries for an internal node Xi. The computation time needed

by the algorithm is O(6tn), where t is the tree width of the tree

decomposition and n is the number of vertices in the graph. Due to

space constraint, we refer the reader to our previous paper (Liu

et al., 2006) for details.

2.2.2 Finding all maximum weighted antisymmetric paths The

fundamental component can only compute the maximum

antisymmetric paths between vertices that are included in at least

one tree node. Further processing is thus needed to find all max-

imum weighted antisymmetric paths in the spectrum graph. For

each vertex u in the spectrum graph, a new tree decomposition

can be constructed by including u in all the tree nodes in the original

tree decomposition. n different tree decompositions are thus

generated.

To guarantee that the paths found by the algorithm satisfy

the constraints of being maximum weighted antisymmetric, we

further modify the previously described fundamental component.

Specifically, as shown in Figure 3, one additional column E is added

to each dynamic programming table to indicate whether the

corresponding path can be extended to form an antisymmetric

path with a larger weight by adding one of the in-neighbors of u
to the path. This bit is set to be 1 if such an extension exists and

0 otherwise. The algorithm also sets the E bit to be 0 if the cor-

responding path for an entry does not start with u. This property for a

given entry can be obtained by combining the E bits of its descend-

ent entries with a direct inspection on vertices that are not included

in the descendent entries. In view of the fact that the number of in-

neighbors of u is bounded by 20, the aggregate computation time for

this additional checking is O(6tn).

Based on the E bit of an entry, we are able to select the antisym-

metric paths that start with u and cannot be extended with an in-

neighbor of u. However, it is possible that some of the maximum

antisymmetric paths can be extended from the other end of the

path. We thus create an array S of size n and initialize all its

elements to be zero. For any vertex v other than u in the spectrum

graph, we can obtain W (u, v), the weight of the maximum weighted

antisymmetric path that connects u and v. For each out-neighbor vt

of v, we obtain W (u, v, vt), the weight of the maximum weighted

antisymmetric path that passes through v and connects u and vt.

We then check whether W (u, v, vt) is equal to W (u, v) + w(v, vt) or

not, where w(v, vt) is the weight of the edge (v, vt). If it is the case

for one out-neighbor of v, we set S[v] to be 1, which suggests that

the maximum antisymmetric path between u and v is extendable.

The correctness of this operation is obvious since only in the

case where the path is extendable, we can have one out-neighbor

vt of v such that W(u, v, vt) ¼W(u, v) + w(v, vt). The aggregate time

for this operation is again O(6tn). We then apply the tracing

back procedure in the fundamental component to obtain all the

maximum weighted antisymmetric paths starting with u. Based

on the E bits and the array S, we can find all maximum weighted

antisymmetric paths from the n tree decompositions and the total

computation time is O(6tn(n + m)), where m is the total number

of maximum weighted antisymmetric paths. We thus have the

following theorem.

THEOREM 2.1. Given an extended spectrum graph G ¼ (V, E)
and a tree decomposition of G with tree width t, all maximum
weighted antisymmetric paths in G can be identified in time
O(6t jV j ( jV j + m)), where m is the total number of maximum
weighted antisymmetric paths in G.

2.3 Reliability of sequence tags

We used the scoring scheme proposed in (Dancik et al., 1999)

to assign weights to the vertices and edges in the extended

spectrum graphs. The overall reliability of a sequence tag ti was

considered as a linear combination of normalized reliabilities r1 (ti)
and r2 (ti) computed from the weights of the corresponding edges for

ti and an autocorrelation score developed in (Liu et al., 2005)

respectively. In particular, the reliability r(ti) of sequence tag ti is

rðtiÞ ¼ w1r1ðtiÞ + w2r2ðtiÞ ð1Þ

where r1(ti) and r2(ti) are computed with

r1ðtiÞ ¼
WðtiÞPq
l¼1 WðtlÞ

ð2Þ

r2ðtiÞ ¼
AðtiÞPq
l¼1 AðtlÞ

ð3Þ

where W (ti) is the sum of the weights of the edges that form ti in the

extended spectrum graph, q is the number of sequence tags, and A(ti)
is an autocorrelation score computed with

AðtiÞ ¼
X

k2PðtiÞ
I�ðkÞI�ðn � kÞ ð4Þ

where P(ti) is the set of peaks that form ti and I�(k) and I�(n� k) are

adjusted intensities of complementary peaks k and n � k in the

spectrum. Both r1 (ti) and r2 (ti) are obtained by normalizing W(ti)
and A(ti) over all sequence tags that are selected from the maximum

weighted antisymmetric paths.

2.4 Database filtration with sequence tags

From the generated peptide sequence tags, we introduced a determ-

inistic finite automaton (DFA) based model and used it to search a

Fig. 3. A tree decomposition and its corresponding dynamic programming

tables. The algorithm follows a bottom-up fashion starting with the leaf tree

nodes. When computing the dynamic programming tables for an internal node

Xi, the tables of its child nodes Xj and Xk need to be queried to compute the

validity (V), the maximum path weight (L) and the extendibility (E) of a given

entry in the table for Xi; vertex u is added to each tree bag to compute all the

maximum weighted antisymmetric paths that start with it.
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yeast peptide database which consists of 670,000 tryptically diges-

ted peptides (allowed up to 2 missing cleavages). Each amino acid

in the tags represents a state of the DFA. We added an additional

state as the start state. The accept states are the states that corres-

pond to the last amino acids in the tags. Upon reading the first amino

acid in a peptide sequence in the database, the DFA transfers from

the start state to an appropriate state that corresponds to the first

amino acid in a tag. The DFA then transfers from that state to next

appropriate state upon reading the following amino acid in the

peptide sequence. The procedure continues until the end of the

peptide sequence. The peptide reading always goes forwards in

the entire procedure. However, a trie based model (Frank et al.,
2005a) needs to go back to the head of the trie each time when a

substring of tag length in the peptide sequence has been examined. It

thus may need more computation time than our DFA based model.

2.5 PTM identification by point process blind search

We finally apply the point process model for peptide identification

and PTM search (Yan et al., 2006) on the candidate peptides after

filtration. This model is an efficient blind search approach that does

not require a list of pre-specified PTMs as input in advance. The

algorithm attempts to find a set of optimal mass shifts to maximize

the spectral alignment. Through one round of cross-correlation

calculation, it is able to obtain all possible mass shifts feasibly

(naturally this includes the optimal mass shifts). The computation

time is independent of the number of PTMs, which outperforms

most of the existing PTM identification tools whose computation

time grows exponentially with the number of PTMs.

3 EXPERIMENTS AND DISCUSSIONS

3.1 Datasets

We downloaded 2657 annotated yeast ion trap tandem mass spectra

from the Open Proteomics Database (OPD) (Prince et al., 2004).

These spectra were selected based on the criteria with +2 precursor

ion and Xcorr � 2.5 without PTMs. All the experimental mass

spectra were ion trap data having a relative low mass resolution.

We ran a data preprocessing procedure as described in (Frank et al.,
2005b) to remove isotopic peaks and tiny noise peaks. Due to the

shortage of reliably annotated spectra with PTMs in public domain,

we constructed 2620 modified ones from those spectra by artificially

adding one PTM from a common PTM pool to each spectrum. The

detailed procedure is referred to (Yan et al., 2006).

3.2 Tree widths for spectrum graphs

Computing the optimal tree decomposition for a given graph is an

NP-hard problem (Arnborg et al., 1987). A few efficient heuristics

(Bodlaender, 1991) have been developed to compute a tree decom-

position with small tree width for certain types of graphs. We used a

greedy fill-in heuristic (Bodlaender, 1991) to find tree decomposi-

tions for the spectrum graphs of the experimental spectra. Figure 4

shows the distribution of the tree widths of the 2657 spectrum

graphs. It can be clearly seen from the figure that the tree widths

of about 90% of the spectrum graphs are bounded by 6, which are

sufficiently small for developing an efficient tree decomposition

based algorithm.

3.3 Sequence tag generation

We used our program to generate sequence tags at different

lengths on the two datasets. We also ran the public available pro-

gram PepNovo on the same datasets to obtain sequence tags. We

then compared the generated tags with the sequencing results by

SEQUEST and obtained the percentages of correct tags at different

lengths for both of our program and PepNovo. Table 1 lists the

results of our experiments on the two datasets and the comparison

with PepNovo at different tag lengths. Our approach achieves

comparable performance to PepNovo and is more computationally

efficient (over 10 times faster than PepNovo at all different tag

lengths). More importantly, our approach is ab-initio and does

not require a training data set as PepNovo does. We believe further

improvements in accuracy can be achieved if a more sophisticated

model to evaluate the reliabilities of generated sequence tags is

applied in the future.

3.4 Blind PTM identification by database search

After candidate peptides are filtered out with the sequence tags,

our point process based blind search model is applied to evaluate

these candidate peptides for further peptide identification and PTM

detection. The results on 2620 modified spectra are listed in Table 2.

It can be seen that the sequence tags of lengths 3 and 4 are able to

Fig. 4. The tree widths of the extended spectrum graphs for 2657 experimental spectra; left: the distribution of the tree widths, right: the cumulative distribution of

the tree widths.
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filter out more than 98.3% and 99.8% peptides in the database

respectively, which consequently speeds up the calculations dra-

matically. In addition, with the reduced search space and enriched

signals of correct peptides, the accuracies of PTM identification by

database search are significantly improved with both sequence tags

of lengths 3 and 4. For example, with the filtration of tag length 3,

approximately 77% and 92% of spectra are identified correctly as

top 1 and within top 5 respectively, a significant improvement

compared to the corresponding accuracies of 60% and 81% without

database filtration. Increasing the tag length from 3 to 4 can further

speed up the PTM identification by approximately 8 times. How-

ever, a slight drop in the identification accuracy is observed in this

case due to the relative lower sensitivity of tag generation for tag

length 4.

4 CONCLUSIONS

In this paper, we develop a novel tree decomposition based

algorithm that can efficiently generate highly accurate sequence

tags and conduct efficient PTM identification by combining

sequence tag generation and database search. The algorithm models

a spectrum with its corresponding extended spectrum graph and can

find all maximum weighted antisymmetric paths in the spectrum

graph with tree width t in time O(6tn(n + m)), where n and m are the

number of vertices and the number of maximum weighted antisym-

metric paths in the graph, respectively. Sequence tags are then

selected from all the maximum weighted antisymmetric paths.

Our experiments show that this ab-initio approach can achieve

accuracy comparable to that of PepNovo in a significantly reduced

amount of computation time. More importantly, the sequence tags

can be used to filter a peptide database effectively and thus enable

the application of more accurate and sophisticated algorithms for

PTM identification. In particular, we have built a rigid framework to

conduct peptide identification and blind PTM search by combining

high quality sequence tag generation and efficient database search.

Experiments on spectra with PTMs show that this new approach can

generate highly accurate sequence tags and significantly improve

the accuracy of PTM identification by blind search.
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Ferńandez de Cossı́o,J., Gonzales,J. and Besada,V. (1995) A computer program to aid

the sequencing of peptides in collision-activated decomposition experiments.

CABIOS, 11 (4), 427–434.

Frank,A., Tanner,S. and Pevzner,P. (2005) Peptide Sequence Tags for Fast Database

Search in Mass-Spectrometry. Journal of Proteome Research, 4 (4), 1287–1295.

Frank,A. and Pevzner,P. (2005) PepNovo: De Novo Peptide Sequencing via

Probabilistic Network Modeling. Anal. Chem., 77 (4), 964–973.

Han,Y., Ma,B. and Zhang,K. (2005) SPIDER: Software for Protein Identification from

Sequence Tags Containing Sequencing Error. Journal of Bioinformatics and

Computational Biology, 3 (3), 697–716.

Hines,W.M., Falick,A.M., Burlingame,A.L. and Gibson,B.W. (1992) Pattern-based

algorithm for peptide sequencing from tandem high energy collision-induced

dissociation mass spectra. J. Am. Soc. Mass. Spectrom., 3, 326–336.

Liu,J., Ma,B. and Li,M. (2005) PRIMA: Peptide Robust Identification from MS/MS

Spectra. Proceedings of the Third Asia-Pacific Bioinformatics Conference,

181–190.

Liu,C., Song,Y., Yan,B., Xu,Y. and Cai,L. (2006) Fast De Novo Peptide Sequencing

and Spectral Alignment. Proceedings of the Pacific Symposium on Biocomputing

2006, 255–266.

Ma,B., Zhang,K., Hendrie,C., Liang,C., Li,M., Doherty-Kirby,A. and Lajoie,G. (2003)

PEAKS: Powerful Software for Peptide De Novo Sequencing by Tandem

Mass Spectrometry. Rapid Communication in Mass Spectrometry, 17 (20),

2337–2342.

Perkins,D.N., Pappin,D.J., Creasy,D.M. and Cottrell,J.S. (1999) Probability-based

Protein Identification by Searching Sequence Databases Using Mass Spectrometry

Data. Electrophoresis, 20 (18), 3551–3567.

Prince,J.T., Carlson,M.W., Wang,R., Lu,P. and Marcotte,E.M. (2004) The Need

for a Public Proteomics Repository. Nature Biotechnology, 22 (4), 471–472.

Robertson,N. and Seymour,P.D. (1986) Graph Minors II. Algorithmic aspects of tree-

width. Journal of Algorithms, 7, 309–322.

Searle,B.C., Dasari,S., Turner,M., Reddy,A.P., Choi,D., Wilmarth,P.A.,

McCormack,A.L., David,L.L. and Nagalla,S.R. (2004) High-Throughput

Identification of Proteins and Unanticipated Sequence Modifications Using a

Mass-Based Alignment Algorithm for MS/MS De Novo Sequencing Results.

Anal. Chem, 76 (8), 2220–30.

Tabb,D.L., Saraf,A. and Yates,J.R. (2003) GutenTag: High-Throughput Sequence

Tagging via an Empirically Derived Fragmentation Model. Analytical Chemistry,

75, 6415–6421.

Tanner,S., Shu,H., Frank,A., Wang,L.C., Zandi,E., Mumby,M., Pevzner,P.A. and

Bafna,V. (2005) InsPecT: Identification of Posttranslationally Modified Peptides

from Tandem Mass Spectra. Analytical Chemistry, 77 (14), 4626–4639.

Taylor,J.A. and Johnson,R.S. (2001) Implementation and uses of automated de novo

peptide sequencing by tandem mass spectrometry. Anal.Chem., 73 (11),

2594–2604.

Tsur,D., Tanner,S., Zandi,E., Bafna,V. and Pevzner,P. (2005) Identification of

Post-translational Modifications by Blind Search of Mass Spectra. Nature Biotech-

nology, 23 (12), 1562–1567.

Wilkins,M.R., Gasteiger,E., Gooley,A.A., Herbert,B.R., Molloy,M.P., Binz,P.A.,

Ou,K., Sanchez,J.C., Bairoch,A., Williams,K.L. and Hochstrasser,D.F. (1999)

High-throughput Mass Spectrometric Discovery of Protein Post-Translational

Modifications. Journal of Molecular Biology, 289 (3), 645–657.

Yan,B., Pan,C., Olman,V.N., Hettich,R.L. and Xu,Y. (2005) A Graph-Theoretic

Approach for the Separation of b and y Ions in Tandem Mass Spectrometry.

Bioinformatics, 21 (5), 563–574.

Yan,B., Zhou,T., Wang,P., Liu,Z., Emanuele II,V.A., Olman,V. and Xu,Y. (2006) A

Point-Process Model for Rapid Identification of Post-Translational Modifications.

Proceedings of 2006 Pacific Symposium on Biocomputing, 327–338.

Yates III,J.R., Eng,J.K. and McCormack,A.L. (1995) Mining Genomes: Correlating

Tandem Mass Spectra of Modified and Unmodified Peptides to Sequences in

Nucleotide Databases. Analytical Chemistry, 67 (18), 3202–3210.

Tag-based Blind PTM identification

e313



Vol. 22 no. 14 2006, pages e314–e322

doi:10.1093/bioinformatics/btl229BIOINFORMATICS

Identifying cycling genes by combining sequence homology and

expression data
Yong Lu1, Roni Rosenfeld1 and Ziv Bar-Joseph1,2,�
1School of Computer Science and 2Department of Biology, Carnegie Mellon University
5000 Forbes Ave. Pittsburgh, PA, 15213

ABSTRACT

Motivation: The expression of genes during the cell division process

has now been studied in many different species. An important goal of

these studies is to identify the set of cycling genes. To date, this was

done independently for each of the species studied. Due to noise and

other data analysis problems, accurately deriving a set of cycling genes

from expression data is a hard problem. This is especially true for some

of the multicellular organisms, including humans.

Results: Here we present the first algorithm that combines micro-

array expression data from multiple species for identifying cycling

genes. Our algorithm represents genes from multiple species as

nodes in a graph. Edges between genes represent sequence similarity.

Starting with the measured expression values for each species we

use Belief Propagation to determine a posterior score for genes. This

posterior isusedtodetermineanewsetofcyclinggenes foreachspecies.

We applied our algorithm to improve the identification of the set of

cell cycle genes in budding yeast and humans. As we show, by

incorporating sequence similarity information we were able to obtain

a more accurate set of genes compared to methods that rely on

expression data alone. Our method was especially successful for the

human dataset indicating that it can use a high quality dataset from

one species to overcome noise problems in another.

Availability: C implementation is available from the supporting

website: http://www.cs.cmu.edu/�lyongu/pub/cellcycle/
Contact: zivbj@cs.cmu.edu

1 INTRODUCTION

The cell cycle system has been studied using microarray expression

data in several species. These include humans (Whitfield et al.,
2002), budding and fission yeast (Spellman et al., 1998; Rustici

et al., 2004), plants (Menges et al., 2002) and bacteria (Laub et al.,
2000). One of the first questions researchers face when analyzing

such experiments is how to identify the set of cycling genes. Many

methods have been developed for identifying such genes in a single
species. These include methods that rely on Fourier transform

(Spellman et al., 1998; Wichert et al., 2004), sinusoids (Schliep

et al., 2003; Zhao et al., 2001), deconvolution (Bar-Joseph, 2004;

Lu et al., 2004) and methods that combine expression amplitude

with Fourier analysis (de Lichtenberg et al., 2005). All of the above

methods rely on thresholds and other parameters which are not

always easy to determine. Indeed, while these methods have

been successful for some species, their success varied depending

on the quality of the microarray data and the noise level (Shedden

and Cooper, 2002).

The recent expression profiling of the cell cycle system in fission

yeast provided a good opportunity for researchers to compare the set

of cycling genes in two closely related species (budding and fission

yeast). Surprisingly, the results indicated that cell cycle expression

is not well conserved among these two species. As Rustici et al.
(2004) write: ‘‘Our comparisons with budding yeast data revealed a
surprisingly small core set of genes that are periodically expressed
in both yeasts.’’ There could be many reasons for the disagreement

between the list of cycling genes in different species. One possibility

is that cell cycle expression is not well conserved (though cell cycle

function may still be conserved on the post-transcriptional, or pro-

tein, level). However, there may be other reasons for this discrep-

ancy. The different computational methods used to determine the

set of cycling genes, noise in the data and differences in the quality

of the data may result in one list being more accurate than the other.

In such cases it may be possible to rely on one species to improve

our detection of cycling genes in the other. This process may yield

higher quality lists for both species.

In this paper we present a method for combining experiments

from multiple species. Our algorithm combines sequence and

expression data to identify the set of cycling genes. By considering

sequence information we can use homologs to overcome noise and

cutoff problems in individual species. By using expression data we

can detect functional conservation, that is, sets of genes that are not

only similar in sequence but also similar in function.

We use probabilistic graphical models, and in particular Markov

random fields, to combine these data sources. We represent genes as

nodes in the graph, with edges corresponding to sequence similarity

as determined by a BLAST score. Each node (gene) is assigned an

initial score which is determined by the expression experiment.

Starting with this score we propagate information along the edges

of the graph until convergence. Thus, if a node with a medium score

is connected to a set of nodes with high scores, the information from

the neighboring nodes can be used to elevate our belief in the

assignment of this node, and vice versa.

Because the algorithm assumes expression conservation it leads

to better agreement between cycling genes in different species.

In order to test this algorithm it is thus important to show that
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this agreement does not come at the expense of a high quality set in

either species. To show that our algorithm actually improves the

quality of the identified set of cycling genes we tested it using two

species for which additional information is available: Budding yeast

and humans. As we show, by combining sequence and expression

data our algorithm was able to detect a more accurate set of cycling

genes in both species when compared to methods that rely on

expression data only. While the improvement was mild for the

high quality budding yeast expression data, it was much more

substantial for the more noisy human cell cycle expression data.

1.1 Related work

Many methods have been suggested to identify the set of cycling

genes from one or more expression datasets in a single species. For

example, Spellman et al. (1998) used Fourier transform to identify

cycling genes in budding yeast. Wichert et al. (2004) presented

statistical methods for identifying periodically expressed genes

and applied them (separately) to human and yeast. Lu et al.
(2004) and Bar-Joseph et al. (2004) presented methods for decon-

volving yeast expression data in order to improve the identification

of cycling genes. de Lichtenberg et al. (2005) used scores that look

at both, the amplitude of the expression value peak as well as the

peak in the Fourier spectrum around the cell cycle period. Unlike the

above methods, our method combines information from multiple

species using sequence similarity. This allows us to overcome noise

and improve the identification of cycling genes.

A number of previous papers combined sequence and expression

data to study similarities in expression between different species.

For example, Bergmann et al. (2004) clustered data from six dif-

ferent species to identify modules of genes that are co-expressed.

Stuart et al. (2003) identified ‘metagenes’, a group of homolog

genes from four different species (one gene from each species),

and then used correlation coefficients to link metagenes forming

a co-expression network. Our work differs from these papers in

several important aspects. First, unlike prior work that relied on

clustering to identify groups of co-expressed genes under a wide

range of conditions, our approach uses a classification framework to

achieve a different goal: identifying a set of conserved cycling

genes. Second, prior work only looked at pairwise expression simi-

larities, whereas our algorithm utilizes the complete graph topology

to propagate information. Finally, previous papers used sequence

similarity as a binary value (similar or not). In contrast, our frame-

work uses the extent of this similarity to determine edge weights.

The higher the similarity the greater the importance of neighboring

genes for determining the cyclic score.

Recently, a number of papers compared the regulatory networks

of various species (Sharan et al., 2005). These papers used graph

theoretic methods to compare networks across species and identify

similar pathways in these species. The focus of these papers and

their goals are very different from ours. While we are focused on

identifying the set of cycling genes using expression data the above

papers relied on the regulatory information in each species. Such

information may not be accurately available for all genes and tran-

scription factors in various species. Specifically, the networks they

relied on were not systems specific but rather general, and the goal

was to extract global and local similarities as opposed to the cell

cycle oriented goal in our paper.

A number of papers used belief propagation to combine different

biological data sources. These include the physical networks model

by Yeang et al. (2004) and methods for determining protein func-

tions (Letovsky and Kasif, 2003). These are very different in their

goal from our work, and use different types of data. In addition,

these papers did not try to combine information from different

species, as we do here.

2 MODELING EVOLUTIONARY
CONSERVATION USING GRAPHICAL
MODELS

We formulate the problem of assigning cyclic status to genes using

probabilistic graphical models. In such models, random variables

are represented by nodes in a graph and conditional dependencies

are represented by edges. The structure of the graph and the con-

ditional dependencies it implies specify a joint probability distri-

bution on the random variables. By taking advantage of the

structural relations in the graph, efficient algorithms have been

proposed to either learn the parameters of graphical models or

do inferences on learned models.

Here we use Markov random fields (MRF) to represent

dependencies between genes in different species. Unlike Bayesian

networks, MRFs are undirected graphical models, in which depen-

dency among nodes is represented using potential functions. There

are two types of nodes in the graph we use for this problem (see

Figure 1). The first represents genes and the second represents

expression scores from the related cell cycle experiments. Edges

between gene nodes correspond to sequence similarity, and carry a

weight which depends on that similarity. These edges are used to

capture the conditional dependencies of phylogenetically related

genes. All edges between a gene node and its corresponding

score node have the same weight and correspond to the gene

nodes’ potentials.

To generate the edges between potential homologous genes, we

run BLAST between all pairs of genes in the two species. We insert

an edge between two gene nodes (either belonging to the same

species or to two different species) if their BLAST score is higher

than a fixed threshold. We use a conservative cutoff such that we are

fairly confident that when an edge is added to the graph, the two

genes it connects are very likely to be homologous. While we use a

cutoff to determine whether we place an edge or not, edges that

are present in the graph are weighted based on their BLAST score.

The resulting graph comprises of a set of connected components,

as demonstrated in the diagram in Figure 1.

To represent the latent status of a gene (whether or not it is a cell

cycle gene) we associate a hidden variable Ci with each gene node.

Ci¼ 1 means that this gene is cell cycle regulated, otherwise Ci¼ 0.

…

…

Species 1

Species 2

…

…

Species 1

Species 2

Gene Node

Score Node

Gene Node

Score Node

Fig. 1. A graphical model for two species. Dark nodes are score nodes,

representing the score derived from such experiments. The lighter nodes

are gene nodes. Gene nodes are connected by edges if their sequence is similar.
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Based on the definitions above, the joint probability distribution

over the random variables Ci of this model is defined as follows

(Pearl, 1988)

L ¼ 1

Z

Y
i

ciðCiÞ
Y
i‚ j

cijðCi‚CjÞ ð1Þ

where ci (Ci) is the node potential function (derived from the

score node), cij (Ci, Cj) is the edge potential function, and Z is

the partition function, i.e. the normalization term. Potential functions

capture constraints on a single variable or between a pair of depen-

dent variables. For example, if two gene nodes i and j are connected

by an edge with a large weight, it is likely that they are functionally

related. Thus, the potential function will penalize assignments that are

different in the different nodes (e.g., setting Ci to 0 and Cj to 1). Below

we discuss the potential function in detail.

2.1 Score distribution

A key to our algorithm is the derivation of an expression score

which is consistent across all species used. Once such an expression

score has been derived, each score node is assigned the correspond-

ing gene’s score, Si. We assume that Si is drawn from a mixture

distribution. Specifically, we assume two different distributions

(for each species): a cell cycle specific distribution, which applies

to all genes that are cell cycle regulated, and a null, or background

distribution which applies to all other genes.

An important practical issue is to choose the form of the two

component distributions of the Si scores. While the Gaussian dis-

tribution has been successfully applied to model expression values,

here we are modeling scores that are derived from such values, and

not the values themselves. In many cases, such scores are derived

by taking the max value of some transformation. Cell cycle score

calculation involves taking the maximum peak of the expression

time series or the Fourier transform and the resulting distribution

often has a heavy tail and is more appropriately modeled as an

Extreme Value Distribution (EVD). This heavy tail property is

clearly noticeable in the scores assigned to known cycling genes

as can be seen in Figure 3.

The EVD is defined using two parameters: location (a) and scale

(b). Its PDF is given by:

pðxÞ ¼ 1

b
e�expfa�x

b ge
a�x

b

The location and scale parameters of EVD are similar to the

mean and variance parameters of the Gaussian distribution. As in

a Gaussian, they control the mode and the spread of the distribution,

though they do not necessarily correspond to the mean and variance.

Using the EVD mixture model we need to fit four parameters for

each species a0, b0, a1, b1 where

Si jCi ¼ 0 � EVDða0‚b0Þ
Si jCi ¼ 1 � EVDða1‚b1Þ

The values of these parameters are fitted to the score distributions

using an EM-type algorithm. As with any EM algorithm, the initial

guess plays an important role in reaching a good local maximum. To

initialize the parameters for the null distribution we permute each of

the original time series randomly to simulate the expression levels

of non cell-cycle genes. Scores are calculated from these artificial

expression data, and are subsequently used to estimate the parame-

ters of the null score distribution. To initialize the score for

cell-cycle genes, we compile a list of such genes that appear in

the corresponding papers and use the scores of these genes to derive

a maximum-likelihood estimate of the parameters.

2.2 Node potential function

The node potential function is defined using Bayes rule as

ciðCiÞ ¼ PrðCi j SiÞ

¼ PrðSi jCiÞPrðCiÞ
PrðSi jCi ¼ 0ÞPrðCi ¼ 0Þ þ PrðSi jCi ¼ 1ÞPrðCi ¼ 1Þ

Using the EVD mixture assumption, the potential function becomes

cið0Þ ¼ PrðCi ¼ 0 j SiÞ ¼
ti0

ti0 þ ti1
‚

cið1Þ ¼ PrðCi ¼ 1 j SiÞ ¼
ti1

ti0 þ ti1

where

ti0 ¼ ð1 � PcÞ ·
1

b0

e
�expfa0�Si

b0
g
e

a0�Si
b0

ti1 ¼ Pc ·
1

b1

e
�exp


a1�Si
b1

�
e

a1�Si
b1

and Pc is a prior probability for cycling genes in the species to which

i belongs.

In practice, we require b0 ¼ b1 so that the two score distributions

have a similar spread. This guarantees that the posterior score will

have the same ranking as the expression scores when there are no

edges in the graph.

2.3 Edge potential functions

Our edge potential functions capture the a-priori functional simi-

larity between gene pairs. This is based on our assumption regarding

evolutionary conservation of gene functions, namely, that genes that

are highly similar in sequence are likely to be similar in function.

We use BLAST (Altschul et al., 1997) to determine sequence simi-

larity. As mentioned earlier, we do not transform these BLAST

scores into binary features. Rather, we use the similarity score to

determine the edge potential which penalizes contradictory assign-

ments. The penalty is proportional to how close the two genes’

sequences are.

For each query sequence, the BLASTALL program returns an

E-value and a bit score S. The relation between them is E ¼ mn2�S

where m is the length of the query sequence and n is the length of

the genome of the second species. Note that bit scores are not

‘‘symmetric’’ as they depend on the total genome length. To over-

come this, and generate a single similarity score for pairs of genes

we set the weight on edge (i, j) to

wij ¼
1

2
ðbij þ bjiÞ

where bij is the BLAST bit score of gene i against gene j. Using

wi,j we define the edge potential as

cijðCi‚CjÞ ¼ 2�lwijðCi�CjÞ2 :

This potential function penalizes assignments that do not agree

between connected nodes. l is an externally specified parameter

that controls the impact of edge potentials relative to the node

potentials.
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3 LEARNING THE PARAMETERS OF
OUR MODEL

The model parameters we need to learn are the score distribution

parameters for each species. We learn the score distribution para-

meters (a0, b0, a1, b1) in an iterative manner using an EM-style

algorithm. We start with an informative guess for the score para-

meters, as mentioned above. Based on the score distributions we

determine a posterior assignment to nodes using belief propagation,

as we discuss below. Following convergence of the belief pro-

pagation algorithm we use the (soft) label assignments to update

the score distribution parameters. We then repeat these steps by

performing belief propagation again based on the updated score

distributions and so forth until both the label assignment and

score distribution parameters do not change anymore.

3.1 Iterative step 1: inference by belief propagation

To infer the node status variables Ci, we need to compute the

marginal posterior label distribution on each gene node. This pos-

terior is hard to compute directly because of the intractable nor-

malization term Z in Formula (1). Fortunately, for these types of

graphical models, we can use a standard belief propagation algo-

rithm for inference avoiding the direct calculation of the Z term

(Pearl, 1988). Note that our graph is loopy and thus the belief

propagation algorithm is not guaranteed to converge to a global

maximum. Still, as was shown in Yedidia et al. (2003) in practice

these algorithms achieve good results in loopy networks as well.

The belief propagation algorithm consists of two steps: ‘Message

passing’, where each node sends its current belief to all its neigh-

bors, and ‘belief update’, where nodes update their belief based on

the messages received. In our case the messages depend on the

node’s expression score and the belief of genes that are similar

in sequence. The algorithm is summarized below.

(1) ‘Message passing’. The messages sent by node i to node j about

its belief in an assignment of 1 to j is:

mi‚ jð1Þ 
X

k¼0‚ 1

�
ðciðkÞcijðk‚1Þ

Y
n2NðiÞ\j

mn‚ iðkÞ
�

Where N(i) is the set of neighbors of node i in the graph.

Intuitively, this message informs j about i’s agreement with

an assignment of 1 to j. In order to determine this, i takes into

account its own belief (from its score node), the strength

of the edge between i and j and the belief of i’s neighbors

about the right assignment to i. For the belief in a 0 assignment

we simply replace every 1 with 0 in the above equation. Note

that the weighting parameter l is already incorporated into

the edge potential function and so it is incorporated into the

message as well.

(2) ‘Belief update’. The belief of i in an assignment of 1 is

computed by setting:

bið1Þ ¼ ð1/vÞcið1Þ
Y

j2NðiÞ
mj‚ ið1Þ

where v is a normalization constant to make beliefs sum to 1.

As can be seen, i’s belief depends on both its original score

and the messages it received from its neighbors about what

they ‘believe’ should be assigned to i.

3.2 Iterative step 2: updating the score distribution

Using the belief computed in the inference step, we update the score

distribution parameters. Our goal is to maximize the auxiliary func-

tion Q(Q,Q(g)), which is defined as the expected log likelihood of

the complete data over the observed scores given the parameters

QðgÞ ¼ ðaðgÞ0 ‚a
ðgÞ
1 ‚bðgÞ) at the g’th iteration.

We were unable to find a reference for deriving update rules for the

EVD mixture distribution. We have thus derived these ourselves. In

general, to derive an update rule for this distribution we need to

simplify the Q function and separate the parameters into two

terms which can be maximized independently. If we require that

b0¼ b1, then for each species we have three parameters: two location

parameters a0 and a1 and one scale parameter b. We can find the

location parameters that maximize Q easily if we know b, but there is

no close form solution for b. However, we can use numerical methods

to solve for b. The final update rules for each species are as follows

a
ðgþ1Þ
l ¼ 1

b
log

PN
i¼1 PilPN

i¼1 e�bSi Pil

‚ l ¼ 0‚1

bðgþ1Þ ¼ 1

b

where N is the number of genes in that species, Pil represents

p(Ci ¼ l j Si, Qg), l ¼ 0, 1, and b is the root of the equation:

1

b
¼
P

l¼f0‚ 1g
PN

i¼1 SiPilP
l¼f0‚ 1g

PN
i¼1 Pil

�
X

l¼f0‚ 1g

XN
i¼1

Pil

PN

i¼1
e�bSi SiPilPN

i¼1
e�bSi Pil

" #. X
l¼f0‚ 1g

XN
i¼1

Pil

ð2Þ

Equation (2) can be solved using linear line search since the

reasonable range of b is not large. Note that the Newton-Raphson

method does not work here, because the solution is very close to the

local extrema of the function. See Appendix for more details.

We can also extend our model to use the Generalized Extreme

Value Distribution which in some cases gives better results.

For details please refer to our supporting website (Lu et al., 2006).

Our algorithm is summarized in Table 1 above.

Table 1. Algorithm for combining microarray expression data from multiple

species

Input

1. For each gene, expression score Si

2. Graph structure (edge weights)

Output:

For each gene its posterior cycling status, Ci

Initialization:

For each species compute estimates for a0, a1 and b using permutation

analysis and original lists

Iterate until convergence:

1. Carry out Belief Propagation to determine a posterior Ci for each gene

2. Use the computed posterior to recompute the EVD parameters for the

score distribution in each species
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4 RESULTS

We tested our algorithm on simulated and real biological data.

For the biological species we selected budding yeast and humans.

While budding and fission yeast are closer from the evolutionary

standpoint, there is less complementary information for the set of

cycling genes in fission yeast. In contrast, many of the human cell

cycle genes have been extensively studied leading to good anno-

tation databases for these genes. This makes it easier to evaluate a

new list of cycling human genes when compared with a list for

cycling fission yeast genes. Another advantage of looking at human

instead of fission yeast is that it indicates that even if the two species

are relatively far, they can still benefit from a joint analysis of their

cell cycle expression experiments.

4.1 Simulated data

To test our model using simulated data we first generated the

graph structure from the two species as discussed before. We

then generated labels (i.e. cycling or not) for nodes in the graph

using a Gibbs sampler method that took into account previously

assigned neighboring nodes when assigning labels to individual

nodes. See the supporting website (Lu et al., 2006) for complete

details on the label assignment.

After generating the labels we assigned scores to nodes. We used

two (overlapping) score distributions, one for the nodes with Ci ¼ 1

and the other for those with Ci¼ 0. In all experiments we used a fixed

distribution for one species. However, each experiment used a dif-

ferent distribution for the second species. These distributions varied

in their separability, ranging from highly separable to highly

overlapping (see Figure 2). We have next hidden the node assign-

ments, and used our algorithm to infer these assignments.

We repeated this process 10 times for each set of score distributions.

Figure 2 presents the results of two of these experiments. As can

be seen, by relying on the graph structure we were able to improve

the recovery of the true label assignments when compared to label

assignments that are based on a cutoff of the score alone. As the

separation between the two distributions became smaller the

difference between the two methods became more apparent. For

the less separable distributions our algorithm performed much

better than the score only method by relying more heavily on the

distribution of the other species.

These results indicate that under the evolutionary assumptions we

stated in the introduction, our algorithm can improve the assignment

of cycling genes and correctly recover more such genes.

4.2 Cell cycle expression data

To date, cell cycle expression was measured in more than six spe-

cies. As mentioned above, the two most studied species are budding

yeast and humans. Both provide access to a number of different

validation sets, and are thus useful for comparison of our algorithm

and score based methods.

We downloaded expression data from the corresponding websites

for the budding yeast (Spellman et al., 1998) and human (Whitfield

et al., 2002) cell cycle papers. All protein sequences for genes in

these species were downloaded from the NCBI ftp server (http://ftp.

ncbi.nlm.nih.gov). We used Blastall (Altschul et al., 1997) to

score all pairs of genes in both species.

For this data we tested our algorithm using an Intel Pentium 4 PC

with single 2.40GHz CPU. It typically took less than 6 minutes to

converge.

Expression Scores: As mentioned earlier, it is important to use

the same method to derive scores for genes in different species. We

derived such scores based on the observed expression values. As

was recently noted for yeast by de Lichtenberg et al. (2005), scores

that look at both amplitude of the expression value peak as well as

the peak in the spectrum around the cell cycle period seem to

provide the best results for identifying genes using expression

data only. We thus applied a similar method to extract such scores

for all genes in both species (see the supporting website Lu et al.,
(2006) for details). To validate this method we compared our results

to the benchmark provided by de Lichtenberg et al., (2005) and

determined that our results for budding yeast were comparable to

the best method presented in their paper. The results below use this

scoring method. However, using the Whitfield et al. (2002) scoring

method did not change the results. See the supporting website

(Lu et al., 2006) for more details.

Comparison sets: As far as we know, this is the first method to

combine sequence and expression data for the task of identifying

cycling genes. In order to compare our results to previous methods

we use two different alternative lists. The first list is the list of

cycling genes (in each species) based on the expression score

alone. As mentioned in the introduction, this is the method used

by previous approaches. We have also compared our results to a

more naive method for combining expression and sequence. Unlike

our probabilistic approach, this naive method first computes ranking

independently for each species based on expression score alone.

Next, we identify conserved genes in both species and compute

a joint ranking based on the average ranking for the orthologs in

each species. While we do not claim that this method is ideal, it can

at least serve as a baseline for evaluating the more sophisticated

algorithm we present in this paper.

Identifying cycling human genes: To test the success of our

algorithm for the task of identifying cycling human genes we

used the GO human annotations. Of the 7254 human genes in

the dataset we used, 498 were annotated by GO as cycling. We

first ranked human genes using expression scores and the naive

method mentioned above. Next, we ranked them using the posterior

score computed by our algorithm.

Figure 3 (left) presents the precision recall curve for GO anno-

tated cycling genes for the top ranked 1000 human genes. Based on

the analysis in the original paper (Whitfield et al., 2002), roughly

1000 genes are determined to be cycling, which is why we

focus on the top 1000. As can be seen, all three methods perform

substantially better than a random ordering (dashed-dotted curve).

Comparing our method with a score based method we see that while

at the very high expression score (bottom left) we do slightly worse,

overall, and in particular for lower scores our algorithm provides

results that are superior to score based methods. Specifically, for the

top 1000 genes our algorithm was able to recover 23% more genes

(135 vs. 110) when compared to both, the score only method and the

naive method for combining sequence and expression data.

Note that while we relied on the GO list for this analysis, it is not

complete. It is possible that there are many cycling genes which

are not on that list. Thus, the recall rate is probably much higher
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than the one we report here. Figure 3 (right) presents the expression

score distribution of genes annotated as cycling in GO and genes

that do not belong to this category. Note that there is substantial

overlap between the two distributions making it hard for a

score only method to identify a large set of cycling human

genes. In contrast, our graph based method was able to partially

overcome this problem by relying on the graph neighborhoods as

we discuss below. Another issue is the possible homology bias of

GO annotations. To account for this, we repeated the validation

procedure using a smaller set of GO annotated human cell cycle

genes. Specifically, we removed the 256 human genes that are

annotated in GO as "cell cycle" based on homology evidence.

Even with this reduced set of GO cycling genes our method out-

performs the score based method by a similar margin. See website

for details.

To further explore the differences between score based and graph

based methods we examined the differences in cell cycle assign-

ments between the two. We generated two lists. The first contained

genes that appear in the top 1000 using our method but were not in

the top 1000 of the score based method and the second contained

genes in the top 1000 of the scoring method but not in our method.

To test which of these list is more relevant we used GO to analyze

both lists. On the supporting website (Lu et al., 2006) we present a

number of figures comparing the GO enrichment p-values of both

lists. As we show there, the majority of cell cycle related categories

are more enriched for genes in the list derived based on our method

when compared with the score based list.

Identifying cycling yeast genes We have used a dataset for protein-

DNA binding (Lee et al., 2002) to compare our budding yeast results

Fig. 2. Simulation results. 20% of the nodes were labeled with 1 and the rest were labeled with 0. (a) Score distribution and (b) Recovery rate for a well separated

distribution. Both score based (dashed line) and graph based (solid line) methods were able to correctly recover the node assignments. (c) Score distribution and

(d) Recovery rate for an overlapping score distribution. Note that while our graph based method can still achieve good precision and recall the score based method

does significantly worse, especially for the higher recall rates (above 40%).
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with the original list of Spellman et al. which was based on score

alone. We extracted the binding information (p-value< 0.005

for the nine transcription factors that have been previously

shown to play key roles in regulating cell cycle progression

(Simon et al., 2001). We found 2.5% more interactions between

these nine TFs and the top 800 genes on our list when compared

with the Spellman list (621 vs. 606, note that a gene could be

counted multiple times if more than one TF interacts with it).

We also tested a stricter version of the binding data (p-value <
0.001). As with the higher p-value, our method still resulted in

slightly more interactions (477 vs. 474) when compared to the

score based list. While these improvements are far less dramatic

than the results presented for the human data above, it still implies

that our method can improve cell cycle assignment even for high

quality datasets, like the yeast cell cycle expression data (Wichert

et al., 2004).

Graph neighborhoods To further explore how our method helps

in correct assignment of cell cycle status we have plotted two of the

subgraphs in our graph. The shape of the nodes in each subgraph

represents the species, and the different shades of node color

represent the cycling expression score of the gene. Darker shades

represent higher expression scores, and the darkest shade means that

the expression score is within the top 1000 for human and top 800 for

yeast. The first subgraph (Figure 4) contains members of the Rho

family of genes in yeast and humans. These genes are involved in cell

wall formation which is an integral part of the cell cycle system.

Specifically, the cell wall integrity signaling pathway is controlled by

Rho1 (Levin, 2005) . Based on its expression score Rho1 was not in

the top 800 yeast genes. However, since its expression score is high

enough, and since its local neighborhood is all assigned cyclic status,

our algorithm assigns a posterior score that is at the top 800 for yeast

genes allowing us to correctly recover this gene.

Why expression scores are not sufficient? Expression value,

especially in time series experiments which usually do not contain

repeats for individual time points, are very noisy. To determine why

our algorithm is able to correctly identify genes that cannot be

detected using their expression score we looked at a number of

genes that received high posterior scores and low expression scores.

One such gene is Mcm3, shown in Figure 5. Human Mcm3 is

essential for the initiation of DNA replication and also participates

in a checkpoint that ensures DNA replication is initiated once

per cell cycle (Madine et al., 1995; Takei and Tsujimoto, 1998).

On the top of Figure 5 we plot the graph neighborhood of Mcm3.

As can be seen, it contains many known cycling genes from both

species. On the bottom we plot the expression of Mcm3 in three

different human cell cycle datasets (each done using a different
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Fig. 4. Cluster containing the yeast cell wall gene Rho1. Node shades cor-

respond to expression derived scores. Circles correspond to yeast genes

and hexagons to human genes. Rho1 is not in the top 800 genes based on

its score, but was identified by our algorithm because of its neighborhood.
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arrest method). As can be seen, in at least one of these conditions

Mcm3 seems to be cycling (bottom left). However, either because

its expression levels are low in the other experiments or because of

other experimental problems, it does not seem to be cycling in

the other conditions. Using expression data alone, we would not

assign a cyclic status to this gene. However, because of its medium

expression score and its strong neighborhood score, our algorithm

was able to correctly determine that it is a cycling human gene.

5 CONCLUSIONS AND FUTURE WORK

Many researchers have used gene expression experiments to study

biological systems in various species. We presented an algorithm

that combines information from studies in multiple species for

the task of identifying cycling genes. Our algorithm constructs a

graph where nodes represent genes and edges represent sequence

similarity. We then use belief propagation to update the status of

genes based on their graph neighborhood.

We applied our algorithm to combine cell cycle expression data

from budding yeast and humans. Using our approach we were able

to recover a more accurate set of cycling human genes when com-

pared to the score based methods that have been used in the past.

We have also shown that by looking at the neighborhood extracted

from the graph we can infer properties that cannot be determined

using expression alone.

While this paper focuses on cell cycle analysis, our algorithm is

general and can works with any expression data as long as an

expression score can be extracted from that data. An obvious future

direction is to apply it to other biological systems that have been

studied in multiple species such as immune response and circadian

rhythm. Another direction is to combine regulatory data with the

sequence data we currently use to infer sets of genes that are con-

served in terms of regulation, sequence and function across multiple

species.
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6 APPENDIX

6.1 Derivation of update rules for EVD mixture

model

Here are some facts of the Type I EVD, or the Gumbel distribution.

The CDF and PDF of the EVD are

� CDF

FðxÞ ¼ exp �exp � x � a

b

� �h in o
‚ �1 < x <1

� PDF

pðxÞ ¼ 1

b
exp �exp � x � a

b

� �h in o
exp � x � a

b

� �n o

In the EM algorithm, we define the Q function to be

QðQ‚Qði�1ÞÞ ¼ E½log pðX ‚Y jQÞ jX‚Qði�1Þ� where X is the obser-

ved data, i.e. expression scores, and Y represents the hidden vari-

ables, i.e. the cycling status of the genes. In each E-step, we evaluate

the above expectation, and in each M-step we maximize this

expectation. For mixture models, the expectation can be written

as (Bilmes, 1998)

QðQ‚Qði�1ÞÞ ¼
XM
l¼1

XN
i¼1

logðalÞpðl j xi‚QgÞ

þ
XM
l¼1

XN
i¼1

logðplðxi j �lÞÞpðl j xi‚QgÞ

where xi is the i-th observed data point (i.e. the score Si for the i-th
gene), al is the mixing coefficient of the l-th component, pl is the

PDF for the l-th component, and p(l j xi, Qg) from now on denoted as

Pil for simplicity, is the probability xi being generated by the l-th
component, given the parameters Qg.

To maximize this expression, we can maximize the two terms

independently. Using Lagrange multipliers, we solve for al that

maximizes the first term, and get

al ¼
1

N

XN
i¼1

Pil

The maximization of the second term depends on the PDF of the

component distributions. For the EVD mixture model, the second

term becomes

B ¼
XM
l¼1

XN
i¼1

Pil logðplðxi j �lÞÞ

¼
XM
l¼1

XN
i¼1

Pil � log bl �
xi � al

bl
� exp �xi � al

bl

� �� �

Note that we also require the two components to have the same scale

parameter, so we can drop the subscript and denote bl as b. Now we

maximize B by want to solve

@B

@b
¼
XM
l¼1

XN
i¼1

½�bþ b2ðxi � alÞ

� b2ðxi � alÞexpf�bðxi � alÞg�Pil

¼ �b
XM
l¼1

XN
i¼1

Pil þ b2
XM
l¼1

XN
i¼1

xiPil

�b2
XM
l¼1

ebal

XN
i¼1

e�bxi xiPil

¼ 0

where b ¼ 1/b. The above equation can be transformed to

1

b
¼
PM

l¼1

PN
i¼1 xiPilPM

l¼1

PN
i¼1 Pil

�
XM
l¼1

XN
i¼1

Pil

PN
i¼1 e�bxi xiPilPN
i¼1 e�bxi Pil

" #�XM
l¼1

XN
i¼1

pðl j xi‚QgÞ

Define

f ðbÞ ¼ 1

b
�
PM

l¼1

PN
i¼1 xiPilPM

l¼1

PN
i¼1 Pil

þ
XM
l¼1

XN
i¼1

Pil

PN
i¼1e�bxi xiPilPN
i¼1 e�bxi Pil

e�bxi Pil

" #�XM
l¼1

XN
i¼1

Pil

and the b we are looking for is the root of f(b) ¼ 0. In this case,

since the root is near a local extremum (limx!+0 f(x)!+inf),

the Newton-Raphson method can fail. Fortunately, we can

simply use a root bracketing algorithm to search for it,

because we don’t expect the variances of the distribution to be

too big.
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ABSTRACT

Motivation: Confocal microscopy has long provided qualitative

information for a variety of applications in molecular biology. Recent

advanceshave led toextensive imagedatasets,whichcannowserveas

new data sources to obtain quantitative gene expression information.

In contrast to microarrays, which usually provide data for many

genes at one time point, these image data provide us with expression

information foronlyonegene,butwith theadvantageofhighspatial and/

or temporal resolution, which is often lostin microarray samples.

Results: We have developed a prototype for the automatic analysis

of Arabidopsis confocal images, which show the expression of a single

transcription factor by means of GFP reporter constructs. Using

techniques from image registration, we are able to address inherent

problems of non-rigid transformation and partial mapping, and obtain

relative expression values for 13 different tissues in Arabidopsis roots.

This provides quantitative information with high spatial resolution,

which accurately represents the underlying expression values within

the organism. We validate our approach on a data set of 122 images

depicting expression patterns of 30 transcription factors, both in

terms of registration accuracy, as well as correlation with cell-sorted

microarray data. Approaches like this will be useful to lay the ground-

work to reconstruct regulatory networks on the level of tissues or

even individual cells.

Contact: uwe.ohler@duke.edu

Availability: Upon request from the authors.

Supplementary Data: http://tools.genome.duke.edu/generegulation/

1 INTRODUCTION

The development and spatial patterning of an organism is tightly

controlled by differential gene expression in individual tissues and

cells. Although a variety of factors contribute to this control of gene

expression (e.g. microRNAs and epigenetic factors), one of the

fundamental mechanisms is the binding of transcription factors

(TF) to the promoter regions of genes, and the resulting networks

of transcriptional control. While traditional biology has analyzed

connections in these networks using a bottom-up approach (e.g.

gene knockouts or knockdowns), technologies such as microarrays

provide data for the inference of regulatory connections through the

analysis of expression levels—often referred to as a top-down

methods. However, the established way of measuring gene expres-

sion by DNA microarrays frequently averages over areas with dif-

ferent expression signatures and does not provide cues as to

preferred spatial expression. To obtain a thorough understanding

of gene regulation, we must move beyond these limits towards an

accurate and detailed description of spatiotemporal (4-D) gene

activity and regulatory interactions. High throughput digital

microscopy has begun to deliver large datasets describing where

a gene is expressed at a particular stage in living organisms. We are

now faced with the task of how to use this rich information resource

in combination with computational approaches with the aim of

elucidating regulatory interactions in the development of multicel-

lular organisms.

The process of extracting information from images is not new and

has been particularly established for biomedical problems; exam-

ples include the mapping of brain scans and the automatic identi-

fication of breast cancer tumors (Maintz and Viergever, 1998;

Woods et al., 1998). Recently, these techniques have begun to

be adapted to molecular biology. In Drosophila, analysis of RNA

in situ hybridization images has been used to identify expression

patterns (Kumar et al., 2002; Peng and Myers, 2004). Due to

the variability in staining, in-situ patterns are not capable of pro-

viding accurate expression values and are more of a qualitative

nature.

Fluorescent proteins, such as Green Fluorescent Protein (GFP),

can be used to quantitatively visualize the expression of a gene

(Chudakov et al., 2005). It has been demonstrated that the intensity

values from these fluorescent protein fusions are capable of recap-

itulating the underlying molecular biology of yeast with high con-

fidence (Wu and Pollard, 2005). Quantification of fluorescent

proteins in yeast does not need to address issues of attenuation

due to depth or multiple tissue regions that are present in multi-

cellular organisms. Additional work in sea urchins has shown that,

by using a known injected fluorescent standard, one can correct for

this attenuation and provide accurate measurements (Dmochowski

et al., 2002). GFP reporter constructs have also been used to derive

precise quantitative models of a small regulatory cascade in early

Drosophila development (Jaeger et al., 2004). This work has
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demonstrated the potential for extracting expression profiles from

confocal images.

Here we present an approach to automatically obtain transcription

factor expression levels from GFP confocal images in Arabidopsis.

In particular, we will consider longitudinal images of the root

region. We have chosen the Arabidopsis root as a model because

it provides a distinctive spatial patterning of cell differentiation,

allowing us to restrict the current analysis to 2-D cross-sections

(Benfey and Scheres, 2000). In addition, we also have a unique

resource: tissue enriched microarray data at our disposition,

which will provide a standard to validate our method (Birnbaum

et al., 2003).

In order to identify and correctly map root tissues, we employ

image registration algorithms. Image registration is a very broad

subject with many applications to biological and biomedical data

(Maintz and Viergever, 1998; Zitova and Flusser, 2003). After a

brief overview of the data available to us (section 2), we describe

the details of our registration process (section 3) to map an image

onto a representative model—in our case, a labeled tissue map of

a model Arabidopsis root. In section 4, we show that this method

is capable of identifying and quantifying the expression profiles of

13 tissues in the Arabidopsis root, and we evaluate how well

microarray and image-derived expression values correlate with

each other. Section 5 addresses future developments and the impli-

cations of our results for the inference of regulatory mechanisms

and pathways in multi-cellular organisms. An earlier version of

this method was used in a large-scale study to assess the influence

of post-transcriptional gene regulation on the expression of tran-

scription factors (Lee et al., 2006). This work differs by utilizing

new methods that expand our identification from 4 to 13 tissues,

and also allow for analysis of images taken from all regions of

the root.

2 DATA

2.1 GFP promoter fusion

Using the coding sequence for GFP, transcriptional fusion con-

structs were created by attaching the promoter region of the gene

of interest (3kb upstream of the translation start site or the intergenic

region—whichever is shorter) to the coding region of the GFP gene.

In contrast to translational fusions—which incorporate the GFP as

a domain into the protein—transcriptional fusions function as a

marker for mRNA expression. The constructs were inserted into

the genome with the assumption that its transcriptional regulation

will be similar to that of the endogenous gene. While this concept

ignores some of the regulatory steps of gene expression (e.g.

translational/transcription inhibitions, chromatin modification,

etc.), previous work has shown that, in Arabidopsis, this type of

construct recapitulates tissue specific gene expression with high

fidelity (Lee et al., 2006).

2.2 Images and image selection

The Arabidopsis images depict optical longitudinal sections of tran-

scription factor GFP constructs taken from all three main zones of

the root: meristematic (primary root growth and location of initials),

elongation (elongation of cell size), and maturation (root hair

growth) region (Figure 1). The use of longitudinal images allows

us to identify 13 tissue regions (Figure 2): columella root cap,

columella initials, cortex, cortex initials, endodermis, epidermis,

lateral root cap, lateral root cap initials, pericycle, pericycle initials,

stele, quiescent center (QC), and vascular bundle (VB) initials.

Tissues that cannot be distinguished in longitudinal images are

the atrichoblast and trichoblast (epidermis), and the xylem and

phloem (stele).

Images are composed of three channels: a red channel

highlighting cell wall boundaries stained using a dye, a green cha-

nnel containing the GFP expression, and a blank blue channel.

Selection of images for comparison were based on the following

criteria:

� The cell wall stain was strong on the external boundary and at

least partially visible in the interior of the root.

Fig. 1. Three main regions of the Arabidopsis root: meristematic, elongation,

and maturation.
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� Roots were centered and not heavily skewed to one side of the

image.

� Images were chosen from transgenic lines known to harbor

detectable transcriptional fusions.

122 images representing 30 transcription factors met these crite-

ria. 64 of them expressed in the elongation/maturation region, and

the remaining 58 expressed in the meristematic region. To segment

roots into the 13 tissue regions, we used an atlas image which

contains a tissue map for a representative Arabidopsis root. We

created this atlas by fusing two high resolution images: one of

the meristematic zone up to the elongation zone, and one from

the elongation zone to the maturation zone. Within this composite

image, we marked the tissue regions as depicted by a standard

template (Figure 2).

2.3 Fluorescent Activated Cell Sorting (FACS)

The tissue-specific microarray data is collected using a Fluorescent

Activated Cell Sorting technique (Birnbaum et al., 2003). Ara-

bidopsis roots with GFP expression enriched for a particular tissue

are run through a fluorescent activated cell sorter. FACS separates

cells expressing GFP from non-GFP expressing cells, obtaining the

enrichment of cells from a individual tissue. RNA from the sorted

cells is then analyzed on a microarray, providing tissue enriched

gene expression data. Eight tissue regions were common to both

image registration and the tissue enriched gene expression data:

columella root cap, cortex, endodermis, epidermis, lateral root

cap, pericycle, quiescent center (QC), and stele. We will refer to

these expression values as TGFP and TFACS. The five tissues not

present in the microarray data are the initials: columella initials,

cortex/endodermis initials, lateral initials, pericycle initials, and

vascular bundle initials. Due to lack of promoters specific to

each type of initials, it is not currently possible to use FACS to

isolate initials. Differences on what constitutes a specific tissue exist

between the FACS and GFP data. First, the overall area that expres-

sion is averaged over differs: not all GFP lines used for FACS are

expressed ubiquitously across all regions of the root, and the region

the image is taken from might not encompass the full range that the

FACS data is obtained from. Second, some GFP lines used for

sorting have a partial inclusion of additional tissues that leads to

a slightly convoluted FACS measurement for that tissue. Despite

these minor differences (see supplementary data for full details), the

regions are treated as homologous.

2.4 Results scoring metric

2.4.1 Registration scoring metric To determine the accuracy of

the registration process, we modify a commonly used accuracy

measure called Test Point Error (TPE) (Zitova and Flusser,

2003). TPE measures the accuracy of the registration process by

creating a set of homologous points with the atlas image that are not

used in the registration process itself, but are used as an accuracy

measure for the registration process. Our modification to the TPE

does not use fixed points themselves, but instead marked regions.

These marked regions are a subset of the total cells in the image,

manually chosen based on their clearly distinguishable cell bound-

aries by an expert. As a result, not all tissue regions may be marked

due to difference in quality of staining and localization of images

(8 tissues are specific to the meristematic region and are not present

in elongation/maturation images). Our scoring method is formally

defined as total/matched where

matched ¼
XS

i¼1

Iðai ¼ biÞ

allowing I to be the indicator function equaling 1 if ai‚bi are equal

and 0 otherwise and total = size(s) with i 2 s if ai‚bi 2 ½1‚13�. The

numbers 1–13 refer to a unique tissue, and 0 to no tissue mapping

available (either a cell wall or a region outside the root).

2.4.2 FACS scoring metric The quality of GFP derived expres-

sion values will be assessed by comparison to respective FACS

microarray data. By treating each data source as a random variable

where each tissue is a sample (i.e. X ¼ TGFP and Y ¼ TFACS), we

can calculate the Pearson correlation value between the two data

sets for every image. Comparing the correlations on the level of

each image is required, as variations in gain, laser power, and

pinhole settings between images (used to obtain maximum visual

contrast) prohibit large scale correlation calculations. Images from

the elongation and maturation zones did not contain GFP measure-

ments for three of the tissue regions (QC, columella root cap, and

lateral root cap), and both FACS and GFP measurements for these

tissues were not included in the Pearson Correlation calculation.

3 METHODS

The system to quantify tissue-specific expression from images consists

of three main steps. First, noise from the imaging process or normal root

growth must be removed. Second, roots are registered to a master atlas

image. Third, using the registered image and the atlas image, GFP levels

are quantified, and tissue-specific expression values are obtained.

3.1 Noise removal and contour detection

Noise can result from the imaging process itself (such as blurring, the

addition of speckle noise, etc.), or due to variability which naturally occurs

in the root and which would present a difficulty during the later image

registration stages. Morphological operators such as image closing, restora-

tion, and thresholding are applied on all channels to eliminate the general

noise present from imaging.

Two types of root variability exist that provide difficulties with

registering the images: boundary cells and root hairs. Boundary cells are

lateral root cap cells that have detached themselves from the rest of the root.

This is a natural process as the boundary cells provide the lubrication needed

for the root to penetrate the soil. Once removed from the tissue layer, these

boundary cells often adhere to, or reside in close proximity to, the outer cell

walls—making it difficult to accurately detect the shape of the actual root.

Fig. 2. A tissue map of the Arabidopsis root (Image taken from Benfey and

Scheres (2000)).
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Unlike boundary cells (which have lost the connectivity and henceforth any

cell signaling pathways), root hairs are a viable part of the root. Their

occurrence along the longitudinal axis is not very predictable, which

impedes any type of accurate registration process.

To remove these variabilities, we adapt a snake/active contour model. A

snake is an iterative contour detection algorithms that can grow and shrink

based on a set of force balancing equations (Kass et al., 1988). We use an

improved active contour model called a Gradient Vector Field Snake, or

GVF (Chenyang and Prince, 1998). Expanding on previous snake algo-

rithms, a GVF snake is governed by two sets of forces: internal forces

(such as elasticity/rigidness of the growing contour) and external forces

(an external constant pressure force, viscosity, and a gradient vector

field). With the exception of the gradient vector field, all parameters for

these forces are user defined but kept constant for all images in the data set.

A gradient vector field is a modification of a standard first order gradient

edge map, in which the radius of the force field is increased. This causes it to

extend its influence on the snake algorithm to areas outside those in close

proximity to an edge.

For the gradient edge map, we use the external contour of the root. This

contour is determined by performing a watershed segmentation (Luc and

Pierre, 1991) on the image—segmenting the individual cells and background

into different regions. For our current image set, we can safely assume that

the region with the largest area can be labeled as background. In addition,

regions with an area greater than one sixth and mean red and green intensity

less than twice of the largest one are also labeled as background, to take cases

into account in which the root partitions the background into two or more

regions. Regions not fitting this criterion are considered part of the root. This

creates a contour that contains all the root hairs/boundary cells which we

seek to remove (Figure 3b, black outline). To initialize the starting contour

for the snake algorithm, we perform a morphological erosion on the filled

object. Due to differences in magnification/image size, this erosion is per-

formed using a disk structuring element with variable size, which is set to

0.35 times the diameter of the root. This internal contour still contains some

of the noise from the root hairs/boundary cells, but provides a smoother

initial contour (Figure 3b, red outline). The algorithm is then run for a

number of iterations adjusted to the size of root diameter (Figure 3c). By

tuning the parameters of the snake algorithm (in particular, the elasticity/

rigidness) once for our application, the final active contour can be adjusted so

that it minimizes the amount of noise from boundary cells/root hairs. The

resulting image is a clean smoothed external contour that does not contain

root hairs/boundary cells (Figure 3d).

3.2 Registration

After removal of general noise and standardization with respect to

boundary cells and root hairs, we can proceed with registering the images

Fig. 3. Processing and straightening of the root. (a) Original root with root hairs and boundary cells. (b) Using the external noisy contour (black), we generate an

internal eroded boundary (red) as a starting contour. (c) The snake algorithm is run until convergence, resulting in (d) a clean contour. (e) The medial axis (blue) is

determined, and a subset of the cross-sectional cuts (green) are shown. (f) The medial axis (blue line) is extended (black line) at the two furthest end points

(visually separated by the red line). The intersection of this extension with the outer contour provides us with the extreme points (teal points). Additionally, the

resulting contour is divided into two sides (left and right- green and purple respectively). (g) The cross-sectional cut pairings, as well as the extreme points, (green)

are used to create a straight set of points (blue). (h) Using these two sets of points, a Thin Plate Spline algorithm straightens the image. (i) Flow chart describing the

general straightening process.
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to an atlas image. Two major issues must be considered for this registration

process. First, the roots grow in a curved fashion, bending and twisting in

response to the environment that they are growing in. This poses a non-rigid

registration problem. Second, the images in the data set show different

regions of the root, corresponding to a partial mapping problem. Non-

rigid registration requires the calculation of complex transformation fields

and cannot be solved by simple affine movements (e.g. scale, rotation,

translation, etc.). Partial mapping requires the registration of an image

under missing information—i.e. with occlusion of the object, or images

showing only parts of a complete object (which is the case here). These

two problems of non-rigid transformation and partial mapping are often

mutually exclusive, and as such, we deal with them separately.

3.2.1 Non-rigid registration To allow roots to be aligned to a master atlas

image, they need to be straightened. In order to do this, we will use a non-

rigid transformation algorithm called Thin Plate Splines (TPS) (Bookstein,

1989). TPS is a transformation function which is derived from the physical

bending energy of thin plates. TPS require a set of homologous points

between a standard image and a reference image. A deformation field

can be created based on the distance between the homologous points.

This deformation field is then applied to every pixel in the entire image.

Successful straightening and registration using TPS is highly dependent

on the set of homologous points that one chooses. Determining which, and

how many, points to use for this mapping is referred to as feature detection.

Successful feature detection for image registration requires that features are

easily identifiable and abundant. This is often a problem with biomedical

data, as the images do not contain features that fit these criteria (Zitova and

Flusser, 2003). In our case, however, after the removal of boundary cells and

root hairs, the contour of the root provides a source of features that fit both of

these criteria.

Given the situation of partial mapping, as is the case for the root images,

we encounter the problem of how to define a set of homologous points for the

TPS. We address this by choosing a set of unique points for every image.

This total feature set is then used to automatically derive a new set of points

describing a straight root. Our feature set will contain two groups of features:

a modification of the major axis endpoints (which we will refer to herein as

the extreme points), and pairs of cross-sectional cuts, which are defined as

the locations on the contour that result from the orthogonal bisection of the

medial axis of the root.

The medial axis transformation (MAT) algorithm can provide us with the

knowledge to derive these features (Ogniewicz and Ilg, 1992). The MAT

function determines the medial axis by calculating the distance between

every point in the interior of the object to the contour elements. The mini-

mum distance of an internal point to its closest contour element is defined as

the Voronoi distance. When the set of Voronoi elements is greater than one,

i.e. the shortest distance to the contour is shared by two or more contour

elements, it is considered part of the medial axis. To adapt for the partial

occlusion of the images, the end points of the external contour are deter-

mined and the image is extended to create a new image three times the size

of the original image, with the original being centered in the middle. Starting

at the end points of the contour, we extend it into the added regions. Unlike

traditional replicate padding of images, the extensions of the contour provide

a better estimate of our expected shape of the root, and henceforth, a

more accurate MAT estimate. While our initial noise removal algorithm

is efficient in removing contour noise, the MAT is very sensitive to

perturbations in the boundary of the object (e.g. natural distortions, small

noise), and an additional step of pruning the MAT is required for removing

any small branches. The extended regions are then removed.

Using the MAT, we can calculate a set of cross-section pairs. The MAT is

treated as a continuous contour, and its curvature angle is calculated by using

a standard first order derivative. Orthogonal lines are then drawn from the

MAT, intersecting with the smoothed contour of the root. The intersection

occurs on both sides of the root providing us with a pair of points where each

point consists of an x and y component denoted as ½xi‚yi�. We will refer to

this as a cross section pair: pi ¼ fli‚rig, where li‚ri are the points on the left

and right side of the contour respectively and P ¼ fp1‚ . . .‚png is the set of

all cross section pairs (Figure 3e). The curvature of the root contour, in

combination with the partial imaging of the root, leads to a subset of the

cross-sectional pairs being incomplete as one of the pairs is occluded by the

imaging process. To eliminate this abnormality, the location where pairs

become occluded is determined for both ends of the roots. All regions of the

root beyond this threshold are removed, resulting in an adjusted contour with

blunt cut ends for those sides where occlusion was present.

This process leads to the set of cross-sectional cut points which we sub-

sequently use to determine the remaining features—the extreme points of the

root. Most major-axis algorithms for determining extreme points of objects

are not appropriate here due to both the nonrigidness as well as the partial

occlusion of the roots. The medial axis is trimmed to 70% of its normal size

to eliminate small perturbations occurring at the ends. Using both end points

of the trimmed medial axis, the extreme points are extrapolated to intersect

with the new adjusted contour of the root labeled as E ¼ fet‚ebg—the top

and bottom end points respectively. These intersection points represent the

extreme points of the root, and by definition, partition the root into two

separate sides (Figure 3f).

Given this feature set selected from a given image, we can proceed to

create a homologous mapping to an approximately straight root. The original

set of points can be separated into two groups: the extreme points of the

image E ¼ fet‚ebg (teal points Figure 3f), and the pairs of cross-section pairs

P ¼ fp1‚ . . .‚png (green dots Figure 3e). We define a new set of points M

based on their location along the root, as the ordered set of the middle point

between each cross-section pair ci ¼ ½12 ðlix þ rix Þ‚ 1
2
ðliy þ riy Þ�, and the two

extreme points defined above, leading to m 2 M ¼ fet‚c1‚ . . .‚cn‚ebg. In our

first step in deriving a new set of points, we define two distance functions D1

and D2. The first function, D1, determines the distance between the ordered

middle points and the first extreme point D1ðiÞ ¼ jmi � et j . The second

distance function, D2, measures the distance between the middle points and

their respective cross-sectional pairs: D2ðiÞ ¼ 1
2
j li � mi j þ 1

2
j ri � mi j .

Using these middle points and distance functions, we can now define a

new set of straightened points E�‚P�‚M�. We additionally use a parameter

ax, defined as the medial x-axis location of the image. Starting from the point

furthest away from the tip of the root, we set the x-coordinates of our

homologous middle points to this medial axis m�
ix ¼ ax8m� 2 M�. The

y-coordinates for these middle points are determined from the first distance

function m�
iy ¼ D1ðiÞ. This maps the new middle points along the medial

x-axis, separating them by the same distance between their original middle

points. The location of each pair of cross-sectional points is then determined

by translating each point in the pair by an equal distance in opposite direc-

tions from the medial x-axis; l�ix ¼ ax � D2ðiÞ and r�ix ¼ ax þ D2ðiÞ, and the

y-coordinate is set to its middle point l�iy ¼ r�iy ¼ m�
iy, creating a new set of

pairs P� ¼ fp�1‚ . . .‚p�ng. The resulting set of points F� ¼ fe�t ‚p�
1‚ . . .‚p�n‚e�bg

provides a mapping from our original image F ¼ fet‚p1‚ . . .‚pn‚ebg onto a

straight root (Figure 3g).

This homologous mapping of points finally provides us with the information

needed to perform the TPS transformation. A transformation field is calculated

from these sets of points and is applied to every pixel in the image. Due to the

complexity and memory requirements of the TPS function, the two extreme

points and a subset of the cross-sectional pairs (15 equidistantly spaced pairs)

are used. The resulting image has eliminated most of the curvature and

non-rigid abnormalities that exist on the contour of the root (Figure 3).

3.2.2 Partial mapping The final registration process addresses an

affine registration between two images: the straightened root we have

just obtained from the TPS registration, and the master atlas image

which provides the tissue label information. An affine registration consists

of minimizing a scoring metric. Traditional affine registration parameters

encompasses rotation, skew, scale (both in x and y), and translation (both in x

and y). In the process of root straightening, the TPS has already restricted the

transformations required to register the root. Fixed along the center of the

image with the root tip pointing to the bottom of the image, rotation, skew,
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and translation in x have already been determined. We assume that the scale

is the same in both the x and y coordinates and will be treated as one

parameter. The remaining degrees of freedom are then the translation

along the y-coordinate and the scale of the image.

The affine scoring metric is motivated by the Hausdorff score for

partial mapping (Huttenlocher et al., 1993). The Hausdorff scoring metric

is formally defined as:

HðA‚BÞ ¼ maxðhðA‚BÞ‚hðB‚AÞÞ

where

hðA‚BÞ ¼ max
a2A

min
b2B
ð j a � b j Þ

with j a � b j being the distance between a and b and A ¼ fa1‚ . . .‚apg and

B ¼ fb1‚ . . . ‚ bqg are two sets of points. Here, we modify this Hausdorff

scoring metric to be

HðA‚BÞ ¼
Xn

i

hðAi‚BiÞ

where i denotes a subgroup of points and A and B are points in our image and

atlas respectively. The first group is the subset of points we used for the TPS

straightening, i.e. the contour of the root A1 ¼ P�. For images taken from the

meristematic region, the second group is a single point denoting the center

of QC that is placed by an expert after the TPS process ( A2 ¼ Q� ¼ fq�g).
This placement of a marker is currently necessary, as the internal cell

staining is not robust enough to automatically determine its location.

This leads to the full set of points: A ¼ fA1‚A2g ¼ fp�i ‚ . . .‚p�n‚q�g. Ident-

ical contour and QC markers are pre-determined and marked in the atlas

image B ¼ fB1‚B2g ¼ fpi‚ . . .‚pn‚qg. A number of numerical optimization

algorithms are appropriate; here we use a Particle Swarm Optimizer (PSO)

(Kennedy and Eberhart, 1995). We limit the range of scale values from 0.1 to

10, and translation values from 0 to 2500. The optimization converges in less

than 400 iterations (Figure 4d).

3.3 Quantification

We now have two images with identical dimensions, from which we

proceed to extract expression values. The first image is the expert created

atlas image describing the tissue map of the root (Figure 4c). The second is

the result of the affine registration, with the green channel detailing our gene

expression values (4d). For every pixel in the registered image, the intensity

value is summed and binned according to the tissue map as defined by the

homologous point in the atlas image. The thirteen tissue expression values

are normalized by dividing the total expression values by the total area that

each tissue region occupies (4e). This helps to normalize against the occlu-

sion of certain tissue layers due to imaging and provides standardization

similar to microarray data.

3.4 Image processing/data analysis

Most of the image analysis was carried out using the Matlab Image

Processing Toolbox (IPT), with the exception of the Thin Plate Splines

Fig. 4. Summary of the registration process. (a) A series of images (red, green, blue, yellow frames) with boundary noise and distortions is processed by the non-

rigid registration algorithm, resulting in (b) straight roots. Points sampled on the boundary element (black) as well as an artificial QC marker (orange) where

appropriate are used. (c) A master atlas image is used to describe the tissue region mapping of the root with superimposed contour (black) and QC marker (orange).

(d) Minimizing the Hausdorff distance between the two sets of points, the scale and translation are determined using an iterative parameter optimizer. (e)

Expression values are determined for each image (red, green, blue yellow respective to frame color) by summing the intensity values from the green channel in (d)

and binning them by their tissue type as determined in (c). The expression values are normalized by dividing them by the total number of pixels per tissue type and

range between 0 and 1.
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algorithm (Dollar, 2006) as well as the GVF Snake algorithm. The Hausdorff

partial mapping and Particle Swarm Optimization are implemented in

C#. Statistical analysis was performed using the R Statistical Language

(R Development Core Team, 2005).

4 DISCUSSION

We applied this prototype to a data set of 122 GFP images depicting

the expression of 30 transcription factors in different regions of the

root. For 7 out of the total data set of 122 images, the system was

unable to eliminate noise and perform the straightening. This was

due in most part to boundary cells/root hairs being present at the

edges of the images—a known limitation of our noise removal

algorithm. For images requiring QC marking, we were unable

to unambiguously locate the QC region in 5 of the images. The

remaining 110 images were passed on to the second phase of

registration and quantification.

Figure 5 shows the scatterplot of registration score on the x-axis

and FACS correlation score on the y-axis. The majority of the

images were successfully registered to the master atlas image:

The mean registration score was 0.93, i.e. only 7% of the root is

mapped to the wrong tissue type. The FACS correlation scores had a

mean of 0.64. Considering that with exception of the QC marker, no

root feature was manually marked to help register the images, the

high accuracy of the registration process is very encouraging. It is

notable that low registration scores do not necessarily lead to bad

FACS correlation values: a mis-registration of a tissue layers may

occur in a location where there is no GFP expression and have no

effect on the correlation score.

While the FACS correlation scores had an overall good

average of 0.64, a portion of these were rather poor. It is apparent

from Figure 5 that several of these lowly correlated values are

clustered within image groups of the same gene or line, suggesting

potential issues with the promoter fusion of the GFP reporter con-

structs, or with the probe for the FACS data. The mean correlation

score of 0.64 is reminiscent of previous studies for expression

analysis, where it was found that correlations between platforms

varied from 0.46 to 0.83 (Kim, 2003; Park et al., 2004; van Ruissen

et al., 2005).

Lowly expressed genes. Poor correlation scores between plat-

forms are frequently contributable to various sources of noise in

different expression analysis platforms, and are increasingly

observed for low expression values. Limiting our correlation cal-

culation to FACS data where the median tissue expression is greater

than 150 (used as noise threshold for Arabidopsis microarray data

(Lee et al., 2006)) we increase our mean correlation to 0.70, thus

reaffirming that lowly expressed values are more likely to have a

negative effect on our correlation scores. In addition to the standard

noise conditions present in microarray experiments (e.g. hybridiza-

tion, background fluorescence, probe ambiguity etc.), a potential

source arises from the FACS sorting of the data. While traditional

microarray experiments use one sample per experiment, our data set

requires 8 different sorting and microarray experiments, increasing

the likelihood for biological variability.
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Fig. 5. Comparison of image registration (x-axis) and FACS correlation (y-axis) scores. Arabidopsis Gene Index (AGI) identifiers are given. The figure shows

registration scores between 0.65 and 1.0 and correlation scores between �0.6 and 1.0. No other data points fell outside this region.
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Part of the noise in the FACS comparison originates from our

approach to quantifying expression levels. Autofluorescence in the

plant results in a mean background noise of 5–20% of the maximum

possible intensity value in the green channel. On examining the

images with the lowest correlation values, we noticed that a major-

ity of these were from images with GFP expression levels barely

above this autofluorescence level, suggesting that the correlation

values were skewed by the background in the green channel. In

addition to this background noise, our method did not take into

account the attenuation due to depth which affects the inner tissues

of the root, such as the endodermis, pericycle and stele. An initial

simple approach to normalizing these regions by multiplying the

tissue types by 1.3, 1.4 and 1.5 respectively increased our mean

correlation score from 0.64 to 0.7. A comprehensive study of this

problem may therefore lead to a more systematic correction of

GFP derived expression values.

Taken together, this suggests that improvements in increasing

the signal to noise ratio in the green channel are paramount for

the GFP quantification of lowly expressed genes.

Tissue-specific expression differences. The remainder of the

lowly correlated genes suggests some inconsistencies in our images

as well as in our approach in normalization of the data. Failure to

differentiate between expression in the pericycle and endodermis

can lead to low correlation values between the data sets. This occurs

when large pinhole settings during the imaging lead to longitudal

images showing expression in both tissue regions, but where radial

images show expression in only one. This problem tends to occur in

a subset of the images for a given gene. Visual inspection confirmed

that low correlation values for some genes expressed above back-

ground were not caused by problems with the image analysis, but by

actual differences in expression values as reported by microarrays

and GFP. Such differences can originate from reporter constructs

which do not fully recapitulate the expression of the native gene, or

due to discrepancies in the tissue-specific expression data. In either

case, our system can serve as helpful resource to point out and

quantify such problems.

Cells versus tissues. Finally, the current normalization of expres-

sion by total tissue area can blur expression which only occurs in a

subset of the tissue. A representative example was the gene

AT2G37590, where GFP expression resided in a subset of the

stele region as compared to uniform expression across the whole

tissue (Figure 6). When its expression was averaged over the whole

stele, it barely exceeded the background noise level. It should

be noted that microarray data is prone to the same issue—in the

example, it showed expression in the stele at a value of 179, again

barely above the background threshold of 150.

5 SUMMARY/OUTLOOK

In this paper, we have presented a system for the automated

quantification of gene expression levels from digital images of

GFP reporter constructs. As a proof of concept, we successfully

performed an automated registration of Arabidopsis roots, derived

tissue-specific expression values of transcription factors, and

demonstrated that these values correlate well with microarray

expression data. The data set used for this evaluation was only

of modest size. However, the number of images in gene expression

databases of other model organisms organisms (Tomancak et al.,
2002) is easily on the order of tens of thousands, which demon-

strates the growing need to adapt image analysis to problems in

computational biology. In addition to the biological significance of

our methodology, we have presented a unique approach to both a

partial mapping as well as a non-rigid registration problem. The

combination of these two problems often requires one to manually

annotate images prior to registration.

Developing a universal method for image registration across

all types of images is considered an intractable problem (Zitova

and Flusser, 2003). Image registration often utilizes domain specific

information—incorporating unique modifications in the image reg-

istration process to adapt for differences that are inherit to a specific

set of images. In our model, we have adapted methods in noise

removal, feature detection, and feature mapping that are specific to

the elongated, symmetric shape of Arabidopsis roots. However, it is

expected that the series of algorithms used in our approach will be

Fig. 6. (a) Evaluation of an image with low correlation value (ATG2G37590). (b) The filtered green channel with actual intensity values. (c) The scaled

expression values of the GFP quantification, contrast enhanced to maximum intensity values (0.12). (d) The scaled FACS expression data contrast enhanced to

maximum FACS expression (178). (e) Differences between scaled expression. Blue regions denote tissues where the FACS data is higher than the GFP data, while

red regions denote GFP data being higher than FACS data.
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useful for other confocal images, particularly for approximately

symmetric objects.

Many of the difficulties with quantification of GFP (attenuation to

depth, large pinhole settings) can be addressed by expanding our

work to 3D. Efforts are under way to scale up microscopy and

imaging from one 2-D cross-section to a stack of images. All

image processing algorithms used in our system were chosen

because they offer adaptations to 3D image processing. In addition

to the increase in precision for our quantification, the expansion to

3D will also allow us to differentiate our stele measurements into

xylem and phloem, as well as our epidermis measurements into

atrichoblast and trichoblast.

We note that our current method requires a step of manually

marking the QC region in images taken from the meristematic

region. Improvements in cell wall staining will likely allow for

the automatic detection of this region using image segmentation

algorithms, such as the watershed algorithm, to identify individual

cells. Current attempts to automatically identify this region are not

robust enough given the present staining technology. This is exem-

plified by the fact that several of the QC regions could not even be

manually annotated by an expert and were subsequently removed

from the analysis. An alternative here is to use a second fluorescent

marker which is constitutively expressed in the QC cells. Ade-

quately registering images on cellular resolution will also allow

us to identify differential expression of genes within tissues

(cf. Figure 4 (yellow and green framed images) and Figure 6).

Our system was evaluated using the 8 tissues common between

the image and microarray data sets. In total, our image analysis

identifies 13 unique tissues. As mentioned, the five tissues not

common are the initials of the root, for which it is currently not

possible to obtain specific microarray data. This is another example

where our method can truly complement available expression data

for the understanding of Arabidopsis development.

We have chosen to validate our model with a series of images taken

at arbitrary time points. However, the largest benefit of using GFP

reporters and automated image processing for expression analysis is

that expression can be monitored in a living organism. In the long

term, we plan to further develop our system to be part of an

anticipated large scale effort to study transcription factor expression

in root development under a variety of environmental conditions. As

such, a system to quantify GFP expression values will provide the

basis for the computational biology of spatiotemporal gene

expression (Bar-Joseph, 2004) and the high resolution elucidation

of transcriptional regulatory networks.
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ABSTRACT

Motivation: B cells responding to antigenic stimulation can fine-tune

their binding properties through a process of affinity maturation

composed of somatic hypermutation, affinity-selection and clonal

expansion. The mutation rate of the B cell receptor DNA sequence,

and the effect of thesemutations on affinity and specificity, are of critical

importance for understanding immune and autoimmune processes.

Unbiased estimates of these properties are currently lacking due to

the short time-scales involved and the small numbers of sequences

available.

Results: We have developed a bioinformatic method based on a

maximum likelihood analysis of phylogenetic lineage trees to

estimate the parameters of a B cell clonal expansion model, which

includes somatic hypermutation with the possibility of lethal mutations.

Lineage trees are created from clonally related B cell receptor DNA

sequences. Important links between tree shapes and underlying

model parameters are identified using mutual information. Para-

meters are estimated using a likelihood function based on the joint

distribution of several tree shapes, without requiring a priori knowl-

edge of the number of generations in the clone (which is not available

for rapidly dividing populations in vivo). A systematic validation on

synthetic trees produced by a mutating birth-death process simul-

ation shows that our estimates are precise and robust to several

underlying assumptions. These methods are applied to experimental

data from autoimmune mice to demonstrate the existence of hyper-

mutating B cells in an unexpected location in the spleen.

Contact: stevenk@cs.princeton.edu

1 INTRODUCTION

Mutating birth-death processes (MBDPs) are a fundamental com-

ponent of biology at many different time scales, ranging from

evolution of species, through epidemiological evolution of bacteria

and other pathogens, to within-host mutation of viruses such as HIV.

A special case is the affinity maturation of B cells during an immune

response, which is the main focus of this paper (although our

methods could be applied to other MBDPs). Affinity maturation

normally occurs following the migration of naı̈ve B cells into

germinal centers, and the binding of B cell antibody receptors

directly to antigens (e.g., molecular determinants on the surface

of pathogens) accompanied by a secondary signal resulting from

binding helper T cells. Over a three-week period, activated B cells

proliferate rapidly and undergo a process of somatic hypermutation

whereby point mutations are introduced into the DNA coding for

their antibody receptor. According to the theory of clonal selection,

B cells with mutations that increase their affinity for antigen gain a

proliferative advantage. In this way the average affinity of the

population increases over time. For a detailed review of the biology

underlying affinity maturation, please see (Wagner and Neuberger

1996).

Despite the significance of MBDPs, methods to estimate underly-

ing parameters from available data are lacking in many cases, par-

ticularly when the number of samples is small and the time-scale is

short (as is the case for B cell affinity maturation). Population genetic

methods have been developed to estimate various evolutionary

parameters based on constant rate birth-death models (Nee et al.,
1994) or coalescent processes (Rosenberg and Nordborg 2002).

These approaches assume a large population size (often fixed in

the case of coalescent processes) and superimpose a mutation history

on a genealogy as a separate step. However, when the number of

generations is small the mutation rate impacts the tree topology along

with the branch lengths. In addition, population genetic models do not

include processes, such as mutation-dependent cell death, that play an

important role in B cell affinity maturation.

We previously reported preliminary results on maximum like-

lihood (ML) methods to estimate the B cell receptor mutation rate

based on a small number of B cell lineage tree shapes (Kleinstein

et al., 2003). Each tree is obtained from a microdissection experi-

ment, which provides a number of clonally related B cell receptor

DNA sequences that can be genealogically related to each other

using a maximum parsimony algorithm (Clement et al., 2000).
Many processes, including the hypermutation rate, influence the

‘shape’ of these clonal trees. Our approach defines a simple

MBDP comprising the main biological mechanisms underlying

affinity maturation (including clonal expansion with somatic hyper-

mutation and the possibility of lethal mutations), and estimates the

parameters of this process. Applying this to biological data from at

the Shlomchik lab (Kleinstein et al., 2003) suggested, for example,

that specific B cells in an autoimmune mouse were undergoing

somatic hypermutation in an unexpected area of the spleen. Here

we extend and confirm these findings, which have important

implications for understanding the etiology of autoimmune diseases

such as Lupus.
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The parameters of the MBDP would ideally be estimated by

computing the likelihood of producing the set of observed lineage

trees (or isomorphic ones) over all realistic parameter values, and

finding the combination producing the highest overall probability.

However, such full ML methods are expensive to compute.

Our previous work sought to develop a more computationally effi-

cient method by summarizing each tree as a set of graph theoretic

measures (referred to as tree shapes). In this study we use mutual

information to focus the analysis on the most informative shapes.

Previous attempts to study tree shapes in the context of evolutionary

processes have usually focused on single properties such as the

distribution of the number of lineages over time (Nee et al.,
1994), or branch lengths (Takezaki et al., 1995). Analysis of B

cell lineage trees up to this point has been limited to statistical

approaches based on the average values of individual tree shapes,

and qualitative comparison of possible underlying processes

(Dunn-Walters et al., 2002; Dunn-Walters et al., 2004; Mehr

et al., 2004). The current work differs from these previous attempts

in the development of an underlying stochastic model appropriate

for B cell clonal expansion, and the quantitative correlation of

several tree shapes to allow estimation of multiple parameters of

the MBDP model.

2 MODEL AND METHODS

B cell clonal expansion and somatic hypermutation are modeled as a MBDP

with multi-type cells and the following three reactions:

� Cell division with average rate of b per generation.

� Stochastic mutation with Poisson rate m per division.

� Cell death with probability of l� per mutation, where l�¼ (1.0 – pCDR)

� pFWR_R � l. pCDR, pFWR and l are parameters of the mutation

decision tree (Figure 1).

� Mutation-independent cell death with rate d per division.

TheMBDP is initiated with a single cell. After d cell generation times, q cells

are randomly sampled from the total population of N cells. The set of

accumulated mutations in the q sampled cells are used to create a genetic

lineage tree as previously described (Kleinstein et al., 2003). By

construction this tree is correct (i.e., it is a sub-tree of the actual lineage

tree). We assume that the experimentally observed trees (created using

maximum parsimony on sets of B cell receptor DNA sequences) are correct

in the same sense.

The parameters of the MBDP are �¼ (b,m,l,d,d,q). The division rate (b),
assumed to be equal for all cells, defines the time scale of the MBDP and can

be set to one through appropriate rescaling. Throughout this study we set

b¼ 1 and simulate cell division as a deterministic process occurring once

during each discrete time step of the simulation. As shown later, relaxing this

deterministic assumption has only a minor impact on our estimates. Our

estimation methods also assume d¼ 0, although we include this parameter in

the analytical formula derivations and mutual information analysis. We

don’t expect this to affect the other parameter estimates (see Summary).

The number of sampled cells (q) is included as a parameter to account for the

possibility that some observed sequences are repetitions from a single sam-

pled cell due to the particular experimental protocols used. While the

simulation-based method we present is insensitive to these potential repe-

titions, the analytical method assumes a one-to-one correspondence between

sampled cells and observed sequences.

Each lineage tree t is summarized by a set of shapes: St ¼ {st,1, st,2, . . .
st,S}, where st,i is shape i of tree t. The shapes used in this study (defined in

Table 1) partially overlap those defined in (Kleinstein et al., 2003). We

estimate � by maximizing the likelihood of observing the set of tree shapes

St over all trees t given the MBDP described above with parameters �.

Expected tree shapes are based on analytical formulae or numerical

simulations. To maximize the available information, our approach uses

the collective properties of a set of trees assuming the same generative

process and equivalent m and l, but different d and q for each tree.

We use synthetic data sets to measure the precision of these estimates

under different experimental conditions and show that our methods work

SR

FWR CDR

S R

Neutral LETHAL

pCDR

pFWR_R pCDR_R

SR

FWR CDR

S R

Neutral LETHAL

pCDR

pFWR_R pCDR_R

λ

Fig. 1. Mutation decision tree used in MBDP simulations. Mutations

occur with a Poisson rate of m per division. The effect of each mutation

depends on whether it falls in the Framework Region (FWR) or the

Complementarity Determining Region (CDR) of the receptor gene. The re-

latively invariant FWRs provide the overall structure of the receptor, and

serve to support the more variable CDRs where antigen binding commonly

occurs. Following the work of (Shlomchik, Watts et al. 1998), each mutation

was given a pCDR¼ 25% chance of being a CDR mutation and a (1-

pCDR)¼ 75% chance of being a FWR mutation. Each mutation also

has a pCDR_R¼ pFWR_R¼ 75% chance of being a replacement and

(1-pCDR_R)¼ (1-pFWR_R)¼ 25% chance of being silent. FWR

replacement mutations have a probability l of being lethal. Lethal mutations

kill the cell.

Table 1. Tree shapes considered in the mutual information analysis. Shapes

used in the simulation-based estimate (S) and the analytical estimate (A)

are indicated. ‘Full’ vertices contain observed sequences (seq), while ‘empty’

ones do not

Tree Shape Description S A

0 Number of full internal vertices X

1 Number of empty internal vertices X

2 Sequence in full internal vertices

3 Number of parent-child couples

4 # of seq. in parent-child couples X

5 # of seq. in vertices with empty parent

6 Number of repeated sequences X

7 Number of internal vertices X

8 Number of leaves

9 Number of seq. in leaves

10 Number of seq. in internal vertices

11 Number of vertices X

12 Number of sequences at root� X X

13 Number of edges

14 Number of independent mutations

15 Average number of mutations� X X

16 Least common ancestor distance

17 Replacement-to-Silent ratio, R/(R+S) X X

*Note that the simulation estimate defines these measures on unique sequences only.
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with realistic (i.e., small) amounts of experimental data. We first present and

validate the methods on synthetic data and then apply them to a set of B cell

receptor sequence data derived frommicrodissection experiments in a mouse

model of autoimmune disease.While results from our previous analysis were

limited to the mutation rate, here we extend and validate the methods to

estimate additional parameters, specifically the lethal mutation frequency

and the number of divisions in each clone.

2.1 Simulation of B-cell clonal expansion

The MBDP simulation has been previously described (Kleinstein et al.,

2003; Kleinstein and Singh 2003). Briefly, it is initiated with a single seeding

cell. At each discrete time step (corresponding to one cell generation time),

all cells are allowed to divide and die. During each division a Poisson

distributed number of mutations occurs with average m. The impact of a

mutation is determined by the mutation decision tree in Figure 1. Cells with

lethal mutations are removed after every generation. This process continues

until Dmax generations have passed.

2.2 Mutual information analysis

Mutual information based on Shannon’s entropy, one of the central concepts

of Information theory, is used to identify tree shapes (both individually and

in groups) that provide the maximal information about the underlyingMBDP

parameters. Shannon’s entropy measures the information content of a source

X, and is defined as:

HðXÞ ¼ �
X
x

PrðxÞ · log PrðxÞ

where Pr(x) is the probability function of the random variable X. Similarly,

joint Shannon’s entropy is defined as:

HðX‚YÞ ¼ �
X
x‚ y

Prðx‚yÞ log Prðx‚yÞ

where Pr(x,y) is the joint probability function of the random variables X and

Y. These formulas are used to calculate the information content of each

combination of tree shapes, denoted as H(Y), as well as combinations of

MBDP parameters, denoted as H(X). By definition, the mutual information

between the parameters and shapes is:

IðX‚YÞ ¼ HðXÞ þ HðYÞ � HðX‚YÞ
The mutual information measures the information about X that is shared by

Y. In other words, how much of the information about the model parameters

X is expressed by the tree shapes Y.

2.3 Analytical estimation method

In the analytical method, optimal model parameters are estimated by mini-

mizing the weighted least squares difference between the observed and

expected tree shapes:

Xð�Þ ¼
XT
t¼1

Min
d

XS
i¼1

ðsot‚ i�set‚ ið�ÞÞ
2

VARðfsor‚ ig
T
r¼1Þ

 !

where S is the number of tree shapes considered, sot,i is the observed value

of shape i in tree t, and set,i(�) is the expected value given the parameters �.

VARðfsor‚ ig
T
r¼1Þ is the variance of tree shape i calculated over all the observed

lineage trees. The minimization of the error X(�) takes place in two stages.

For each observed tree t, we first minimize the error over all possible

numbers of divisions (d), producing an estimate for the number of divisions

in the clone that gave rise to the tree (denoted dt). The overall error is then

computed as the sum of the errors for each tree, and this value is minimized

to find the optimal values for m and l simultaneously. Recall that in this

approach we assume the number of sampled cells (q) equals the observed

number of sequences as discussed above.

2.4 Simulation-based estimation method

In the simulation-based approach, we begin by estimating l to be the value

where the expected fraction of mutations that are replacements, R/(R+S), is

equal to its observed value (It) computed over all independent mutations in

all trees:

l ¼ ðIt � ðFWR_Rþ CDR_RÞÞ/ðFWR_R�ðIt � 1ÞÞ

where,
FWR_R ¼ ð1:0 � pCDRÞ�pFWR_R

CDR_R ¼ pCDR�pCDR_R
pCDR, pCDR_R and pFWR_R are parameters of the mutation decision

tree shown in Figure 1, which describes the distribution of random muta-

tions. These parameters are set to typical values (Shlomchik, Watts et al.,

1998) although, as we have previously shown, it is easy to estimate them

directly for any particular germline sequence of interest (Kleinstein and

Singh 2003).

The overall likelihood for producing an experimental data set is the

product of the likelihood for each observed tree:

LðS1‚S2 . . . ST j �Þ ¼
YT
t¼1

LðSt j ut‚�Þ

where L(St j ut,�) is the likelihood of observing a treewith shapes St given that
themicrodissectionand sequencingproducesut unique sequences, and assum-

ing an underlying model with parameters �. This likelihood is also dependent

on the number of divisions in the clone, and the number of cells sampled to

create the tree. Since neither of these quantities are known with certainty, we

sum over all possible values (assuming they are equally likely) to get:

LðSt j ut‚�Þ ¼
X1
d¼1

Xqt
q¼ut

PrðSt‚d‚q j ut‚�Þ

where we know that the number of sampled cells included in tree t lies some-

where between the observed number of unique sequences (ut) and the total

number of cells in themicrodissection pick (qt). Of coursewe cannot simulate

an infinite number of divisions in practice, and it is necessary to limit the

number of divisions to a computationally reasonable range. This can lead to

errors in the estimate due to truncation of the distribution so instead of sum-

ming over the entire range we choose the value of d for each tree that maxi-

mizes the probability (referred to as dt):

LðSt j ut‚�Þ ¼ Max
d�Dmax

Xqt
q¼ut

PrðSt‚d‚q j ut‚�Þ

The maximum (dt) is our estimate for the number of generations in the clone

that gave rise to tree t. The upper bound on the number of divisions in the

simulation (Dmax) is set to a value that is thought to upper bound the clonal

expansion size (and is computationally feasible). Pr(St,d,q j ut,�) is estimated

using Monte Carlo simulations with parameters � by:

PrðSt‚d‚q j ut‚�Þ ¼
EðSt‚d‚q‚utÞX
d‚q

Uðd‚q‚utÞ

Here,U(d,q,ut) is the number of simulated treeswith ut unique sequences after

d divisions and randomly sampling q cells. Among these trees, E(St,d,q,ut) is

thenumber thatarealsoequivalent to theobserved tree inall shapesspecifiedin

Table 1 (i.e., the simulated tree can be summarized by St).

To calculate U(d,q,ut) and E(St,d,q,ut), an expanding B cell clone is

simulated beginning from a single cell as described in Section 2.1. After

each division, q cells are randomly sampled from the population and a

lineage tree is created as previously described (Kleinstein et al., 2003). If

the number of unique sequences in this tree is ut, then U(d,q,ut) is incre-

mented by one, where d is the number of divisions so far. If the simulated tree

also has shape St, then E(St,d,q,ut) is incremented by one.

After running the simulation i times, the likelihood of producing each

of the observed trees is determined. We used i¼ 128,000 independent

simulation runs to calculate the likelihood at each value of the mutation

rate since more runs did not provide additional accuracy (data not shown).

The overall mutation rate m is estimated by maximizing the likelihood using

golden section search.
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3 RESULTS

3.1 Optimal tree shapes

Individual tree shapes can reflect different aspects of the under-

lying biological process, but some contain similar information. The

relationship between model parameters (�) and resulting tree

shapes can be highly non-linear so that classical linear regression mea-

sures do not properly represent the contribution of particular shapes to

the estimate of �. We use mutual information based on Shannon’s

entropy to determine which shapes contain the most information

about �. By varying the set of shapes included in St and measuring

the mutual information I(St,�), we can estimate how much information

is conveyed by St about �. We define the most informative set of shapes

as the one with the highest mutual information.

To determine the most informative set of tree shapes, we computed

the mutual information between St and �¼ (m,l,d,d,q) for a set of

synthetic trees produced by simulating the MBDP for a range of

realistic parameter values (see Figure 2 caption). An equivalent anal-

ysis was done under the assumption that q is known, using an

extended shape vector S�t ¼ {St,qt} and removing q from �, and
similar results were obtained (data not shown). We considered all

possible combinations of three tree shapes from the set listed in

Table 1. The optimal shape triplet for the simultaneous estimate

of � is composed of: (1) the ratio of Replacement (R) to Silent

(S) mutations, (2) the number of sequences in parent-child couples,

and (3) the number of sequences in the leaves of the tree. However,

several other triplets have similar mutual information. We developed

a scoring system to identify individual tree shapes that repeatedly

appear in high mutual information triplets. First, all shape triplets are

sorted by their mutual information content and given an exponentially

decreasing weight. The score for individual shapes (i.e., components

of St) is calculated by summing the weights of all triplets that contain

it. As shown in Figure 2, the highest scoring individual shapes include

those in the optimal triplet. Note that some shapes score highly, but

are equivalent to other shapes so that there is no benefit to using them

simultaneously, while othermeasuresmay have a relatively low score

but are required to complete a good triplet. Quadruplets can be done

in a similar way.

As described in the following section, we have derived analytical

equations to approximate the expected values of several high scor-

ing tree shapes in Figure 2 (indicated in Table 1). These shapes are

used to summarize each lineage tree in the analytical estimation

approach. The simulation-based estimate does not use many of these

shapes since they would require assuming a one-to-one correspon-

dence between sampled cells and observed sequences. We can avoid

this assumption by restricting the set of valid shapes to those that do

not depend on the number of repeated sequences. The limited num-

ber of such topological tree shapes allows us to use them all (up to

closely related ones).

3.2 Analytical method results

As indicated in Table 1, five tree shapes were used in the error

function to estimate �. The following sections outline formulas for

the expected values for each of these tree shapes. The full devel-

opment cannot be included here due to space limitations. Note that

these derivations include mutation-independent cell death with rate

d per division.

Average mutations per sequence. Consider a cell that has

undergone d divisions and accumulated m mutations. The number

of such cells surviving (e.g., accumulating no lethal mutations) is:

ad(1-l1)
m where l1 ¼ (1-pCDR) x pFWR_R x l is the overall

probability that a mutation will be lethal (see Figure 1), and

a ¼ 2e�d. The probability of havingmmutations after d generations
is a Poisson process with an average of md. Thus, after d divisions

the expected number of cells with m mutations that are still alive is:

adð1�l1Þme�md ðmdÞ
m

m!

The number of live cells (N) after d divisions is calculated by

summing over all possible numbers of mutations:

N ¼
X
m

adð1�l1Þme�md ðmdÞ
m

m!

Thus, the expected number of mutations per sequence is:

M ¼ 1

N

X
m

adð1�l1Þme�md ðmdÞ
m

m!
m

¼ E½Poisson process with meanð1 � l1Þmd�
¼ ð1 � l1Þmd

After simplifying, we find that M is simply the expected branch

length in the absence of lethal mutations (md) multiplied by the

probability of cell survival (1� l1).

Number of unique sequences. The expected number of unique

sequences (u) in a random sample of q cells can be computed by the

probability that a given sequence is different from all others. The

number of unique sequences is:

Xq
i¼1

Prðsequence i 6¼ sequence j; j < iÞ

This can be approximated by:

Xq
i¼1

Prði 6¼ 1ÞPrði 6¼ 2 j i 6¼ 1Þ . . .Prði 6¼ i � 1 j i 6¼ 1::i � 2Þ
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Fig. 2. Contribution of individual tree shapes to estimation of simulation

parameters �. Shape triplets were ordered by their mutual information with

the MBDP parameters, and weighted by an exponentially decreasing func-

tion. Bar heights are the sums of the weighted frequency of each shape.

Synthetic data included 1000 trees for every combination of: m¼ {0.1,

0.3, 0.5, 0.7, 0.9},l¼ {0.0, 0.25, 0.50}, d¼ {0.0, 0.2, 0.4}, d¼ {0,1, . . . , 15},
with q¼min(N,10).

Mutation parameters from lineage trees shapes

e335



The probability that two random sequences are different is:

1 � X‚ where X ¼ ðe�2mðð2 ·a · e�2mÞd � 1ÞÞ=ð2 ·a · e�2m � 1Þ
ð2 ·ad � 1Þ=ð2 ·a � 1Þ

The contribution of the conditional probability varies between 1

and 21-i, so that the number of unique sequences is bounded

between:

u ¼
Xq
i¼1

Yi�1

j¼1

ð1�XÞi and u ¼
Xq
i¼1

Yi�1

j¼1

1� X

2j

� �i

:

Averaging these values gives an excellent fit to the number of

unique sequences in simulated trees (data not shown).

Average sequences at the root. Each sequence appearing at the

root of a lineage tree represents a cell that has undergone d divisions
without accumulating any mutations. The probability of this occur-

ring for a single cell is e�md. Such cells will be enriched in the

population due to the death of cells that accumulate lethal muta-

tions. The fraction of cells in the root is thus the expected number of

unmutated cells divided by the total number of surviving cells:

ade�md

adð1�l1mÞd
¼ e�m

ð1�l1mÞ

� �d

Multiplying this fraction by the number of sampled cells (qt) in any

particular clonal tree (t) gives the number of sequences expected to

be present at the root (Rt):

Rt ¼ qt ·
e�m

ð1�l1mÞ

� �d

Sequences in parent-child nodes. The probability for a pair of

sequences to appear as a parent-child couple in a tree can be com-

puted as the probability that in two nearby branches of the actual

lineage tree, one branch is mutated while the other is not. When the

tree is collapsed to create the equivalent of the maximum parsimony

tree, the sequence in the unmutated branch becomes the parent of

the sequence in the mutated branch. The probability to find two such

sequences is:

Xd
i¼1

e�mið1 � e�miÞ · ð2 · e�lm�dÞ2i�2ð2 · e�lm�dÞd�i
·
qðq � 1Þ
NðN � 1Þ

· 2ð1�m�5dÞ ¼ qðq � 1Þ · ð2 · e�lm�dÞd�2

NðN � 1Þ · 2ð1�m�5dÞ ·

·
Xd
i¼1

ð2e�m�lm�dÞi �
Xd
i¼1

ð2e�2m�lm�dÞi
" #

¼ qðq � 1Þ · ð2 · e�lm�dÞ�2

ðN � 1Þ · 2ð1�m�5dÞ ·

·
�
2e�m�lm�dð2de�md�lmd�dd � 1Þ

2e�m�lm�d � 1

� 2e�2m�lm�dð2de�2md�lmd�dd � 1Þ
2e�2m�lm�d � 1

�

Estimates using the analytical method

The direct application of the analytical error minimization method,

using the tree shapes in Table 1 with expected value computations

described above, provides unbiased estimates of m and l as tested

on synthetic data sets (Figure 3). Looking at the error surface, we

initially found that the minimum was indeed at the correct location,

but the error function was practically flat in the direction of l,

resulting in a large variance in the estimate of the frequency of

lethal mutations. This was improved by increasing the weight of R/

(R+S) in the error function (Figures 3 and 4). This tree shapes is

directly affected by l, but not by m.

3.3 Simulation-based method results

As discussed previously (and shown in Figure 4 for the analytical

method), the likelihood is relatively flat as a function of l suggest-

ing that individual trees contain little information to estimate this

parameter. Although we found it was possible to simultaneously

estimate m and l using the analytical approach, the inherent noise in

the simulation estimate, resulting from the limited number of

simulations used to estimate each likelihood, makes that strategy

infeasible here. Thus, we employ a two-step approach. First the

lethal mutation frequency (l) is estimated by considering the frac-

tion all independent mutations that are replacements, R/(R+S).
Since silent mutations, which do not change the amino acid

coded for, cannot be lethal to the cell, this fraction provides a direct,

albeit noisy, signal to estimate the lethal mutation frequency. The

mutation rate m is then estimated by comparing the expected and

observed tree shapes (not including R/(R+S) which was used to

estimate l), assuming a particular value of l (either known or

estimated). Previous estimates of m were based on educated guesses

about the number of generations. Our method simultaneously esti-

mates m along with the number of divisions giving rise to each tree

(further denoted dt).

In contrast to the analytical method, the simulation-based method

is robust to the assumption that repeated sequences represent unique

cells. First, this method uses only shapes that do not depend on the

precise number of repeated sequences. Second, all possible values

for the number of sequences (q) are considered in the likelihood

Fig. 3. Estimate of the mutation rate (m) and lethal frequency (l) using the

analytical method. Each synthetic data set contains T¼ 100 trees with q¼ 10

cells. Data was created for all combinations of m¼ (0.1,0.3,0.5) and

l¼ (0.00,0.25,0.50). Each point is the estimated value on one synthetic data

set.Clusters are centered on the actual values.Note theReplacement-to-Silent

ratio was given a 10-fold weight increase in the error function.
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computation. Another advantage of this approach is that, while the

analytical formulas estimate the expected value of each tree shape

independently, the simulation-based method numerically estimates

the joint distribution of all shapes.

The mutation rate and lethal frequency

In previous work we proposed a simulation-based method to esti-

mate the mutation rate (m) from a set of lineage trees (Kleinstein

et al., 2003). However, this method produced a biased estimate. The

method presented here differs from that approach by explicitly

summing over all possible numbers of sequences in the observed

tree (qt). Furthermore, instead of directly sampling the observed

number of unique sequences from the simulated tree, we condition

our likelihood on this value. This ensures that singletons (i.e., trees

containing only a single unique sequence), whose true frequency is

impossible to estimate experimentally, do not unduly influence the

results.

We validate the improved method by estimating m from synthetic

data sets where the actual mutation rate is known. The frequency of

lethal mutations (l) has been previously estimated for some well-

studied responses (Shlomchik 1990), and as a first step we consider

the case where this parameter is known. From Figure 5, it is clear

that this new method is unbiased and converges to the actual value

of m. In addition, the variance in the estimate of the likelihood

decrease as the sample size grows (data not shown). Even when

the number of trees and sequences is small (as is the case for the

actual experimental data), our method provides a reasonable esti-

mate of the mutation rate (Figure 6).

Like the simulation used to estimate the likelihood function, the

synthetic data sets assume that cell division is synchronous so that

all cells in a clone (giving rise to a single tree) have undergone the

same number of divisions. To test whether our method is sensitive to

this assumption, we generated synthetic data sets with asynchronous

division using the discrete time-step approach developed in

(Kleinstein and Singh 2001). In this model the time between divi-

sions is Poisson distributed with average value b¼ ln(2) leading to a

doubling time of one, which is equivalent to the synchronous model

with discrete time steps. We then applied our estimation method

(which still used synchronous division) to these data. The estimated

mutation rates were close whether or not the synthetic data used

synchronous or asynchronous division (Figure 6 inset).

Fig. 4. Representative error landscape for analytical estimates based on a

synthetic data set with 100 trees for m and l where the actual values are

m¼ 0.3 and l¼ 0.25. The minimum is at the correct position, but the error

landscape is very flat in the l direction. Note the Replacement-to-Silent ratio

was given a 10-fold weight increase in the error function.
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Fig. 5. Estimating the mutation rate with the simulation method when the

frequency of lethal mutations (l) is known. Individual points show the results

on each synthetic data set, consisting of T¼ 50 clonal trees each with q¼ 5

cells. For each tree the sampling timewas randomly distributed between 5 and

10 generations (as is the case with all our synthetic data sets except where

indicated). At least 7 synthetic data sets were produced at each mutation rate

investigated. l¼ 0.5 and Dmax¼ 10 for all likelihood evaluations.

Fig. 6. Estimating the mutation rate for limited data with the simulation

method when the frequency of lethal mutations (l) is known. Synthetic data

sets were created that had the same number of trees and sequences as the

experimentally derived autoimmune response data. The inset shows that our

method is not overly sensitive to the assumption of synchronous division.

Synthetic data sets were created using an asynchronous division model (left)

and a synchronous model (right). The simulation method (which uses a

synchronous model) was applied to estimate the mutation rate whose actual

value is m¼ 0.3 per division. Dmax¼ 12 for all likelihood evaluations.
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We next consider how well we can estimate �when the frequency
of lethal mutations (l) is unknown. Although we find that the esti-

mate of l itself is quite noisy (Figure 7a), this does not greatly

impact the estimate of m (Figure 7b). In fact, when l¼ 0.5 (a value

estimated in previous work), the standard deviation in the prediction

of m increases only from 0.06 to 0.07 per division for the estimates

with known and unknown l respectively. This is true even though

the estimate of l itself has a standard deviation of 0.1 for the reasons

previously discussed for the analytical estimate.

The number of generations

To check if the number of divisions maximizing the likelihood for

each tree (dt) is a reasonable estimate of the actual number of

divisions in the clone giving rise to tree t, we generated synthetic

data sets where all the clones had the same fixed number of gen-

erations. Multiple data sets were created spanning the range from

5 through 9 generations. For each of these data sets, the mutation

rate was estimated (assuming the actual value for l is known), and

the average number of divisions among all the clones in the data set

was predicted. This prediction was positively correlated with the

actual number of generations (Figure 8a). It was accurate when the

number of divisions was high. When the number of divisions was

below �7 this method overestimates the average number of divi-

sions, which leads to an underestimate in the predicted mutation rate

for these clones. This linkage makes intuitive sense since a clone

that has longer to mutate can achieve the same frequency of muta-

tions with a lower mutation rate. The direction of causality is sug-

gested by the observation that the method overestimates the number

of divisions at low generation numbers even when the mutation rate

m is known (Figure 8b). In these cases our method provides a lower

bound on the mutation rate.

3.4 Analysis of autoimmune data

We applied our methods to estimate mutation parameters from a set

of experimentally derived lineage trees collected from autoimmune
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mice (William et al., 2002). Details of the tree shapes are described
in (Kleinstein et al., 2003) and (Magori-Cohen et al., 2006). From
these data we estimate using the simulation-based method that

�55% of FWR replacement mutations are lethal (i.e., l¼ 0.55),

that the clones have undergone�5 divisions on average, and that the

mutation rate is �0.26 generation�1, corresponding to approxi-

mately 0.26/340 ¼ 7.6x10�4 base-pair�1 generation�1. The ana-

lytical method produces a similar estimate of the mutation rate. We

can conclude that these clones are undergoing hypermutation at a

rate consistent with a ‘classic’ immune response (McKean et al.,
1984; Wabl et al., 1985; Wabl et al., 1987). This is an important

(and surprising) result since these cells were microdissected from

the T zone-red pulp border rather than germinal centers, where

hypermutation is thought to be restricted. This has significant impli-

cations for understanding the etiology of autoimmune diseases such

as Lupus.

4 SUMMARY

Estimating mutation properties is a key element in much of the

theory dealing with evolution of cells or species. Currently existing

methods assume a very high number of generations, and often a

large population size. These assumptions do not apply in many

systems, such as the short-term evolution of viruses in a human

host or B cell affinity maturation during an immune response

(the main focus of this paper). We have developed a MBDP

simulation to model the B cell affinity maturation process, along

with two ML methods for estimating the mutation parameters

(including somatic hypermutation rate, lethal mutation frequency

and the number of generations). The input to our methods consists

of a set of maximum parsimony lineage trees generated from

experimentally observed groups of clonally related B cell receptor

DNA sequences. The correctness of the maximum parsimony recon-

structions was tested on synthetic data sets and found to be precise

for over 98% of trees. Our methods are based on an initial selection

of the most informative tree shapes (based on mutual information).

In the first method, we derive analytical estimates for the expected

value of each tree shape given a set of parameters, and compare

these with the observed shapes using weighted least squares. The

second method, based on numerical simulations of the underlying

MBDP, was developed to cover cases where repeated sequences

could be artifacts of the specific experimental protocols employed.

Although limited by its high computational requirements, it has

the additional advantage of estimating the full joint distribution

of tree shapes instead of estimating the expected value of each

shape individually. The analytical method can be viewed as a

first rapid approximation to this full distribution estimate. The

validity of these methods is verified using synthetic data sets.

Our methods provide unbiased estimates of the mutation rate, the

lethal mutation frequency and the age (in cell generations) of each

tree when the number of generation is higher than seven, and a lower

bound for younger trees, even for cases where the amount of data is

limited.

Preliminary results suggest that our current approach fails to

estimate the rate of mutation-independent cell death. We have gen-

erated data sets similar to the one used in the analysis above and

included mutation-independent cell death with a rate of d per divi-

sion, and attempted to estimate d. We found that the ML curves

were too flat in the direction of d to provide any insight (data not

shown). This result is not surprising since cell death is equivalent to

missing a full branch in the cell-sampling step, which is a frequent

occurrence in any case due to the small number of cells sampled to

create each tree. Consequently, we expect the MBDP parameter

estimates will be unaffected by assuming d¼ 0.

It is possible to extend our MBDP model to include other bio-

logical processes, such as selection. Negative selection is currently

included in the analysis in the form of lethal mutations, but there is

currently no positive selection (for a discussion of why this is not

critical for the particular experimental data analyzed, see

(Kleinstein et al., 2003)). Positive selection in its simplest form

could be described using a model with two populations with

equal mutation rates, but one dividing (or dying) faster than the

other. In such a simple model the ratio between the variance in the

number of mutations per sequence in the trees and their average

would be greater than one. On the other hand, this ratio is not

sensitive to the occurrence of lethal mutations and we find in our

synthetic data that, as expected, the average is equal to the mean

(Magori-Cohen et al., 2006). Significant deviations from one would

suggest the presence of positive selection, and require that an appro-

priate model be built for the relevant system. Note that evolutionary

relationships (Goldman 1994), or non-homogeneous sampling

might also result in ratios higher than one.

We expect that the low frequency of tree reconstruction errors

(less than 1.5%) will have a limited effect on the final parameter

estimates since these combine multiple structural elements with

elements taken purely from the sequences (e.g., R/(R+S)). Another
assumption that could impact our methods validity is that of syn-

chronous division. While we expect this assumption will be

approximately true of the in vivo data as a result of the small

microdissections and short time-scales being considered, we have

used synthetic data to show that relaxing this assumption does not

significantly affect our results (Figure 6 inset).

In summary, we have developed a rapid, systematic measure of

mutation parameters from small sets of DNA sequence data, based

on a limited set of lineage tree shapes deemed most relevant to the

underlying process. We have further provided a methodology based

on comparison with synthetic data to test the limits of its

applicability.
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ABSTRACT

We are interested in detecting homologous genomic DNA sequences

with the goal of locating approximate inverted, interspersed, and

tandem repeats. Standard search techniques start by detecting

small matching parts, called seeds, between a query sequence and

database sequences. Contiguous seed models have existed for

many years. Recently, spaced seeds were shown to be more sensitive

than contiguous seedswithout increasing the randomhit rate. To deter-

mine the superiority of one seed model over another, a model of

homologous sequence alignment must be chosen. Previous studies

evaluating spaced and contiguous seeds have assumed that matches

and mismatches occur within these alignments, but not insertions and

deletions (indels). This is perhaps appropriate when searching for

protein coding sequences (<5% of the human genome), but is inappro-

priate when looking for repeats in the majority of genomic sequence

where indels are common. In this paper, we assume a model of homo-

logous sequence alignment which includes indels and we describe

a new seed model, called indel seeds, which explicitly allows indels.

We present a waiting time formula for computing the sensitivity of

an indel seed and show that indel seeds significantly outperform

contiguous and spaced seeds when homologies include indels. We

discuss the practical aspect of using indel seeds and finally we present

results froma search for inverted repeats in the dog genome using both

indel and spaced seeds.

Contact: dyfmak@bu.edu

1 INTRODUCTION

Standard heuristic algorithms for homology search in biological

sequences (Pearson and Lipman, 1988; Altschul et al., 1990,

1997; Kent, 2002) utilize a two step approach. In the search

step, short words from the query sequence, called seeds are paired

with all matching words in sequences from a target database. The

pairing can be done efficiently by first indexing the database words.

In the confirmation step, each database match, called a hit, is tested
to see if it is part of an extended region with homology to the query

sequence. Hits are tested using alignment or some approximation

to alignment.

An important element in successful homology detection

programs is the choice of a good seed. A short seed increases

the probability of finding a hit within a homologous region, but

also increases the number of random hits in non-homologous

regions and thereby increases the running time. A long seed reduces

the number of random hits, but also reduces the probability of

hitting a homologous region. In practice, a trade-off is made

between sensitivity (the probability of hitting a homologous region)

and excessive running time caused by too many random hits. BLAT

(Kent, 2002) for example, is well designed for DNA regions sharing

very high identity (�95%), allowing the use of long seeds or

multiple seeds which provide both excellent sensitivity and very

low probability of random hits.

In the last few years, much interest and research has focused on

what are called spaced seeds (Ma et al., 2002; Buhler and Sun,

2005; Keich et al., 2004; Brejova et al., 2004; Choi and Zhang,

2004; Choi et al., 2004; Sun and Buhler, 2004; Xu et al., 2004;
Brejova et al., 2005; Noe and Kucherov, 2005) because they

increase sensitivity without simultaneously increasing the number

of random hits. Patternhunter (Ma et al., 2002) was the first general
purpose program to utilize spaced seeds. While a standard contigu-

ous seed is a short word or substring drawn from the query sequence,

a spaced seed is a non-contiguous subsequence, that is, it consists
of a number of explicit positions which must match separated

by ‘‘don’t care’’ positions where the query and the homologous

region may or may not match. A recent extension of this

concept, implemented in YASS (Noe and Kucherov, 2005), is called

a ‘‘transition constrained seed’’ and requires that mismatches in the

‘‘don’t care’’ positions must be of the transition type (A to G, or C to

T) rather than transversions.

All the recent work on spaced seeds assumes that mutational

differences in homologous regions consist solely of substitutions

(mismatches) or that insertions and deletions (indels), if present, are

widely spaced. While it can be argued that this is a valid assumption

for designing seeds to find homologous protein coding regions, it is

not valid for homology search in sequence where indels are toler-

ated, such as promoters and non-coding repeats. One of us (Benson)

has been involved for several years in the development of software

(Tandem Repeats Finder-TRF Benson, 1999 and Inverted Repeats

Finder-IRFWarburton et al., 2004) for the detection of approximate

DNA repeats. These repeats usually occur within or contain non-

coding sequence and along with substitution mutations, they exhibit

numerous indel mutations as well. For example, in roughly 10% of

the IRs found in the human genome using IRF (Warburton et al.,
2004), with arm lengths between 50 bp and 100 bp and arm sep-

aration below 500 000 bp, the frequency of indels between the left

and right arms exceeds 8%. In a 50 bp repeat, this means at least 4

indel positions, with a limited possibility of wide spacing. This
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estimate of indel frequency is low since the detection method

uses k-tuple matching (an alternate name for contiguous seeds).

Switching to spaced seeds would improve the sensitivity of IRF,

but developing a seed model that is sensitive to the existence of

indels would improve the sensitivity even more.

In this paper, we introduce the idea of indel seeds. As with

spaced seeds, an indel seed is a subsequence of the query

which must match exactly to produce a hit and the separating

‘‘don’t care’’ positions may or may not match. The difference

is that some separating positions can be of variable size to

allow for insertions or deletions between the matching parts. In

order to accommodate indels, we model alignments between

homologous regions with a four character alphabet: {match, mis-

match, insertion in query, insertion in target} and use a Markov

chain to specify transition probabilities between these characters.

We show how to compute the sensitivity of indel seeds under this

model using a ‘‘waiting time’’ (Aki et al., 1984) calculation. We

determine optimal seeds under several match/mismatch/indel con-

figurations and show that indel seeds are more sensitive than

contiguous or spaced seeds (with equivalent random hit rates)

even when the indel frequency is one third the mismatch fre-

quency. We discuss how to use indel seeds in practice, and finally,

we present the results of searches for inverted repeat homologies

in the dog genome using both indel and spaced seeds.

This paper is organized as follows. In section 2 we define our

model of alignments for homologous regions that include insertions

and deletions. In section 3, we define indel seeds. In section 4

we explain how indel seeds are used in practice and we discuss

the random hit rate of indel seeds. In section 5 we show how to

compute the sensitivity of indel seeds. In section 6 we compare the

sensitivity of indel, contiguous, and spaced seeds. Finally, in

section 7 we present the results of our search for inverted repeats

in the dog genome.

2 HOMOLOGY MODEL

Two sequences are homologous if they have a common evolution-

ary ancestor. After the sequences diverge due to duplication

or speciation, they typically undergo a variety of mutational events

which, over time, transform them into different sequences. Depend-

ing on the evolutionary pressures, the sequences may change rapidly

or remain similar over many millions of years. Homology detection

tools exploit the remaining similarities to identify sequences that

are homologous. Optimal seed selection is based on the homology

model, which includes 1) the set of mutations that are presumed

to transform the sequences, 2) the frequency of those mutations,

and 3) the length of alignments of homologous regions.

A simple homology model and the one most frequently

studied (Ma et al., 2002; Keich et al., 2004; Buhler and Sun,

2005; Xu et al., 2004; Choi and Zhang, 2004; Sun and Buhler,

2004; Brejova et al., 2005) allows only substitution mutations. In

this model, alignments consist solely of matches and mismatches,

and are represented by bit strings where a 1 indicates a match and a

0 indicates a mismatch or substitution. For example:

A C G T G C G T A A T T T C G

A C C A G C T T T A T T C C G

1 1 0 0 1 1 0 1 0 1 1 1 0 1 1

Two common variations assume 1) that the match and mismatch

frequencies are independent and identically distributed (iid) across

the alignment or 2) that the frequencies are the result of a Markov

chain or hidden Markov model where every third position has a

higher substitution frequency in order to reflect the higher variabil-

ity in third codon position in protein coding gene sequences (Buhler

and Sun, 2005; Brejova et al., 2004). Another model introduced by

Noé and Kucherov (Noe and Kucherov, 2004) represents align-

ments with a ternary alphabet rather than bit strings in order to

accommodate the higher frequency of transition substitutions in

DNA evolution. In this case, one character represents a match,

one a transition mismatch (A to G or T to C) and one a transversion

mismatch (everything else).

Indel Model. Our new homology model includes insertion and

deletion events as well as substitution. An alignment is represented

by a string (hereafter called the representative string) over the

following four character alphabet:

0 – mismatch;

1 – match;

2 – insertion into database sequence (deletion from query

sequence);

3 – insertion into query sequence (deletion from database

sequence).

For example:

Query A C - G T G C G T A A T T T C G

Database A C C G A G C - T - - T T T T G

Representative String 1 1 2 1 0 1 1 3 1 3 3 1 1 1 0 1

Normalized alignment length. In the match-mismatch homo-

logy model, the position x in a representative string (alignment) is

the same as the position in the query. In the indel homology model,

the alignment and the query will differ in length due to insertions

into the database sequence. Since homology search proceeds from

the query, we show (in Section 5) how to compute the probability of

finding a seed hit relative to the length of the query. We therefore

use the following notion:

DEFINITION. The normalized length of a representative string of
length n is the number of ‘0’, ‘1’, and ‘3’ characters contained in
positions 1 to n. Normalized position k in a representative string is
the position of the kth character from the set {0, 1, 3}, counting from
the left. For example, the following representative strings all have
normalized length 5 and in the middle string, pattern 11 occurs at
normalized position 5:

11101 10122211 1331221

From this definition, occurrence of the pattern 111 at normalized

position 3 corresponds to an infinite number of representative strings

because any number of 2’s can precede the pattern. This set of

strings can be specified as 2* 111, where we use the regular expres-

sion 2* to denote zero or more 2’s.

Representative string probabilities. Mutation frequencies are

described by a first-order Markov chain in order to avoid the occur-

rence of the character pairs ‘‘2 3’’ or ‘‘3 2’’ in a representative

string. We exclude these pairs because consecutive indels, one in

each sequence, are typically excluded by the choice of alignment

parameters: the penalty for a single mismatch is usually less than the

combined penalty for two individual indels. For the remainder of

D.Mak et al.

e342



this paper, we use the first-order Markov chain specified in the

4 x 4 transition matrix below:

where pg stands for the probability of a gap symbol (‘2’ or ‘3’)

which we assume to be the same in the query and the database, and

p*i ¼ pi þ pg ðpi/ðp0 þ p1ÞÞ for i ¼ 0, 1 represents the proportional

distribution of pg to the characters 0 and 1. Other probability

distributions are possible. We assume that the Markov process is

stationary so that the probability of a given digit at any position

reflects the equilibrium distribution p ¼ (p0, p1, p2, p3). However,

the same is not true of any normalized position. In particular, this

implies that the probability of a ‘1’ at a given normalized position x
depends on x. In actuality, the situation is simpler than that as the

following theorem states. This fact is important for the sensitivity

formula derived in Section 5.

THEOREM 1. In a representative string, the probability of a ‘1’ at
the first normalized position is

p1 þ p2

p1
p0 þ p1

� �

and at all other normalized positions is

p*
1 ¼ p1 þ p1

pg

p0 þ p1

� �

(Proof omitted.)

3 SEED MODEL

The seed model defines characteristics of homologous alignments

that will be recognized by the homology detection program. The

model is specified in terms of the alphabet of representative

strings and wildcard symbols. A contiguous seed is a string of

1’s denoting successive matches in the alignment, for example

11111 or 1k where k in this case is 5. Ma et al. (Ma et al., 2002)
described a spaced seed which is a string, beginning and ending

with a 1 and containing 1’s and �’s where � is a wildcard that

denotes either 1 (match) or 0 (mismatch) at that position. For

example, 11��11 indicates that a match or mismatch can occur at

each of positions 3 and 4. Thus, 11��11 actually specifies four

distinct patterns in the representative string alphabet: 111111,

111011, 110111, 110011.

DEFINITION. An indel seed is a string beginning and ending with
a 1 and containing 1’s, �’s, and X’s where 1 represents a match, � is
a wildcard that denotes either 1 (match) or 0 (mismatch), and X is a
wildcard that indicates zero or one characters from the set {0, 1, 2,
3}, i.e., either a match, mismatch, insertion into the database or
insertion into the query. Consecutive X’s can represent any pair of
numeric digits except ‘‘2 3’’ and ‘‘3 2’’.

For example, 11XX1 with two wild-cards, permits indels of size

zero, one, or two. This seed specifies the following 19 pattern

strings:

111‚1101‚1111‚1121‚1131‚11001‚11111‚11221‚11331‚11011‚

11021‚11031‚11101‚11121‚11131‚11201‚11211‚11301‚11311

As another example, the indel seed 1X1�1 permits indels of size

zero or one and specifies the following 10 pattern strings:

1101‚1111‚10101‚10111‚11101‚

11111‚12101‚12111‚13101‚13111

4 USING INDEL SEEDS

In the following we outline how the indel seed 11XX11 is used in

practice. The method generalizes to seeds with different numbers of

indel positions. To process the query, Q, of length n, at a typical

index i 2 [6, n], we extract three patterns because the size of the

insertion in the query can be zero, one, or two:

Q½i � 5‚ i � 4�Q½i � 1‚ i�‚ Q½i � 4‚ i � 3�Q½i � 1‚ i�‚

and

Q½i � 3‚ i � 2�Q½i � 1‚ i�:

For example, if Q ¼ ACTGCATCGCG. . . , then the patterns

extracted at position 9 (underlined) are:

GC CG CA CG AT CG

Note that the rightmost pair of characters is the same in all three

patterns. The differences are in the position of the leftmost pair,

separated by either two, one or zero characters from the rightmost

pair. Because of edge effects, at query index i ¼ 4 there is one

pattern to extract and at query index i¼ 5 there are two. Each pattern

is treated as a single four character string, in other words, the
spacing between the pairs is ignored. We process the database

sequences in the same way, again selecting three patterns for a

typical index because the insertion in the database sequence can

also be zero, one, or two.

Determining what constitutes a match. In the simplest

approach, a match occurs whenever any pattern from a group of

three in the query matches any pattern in a group of three from the

database. The difference in spacing is not considered relevant for a

match and is interpreted as an indel. For example:

Random Hit Rate. Because there are multiple chances to match

for each query pattern, the random hit rate is based on the number of

1’s in the seed and the number of comparisons. With the four-letter

DNA alphabet, when we assume that each letter occurs with equal

frequency, the probability of a random match is approximately

9 · ð1/4Þ4
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The exponent 4 comes from the four characters in the query and

database strings (the four 1’s in the seed). The factor 9 comes from

the fact that each query position has 3 patterns and each pattern has

3 chances of matching to a database position. The probability is actu-

ally somewhat less because the patterns at any one position are not

independent (as in the example, the last two characters are the same).

Restricted comparison strategy. Note that there is flexibility in

deciding which patterns from the query and database should be com-

pared to detect matches and this flexibility can be used to reduce the

random hit rate if the sensitivity of the seed model is not seriously

impaired. For example, a more restrictive comparison approach

would allow matching only between two patterns whose insertion

spacing differs by one. Thismight be desireablewhen the seed is long

and there is a high probability of finding an indel within the seed

length. For this approach, the probability of a random match is

4 · ð1/4Þ4

where the factor of 4 comes from the four possible comparisons

between the three query patterns and three database patterns as in

Table 1.

5 SEED SENSITIVITY

We calculate seed sensitivity using a waiting time formula (Aki

et al., 1984), which is a general technique for calculating the proba-
bility of observing a given event, in a randomly generated string, by

the occurrence of the kth character. Waiting time formulas are

equivalent to other methods for calculating seed sensitivity

(Keich et al., 2004; Buhler and Sun, 2005; Brejova et al., 2004;
Choi and Zhang, 2004).

Waiting Time Formula. For clarity of presentation, the full

version of this manuscript begins by deriving formulas for spaced

seeds. Due to space restrictions, those formulas have been omitted.

We assume that we are given an indel seed which specifies a set of

patterns in the representative string alphabet. From this set, we

eliminate all patterns that contain, as a substring, another pattern

from the set. This can happen because an ‘X’ in the seed allows

some of the patterns to be shorter than others. We work with this

reduced set of patterns. The following terms are used:

� T: The set of patterns specified by the seed, after eliminating

those containing other patterns as substrings.

� Li: The normalized length of patterni.

� w*
i : The probability of patterni which is dependent on its

normalized position. (By Theorem 1, that probability is the

same everywhere except when the initial ‘1’ occurs at the

first normalized position.)

� wi[s]: The probability of the suffix of patterni following
normalized position s, s 2 [1..Li � 1] which is independent of

its position.

� Vi[s]: The set of patterns from T that can overlap the prefix of

patterniwhen they occur at normalized position s, s2 [1..Li� 1].

� P (patterni : x): The probability, across all representative

strings, of patterni being the first occurrence of any pattern at

normalized position x.

� S(seed : x): The sensitivity of the seed, i.e., the

cumulative probability, across all representative strings,

of a first occurrence of any of the set of patterns in T at

all normalized positions between 1 and x.
(Sðseed : xÞ ¼

Px
k¼1 ð

P
a2T Pðpatterna : kÞÞ).

We are interested in calculating the probability of first occur-

rences of every patterni 2 T at every normalized string position x,
where first occurrence means a string ends with patterni at position x
and the string prefix up to normalized position x � 1 contains no

other pattern in T. The seed sensitivity is the sum of these proba-

bilities. The general scheme is as follows. For each patterni, and

each normalized position x, calculate the probability of all repre-

sentative strings with normalized length x that end with patterni

(which is just w*
i ). Then, subtract the probability of all strings in this

set which contain an earlier first occurrence of any pattern in T.
To determine earlier first occurrences, patterni is compared with

every other pattern (including itself) for overlapping and non-

overlapping positions. All patterns are non-overlapping when

they occur at k � x � Li. The probability of strings which both

end with patterni and contain one of these earlier occurrences is:

w*
i ·
Xx�Li

k¼1

X
a2T

Pðpatterna : kÞ
 !

¼ w*
i · Sðseed : x � LiÞ

The following determines the probability of the intial 1 in pat-
terni, and thus the value of w*

i , when patterni follows an earlier

occurrence of some pattern (rather than being the first occurrence of

any pattern in the string).

COROLLARY 2. The probability of a ‘1’ at any normalized position
following an earlier occurrence of any pattern is p*

1.

(Proof omitted.)

At each position j > x � Li some subset of the patterns, Vi[Li �
(x � j)] � T, occurring at j, is consistent with an overlap of patterni

at position x. The probability of these patterns is multiplied by the

probability of the suffix of patterni that extends past the overlap:

Xx�1

j¼x�Liþ1

X
a2Vi½s�

Pðpatterna : jÞ

0
@

1
Awi½s�

2
4

3
5

where s ¼ Li � ðx � jÞ
The probability of a first occurrence of patterni at position x
is then,

Pðpatterni : xÞ ¼ w*
i ð1� Sðseed : x � LiÞÞ

�
Xx�1

j¼x�Liþ1

X
a2Vi½s�

Pðpatterna : jÞ

0
@

1
Awi½s�

2
4

3
5 ð1Þ

where s ¼ Li � ðx � jÞ

THEOREM 3. The time complexity for computing the cumulative
sensitivity of an indel seed, S(seed : n), is O (nl j T j ) where n is the

Table 1. Four possible comparisons between the query and database

sequences in a restricted comparison strategy and the representative strings

they detect

Query patterns:
11 1 1 1 1

11 - 131 -
Database patterns: 1 1 121 - 1301, 1311, 1031, 1131

1 1 - 1201, 1211, 1021, 1121 -
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length of the homology region, l is the length of the seed, and j T j is
the number of strings in the set of patterns specified by the seed.

PROOF. Consider a single patterni. From the formula for

P(patterni : x), for every location between 1 and n in the represen-

tative string, patterni computes one add and one multiply for the

term w*
i ð1 � Sðseed : x � LiÞÞ and Li � 1 multiplications in the

term
Px�1

j¼x�Liþ1 ½ð
P

a2Vi½s� Pðpatterna : jÞÞwi½s��, where Li � l
and s ¼ Li � (x � j). It suffices to show that the summation

terms,
P

a2Vi½s� Pðpatterna : jÞ, each of which represents the

probability for an overlap set, Vi[s], can all be precomputed in

time proportional to the number of patterns j T j . We sketch the

proof here.

An Aho-Corasick tree (AC tree) of all patterns (constructed in

time O(l j T j )) can be used to determine the overlap set for every

position in any patterni. The chain of failure links from the end of

any patternj specifies the patterns and positions for which patternj

belongs to an overlap set. Over the entire AC tree, these chains form

another tree rooted at the single child of the AC root (indicating that

a ‘1’ has been read, since all patterns begin and end with a ‘1’). Each

bifurcating node in this tree as well as each parent node of a leaf

(if not bifurcating) represents a single overlap set. The number of

these nodes is < 2 j T j and they can be identified in a preprocessing

step. For a given representative string position x, once the proba-

bilities of all patterns at x have been computed, the probability of

an overlap set at x (specified by a bifurcating or leaf parent node in

the failure chain tree) can be computed by adding the probabilities

of the node’s children. This takes time O( j T j ) for all overlap sets if
the additions are computed in a post-order traversal. &

For an indel seed, the number of patterns j T j depends on the

number and location of the X’s. An indel seed with a single X (like

those we test in the next section) produces

4 · 2j*j þ 2j*j ¼ 5 · 2j*j

seeds where j � j is the number of match-mismatch wildcards in the

seed. The first term specifies the seeds where ‘X’ holds a character

and the second term where ‘X’ does not.

6 COMPARING SEED SENSITIVITIES

We compared the sensitivity of the three seed classes: contiguous,

spaced, and indel. For the homology model, we chose several

match/mismatch/indel probability configurations that reflect

increasing ratios of indels to mismatches. These ratios are not

uncommon in human IRs detected by the Inverted Repeats Finder

in an exploration of that genome (Warburton et al., 2004). The
majority of those human IRs had lengths between 30 and 200

base pairs (bp). For our comparison, we chose two query lengths

from this range: 64 and 100. The lower value was chosen to conform

with earlier studies of spaced seeds.

For each model, we compared the sensitivity of seeds with

equivalent random hit rates. For contiguous and spaced seeds,

the random hit rate is (1/4)k where the exponent, referred to here

as equivalent weight, is the number of ‘1’s in the seed, assuming

equal probability of the letters in the DNA alphabet. For indel seeds,

the random hit rate depends on the number and length of the indel

positions in the seed as discussed in Section 4. For this analysis, we

used indel seeds with a single X (which requires the selection of two

strings at each position in the query and database sequences), so the

random hit rate is � 4 · (1/4)k ¼ (1/4)k�1, that is, the equivalent

weight is one less than the number of ‘1’s in the seed. For each

homology model, we tested seeds with weights equivalent to 8, 9,

10, 11, and 12.

We also evaluated a restricted comparison strategy for indel

seeds. Let the equivalent weight of an indel seed in the unrestricted

comparison strategy, be its nominal weight. Our restricted compari-

son strategy allows three comparisons between the query and

database at each location, as shown in Table 2. The true random

hit rate is � 3 · (1/4)k, which is lower than the nominal rate. Out of

necessity, we compared restricted comparison indel seeds with

spaced seeds having a weight equivalent to the indel seed’s nominal

weight, i.e., with spaced seeds that are expected to have more

random hits.

Results. First, we note that contiguous seeds did more poorly than

either spaced or indel seeds in almost all comparisons and their

sensitivities are not shown.

Second, we observe two trends with spaced seeds: their sensitiv-

ity drops significantly as the ratio of indels to mismatches increases

and the effectiveness of added match-mismatch wildcards also

declines. Figure 1 graphs the sensitivity of the best spaced seed

(equivalent weight ¼ 11 and query length ¼ 64) in several con-

figurations, holding the match probability at 70% and raising the

indel/mismatch ratio from zero to one. At each datapoint, the integer

specifies the number of wildcards in the best seed. Across the range

of ratios, sensitivity drops roughly 13% while there is a rapid

decline from 7 wildcards in the PatternHunter seed at a ratio of

zero, to 2 wildcards at a ratio of 0.2 and one wildcard at a ratio of

0.5. The trend suggests that a contiguous seed (zero wildcards)

Table 2. Three possible comparisons under a restricted comparison strategy

for indel seeds and the representative strings they detect

Query patterns:
11 1 1

Database patterns: 11 - 131
1 1 121 101, 111

Fig. 1. Increasing the indel to mismatch ratio decreases the number of wild-

cards in the best spaced seeds (numbers next to data points) as well as the

sensitivity. Match probability is 70%.
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would eventually outperform a spaced seed. We observe this for

match probability 75% and ratio 1.5 for equivalent weights 8 and 9

(not shown). Our intuition for this trend is the following. Spaced

seeds can never match across an indel, so indel characters have the

effect of chopping representative strings into smaller pieces. Within

these smaller pieces, a longer spaced seed, with more wildcards, has

fewer positions in which to match and so has lower sensitivity

overall.

Third, with increasing indel to mismatch ratios, indel seeds

outperform spaced seeds. Tables 3 and 4 give the sensitivities of

the spaced and indel seeds in the homology models tested. In both

tables, ‘‘winning seeds’’ and their sensitivities are shown in a

bold font. In Table 3 the match probability is held constant at

70%. When the indel to mismatch ratio is 0.2, spaced seeds are

superior by around 1%. At ratio 0.5, indel seeds for the higher

equivalent weights do better and at ratio 0.66 and above,

indel seeds are clearly superior. For example, at ratio 1 and

equivalent weights 10 and 11, the gain in sensitivity for the

indel seed is 4.6%.

Table 4 shows a mix of match probabilities. Except for ratio 0.33

at the lowest equivalent weights, the indel seeds are superior. For

example at 80% matching, ratio 1, and equivalent weight 11, the

gain in sensitivity for the indel seed is almost 3%, and at 75%

matching, ratio 1.5, it is 7.6%.

Table 3. Sensitivities and optimal seeds at query lengths 64 and 100. Higher sensitivities are shown in bold font. Homology models are specified as (match,

mismatch, database insert, query insert). In this table, match probability was held constant at 70%. Last number at top of each column is the ratio of indel

probability to mismatch probability.W is equivalent weight, L is query length. Length 64 sensitivities marked with a star ($) were obtained with a different seed

than the one shown

Model (70, 25, 2.5, 2.5); 0.2 (70, 20, 5, 5); 0.5 (70, 18, 6, 6); 0.66 (70, 15, 7.5, 7.5); 1

W L Spaced seed Indel seed Spaced seed Indel seed Spaced seed Indel seed Spaced seed Indel seed

8 111�11�111 11�11X1�1111 11111�111 11111X1111 111�11111 11111X1111 11111�111 11111X1111

64 0.799248 0.775944 0.770976 0.766357 0.760703 0.772317 0.743978 0.781979

100 0.927726 0.915175 0.909198 0.906417 0.902463 0.910265 0.891094 0.916372

9 1111�11�111 111�11X11�111 11111�1111 111111�1111 11111X1111 11111X1111 1111�11111 111111X1111

64 0.666672 0.645569 0.628948 0.625259 0.617831 0.631623 0.599931 0.642072

100 0.836377 0.821216 0.802802 0.800117 0.793025 0.805638 0.776882 0.814576

10 11111�11�111 111�11X11�1�111 1111�111111 1111�111X1111 111111�1111 111111X11111 111111�1111 111111X11111

64 0.526124 0.511339$ 0.488697 0.487703$ 0.477954 0.493522 0.460946 0.503144

100 0.710387 0.698711 0.669123 0.670198 0.657549 0.674724 0.638893 0.684828

11 1111�111�1111 1111�11X111�111 111111�11111 11111�111X1111 111111�11111 1111111X11111 111111�11111 1111111X11111

64 0.404111 0.394377 0.366688 0.368235 0.357618 0.371836 0.343322 0.379957

100 0.578892 0.570552 0.531516 0.536510 0.520300 0.538502 0.502391 0.548347

12 11111�111�1111 1111�1�11X111�111 11111�111�1111 111111X111�1111 1111111�11111 111111X1111111 1111111�11111 1111111X111111

64 0.301648 0.294727$ 0.268688 0.271181 0.260742 0.273027 0.249229 0.279409

100 0.453702 0.449161 0.409587 0.413569 0.396584 0.413819 0.380711 0.422375

Table 4. Sensitivities and optimal seeds at query lengths 64 and 100. Higher sensitivities are shown in bold font. Homology models are specified as (match,

mismatch, database insert, query insert). In this table, match probabilities are higher than in table 3. Last number at top of each column is the ratio of indel

probability to mismatch probability. W is equivalent weight, L is query length

Model (75, 10, 7.5, 7.5); 1.5 (80, 10, 5, 5); 1 (85, 15, 2.5, 2.5); 0.33

W L Spaced seed Indel seed Spaced seed Indel seed Spaced seed Indel seed

8 1111�1111 1111X11111 11111�111 11111X1111 11111�111 1111�11X111
64 0.876635 0.922186 0.968706 0.980779 0.978886 0.978114
100 0.966614 0.984287 0.996388 0.998369 0.998096 0.998057

9 1111�11111 111111X1111 1111�11111 1111X111111 111�11�1111 111�11X11�111
64 0.773066 0.837862 0.924164 0.948027 0.943899 0.943214
100 0.911442 0.949127 0.985147 0.992035 0.991157 0.991239

10 111111�1111 11111X111111 111111�1111 11111X111111 11111�11�111 1111X111�1111
64 0.652459 0.729514 0.855497 0.892439 0.886191 0.890837
100 0.824181 0.883914 0.958263 0.974373 0.972386 0.974289

11 111111�11111 1111111X11111 111111�11111 11111X1111111 1111�111�1111 111�111X11�1111
64 0.533202 0.612365 0.769472 0.817654 0.813606 0.820006

100 0.716664 0.792340 0.911418 0.940129 0.938616 0.943307

12 11111�1111111 1111111X111111 1111111�11111 1111111X111111 11111�111�1111 1111�11X111�1111
64 0.423409 0.497833 0.673449 0.727906 0.727865 0.736757

100 0.600568 0.683390 0.844450 0.885424 0.886638 0.894515
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Finally, the restricted comparison strategy, while not as sensitive

as unrestricted comparison, outperforms spaced seeds with higher
random hit rates. At match probability 80%, ratio 1, and query

length 100, the best restricted comparison indel seeds slightly out-

performed the best spaced seeds at nominal weights 11 and 12

(data not shown). We observed the same results at match probability

75%, ratio 1.5, and query length 100 for nominal weights 9 through

12, with a gain of 3% in sensitivity at nominal weight 12.

Seed sensitivity as a lower bound. Seed sensitivity calculations

actually underestimate the sensitivity of indel and spaced seeds

when using an indel homology model for the following reason.

When indels are allowed, sometimes more than one optimal

alignment is possible. For example, the following are two optimal

alignments for the same pair of sequences.

Query A T C T G G A T T G C

Database A T A T - G A T T C C

Representative String 1 1 0 1 3 1 1 1 1 0 1

Query A T C T G G A T T G C

Database A T A T G - A T T C C

Representative String 1 1 0 1 1 3 1 1 1 0 1

Note that in the first alignment, the indel seed, 11X111, does not

occur, but in the second alignment it does. Thus we can not

always classify the representative string from the first alignment

as excluding the seed 11x111. Note also that for some alignments

that do not contain a seed, there may be suboptimal alignments that

do. For these reasons, our calculated values for indel and spaced

seed sensitivities are lower bounds on the true sensitivities. We have

estimated the error for several of the optimal seeds from Tables 3

and 4 using the following procedure.

We generated 100 000 random representative strings according

to one of our Markov chain homology models, and then for each

representative string, generated a pair of sequence strings that

match the alignment. For the sequence strings, we assumed

equal probabilities for the letters A, C, G, and T. We then

exhaustively checked if any alignment, including any suboptimal

alignment, of the two sequences contained the seed being tested.

We analyzed three different homology models for query length 64.

The seed sensitivities for the representative strings were nearly

identical to our calculated values (data not shown). The seed sen-

sitivities for the sequence pairs are shown in Table 5. We found a

gain in sensitivity of � 3.1–9.5% for the seeds over the standard

calculation, but in every case the gain was higher for the indel seed

than the spaced seed.

7 INVERTED REPEAT SEARCH IN THE
DOG GENOME

We tested the ability of indel and spaced seeds to find inverted

repeats (IRs) in a modified version of the Inverted Repeats Finder

(IRF) (Warburton et al., 2004). The best seeds (equivalent weight¼
12) were chosen from the homology model for 70% matching and

indel to mismatch ratio ¼ 1.0 (Table 3). The program was tested on

the first 33 000 000 bases of chromosome I of the dog genome

(Lindblad-Toh et al., 2005). Typically when using IRF, we first

mask known interspersed and tandem repeats so they are not

reported as IRs. Interspersed repeats from the same family appear

as IRs if they are coincidentally inserted in reverse orientation,

tandem repeats from the same family act similarly, In addition,

some common tandem repeats such as ATATATAT look like

IRs. Sequence masked for interspersed repeats was obtained

from the UCSC genome browser website (which uses Repeat-

Masker) and was additionally masked for tandem repeats using

the Tandem Repeats Database (Benson, 2005). Roughly 39% of

the sequence was masked and did not participate in IR detection.

IRF scans through a sequence, recording seeds at each position by

linking locations of identical seeds. The seed at the current forward-

most position finds its ‘‘hits’’ by scanning backward through the list

of its reverse complement. A user specified maximum lookback

distance sets the maximum spacer length between IR arms. For

each hit, an alignment is computed and the program reports

those alignments which score above a user specified minimum.

Parameters used were: alignment scoring: match ¼ 2,

mismatch ¼ �5, indel ¼ �5; minimum alignment score ¼ 40;

lookback ¼ 15,000,000. Testing was performed on a 2.8GHz PC

with 2GB RAM. Table 6 shows the results.

Table 5. Sensitivity error correction. Sensitivities of optimal seeds from tables 3 and 4 calculated on 100 000 pairs of sequence strings, generated according to

the indicated homology model as described in the text, for query length 64. Higher sensitivities are shown in bold font. Sensitivity difference is the gain in

sensitivity over the standard calculation. Homology models are specified as (match, mismatch, database insert, query insert). Last number at the top of each

column is the ratio of indel probability to mismatch probability. W is equivalent weight, L is query length. The seed marked with a star ($) is optimal at query

length 64 in table 3 but is not shown in that table

Model (70, 20, 5, 5); 0.5 (70, 15, 7.5, 7.5) ;1 (75, 10, 7.5, 7.5) ;1.5

W L Spaced seed Indel seed Spaced seed Indel seed Spaced seed Indel seed

10 1111�111111 11111X11111$ 111111�1111 111111X11111 111111�1111 11111X111111

64 0.53586 0.55074 0.53357 0.59884 0.72930 0.81476

sensitivity difference +0.047163 +0.063037 +0.072624 +0.095696 +0.076841 +0.085246
11 111111�11111 11111�111X1111 111111�11111 1111111X11111 111111�11111 1111111X11111

64 0.40279 0.43109 0.40295 0.46348 0.61086 0.70799

sensitivity difference +0.036102 +0.062855 +0.059628 +0.083523 +0.077658 +0.095625
12 11111�111�1111 111111X111�1111 1111111�11111 1111111X111111 11111�1111111 1111111X111111

64 0.30066 0.32093 0.29561 0.34708 0.48975 0.58839

sensitivity difference +0.031972 +0.049749 +0.046381 +0.067671 +0.066341 +0.090557
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First notice that the indel and spaced seed are each able to find

repeats that the other misses (the unique repeats column). Excluding

these, both seeds found 21 138 repeats. Since the predicted sensi-

tivity of these seeds is between 38% and 42% for the homology

model used, we expect that many repeats were not found. Next,

notice that the indel seed finds roughly 270% more unique repeats

than the spaced seed. The unique repeats found by the indel seed are

1) significantly shorter as a group than the unique repeats found by

the the spaced seed, and 2) have higher indel to mismatch ratios

(averages agree, but the middle 50% range is shown to better illus-

trate the variation). Surprisingly, the match percentage is generally

higher for the indel seed than for the spaced seed. In fact, the spaced

seed found no unique repeats with match percentage greater than

93% while the indel seed found 53. Each of the 53 looks like the one

shown in figure 2 (part a) with a single indel in the middle. These are

impossible to find with the spaced seed. But it should be clear that

there exist other repeats with an indel or mismatch offset from the

center which were not found by either of the seeds tested here.

Finally, note that the indel seed produces 2 345 637 or� 6%more

hits than the spaced seed. And because it does more alignments, the

run with the indel seed took 20% longer. The higher number of hits

does not appear to be the cause for the higher number of repeats

detected by the indel seed (recall the 53 repeats described above).

Rather, we believe the higher number of hits is caused by hit clump-
ing within repeats which is magnified for the indel seed because

multiple hits are examined at each sequence location. Two lines of

evidence support this idea. First, runs on randomly generated

sequence show less than 1% difference in the number of hits for

Table 6. Results of IR search in dog genome using indel and spaced seeds

Seed Repeats Unique Repeats Avg. Length (uniques) Middle 50% Range (uniques) Hits Time (Minutes)

Indel to Mismatch Ratio Match %

Spaced 21 365 228 56.6 0.2–1.1 82%–89% 38 717 975 23.7

Indel 21 752 614 34.3 1.0–3.1 89%–93% 41 063 612 28.6

Fig. 2. Examples of IRs found in the dog genome. In each part, upper is the left arm and lower is the right arm. Onlymutational differences are shown in the right

arm. a) typical of 53 repeatswith a single indel foundwith the indel seed but not possible to findwith the spaced seed, left arm24 bp, arms 14.5Mb apart,%match

¼ 95.8, b) founduniquely by indel seed, left arm50bp, arms 7.6Mbapart,%match¼82.7, indel tomismatch ratio¼2.0, c) founduniquely by indel seed, left arm

65 bp, arms 12 kb apart, % match ¼ 84.2, ratio ¼ 2.66, d) found uniquely by spaced seed, left arm 65 bp, arms 4.9 Mb apart, % match ¼ 85.1, ratio ¼ 0.66.
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the seeds used here. Random sequences rarely contain IRs as long or

longer than these seeds (13 and 14 characters) and so hit clumping is

not expected to occur. Second, in a trial with the same dog sequence

but a lookback of only 1 000 000, a similar increase in the indel hits

was observed. Masking the IRs found and reruning the sequence

eliminated roughly 1/4 of the excess hits for the indel seed. To test if

the remainder were due to IRs present but not reported, the mini-

mum score was lowered to 30 which corresponds to repeats as small

as 15 characters. Running the sequence, masking the IRs and rerun-

ning eliminated the hit imbalance. These results suggest that indel

seeds should be used in conjunction with hit filtering to avoid

processing redundant clumped hits.

The IRs found in the dog sequence with arm separation > 500 000

bp (97% of those found) have not, to our knowledge, been reported

before. Several examples found uniquely by the indel seed and the

spaced seed are shown in Figure 2. The ones found by the indel seed

are typical in that they tend to have higher indel to mismatch ratios

than those tested in section 6.

8 CONCLUSION

We have presented a new seed model for homology search which

explicitly allows indels. We give a waiting time formula for cal-

culating indel seed sensitivity and show that indel seeds are superior

to spaced and contiguous seeds in reasonable homology models

which include indels. We discuss how indel seeds are used in

practice and present the results of a limited search for inverted

repeats in the dog genome using indel and spaced seeds with equiva-

lent random hit rates.
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ABSTRACT

Motivation: The specific hybridization of complementary DNA

molecules underlies many widely used molecular biology assays,

including thepolymerasechain reactionandvarious typesofmicroarray

analysis. In order for such an assay to work well, the primer or probe

must bind to its intended target, without also binding to additional

sequences in the reaction mixture. For any given probe or primer,

potential non-specific binding partners can be identified using state-

of-the-art models of DNA binding stability. Unfortunately, these models

rely on dynamic programming algorithms that are too slow to apply on a

genomic scale.

Results:WepresentanalgorithmthatefficientlyscansaDNAdatabase

for short (approximately 20–30base) sequences thatwill bind to aquery

sequence.Weuse a filtering approach, in which a series of increasingly

stringent filters is applied to a set of candidate k-mers. The k-mers that

pass all filters are then located in the sequence database using a

precomputed index, and an accurate model of DNA binding stability

is applied to the sequence surrounding each of the k-mer occurrences.

Thisapproach reduces the time to identifyall bindingpartners foragiven

DNA sequence in human genomic DNA by approximately three orders

of magnitude, from two days for the ENCODE regions to less than one

minute for typical queries. Our approach is scalable to large DNA

sequences. Our method can scan the human genome for medium

strength binding sites to a candidate PCR primer in an average of

34.5 minutes.

Availability: Software implementing the algorithms described here is

available at http://noble.gs.washington.edu/proj/dna-binding

Contact: mann@gs.washington.edu

1 INTRODUCTION

Many fundamental methods in molecular biology rely on binding

between complementary DNA molecules. For instance, the

polymerase chain reaction (PCR) (Saiki et al., 1988) relies on the

specific binding of short DNA primer sequences to the DNA of inter-

est. PCR is used in a multitude of contexts (Innis et al., 1999), from

disease diagnosis (Kaltenboeck and Wang, 2005) to gene expression

measurement (WongandMedrano,2005).DNAmicroarrays (Schena

et al., 1995) also rely on the specific hybridization of array probes to

DNA sequences in a mixture in order to measure gene expression or

determine sample genotypes (Stoughton, 2005).

Assays that rely on hybridization are compromised when primers

or probes bind non-specifically to DNA molecules that are not

their targets (Chou et al., 1992). In the presence of non-specific

hybridization, measurement accuracy in quantitative assays can be

severely compromised, especially when the hybridization target is

present in low abundance. Even in the context of non-quantitative

PCRs, non-specific binding can lead to the formation of undesired

products that compete with the reaction of interest and reduce

reaction yields. Therefore, assessing hybridization specificity is

an important part of the design of these reactions.

The most straightforward approach to assessing hybridization

specificity would be to query every potential binding site in the

background DNA for binding affinity. In most experiments, the

background DNA that comprises the reaction mixture consists of

the genome of the organism being studied. Hence, for the human

genome, this approach requires evaluating approximately six billion

possible binding sites, corresponding to the two strands of each

chromosome.

In practice, applying state-of-the-art DNA binding models on a

genomic scale is not computationally feasible. These models use

dynamic programming algorithms with a computational complexity

of OðnmÞ for two sequences of length m and n, respectively (Garel

and Orland, 2004; Dimitrov and Zuker, 2004), and the complexity of

querying an entire genome is OðgmnÞ, where g is the number of bases

in the genome, m is the sequence length, and n is the size of the

genomic subsequence queried at each position. In our experiments,

scanning the complete human genome for binding sites to a 25-mer

probe requires approximately 180 days of CPU time. For most primer

or probe design applications, this is clearly too long to wait.

Current practical methods for predicting non-specific binding of

a given DNA sequence rely on heuristic approximations. Perhaps

the most commonly used method for identifying binding sites

between a query DNA sequence and a target genome predicts

binding sites based upon a pre-specified maximum number of mis-

matches between the probe’s reverse complement and the target

(Kent et al., 2002; Lowe et al., 1990; Wang and Seed, 2003; Xu

et al., 2004). As we demonstrate below, this approach is inaccurate

because sequences can stably bind in the presence of bulge loops,

which correspond to insertions and deletions in an alignment.

An alternative method for identifying non-specific binding sites

relies on the BLAST algorithm or other alignment based criteria

(Altschul et al., 1990; Haas et al., 2003; Zakour et al., 2004;

Andersson et al., 2005). This approach, too, is inaccurate, primarily

because BLAST is designed to detect statistically significant

sequence homology, rather than sequence binding partners.

We propose a filter- and index-based method, shown in Figure 1,

for rapidly identifying binding partners of a given query sequence. In�To whom correspondence should be addressed.
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the initial stage (A), we consider all possible k-mers of a given length

and identify k-mers that could anchor a binding site to the query

sequence. This stage includes four filters that are designed to recog-

nize various aspects of DNA binding stability. Two of the filters were

developed for this application. The filters are applied in order of

increasing computational complexity, so that most k-mers are

excluded by the simplest filters. Using our approach and considering

10-mer anchors, typically more than 99% of target 10-mers are

excluded from further consideration. In stage (B), we use a suffix

array index to rapidly extract the sequence context of all occurrences

of the k-mers obtained in the first step. These candidate binding sites

are then evaluated using a model of DNA binding. Because so many

k-mers are excluded at the outset, we can afford to apply an accurate

model of DNA binding in the second stage of the algorithm.

Using our method, we achieve rapid and comprehensive identi-

fication of likely binding sequences. The first stage of the algorithm

reduces the sequence search space by three orders of magnitude.

The second stage is quick because many of the occurrences of the

k-mers that pass the filtering stage can be eliminated by further

filtering. Furthermore, our filter thresholds are set to achieve this

speedup while retaining 100% accuracy, compared with considering

every possible binding site in the target genome. Our approach

reduces the amount of time to scan a sample 30 MB sequence

from two days to under a minute for typical queries.

2 ALGORITHMS

We hypothesize that binding sites in genomic DNA can be

comprehensively retrieved by first identifying short regions of

agreement between the query sequence and the genomic DNA,

and then examining the sequences containing these short regions

of agreement with accurate models of DNA binding. We base this

hypothesis on the observation that the thermodynamic instability

of unbound bases in a DNA duplex (so-called ‘loops’) limits the

amount of disagreement between a query sequence and any of its

binding sites.

In particular, our method relies on a set of filters to identify k-mers

that have good agreement with the query sequence, and could

therefore anchor a binding site. In this section, we describe state-

of-the-art models of DNA binding and then explain how our filters

relate to those methods.

2.1 Partition function models of DNA binding

The overall goal of a model of DNA binding is to predict the binding
affinity of a given pair of DNA sequences. The binding of two single

stranded DNA molecules to form a dimer is a reversible reaction,

and the binding affinity reflects the balance of association and dis-

sociation reactions in a large population of molecules at thermo-

dynamic equilibrium. When the binding affinity is large, then the

dimer form is favored, and when the binding affinity is small, then

the single stranded forms are favored. Currently, the most accurate

models use thermodynamic reference data to approximate a quant-

ity called the partition function. The partition function accounts for

all ways in which two sequences can interact, and weights each

interaction according to the energy of the interaction. The value of

this function is proportional to the binding affinity.

Filter
Mismatch

Filter
Thermodynamic

B

A

Sites

K-mer Index

Retrieval
SiteBinding 

Data
Sequence

Candidate Binding Partition Function Binding
SitesModel

All k-mers

Query Sequence

Filter
Partition Function

Filter
Alignment 

Filter Thresholds

Anchoring k-mer
Candidates

High Affinity Anchoring

High Similarity Anchoring
k-mer Candidates

k-mer Candidates

Fig. 1. Overview of filtering algorithm. (A) k-mer filtering. All k-mers for a specified value of k are input to the mismatch filter, along with a set of pre-chosen

similarity thresholds. The four filters eliminate k-mers in turn, producing as output a list of candidate k-mers that could anchor a binding site. We subject all k-mers

to two sets of thresholds, producing two sets of candidates binding site anchors. One set yields k-mers that have high thermodynamic affinity to the query, and the

other set yields k-mers that have high sequence similarity to the query. (B) Candidate retrieval and evaluation. The k-mers that passed the filtering steps in (A) are

located in the genome sequence using a precomputed index. We examine only those sites where a candidate k-mer from one group occurs with close proximity to a

candidate k-mer from the other group. These candidate binding sites are then tested for binding affinity using the partition function model, and all sequences that

bind to the query with greater than a target affinity are reported.
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In order to predict the binding affinity of two DNA sequences,

partition function models of DNA binding stability consider phys-

ically realistic alignments between the two molecules, weighting

each alignment according to its energy. The energy of a given

alignment depends on a number of factors. The primary factor is

the number of bases that are paired, and whether or not the paired

bases are adjacent. In general, adjacent base pairs have higher

binding energy than isolated base pairs due to so-called stacking

interactions between adjacent base pairs. Conversely, runs of con-

secutive mismatches between the two strands, called loops, reduce

the energy of the alignment. Extra energetic penalties are assigned

to asymmetric loops. Bulge loops, corresponding to insertion and

deletions in alignments, are also energetically unfavorable. Finally,

the energetic stability of a single internal mismatch has been found

to vary significantly according to the sequence context (SantaLucia,

Jr, 1998; SantaLucia, Jr and Hicks, 2004), and these effects must

also be taken into account.

Recently, efficient dynamic programming methods have been

developed to compute the affinity of two DNA molecules (Garel

and Orland, 2004; Dimitrov and Zuker, 2004). In this approach, a

dynamic programming algorithm computes the sum of the expo-

nentials of the energies of almost every alignment in which one

molecule has at least one base pair with the other molecule. This

sum is then proportional to the binding affinity. In this work, we use

the HYBRID software (Markham and Zuker, 2004), which imple-

ments one such dynamic programming algorithm. However, our

method does not rely on the specifics of the HYBRID software:

our filters are designed to account for known, generic features of

DNA affinity, and other models of DNA binding could be used in

the final step to evaluate the filtered list of candidates. Indeed,

although HYBRID and similar methods represent the state of the

art in determining the affinity of two DNA sequences, they are

known to systematically neglect some alignments that are important

in some contexts.

2.2 An efficient algorithm for finding binding sites

Our goal is to identify all of the sequences in a database that bind to

a query sequence according to a given partition function model of

DNA binding. We do this in two stages, as described in Figure 1.

First, we identify two groups of k-mers. One group of k-mers con-

sists of k-mers with high sequence similarity to the query, and the

other group of k-mers consists of k-mers with high thermodynamic

affinity to the query sequence. Each group is defined as the set of

k-mers that pass through a series of four filters described below;

both groups are passed through the same filters but each group is

identified by the use of different filter thresholds for each filter. In

the second stage, each location in the sequence where there is a

k-mer from the high affinity group within a pre-specified distance of

a k-mer from the high similarity group is retrieved, along with

flanking sequence. These candidate binding sites are then evaluated

using the partition function model. The output of the algorithm is a

list of binding partners for the query sequence.

In the first stage of our approach, we consider all k-mers of a given

length, and we use a series of four filters to eliminate k-mers that

have little affinity or similarity to the query. Each filter is designed

to reject those k-mers that have little affinity to the query, and thus

restrict the number of candidate binding sequences that must be

considered. Furthermore, the filters are designed to be increasingly

stringent, and are applied in order of increasing computational

complexity; the first filter is very fast but will pass some k-mers

with low affinity to the query, whereas the last filter is more expens-

ive to compute but will reject all those k-mers with little thermo-

dynamic affinity to the query. Each filter must be applied in

conjunction with a threshold. The threshold for each filter is deter-

mined empirically by examining characteristics of binding sites

predicted by the partition function model of DNA binding. These

thresholds are chosen conservatively, so that each filter will pass

some k-mers with low affinity to the query rather than discard

k-mers that could anchor a binding site.

Each filter uses a function designed to compare two k-mers. In

order to compare a candidate k-mer to a query sequence, we first

decompose the query sequence into k-mers of the same length as the

candidate k-mer, and then compare the candidate k-mer to each

k-mer derived from the query (see Figure 2A). If any of the

query derived k-mers meet the specified similarity to the candidate

k-mer (Figure 2B), then the candidate k-mer is retained for further

analysis. If none of the query derived k-mers meets the specified

similarity, then the candidate k-mer is eliminated from further con-

sideration.

The simplest filter—the mismatch filter—eliminates k-mers that

differ from every k-mer in the query sequence by more than a

specified number of bases. This filter is designed to reject k-mers

that have little affinity to any part of the query sequence. The filter

function computes the fraction of mismatches between a candidate

k-mer K and the query sequence Q:

F1ðK‚QÞ ¼ max
j2sðQ‚ kÞ

Xk

i¼1

dðKi ¼ jiÞ
k

‚

where sðQ‚kÞ returns the set of all k-mers in Q, and d is the

Kronecker delta function.

The second filter rejects k-mers that contain destabilizing internal

mismatches relative to the query. These destabilizing mismatches

are identified using thermodynamic data on DNA binding stability

(SantaLucia, Jr and Hicks, 2004). This filter’s function is similar to

Candidate

Query
B

A

Filter 0 or 1

Threshold

k-mers

k-mer

Query k-mers

Query Sequence

Fig. 2. Filtering k-mers. (A) Decomposition of the Query sequence into

k-mers. The query sequence is decomposed into overlapping k-mers of a

specified length. (B) Computation of the similarity of a k-mer to the query.

Each filter identifies k-mers that could anchor a binding site, taking as input

the k-mers derived from the query sequence, a candidate k-mer, and a pre-

specified filter threshold. Each filter then reports whether the candidate k-mer

had the specified level of similarity to at least one of the k-mers in the query

sequence or not.
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the mismatch filter, except that it takes into consideration the spe-

cific stabilities of dinucleotide stacks (pairs of adjacent, paired

bases) and single internal mismatches. We implement this filter

by encoding each k-mer K as a complex valued vector FðKÞ,
and we developed this filter so that the inner product of the con-

jugate of the encoding of one k-mer and another k-mer approximates

the sum of the free energy of binding between the first k-mer and the

reverse complement of the second k-mer, and vice versa. Details of

this encoding are given in the appendix. The final value of this filter

is a normalized dot product:

F2ðK‚QÞ ¼ max
j2sðQ‚ kÞ

hFðKÞ‚FðjÞiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hFðKÞ‚FðKÞihFðjÞ‚FðjÞi

p :

The third filter rejects k-mers that do not have good sequence

agreement with the query, considering the possibility of asymmetric

internal loops. For each candidate k-mer, this filter’s function con-

siders many alignments with respect to the query sequence, weight-

ing each by the number of matches and the length and topology

of loops. Asymmetric internal loops serve to separate regions of

sequence agreement, and thus this filter will recognize sequence

similarity even when regions of sequence agreement are separated

by insertions or deletions in one sequence with respect to the other.

We developed this filter function to be a coarse approximation of

the partition function for one sequence binding to the reverse com-

plement of the other, and we therefore consider only base pairing

(and neglect the detailed thermodynamic reference data on dinuc-

leotide stability) and internal loops of length three or less. In addi-

tion, we use loop stability values optimized for this application. The

final value of the alignment filter is

F3ðK‚QÞ ¼ max
j2sðQ‚ kÞ

f ðK‚ jÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f ðK‚KÞ · f ðj‚ jÞ

p :

The alignment function f ð · ‚ · Þ is described in the appendix.

The fourth filter applies the partition function model directly. In

this step, we compute the binding affinity between the reverse

complement of the k-mer and the query sequence. In order to

normalize out the binding properties of the query sequence, we

divide this binding energy by the binding energy of the k-mer in

the reverse complement of the query sequence with the highest

affinity to the query sequence. The final value is

F4ðK‚QÞ ¼ gðK̂K‚QÞ
maxj2sðQ‚ kÞgð ĵj‚QÞ

‚

where a carat denotes reverse complement, and gð:‚ :Þ is the partition

function model of DNA binding. In practice, this filter is the most

stringent and the most computationally complex.

We apply the four filters twice, with two sets of filter thresholds,

to get two sets of candidate anchoring k-mers. We use filter thresh-

olds so that the high similarity group of k-mers will be similar with

respect to filters F1 and F2, and the high affinity k-mers will be

similar with respect to filters F3 and F4. We then locate all occur-

rences of both candidate sets in the sequence database, and further

consider only those locations in the sequence database where there

is a k-mer from the high affinity group close to a k-mer from the high

similarity group (see Figure 3).

After the four filtering steps, we must efficiently locate all

occurrences of the high affinity and high similarity k-mers within

the given sequence database. This is accomplished by using a

modified suffix array (Gusfield, 1997; Manber and Myers, 1993)

to index the database. In a suffix array, pointers to suffixes of a

sequence are sorted lexicographically; in our modified suffix array,

the pointers are sorted based on comparison of only the first

k positions of the suffix, where k is the length of the filtered

k-mers. We also build a hash table on the suffix array itself, so

that the positions in the suffix array corresponding to a query k-mer

can be quickly located (with a computational complexity of OðkÞ
per k-mer lookup). We use this sequence index, consisting of the

modified suffix array and the hash table into the suffix array, to

rapidly identify all locations where a candidate k-mer from one

group occurs close to a candidate k-mer from the other group.

These occurrences, along with their flanking sequences, comprise

the list of candidate binding sites.

In the final step, each remaining candidate binding site is evalu-

ated by the partition function model for affinity to the query

sequence. As we show in Section 4, by using a set of fast, accurate

filters, the filtering and indexing stages of the algorithm reduce the

sequence search space by three to five orders of magnitude. There-

fore, in the final step, we can afford to incorporate a relatively

sophisticated, computationally expensive model of DNA stability.

Thus, by coupling a pre-filtering step with accurate refinement of the

candidate list, we achieve both efficiency and accuracy.

2.3 Choice of filter thresholds

Clearly, the success of our filtering strategy depends to a large

extent on the thresholds that we use for each filter. If our thresholds

are too stringent, then we risk eliminating true binding partners from

our list. Conversely, if our thresholds are not stringent enough, then

the efficiency of the search will decrease.

We compute these thresholds empirically by using the partition

function model. First, with respect to a given set of experimental

conditions and a target level of binding affinity, we scan a sequence

database for binding sites to a set of query sequences using the

partition function model, storing a list of all binding sites with

stability better than a given threshold. We then choose filter para-

meters conservatively, so that if we re-searched the sequence using

our filtering approach, we would obtain all of the binding sites

obtained in the slow linear scan.

Our thresholds are set by analyzing the binding sites identified

using a linear scan, using the procedure illustrated in Figure 4. We

decompose each binding site into its constituent k-mers, as in

W

High Affinity k-mers

High Similarity k-mers
Sequence

Fig. 3. Search for proximal hits. Our binding site search algorithm finds

anchoring k-mers in the search sequence. We use two sets of filter thresholds,

and obtain two sets of candidate anchoring k-mers; one set has high similarity

to the query, and the other set has high affinity to the query (occurrences of k-

mers from the high affinity set are drawn with dashes above the search

sequence, and occurrences of k-mers with high similarity are drawn with

solid lines below the search sequence). We locate all occurrences of both

groups of candidate anchoring k-mers, and further examine only those sites

where there is a candidate anchoring k-mer from the high similarity group

occurring within a pre-specified distance w from a candidate anchoring k-mer

from the high affinity group.
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Figure 4(A). We then rank these k-mers according to similarity to

the query sequence using the filter functions. For the high affinity

group of filter parameters, we rank first by filter function F4 and

break ties using filter function F3 as shown in Figure 4(B). For the

high similarity group of filter parameters, we remove the top ranked

k-mer and re-rank the remaining k-mers using the filter function F1;

we break ties with filter function F2 as shown in Figure 4(C). We

then compute the similarity of both top ranked k-mer to the query

according to all filter functions.

After analyzing each binding site recovered from the linear scans,

we integrate information from all binding sites as follows. Each

binding site contributes two sets of similarity scores, one set for the

top k-mer ranked according to thermodynamic affinity and one set

for the top k-mer ranked according to sequence similarity. We

accumulate all sets of similarity scores into two sets. One set con-

tains the similarity scores for all top ranked k-mers according to

thermodynamic affinity, and the other set contains the similarity

scores for all top ranked k-mers according to sequence similarity. To

obtain the final filter parameters, we find the minimum similarity

score in a set over all binding sites for each filter function. This is

thus a conservative method for obtaining filter parameters, and

ensures that if the sequence were re-searched with our filtering

approach, we would recover all of the binding sites identified

with the linear scan.

Intuitively, the two sets of filter thresholds capture different char-

acteristics of DNA binding: sequence agreement and k-mer binding

affinity. These two notions of similarity are not the same: consider a

query sequence that consists of several A bases followed by several

G bases. A k-mer consisting entirely of A bases would have perfect

sequence agreement to the left part the the sequence, whereas a

k-mer consisting of all G bases with two consecutive internal A

bases would have poor sequence agreement, but the reverse

complement of that k-mer would have much higher binding affinity

to the query sequence than the sequence consisting of all A bases.

Our double filtering approach accounts for both situations.

3 METHODS

For validation purposes, we focus on the ENCODE regions of the human

genome ENCODE Project Consortium (2004). These 44 regions together

B

A

Binding Site k-mers

Query Sequence

C

Binding Site Sequence

High Similarity

Ranked by
F4 and F3

Ranked by
F1 and F2

k-mers
High Affinity

k-mers

Fig. 4. Filter Analysis of a binding site. (A) Decomposition of binding site.

Each binding site is decomposed into its constituent k-mers. (B) Ranking of

binding site k-mers according to thermodynamic affinity. The binding site

k-mers are ranked according to similarity to the query by F4; F3 is used to

break ties. The similarity scores of the top ranked k-mer are added to the set of

similarity scores used to determine filter thresholds for the high affinity group

of candidate k-mer binding site anchors. (C) Ranking of binding site k-mers

according to sequence similarity. All k-mers, except the top ranked k-mer in

(B) are re-ranked according to sequence similarity to the query by F1; F2 is

used to break ties. The similarity scores of the top ranked k-mer are added to

the set of similarity scores used to determine filter thresholds for the high

similarity group of candidate k-mer binding site anchors.

Table 1. Query sequences

Query sequence Length GC DG PCR DG MA

1 GAGCTGCGGCAGAGGCTGGCGCCC 24 0.79 �24.5 �36.8

2 GCCTGCACTGGCTTCAGGAAGCTGGAGCC 29 0.65 �25.3 �40.1

3 GGCCAGTTCCTGCAGCCCGAGGC 23 0.74 �21.6 �33.2

4 AGTGGCATGCCTCTCTCTACCCAGC 25 0.60 �19.7 �32.2

5 CCACCAAAAAGTAATTAAAGGGTTTGCCTCAT 32 0.38 �19.5 �35.6

6 CACGCAAATCATCCCCAGCCACATC 25 0.56 �19.1 �31.8

7 CAGGTGTCCCTGCTTCGGCTTCCAG 25 0.64 �20.6 �33.3

8 CGCGAAGTGACCTTCAGAGAGTACGCCAT 29 0.55 �22.3 �37.2

9 CTGGACTGCCAAGTCCAGGGCAGGCC 26 0.69 �23.0 �36.1

10 GTCACCCACCTGCTGGCCCCGG 22 0.77 �20.9 �32.0

11 GGGGCTCAATAAGTCTGCTTCCACCTT 27 0.52 �19.5 �33.0

12 GGGTGAGGCCCATTCATAAGACTGGC 26 0.58 �19.6 �32.7

13 CCAGTCATGTTGCCCCGTTTGTCAGAG 27 0.56 �20.4 �34.1

14 GGGAGGGCTGAAGAGGGCACTCC 23 0.70 �19.4 �30.9

15 GGATGCATATGGACTCTTAGGTGTTCTGCG 30 0.50 �20.6 �36.0

16 GAAAGGGCTGGCTATGATAAACTGTGGC 28 0.50 �19.4 �33.7

DG PCR: Free energy of binding, in kilocalories per mole, of the sequence to its reverse complement at 55 C in 50 mM NaCl and 2 mM MgCl2; DG MA: Free energy of binding,

in kilocalories per mole, of the sequence to its reverse complement at 40 C in 1 M NaCl. Energies are computed using the HYBRID software.
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comprise 1% of the human genome. The ENCODE regions were chosen to

be representative of the entire genome, based on gene density, GC content,

and density of conserved non-coding elements.

In addition, we chose a collection of sixteen query sequences to use in our

experiments. We manually selected from the ENCODE regions exonic and

intronic sequences that vary in length from 22 to 31 bases. Each selected

sequence was analyzed using HYBRID, assuming standard PCR conditions

(see below). A selected sequence S was added to the query set if the binding

affinity between S and its reverse complement is greater than -19 kilocalories

per mole. None of the selected query sequences overlaps a repeat sequence as

annotated by RepeatMasker, and the percent GC of the queries range from

40% to 80%. The final list of query sequences is given in Table 1.

To generate a gold standard set of binding sites, we used HYBRID to scan

every base of both strands of the ENCODE regions. The scan employed

a window size of 35 bases, and was repeated with two different sets of

experimental conditions, typical of PCRs and microarray experiments,

respectively. For PCR conditions, we predict binding affinities at 55 C,

with a concentration of 50 millimolar NaCl and 2 millimolar MgCl2. For

microarray conditions, we predict binding affinities at 40 C, with a concen-

tration of 1 molar NaCl. In subsequent experiments, we used these lists of

binding sites to verify that our algorithm correctly identifies all binding sites.

In selecting filter thresholds, we focus on two levels of binding site

stringency, corresponding to weak and medium binding. We define a

weak binding site as one where the equilibrium constant of the dimer formed

by the binding site and the query sequence is at most six orders of magnitude

less than the dimer formed by the query sequence binding to its reverse

complement, under equal initial single strand concentrations. We define

medium binding sites similarly, except we require only three orders of

magnitude of difference. We used all binding sites recovered with the linear

scans to choose filter thresholds.

4 RESULTS

In order to measure the efficiency and accuracy of our binding site

prediction algorithm, we scan the ENCODE regions with a col-

lection of query sequences, using HYBRID with and without the

filtering and indexing pipeline. This experiment shows that our

approach yields a significant improvement in running time, without

missing any binding sites.

We begin by examining the behavior of each of the four filters for

the thresholds designed to detect k-mers with high thermodynamic

affinity to the query. Table 2 lists the percent of k-mers eliminated

by the combined filters for each of the 16 query sequences. The

mismatch kernel appears to provide the most value, since it has a

Table 2. Rejection rates for the four filters

Sequence F1 F2 F3 F4 Remaining

1 99.4 74.3 3.8 0.6 1589

2 99.2 69.0 7.3 2.8 2431

3 99.4 63.8 6.4 10.0 1862

4 99.3 54.0 2.9 24.0 2333

5 99.1 63.0 1.1 48.0 1887

6 99.3 51.7 3.1 29.7 2282

7 99.3 63.8 5.1 2.5 2322

8 99.2 65.0 7.3 14.5 2414

9 99.3 66.5 6.9 10.0 2059

10 99.5 58.5 2.9 13.6 1969

11 99.3 59.8 6.5 26.6 2164

12 99.3 63.2 5.7 47.1 1360

13 99.3 63.7 3.9 20.2 2181

14 99.4 75.4 2.8 2.7 1419

15 99.1 67.9 8.0 12.1 2375

16 99.2 68.5 4.0 47.4 1316

mean 99.3 64.3 4.9 19.5 1998

The table lists, for each of the query sequences in Table 1, the percentage of k-mers

rejected by each of the four filters using the high affinityfilter thresholds, as well as the

total number of k-mers that pass through all four filters. These results are for weak

binding sites in standard PCR conditions.

Table 3. k-mer filtering performance

Sequence PCR Microarray

Weak Medium Weak Medium

1 1589 15 15 15

2 2431 20 20 20

3 1862 14 14 14

4 2333 16 16 16

5 1887 19 20 16

6 2282 16 16 16

7 2322 16 16 16

8 2414 20 20 20

9 2059 17 17 17

10 1969 13 13 13

11 2164 18 18 18

12 1360 15 17 14

13 2181 18 18 18

14 1419 14 14 14

15 2375 21 21 21

16 1316 16 17 13

mean 1997.7 16.8 17.0 16.3

The table lists, for each of the query sequences in Table 1, the total number of k-mers that

pass through all four filters using the high affinity thresholds.

Table 4. Proximity filtering performance

Sequence PCR Microarray

Weak Medium Weak Medium

1 69 88 66 94

2 55 71 50 57

3 59 77 71 83

4 69 80 70 94

5 76 93 91 92

6 57 67 63 74

7 57 48 48 64

8 80 98 81 98

9 54 70 62 82

10 58 72 59 91

11 61 65 64 73

12 63 74 76 85

13 68 94 80 97

14 48 69 56 89

15 74 89 79 95

16 63 85 79 88

mean 63.19 77.50 68.44 84.75

The table lists, for each of the query sequences in Table 1, the percentage of sequence

locations that are rejected by the proximity filtering step. The final row contains the

column average.
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rejection rate over 99%; however, this high rejection rate is prim-

arily a result of its placement first in the filter pipeline. In practice,

the more computationally expensive filters are also more exclusive.

In each case, the filters reduce the complete set of 410 ¼ 1‚048‚576

k-mers to less than 2500 k-mers. Also, note that the setup in Table 2

(weak binding sites in PCR conditions) is the most permissive and

hence yields a relatively large number of k-mers. Table 3 lists the

total number of k-mers that successfully pass through all four filters

in each experiment: strong and weak binding, and PCR and micro-

array conditions. With the exception of the weak binding/PCR

conditions, the algorithm typically produces on the order of

20 k-mers for further consideration. The results in Tables 2 and 3

use the filter thresholds selected using the high affinity filter para-

meters. Results for the high similarity set of thresholds are similar.

After obtaining both groups of candidate binding site anchors,

we then identify locations in the sequence where a k-mer from the

high affinity group occurs near a k-mer from the high similarity

group. Table 4 lists, for all four experiments, the percentage of sites

identified by the high affinity group of binding site anchor candid-

ates that are not close enough to a k-mer occurrence from the high

similarity group of binding site anchor candidates. On average, this

step reduces the list of candidate sites by between 63% and 85%,

depending upon the experiment.

The final stage of the analysis involves running HYBRID on

the filtered list of candidate binding sites. Table 5 lists, for each

experiment, the number of candidate binding sites that were evalu-

ated by the HYBRID software. Clearly, this stage is very important,

since the number of sites considered is typically several orders of

magnitude larger than the number of sites that HYBRID identifies as

binding partners. In this sense, our filters are conservative: they

do not very closely approximate the computation performed by

HYBRID. However, these conservative thresholds lead to high

accuracy. For all 16 primers that we tested, our filtering and

indexing pipeline identifies 100% of the binding sites that were

identified by HYBRID in the much more computationally expensive

linear scan of the entire ENCODE regions. Furthermore, as shown

in Table 5, the entire pipeline is very efficient. For medium

binding strength and standard PCR conditions, HYBRID was

only required to evaluate an average of 4467 sites, and scanning

the entire ENCODE database required 20.7 seconds on average. By

comparison, a linear scan of the ENCODE regions using HYBRID

takes approximately two days.

5 DISCUSSION

We have presented a method for rapidly identifying binding

partners for a given query DNA sequence within a genome-sized

DNA database. Our approach combines a k-mer filtering method,

which identifies k-mers that could nucleate binding sites to the

query, with an efficient indexing method, which rapidly locates

these nucleating k-mers in a sequence database. The combination

of these two methods speeds up the DNA binding site search by at

least three orders of magnitude.

We note that not all predicted binding sites will be relevant to

every hybridization reaction. Some dimers may be slow to reach

equilibrium concentrations, especially if the dimer has internal

loops. Thus, in a PCR, some dimers may not have time to form and

thus may not be a problem. However, in microarray hybridization

experiments, conditions are much closer to equilibrium, and

secondary binding sites may be more of a concern.

Among the four tasks that we considered, finding weak binding

partners for PCR primers is the most difficult search task, and the

one for which we obtain the least improvement. However, this task

may be the most important for experimentalists, because even weak

binding sites can drive high yields on undesired background reac-

tions. This is because in PCR, the primers are present in vast excess,

Table 5. Number of candidate sequences examined and accepted by the partition function model of DNA binding, and time for each run

Sequence Weak PCR Medium PCR Weak microarray Medium microarray

Candidates Actual Time Candidates Actual Time Candidates Actual Time Candidates Actual Time

1 30712 25 6 m 2340 19 18 s 9543 21 35 s 1332 16 23 s

2 57587 23 20 m 11994 15 40 s 18702 16 76 s 3326 11 19 s

3 44628 100 8 m 4030 20 21 s 4882 21 17 s 3078 17 19 s

4 35218 45 11 m 5269 19 22 s 6152 20 24 s 1178 16 12 s

5 23235 29 6 m 1870 13 18 s 2791 14 23 s 1132 9 12 s

6 91220 108 13 m 7304 19 26 s 8112 21 28 s 6301 16 21 s

7 33780 48 10 m 6667 20 31 s 6667 22 24 s 4962 15 28 s

8 22310 26 5 m 179 14 10 s 3025 15 19 s 99 10 12 s

9 35396 45 12 m 6552 18 22 s 8390 19 35 s 4264 14 17 s

10 175109 336 12 m 5741 21 17 s 7976 25 29 s 1909 18 11 s

11 75547 40 16 m 5908 17 24 s 6181 18 32 s 4896 14 28 s

12 20887 70 6 m 3120 18 16 s 3369 20 19 s 1598 14 14 s

13 22934 31 6 m 907 19 14 s 3276 20 16 s 418 14 13 s

14 142717 361 13 m 5221 21 22 s 7081 37 34 s 1837 17 13 s

15 20106 26 8 m 1413 14 13 s 2839 16 17 s 153 10 12 s

16 17138 29 6 m 2988 17 17 s 3680 19 19 s 1639 13 17 s

mean 53032.8 83.9 9.9 m 4468.9 17.8 20.7 s 6416.6 20.3 27.9 s 2382.6 14.0 16.9 s

The table lists, for each experiment, the total number of candidate sites produced by the filtering and indexing pipeline, the number of those sites that are considered by HYBRID to

be true binding sites, and the total wall clock time required to identify the sites.
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and the excess concentration of primer in the initial stages of the

reaction drives high levels of weak binding site occupancy, even

though the binding affinity is low.

The major bottleneck in our method is evaluating the final list of

sequences. Even though we reduce the number of sequences that

must be considered by several orders of magnitude, the partition

function model is still sufficiently slow that it introduces a signi-

ficant computational burden. It is important to recognize, however,

that we can typically place an upper limit on this burden: once we

identify a pre-specified number of binding partners for a given

query, the search can terminate, since that particular query is not

a tenable primer or probe candidate.

6 FUTURE WORK

Conceptually, searching a RNA database for binding sites to a RNA

sequence is similar to the problem addressed in this paper. Although

the same partition function model can be used to compute the

binding affinity of one RNA molecule for another, the parameters

are different due to the chemical differences between RNA and

DNA Mathews et al. (1999). We are currently beginning experi-

ments to evaluate the computational complexity of this version of

the binding site search problem. Further, it may also be of interest to

search for DNA binding partners of an RNA molecule, or RNA

binding partners for a DNA molecule. Because the data for these

heterogeneous dimers is much less complete than the data for DNA/

DNA or RNA/RNA dimers, our method is not applicable to these

binding site searches.

Our method depends critically on the filter parameters, and

clearly the similarity of the anchoring k-mers in a binding site

to a query is not known in advance. We are therefore increasing

the size of our database of predicted binding sites, so that we can

estimate the sensitivity of our method for a wider variety of query

sequences.

7 CONCLUSIONS

We have shown that DNA binding site search of genomic scale

DNA sequences is tractable for realistic experimental conditions,

for primer length DNA sequences. Our filters work together to

reduce by at least three orders of magnitude the number of

sequences that must be examined by a partition function model

of DNA binding, reducing search time from two days to scan the

ENCODE regions to under a minute for typical queries. This filter-

and index-based method will be useful in the design of PCR primers

and short oligonucleotide probes.
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APPENDIX: FILTERS

We use four filters. The simplest counts the number of mismatches

between two k-mers, and the most complicated computes the bind-

ing energy of the reverse complement of a k-mer binding to the

query according to the partition function model. The other two

filters are described in the next two subsections. We use A and B
to represent the sequences input to the filter; these sequences have

length m and n, respectively. We use Ai to represent the ith element

of sequence A.

Free energy filter

The free energy filter is defined first by mapping sequences A and B
to complex valued vectors FðAÞ and FðBÞ, and then taking their

inner product. We developed the mapping F and present it here for

the first time.
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The mapping function has the property that if A and B are ident-

ical, then

hFðAÞ�‚FðBÞi ¼ DGðA‚ B̂BÞ þ DGðB‚ ÂAÞ-DGi

where a carat denotes reverse complement, and DGðA‚ B̂BÞ is the free

energy of binding of A to the reverse complement of B, and DGi

is a duplex initiation energy parameter. This computation of the

binding energy between two sequences approximates the free

energy computations presented in SantaLucia, Jr and Hicks(2004).

The inner product hFðAÞ‚FðBÞi has the property that the angle

between FðAÞ and FðBÞ increases with the number of mismatches.

The angle is also sensitive to the identity of the mismatching

bases, and will increase more for strongly destabilizing mismatches

(such as C—C) than for mildly destabilizing mismatches (such

as G—G).

The inner product can be computed as

hFðAÞ‚FðBÞi ¼
Xm�1

k¼1

½DGsðAk‚Akþ1ÞDGsðBk‚Bkþ1Þ�

þ ½dðAk ¼ BkÞdðAkþ1 ¼ Bkþ1Þ�

where DGsðAk‚Akþ1Þis the free energy of binding of the dinuc-

leotide stack(SantaLucia, Jr and Hicks, 2004).

Alignment filter

We designed the alignment filter to coarsely approximate the par-

tition function model of DNA binding. This filter computes a score

that rewards runs of consecutive identical bases in each sequence,

and that penalizes loops analogously to the loop entropy functions

in(SantaLucia, Jr and Hicks, 2004). The parameters that we use to

reward consecutive matches and penalize loops were optimized for

this application.

The filter value is computed first by filling a dynamic program-

ming matrix, and then computing the sum of all of its entries. This

filter uses an AT reward parameter a, and a GC reward parameter b.

We set a ¼ 1:1 and b ¼ 1:15. This is analogous to assigning a

slightly more stable energy to GC base pairs than AT base pairs,

but this filter neglects specific dinucleotide effects.

The dynamic programming matrix is filled in as follows. If Ai

is not equal to Bj, then Fi‚ j is set to zero. Otherwise, if Ai is equal to

Bj, then

Fi‚ j ¼ max
i-3�x<i‚ j�3�y<j

ðR � Fx‚ y � L½i� x‚ j� y�Þ

where R ¼ a if Ai and Bj are both A or T, and R ¼ b otherwise. The

loop penalty matrix L is given in Table 6. The element in the first

row and column is greater than 1 in order to reward consecutive

matches.

Table 6. The loop penalty matrix

1.050 0.120 0.010

0.120 0.800 0.003

0.010 0.003 0.003
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ABSTRACT

The application of shotgun sequencing to environmental samples

has revealed a new universe of microbial community genomes (meta-

genomes) involving previously uncultured organisms. Metagenome

analysis, which is expected to provide a comprehensive picture of

the gene functions and metabolic capacity for microbial communities,

needs to be conducted in the context of a comprehensive data

management and analysis system. We present in this paper IMG/M,

an experimental metagenome data management and analysis system

that is based on the Integrated Microbial Genomes (IMG) system.

IMG/M provides tools and viewers for analyzing both metagenomes

and isolate genomes individually or in a comparative context. IMG/M

is available at http://img.jgi.doe.gov/m.

Contact: vmmarkowitz@lbl.gov

1 INTRODUCTION

Environmental microbial community (microbiome) genome ana-

lysis, also known as metagenome analysis, (Riesenfeld et al.,
2004) is expected to lead to advances in environmental cleanup,

agriculture, industrial processes, and alternative energy production.

Similarly, human metagenome analysis could provide new insights

into the variation of microbial populations associated with the

human body, ascribe qualitative and quantitative changes in

human microbiota as risk/causative factors of disease and lead to

the development of new treatment strategies (Gordon et al., 2005).

The application of shotgun sequencing to microbiome samples

has enabled the study of metagenomes involving previously uncul-

tured and unculturable organisms. Comparative analysis of the

metagenomes in the context of available reference isolate genomes

could potentially reveal large-scale patterns of biochemical inter-

actions and habitat-specific correlations in the host environment that

might otherwise be missed (DeLong and Karl, 2005). Studies of

environmental microbiomes, such as acid mine drainage biofilms

(Tyson et al., 2004) and Sargasso Sea samples (Venter et al., 2004),

as well as studies of human microbiomes, such as the human

gut microbiome (Gordon et al., 2005), are examples of a rapidly

expanding area of metagenome analysis applications.

Unlike microbial genome data from isolate organisms, the gen-

eration and interpretation of metagenome data is in early stages

of development. Metagenomes sequenced by organizations such

as the Joint Genome Institute (JGI), TIGR, and the Venter Institute,

follow an assembly and annotation process that is specific to each

sequencing center. Although traditional assembly and annotation

algorithms do not perform as well on metagenome sequences as

they do on isolate microbial genomes (see (Chen and Pachter, 2005)

for an overview of metagenome sequence assembly and gene pre-

diction problems), they yield data that are amenable to valuable

comparative analysis and interpretation as illustrated by the studies

published in (Tringe et al., 2005) and (Tyson et al., 2004). Thus, the

metagenome sequences of simple microbiomes can be assembled

into sizable scaffolds and for highly abundant (dominant) member

organisms the quality of the assembly and annotation may approach

that of draft isolate genomes. For such metagenomes, it is possible to

infer the metabolic capabilities of dominant organisms and identify

the key member organisms that perform community-essential tasks.

Although metagenome sequence data processing poses numerous

challenges due to the complex nature and inherent incompleteness

of the data, and the lack of methods designed specifically for pro-

cessing such data, successful analysis can be carried out on existing

metagenomic data. As initial methods are improved or new methods

emerge, metagenome data sets will be revised, thus leading to better

quality data and annotations. However, metagenome data analysis

needs to be conducted in the context of a comprehensive data

management and analysis system that provides support for data

review and revision. We have addressed this need by developing

an experimental metagenome data management and analysis sys-

tem, IMG/M, based on the Integrated Microbial Genomes (IMG)

system (Markowitz et al., 2006).

Like IMG, IMG/M is based on the principle that integration of

available genomic data is essential for understanding the biology of

newly sequenced genomes, as the efficiency of genome analysis

increases substantially when it is conducted in a comparative�To whom correspondence should be addressed.
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context. Such an integrated context is even more critical for

analyzing the inherently incomplete metagenome data. IMG/M

has been successfully used for the study of biological phosphorus

removing (EBPR) sludge communities (Martin et al., 2006), and is

currently used for analyzing several metagenomes sequenced

at JGI.

In the following sections, we first discuss the main metagenome

data processing challenges. Next, we briefly review metagenome

data modeling and analysis. Finally, we present the IMG/M

metagenome data analysis tools and discuss our plans to extend

these tools.

2 METAGENOME DATA PROCESSING

There are two general sequencing strategies to obtain genome

sequence data from microbiome samples: directed sequencing

and shotgun sequencing of random clones. Directed sequencing

is either (i) function-driven, whereby clone libraries from a micro-

biome sample are sequenced after being screened for a desired

function; or (ii) driven by phylogenetic markers, whereby the

DNA flanking taxonomic anchors, such as 16S rDNA, is sequenced

in large-insert libraries. Conversely, shotgun sequencing of micro-

biome sample clone libraries follows a relatively unbiased

approach, which provides a broad survey of the gene content and

metabolic capabilities of a microbiome. A combination of shotgun

and directed sequence approaches may emerge in the future and thus

combine the advantages of the broad coverage provided by shotgun

sequencing with the ability of sampling specific genome areas in

low abundance organisms without over-sequencing more abundant

members of the microbiome. The discussion below pertains to

metagenome data generated using shotgun sequencing.

Metagenome sequence data processing follows assembly and

annotation procedures that are specific to each sequencing center.

Assemblers, such as the Celera Genome Assembler, PHRAP, and

JAZZ (Aparicio et al., 2002) have been used with mixed results

(Chen and Pachter, 2005). Assembly of shotgun-sequenced micro-

biome samples poses a serious challenge to traditional assembly

methods, due to a fundamental difference between the sequences

derived from cultivated microbes and microbial communities.

While the genome sequence of a cultivated microbe is derived

from a clonal isolate, where all cells are descendants of one cell

and therefore genetically identical or nearly identical, the aggre-

gated genome sequence of a microbiome is derived from a hetero-

geneous pool of cells, some of which are genetically related

and probably correspond to different strains of the same species,

while others are genetically distinct. Although co-assembly of the

sequences derived from different species does not seem to be a

problem, traditional methods are not consistent in assembling the

sequence reads belonging to different strains of the same species:

depending on the assembly algorithm and sequencing read depth

they can be resolved into strain-specific scaffolds or co-assembled

into a composite species population scaffold. In the later case the

strain-specific variations appear as single nucleotide polymor-

phisms (SNPs) in the sequence.

Annotation of the assembled metagenomes is also currently

carried out using traditional approaches developed for isolate gen-

omes. For instance, protein-coding genes (CDSs) are predicted

on scaffolds and/or so called shrapnel sequences (single reads

that are not incorporated into scaffolds) using microbial gene

finders, such as Glimmer (Delcher et al., 1999) or Fgenesb (Soft-

Berry, 2006). Performance of traditional gene prediction methods is

affected by the inevitable fragmentation of metagenomic sequences,

which in turn leads to fragmentation of the genes, and therefore

sometimes gene prediction is limited to BLASTx of all open reading

frames against protein sequence databases. Functional annotation

of predicted CDSs is generally carried out using COG (Tatusov

et al., 1997), Pfam (Bateman et al., 2004), InterPro (Mulder

et al., 2005), and KEGG (Kanehisa et al., 2004); functional

annotations can also be marred by gene fragmentation in the

metagenome datasets.

Sometimes an additional stage of scaffold binning is included in

order to assign scaffolds and shrapnel sequences to organism types

(phylotypes) that could range from coarse-level groupings such as

domain (Bacteria, Archaea) down to fine-level groupings such as

individual strains of a given species. It is highly desirable that

all sequence fragments are assigned to a particular strain in the

community; however, this is usually not feasible due to the different

abundance of the strains and variation of sequence coverage.

Consequently, the highest resolution grouping for metagenome

data can be achieved at the species level, that is, grouping together

genomic fragments that are likely derived from members of a given

species population, whereby each bin represents a snapshot of a

composite genome of a species population. Some regions of such a

composite genome are represented by sequences originating from

only one strain (usually, the most abundant one), while others are

covered by sequences from multiple strains. The latter may exhibit

different types of strain-level heterogeneity, from SNPs to extensive

genome rearrangements. Binning algorithms rely on measuring the

oligonucleotide frequency in different scaffolds, depth of sequence

coverage or phylogeny of conserved protein markers; thus, binning

accuracy depends on the sequence coverage, quality of the assem-

bly, scaffold size, complexity of the microbiome, and available

reference isolate microbial genomes (Chen and Pachter, 2005).

While it is expected that binning will be difficult in the case of

highly fragmented metagenomes of complex microbiomes, such as

those from soil samples (Tringe et al., 2005), for simpler micro-

biomes with sufficient sequence coverage it is possible to recon-

struct more than 95% of the individual genomes of the dominant

community members (Tyson et al., 2004).

Despite the metagenome data processing challenges mentioned

above, analysis of metagenomes does not need to wait for the

development of optimal data generation and annotation methods:

such analysis can be carried out with existing methods with the

results of these analyses serving as a basis for improving the

methods in an iterative process.

3 METAGENOMEDATAMODELANDANALYSIS

Similar to isolate microbial genome data, metagenome data captures

information about DNA sequences along with genes that can be

further characterized in terms of functional roles. A gene represents

an ordered sequence of nucleotides located on a particular chromo-
some that encodes a specific product (i.e., a protein or RNA mole-

cule); its protein product can be characterized in terms of sequence

similarity to other protein products, presence or absence of

conserved motifs and domains. Functional roles of genes can be

characterized in the context of pathways, whereby pathways are

associated with genes via gene products that can function as
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enzymes catalyzing individual reactions of metabolic pathways.

Similar to isolate microbes, the metabolic capacity of a whole

microbiome can be characterized by analyzing the metabolic
maps inferred from the gene content and distribution of its

composite genome.

Metagenome data have an additional level of complexity reflect-

ing the complex nature of microbiomes, which, unlike clonal iso-

lates, consist of heterogeneous pools of cells belonging to different

strains and species. Therefore metagenome scaffolds can be further

characterized in terms of their bin assignment, whereby a bin
could correspond to a composite genome of a species population
or another higher-level taxonomic group. If a bin corresponds to

the species population, it could be characterized by strain-level

heterogeneity (e.g., SNPs or genome rearrangments). Similar to a

metagenome which represents a random sample of the aggregate

microbiome genome, a bin may represent only a subset of the

aggregate genome of a species population, and therefore may not

reflect all the diversity of this species population in terms of strain-

level heterogeneity.

Another important difference between metagenome data and iso-

late genome data is that metagenome data are representative of a

microbiome in a specific host environment and a specific sample of

this environment. Sample (meta) data characterizing the biological

material collected for sequencing, are specific to an application

domain. For example, for biomedical applications samples

are collected from human donors and therefore are associated

with attributes that describe donor host data (e.g., demographic

and clinical record), sample structural and morphological charac-

teristics (e. g., site and time of collection) and sample processing

protocol. Sample metadata are critical in metagenome comparative

data analysis.

Comparative data analysis plays an important role in under-

standing the biology of isolate microbial genomes (Bowers

et al., 2004). Similar to isolate genomes, the analysis of metagen-

omes in the comparative context of other (e.g., phylogenetically

related) genomes is substantially more efficient than analyzing each

metagenome in isolation. Metagenome data analysis is set in a

multidimensional data space, whereby microbiome samples form

one of the dimensions and are analyzed in the context of other

dimensions, such as component species populations, gene families

represented by homolog/ortholog clusters, COG groups or Pfam

families, and pathways and networks.

For example, microbiome samples can be compared in terms of

presence and abundance of certain gene families. This type of

analysis is based on the assumption that the genes important for

adaptation to a particular environment will be found in many (if not

all) organisms in the microbiome; moreover, such genes might be

present in multiple copies, therefore, they are more likely to be

found among the abundant gene families. Gene family abundance

profiles can be analyzed at higher resolution, when bins within the

same microbiome rather than microbiome samples are compared;

this type of analysis allows to verify directly the assumption that

abundant gene families are indeed present in many members of a

microbiome.

Another emerging method of analyzing metagenomic data

involves detection of presence and abundance of certain metabolic

pathways in a specific microbiome sample or across samples of the

same microbiome or different microbiomes. Such analysis typically

involves examining occurrence profiles (Osterman and Overbeek,

2003) of functions and pathways of interest across samples asso-

ciated with a specific microbiome or across diverse microbiomes.

Alternatively, the bins within the same metagenome dataset can

be compared in terms of presence/abundance of functions and path-

ways. This analysis helps to infer the metabolic capabilities of the

component organisms in the community, and thus identify the key

members of the microbiome that perform community-essential

tasks and pinpoint the metabolic interactions within the microbiome

and between the microbiome and its host environment.

Both examples discussed above are focused on the analysis of

metagenome data per se, however, an efficient analysis of meta-

genomes is not possible without the context of reference genomes.

Similar to comparisons of microbiome samples and bins within

metagenome datasets, metagenome sequences can be compared

to isolate microbial genomes in terms of gene family abundance,

presence or absence of functions and pathways, and so on.

4 AN EXPERIMENTAL METAGENOME DATA
MANAGEMENT AND ANALYSIS SYSTEM

We have developed an experimental metagenome data management

and analysis system, IMG/M, based on the Integrated Microbial

Genomes (IMG) system (Markowitz et al., 2006). The IMG/M

system and data analysis tools are briefly overviewed below.

4.1 System Overview

The content of IMG/M can be seen as a superset of IMG’s content.

IMG integrates bacterial, archaeal and selected eukaryotic genomic

data collected from multiple data sources. Thus, IMG 1.3 (as of

December 1st, 2005) contains a total of 678 genomes consisting

of 377 bacterial, 26 archaeal, 15 eukaryotic genomes and 260 bac-

terial phages. IMG’s extensive collection of microbial genomes

(both draft and finished) provides the foundation for analyzing

the fragmented inventory of genes, functions, and organisms in

microbiomes and their component populations.

In addition to the isolate genomes in IMG 1.3, the first experi-

mental version of IMG/M (as of March 1st, 2006) includes meta-

genome sequences generated from an acid mine drainage (AMD)

biofilm (Tyson et al., 2004), an agricultural soil sample (Tringe

et al., 2005), three isolated deep sea ‘‘whale fall’’ carcasses

(Smith and Baco, 2003), and two biological phosphorus removing

(EBPR) sludge samples (Martin et al., 2006). These microbiomes

comprise a representative set in terms of species diversity, abun-

dance of dominant organism(s) and sequencing depth. For instance,

species diversity ranges from very low in the case of the AMD

sample to extremely high in the soil sample, while abundance of

dominant organism(s) ranges from less than 1% in the soil sample to

more than 80% in EBPR sludge samples. Furthermore, two EBPR

sludge samples represent an example of microbiomes inhabiting

similar environments in two distinct geographical locations.

Consequently, the metagenome data in IMG/M can be employed

to test use case scenarios, formulate and test various hypothesis,

assess performance of available tools and develop new methods for

metagenome analysis.

The IMG/M back-end consists of a data warehouse, sequence

databases for similarity (BLAST) searches, and various auxiliary

data files containing scaffold DNA sequences, pathway map

images, and cached data for improving performance, such as

pre-computed statistics and homolog results. An additional
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BLAST database supports similarity searches based on the sequenc-

ing reads for analysis of strain level single nucleotide polymor-

phisms (SNPs). The data generated by microbial genome and

metagenome data processing pipelines serve as input for a custom

ETL (Extract-Transform-Load) toolkit that loads data into the

IMG/M data warehouse. This toolkit is also employed for extract-

ing, cleaning, integrating, and loading additional genomic and

contextual data from external resources into the data warehouse.

Additional custom tools are employed to compute gene relation-

ships and clusters and load these data into the data warehouse.

The data model for the IMG/M data warehouse allows integrating

primary genomic sequence information, computationally predicted

and curated gene models, pre-computed sequence similarity rela-

tionships, and functional annotations and pathway information

in a coherent biological context. Isolate organisms are identified

via their taxonomic lineage (domain, phylum, class, order, family,

genus, species, strain). For each genome, the primary DNA

sequence and its organization in scaffolds and/or contigs, are

recorded. Genomic features, such as predicted coding sequences

(CDSs) and some functional RNAs, are also recorded. Protein-

coding genes are further characterized in terms of molecular func-

tion and participation in pathways. Proteins are grouped into protein

families based on sequence similarity. Pathways, reactions, and

compounds are included from KEGG and LIGAND. Additional

functional annotations according to Gene Ontology terms (Gene

Ontology Consortium, 2004) are provided by EBI Genome Reviews

(Kersey et al., 2005), while COG provides clusters of orthologous

groups of genes. Ortholog and paralog gene relationships for isolate

microbial organisms are computed based on bidirectional best hit

(BBH) with clusters formed using Markov Clustering method

(MCL) (Enright et al., 2002). Isolate organisms are characterized

in terms of phenotypes (e.g., morphology, geochemistry), ecotype

(including geographical coordinates) and disease.

Microbiome samples are treated as ‘‘meta’’ organisms with the

collection of their associated genes forming their respective meta-

genomes. The sequences of a microbiome sample together with

their associated genes and annotations are organized in bins

when possible, with multiple bins providing support for recording

data generated using different binning methods. Similar to isolate

organisms, microbiome samples are characterized in terms of

phenotypes, ecotype, disease, and relevance. These data are only

minimal in coverage, reflecting the current scarcity of such data for

microbiome samples.

4.2 Data Analysis

We review below the IMG/M data exploration and comparative

analysis tools, with special emphasis on the support for metagenome

analysis. IMG/M tools can be also employed for analyzing

isolate microbial genomes in the same way as their IMG

counterparts.

4.2.1 Data Exploration Data exploration tools in IMG/M help

selecting and examining genomes, genes, and functions of interest.

Metagenomes as well as isolate genomes can be selected using a

keyword based Genome Search in conjunction with a number of

filters or an alphabetically or phylogenetically organized Genome
Browser. Microbiomes can be further examined using the Micro-
biome Details, where a user can find relevant metadata, such as

geographical location, along with various summaries of interest,

such as the total number of scaffolds and genes or the number of

genes associated with functional characterizations (eg., COG,

Pfam), as shown in the right pane of Figure 1. Microbiome Details
also provides an estimate of phylum level assignment (Phylogenetic
Mapping) of metagenomic fragments in the sample based on

sequence comparison to isolate genomes. This overview consists

of the distribution of the best BLAST hits at different percent

identity thresholds of a metaproteome (i.e., the collection of all

the proteins encoded in the metagenome) of interest against the

proteomes of all isolate genomes in the system, as shown in the

left pane of Figure 1. For each metagenome one can also examine

the associated list of scaffolds and contigs, and information on

individual bins and their scaffolds when bins are available.

Genes can be selected using a keyword based Gene Search,

sequence similarity search tools, or a gene profile based selection

tool, the Phylogenetic Profiler, discussed in more detail below. The

functional role of genes in IMG/M is characterized by a variety

of annotations, including their COG membership, association with

Pfam domains, Gene Ontology (GO) assignments, and association

with enzymes in KEGG pathways. Functional annotations can be

searched using keywords and filters, with the selected functions

leading to a list of associated genes either directly or via a list

of organisms. COG functional categories and KEGG pathways

can be searched and browsed separately. The lists of genes and

functional annotations that are of interest for further exploration

can be maintained using various Analysis Carts, which are similar to

shopping carts of commercial websites.

Individual genes can be analyzed using Gene Details pages, as

illustrated in Figure 1. A Gene Information table includes gene

identification, locus information, biochemical properties of the

product, and associated KEGG pathways. Gene Details also

includes evidence for the functional prediction: gene neighborhood,

COG, InterPro, and Pfam, and pre-computed lists of homologs,

orthologs and paralogs (for isolate organisms), or intra-metagenome

homologs as well as homologs to other genomes and metagenomes

(for microbiomes). The gene neighborhood displays the target gene

and its homologs in user selected related genomes with its neigh-

boring genes in a 25kb chromosomal window: for example, the gene

neighborhood in the Gene Details in Figure 1 shows the target gene

(centered, in red) and other genes within a 25kb window. The

Gene Neighborhoods in Figure 1 shows the neighborhood of a target

gene of the Ferroplasma acidarmanus Type I bin of the AMD

metagenome, compared to homologous genes of the Ferroplasma
acidarmanus fer1 isolate genome: each gene’s neighborhood

appears above and below a single line showing the genes reading

in one direction on top and those reading in the opposite direction

on the bottom; genes with the same color indicate association with

the same COG. For each gene, locus tag, scaffold coordinates, and

COG number are provided locally (by placing the cursor over the

gene), while additional information is available in the Gene Details
associated with each gene. A gene can be also examined in the

context of its associated pathways, whereby the link embedded in

the pathway name listed in the Gene Information table allows the

KEGG map associated with the gene to be displayed. On such a

map, EC numbers are color-coded and linked to the Gene Details
for the associated genes.

Individual COG categories can be further explored with COG
Category Details that lists the COGs of a given category and
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the number of organisms that have genes belonging to each COG.

For a given COG, the ‘‘organism counts’’ are linked to a list of

organisms and their associated ‘‘gene counts’’. Gene counts for all

COGs in a given category can be displayed for multiple organisms

using COG Profile. KEGG pathways can be explored in a similar

manner using KEGG Pathway Details and Enzyme Profile. COG
Profile and Enzyme Profile are further discussed below.

4.2.2 Comparative Data Analysis The gene content of metagen-

omes and genomes can be examined with a profile-based selection

tool, gene neighborhood analysis tools, and multiple sequence

alignment tools. Functional annotations can be examined with sev-

eral occurrence and abundance profile-based tools. We discuss

below in more detail the profile based selection, occurrence profile,

and abundance profile tools.

The Phylogenetic Profiler tool allows comparing the gene content

of a target entity (microbiome, bin, or isolate organism) to that of

other entities (microbiomes, bins or organisms) by defining a profile
for the genes of the target entity in terms of presence or absence of

homologs in other entities. Similarity cutoffs can be used to fine-

tune the selection. Similar to isolate genomes, differences in gene

content between metagenomes can be correlated with a specific

phenotype or environment, while the comparison of the gene

content of bins within the metagenome helps inferring the metabolic

capabilities of the component populations and identify the organ-

isms that may be responsible for community-essential tasks. The

example shown in Figure 2 illustrates how the Phylogenetic Profiler
helps finding differences in gene content between the component

populations in the Acid Mine Drainage (AMD) microbiome. In

this example, genes in the bin corresponding to Leptospirillum
sp. group III that have no homologs in other bins in this metagenome

are identified. Among the ‘‘unique’’ genes in Leptospirillum
sp. group III one can find those responsible for nitrogen fixation,

shown in the Phylogenetic Profiler Results pane of Figure 2,

which makes this organism a keystone species in the AMD

microbiome due to limitation of external nitrogen sources (Tyson

et al., 2004).

Occurrence profile tools allow examining profiles of genes and

functions across microbiomes, bins, and isolate organisms. Gene

occurrence profiles usually involve genes within the same bin or

organism: if such genes have similar occurrence profiles across

other bins or organisms, then they may also have a similar

evolutionary history and may potentially be functionally linked,

or co-regulated in a pathway (Bowers et al., 2004). The profile

for a gene x, across bins or organisms y1 to yn has the form of a

vector (L1, . . . , Ln) where Li represents a set of yi genes that are

Fig. 1. AMD Microbiome Details: Metagenome Statistics and Phylogentic Mapping of Fragments. Gene Details and Gene Neighborhoods Example for an AMD

Metagenome Gene.
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associated with x, where the association of yi genes with x is based

on a specific sequence similarity method.

Functional occurrence profile tools, such as COG Profile,

Pfam Profile, and Enzyme Profile, show the occurrence profiles

for functional characterizations such as COGs, Pfam families, or

enzymes involved in pathways across the selected entities (micro-

biomes, bins and organisms). Individual COGs, Pfam families, or

enzymes are selected using a variety of search and browse tools and

are maintained using COG, Pfam, and Enzyme Carts, respectively.

The occurrence profile for a specific function, f, shows the pattern

of f across the selected entities, y1 to yn, in the form of a vector of

the form (L1, . . . , Ln), where Li represents the set of yi genes that

are associated with f. Functional occurrence profiles provide an

estimate of the similarity between entities in terms of association

with a specific pathway or functional characterization.

The example shown in Figure 3 illustrates how occurrence pro-

files for a custom list of Pfam families can be used to predict the

presence of a pathway for CO2 fixation in metagenome data sets.

The first step in one of CO2 fixation pathways is catalyzed by

anaerobic carbon monoxide dehydrogenase. A keyword search

on expression ‘‘CO dehydrogenase’’ with Pfam as a filter (see

Search Terms and Pathways pane of Figure 3) retrieves a list of

six Pfam families, as shown in the Function Search Results pane of

Figure 3. Four of these Pfam families correspond to different sub-

units of anaerobic carbon monoxide dehydrogenase, and therefore

are selected and saved using the Pfam Cart. The occurrence profiles

for these Pfam families are then computed and displayed in a tabular

form as shown in the Pfam Profile pane of Figure 3, with each row

displaying the profile of a specific Pfam across three whale-fall

microbiomes and five bins of the AMD microbiome. Each cell in

the profile result table contains a link to the associated list of genes

and displays the count (abundance) of genes in the list. Colors are

used to represent visually gene abundance, whereby white, bisque

and yellow represent gene counts of 0, 1-4, and over 4 respectively.

The occurrence profiles shown in Figure 3 indicate that, despite the

presence of several spurious hits, anaerobic CO dehydrogenase is

most likely absent from the organisms in the AMD microbiome and

therefore these organisms probably rely on some other pathway of

CO2 fixation. Surprisingly, the genes coding for anaerobic CO

dehydrogenase appear to be present in 2 out of 3 whale-fall micro-

biomes, as shown in in Figure 3. Occurrence profile tools provide

two (functions vs. genomes, genomes vs. functions) display options

for data visualization purposes.

An Abundance Profile tool allows comparing functional occur-

rence profiles for all COGs, Pfam families, or KEGG enzymes

across microbiomes, bins, and isolate organisms of interest. This

tool is especially useful for analysis of datasets obtained from the

communities with high species diversity, where little or no sequence

assembly can be achieved: for such datasets identification of

predominant protein families allows users to infer habitat-specific

biological traits.

The example in Figure 4 shows the abundance profiles of COGs

displayed using a heat map, across the low-complexity AMD micro-

biome and the highly complex soil and whale-fall microbiomes.

Arrows indicate COGs that are clearly overrepresented in the soil

microbiome (bright red) as compared to other microbiomes (pink,

orange, yellow and green); both COGs correspond to glycosyl hydro-
lasesofdifferent specificity.Onewould indeedexpect tofindglycosyl

hydrolases abundant in microbiomes, such as those found in soil, that

perform degradation of plant-derived carbohydrate polymers.

IMG/M also provides a tool for analysis of strain-level hetero-
geneity within a species population in metagenome data. SNP BLAST
allows users to run BLASTn of nucleotide sequence of genes or

scaffolds of interest in a metagenome, against a database of sequenc-

ing reads that were assembled to produce a composite species gen-

ome sequence comprised of multiple strains sequence types.

5 CONCLUSION

We have presented in this paper IMG/M, an experimental

metagenome data management and analysis system. IMG/M

provides support for the exploration and comparative analysis of

Fig. 2. Finding Gene Content Differences with the Phylogenetic Profiler Between AMD Leptospirillum sp. group III Bin and other AMD Bins.
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metagenomes and their component populations in the context of

other metagenomes and isolate genomes. IMG/M has been success-

fully used for the study of EBPR sludge communities (Martin et al.,
2006), and continues to be used for analyzing metagenomes

sequenced at JGI, such as the Olavius algarvensis symbionts1

and the termite gut microbial community2. Although IMG/M

seems to be best suited for the analysis of low-complexity

microbiomes, the system can be also used to infer the presence

of important physiological characteristics in any microbiome and

its species populations.

We plan to extend the tools provided by IMG/M in order to

address several metagenome data analysis challenges. The first

challenge regards the size and complexity of some metagenome

data sets. Additional viewers need to be developed in order to

improve the efficiency of analyzing such data sets via graphical

representation of phenomena of interest set in a biological

context.

A second challenge is posed by existing methods for binning

metagenome scaffolds. These methods are in an early stage of

development and have not been properly tested on metagenomes

of complex microbiomes. We have found that some of these

methods do not perform well even when applied to low diversity

microbiomes in IMG/M, resulting in a significant number of unclas-

sified or misclassified scaffolds. While analysis of environmental

microbiomes is often function-driven and focuses on the genes and

metabolic pathways of interest regardless of their assignment to a

certain species, binning of scaffolds is essential for drawing a con-

nection between the presence of certain genes (e.g. pathogenicity

factors) and species composition of a microbiome. Consequently,

there is an immediate need for tools that would provide support

for comparing different binning methods and for assessing their

accuracy, as well as for revising bins in terms of scaffold com-

position and gene content. We plan to develop tools for reviewing

and curating the content of bins in IMG/M.

Finally, metagenome analysis tools need to be extended in order

to account for the stochastic nature of metagenome data and varia-

tions in data quality due to incomplete sequence coverage. In most

microbiomes a few dominant species tend to get the most sequenc-

ing coverage, sometimes approaching that of draft isolate genomes,

while low abundance organisms can be represented by a small

number of scaffolds or even single sequencing reads. Accordingly,

Fig. 3. Exploring the Presence of a Pathway for CO2 Fixation Across Several Metagenomes with Pfam Profile.

1http://www.jgi.doe.gov/sequencing/why/CSP2005/algarvensis.html
2http://www.jgi.doe.gov/sequencing/why/CSP2006/termitegut.html
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statistical tests need to be devised to estimate the sequence coverage

of the bins and whether it is adequate for certain types of com-

parative analyses, such as metabolic reconstruction of pathways.

Additionally, when metagenomes are compared to each other or

to isolate genomes, statistical tests are needed for estimating the

statistical significance of the observed differences. For example, the

analysis of Abundance Profiles described above requires testing

whether the differences in abundance can be ascribed to chance

variation or not.

We also plan to extend the data model underlying the system in

order to enhance its ability to capture metadata characterizing

microbiome samples. Such metadata are often specific to an applica-

tion (e.g., biomedical, ecological) domain. Samples are associated

with properties used for metagenome analysis, such as sample struc-

tural and morphological characteristics (e.g. sample site, time of

collection) and donor or host data (e.g. demographic and clinical

record, including diagnosis, disease, stage of disease, and treatment

information for human donors). Samples may also be involved in

clinical studies and therefore can be grouped into several time/

treatment study groups. In addition to extending the data model

for supporting sample metadata, we plan to improve the coherence

and completeness of these annotations via manual curation. In

IMG/M, metadata such as disease, phenotype, ecotype and rele-

vance for the isolate genomes were collected from sources such

as GOLD (Liolios et al., 2006), while the microbiome sample

metadata have been collected from published supplemental

information and manually curated. The scarcity of metadata for

isolate organisms and microbiome samples is a well known problem

(Field and Hughes, 2005). We plan to collaborate with community

standardization efforts in the metagenome data domain in order

to ensure high coverage and consistence of microbiome sample

metadata.
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ABSTRACT

Thermodynamic favorability of transcription factor (TF) binding to DNA

is a significant factor in the control of gene expression. Theoretical and

in vitro measures link the relative equilibrium energy of a particular

DNA binding protein to the sequence variation among binding sites

in a genome. Extending this principle, we investigatewhether biological

variation in expression levels of active proteins leads to regulation of

different sets of genes, based on inferred affinities of sites upstream of

those genes. The TF-concentration-dependent variation in the reper-

toire of genes regulated by a particular TF is expected to follow patterns

of chemical partitioning over DNA sites having differing affinity, and we

develop a new modeling approach to test this hypothesis. Based on

computational TF binding site discovery and genome-wide expression

data available in Saccharomyces cerevisiae, we explore motif content

for sets of genes and conditions having varying concentrations of dif-

ferent transcription factors which turn those genes on or off. We find

cases of significant correlation between the level of intragenomic motif

sequence variation and modeled TF protein levels that actuates reg-

ulation of corresponding sets of genes, and discuss the observed TF

motif variants for several yeast transcription factors, as well as the

potential biological functions of genes that are regulated by differential

response to these high and low concentrations of particular TFs. These

findings suggest that motif sequences of transcription factor binding

sites may often be linked with the expression state of corresponding

DNA-binding proteins.

Contact: mellor@bu.edu

1 INTRODUCTION

Response to the internal and external cellular millieu is often facili-

tated by energetically favored binding between at least one regu-

latory protein and several specific, high affinity consensus motifs in

the intergenic DNA. In addition to protein-DNA contacts, transcrip-

tion factor (TF) binding affinity can be affected by cooperativity,

chromatin structure and changes in binding site accessibility. The

magnitude of binding affinity at protein-DNA interfaces has been

shown to correlate with features including level of sequence varia-

tion (1), the presence of multiple motif copies in the intergenic

neighborhood (2), and the level of binding found by large-scale

chromatin immuno-precipitation (ChIP) experiments (3,4). Tran-

scription factor binding often initiates mechanisms of regulation

in RNA production, and while some genes having more primitive

regulation mechanisms might escape this paradigm, an understand-

ing of large systems will come in an unraveling of various parts of

this regulatory machine.

The biological question we address here is summarized as fol-

lows: To what extent are differences in the regulation of various

genes mediated by functional differences in a TF’s affinity to dif-

ferent upstream intergenic sequences, or the level of the TF needed

to bind sets of these sequences? Various forms of evidence suggest

that the affinity between proteins and DNA often governs the spe-

cificity of regulation (3-11), and we hypothesize that affinity for

specific sequences ought to be related to the TF concentration which

is needed to turn genes next to those sequences on or off.

Without practical means to address the mechanistic questions

directly—that is, to measure in vivo affinities for such proteins to

all possible motifs in the genome—we instead query for site affinity

by proxy. Using a historically observed relationship between motif

sequence variation and expected binding affinity, we seek to show

how atomistic properties of simple regulatory schemes (e.g. TF

binding) can be effectively estimated from aggregate measurements

of gene expression among system components. We then examine

whether the content of cis-regulatory elements explains significant

differences in responsiveness of downstream genes to various levels

of TF. To address these questions we introduce a modeling approach

and its application to the cis-regulatory sites of the yeast Sacchar-
omyces cerevisiae, based on gene expression and upstream

sequence information.

Following previous convention (12), a transcription factor’s affi-

nity for sequences on DNA can be represented with a position

weight matrix (PWM), which indicates preferences for protein bind-

ing to any of b¼ 4 possible nucleotides at k independent positions in

a set of DNA k-mers. The information content I of the PWM

(Eq. 1.1) is a measure of the overall degeneracy (or entropy) of

the sequences to which a protein binds.X
k

X
b

f ðk‚bÞ log ð f ðk‚bÞÞ
log ð f ðbÞÞ ¼ Iðk‚bÞPWM ð1:1Þ

Berg and von Hippel showed that, given assumptions of inde-

pendent contributions of each base at each position in a motif, the

PWM equates via statistical thermodynamics to the expected rela-

tive free energy (DDG) of the binding event at the motif (13), and

therefore also to the relative equlibrium binding affinity compared

to all possible binding sites in the genome, as shown in Eq. 1.2.

Iðk‚bÞPWM / lnðKef f
bindÞ ¼ �

DDG

RT
ð1:2Þ

The correlation between motif degeneracy and protein-DNA

binding free energy leads us to consider whether all motif sites

that seem ‘allowable’ for binding by a transcription factor (that

is, with a known PWM) are in fact actually bound by it under�To whom correspondence should be addressed.
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in vivo equilibrium conditions in the cell. Cellular conditions can

potentially differ, for example, by having active transcription factor

present at different equilibrium concentrations, by having sites

that are more or less accessible on the chromosome, or perhaps by

post-translational changes to transcription factor activity. The

mechanism of regulation is important, as well; for example,

some instances of regulation by a protein may require cooperativity

with another protein, but other instances may not. To a certain

approximation the effective binding constant, Keff
bind, of a set of

regulatory sites that are cis to some collection of genes will, for

some fixed concentration of transcription factor protein, determine

the fraction of those sites which are bound and likely to involve gene

regulation. Similarly, given a constant value of Keff
bind across many

genes, the ratio of bound to unbound genes might determine the

concentration of transcription factor needed to activate those genes.

Thus the in vivo regulatory program could by this representation be

a fairly complex function of the affinity and availability of different

cis sites, and fluctuations of concentration and interactions between

regulating TFs.

We begin with the simplest situation, that of a single protein

binding alone to DNA, where the binding site affinity has an inverse

relationship with transcription factor concentration at across a range

of conditions (TF concentrations) in which regulated genes are

bound. This is shown in Eq. 1.3 (assuming uniform concentration

of DNA).

Kef f
bind ¼

½TF�bound

½TF�f ree

ð1:3Þ

If the amount of bound TF is assumed to be constant across some

set of sites near regulated genes, the TF concentration and affinity

for those sites should be inversely related. That is, sites with high

affinity will be selected on the basis of their thermodynamic favor-

ability at low levels of active TF, but this partitioning between sites

will relax at higher concentrations of TF, where sites of lower

affinity will bind as well. With a fixed level of bound TF

(½TF�bind) needed to turn genes on or off, it is possible to consider

subpopulations of regulated genes (and their cis-sites) which could

vary by relative affinity, and therefore potentially respond at rela-

tively higher or lower concentrations of active TF.

Binding (attaining a level of ½TF�bound) in the simple cases is

mediated by the relationship between ½TF�f ree and Keff
bind seen in

Eq. 1.3. In this study we develop a statistical model to infer whether

simple cases such as this exist in the data. We devise a model which

addresses whether genes divided into categories modulated by high

or low concentrations of a given TF have cis sites that can be

similarly classified as having ‘strong’ (high Keff
bind) or ‘weak’

(low Keff
bind) affinity. For any fixed set of genes, we assume that

the information entropy I(K, b) of cis sites near those genes can

be used as a proxy for the measurement of Keff
bind across those sites,

and by Eq. 1.1, we then ask whether sites near those genes turned on

or off by high levels of a TF contain different amounts of informa-

tion than sites near the genes turned on by low levels.

The simple model we propose notwithstanding, it is useful to

consider possible alternatives that would deviate from the relation

predicted by Eq. 1.3. One such case might be when TF binding to an

otherwise low-affinity site is preferred because of an added affinity

cause by cooperative binding to another, different regulator. Com-

binatorial and cooperative mechanisms of transcriptional regulation

are abundant in eukaryotes, and in many of these situations, a

transcription factor’s affinity for a site is potentially mediated by

separate, often cooperative, binding events between two or more

regulating proteins. Little is known, generally, about the interplay

between the affinity of proteins to other proteins or DNA in such

cases. Two potentially opposite modes of affinity, one cooperative

and the other not, are summarized in Figure 1.

DNA sites with affinity for cooperative proteins are not necessa-

rily bound solely based on their intrinsic affinity, or the availability

of the active TF, but also due to favorable TF binding to other

proteins, and of these proteins to other, neighboring sites. In

cases where the thermodynamic selection for a ‘‘weak’’ site by a

protein is preferred because that site neighbors a site of another

cooperating protein to which the first protein binds, ‘‘Strong’’ sites,

on the other hand, which have higher affinity, can bind TFs in the

absence of the cooperating protein. This type of ‘neighboring site

effect’ has been recently shown to play a role in governing the

content of cis elements for several TFs in yeast(5).

While combinatorial effects may be common among eukaryotic

mechanisms of regulation, TFs and cis-sites near genes obeying the

simpler relationship of Eq 2 (i.e., Figure 1a) are still quite inter-

esting. First, they represent cases where the dynamics of regulatory

behavior are approximately reducible to TF concentrations and

estimated binding strengths alone. Second, these are cases where

regulation mechanisms are possibly more accessible to efforts in

engineering of synthetic systems; their relatively simple behavior

makes them ideal for manipulation in novel systems.

2 METHODS

A yeast TF is designated as either an activator or repressor based on primary

evidence collected in the Saccharomyces Genome Database (14). As is the

case in many previously described expression-based models (15-17), we’ll

assume transcription of genes by this TF can be used as a predictor of the TFs

protein-level activity. Though the strength of this predictor may vary by TF,

we’ll assume it is a uniform predictor regardless of what genes a particular

TF regulates. We’ll also posit that the protein-level activity of a TF can be

ascertained in many cases from its own gene expression data. Simplifications

Fig. 1. Binding Site Occupancy Models as a Function of Site Affinity and

TF Concentration. (A) In the simplest case, concentration of the active TF

(red) controls various gene sets depending on an average affinity of the sites

(shades of gray) near of those genes. Under equilibrium conditions, and with

many sites, the information content of sites should correspond to their average

affinity. (B) Cases of cooperativity between factors possibly deviate from this

behavior, when binding is mediated by an additional protein (blue) which

binds nearby, changing the effective affinity of the sites. The relationship

between motif content, TF concentration and site occupancy could be altered

to favor low affinity sites at low TF concentration.
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such as this will fail to account for some quite relevant biological situations,

for example where a TF is constitutively expressed or active, where the level

of TF or target activity is controlled exclusively by post-translational

modifications, or where regulation in general is not mediated by mRNA

production. Using mRNA measurements alone potentially underestimates,

but not likely contradicts, the importance of these more complex mechan-

isms in our model. And while the model is much simpler than a fuller

physical model of the processes involved, it usefully isolates variables

which can be easily measured by experiments such as gene expression arrays

and protein-DNA ChIP assays.

2.1 Computation of gene regulatory models

The outline of our procedure is summarized in Figure 2. We begin with a

collection of hypotheses, or putatively independent regulatory models, that

follow from any pair of genes A and G, where a high-scoring sequence

element for a motif representing transcription factor a (encoded by A) is

found by motif scanning in the 1000 bp region upstream of the start codon of

G. The set GA ¼ {G1, G2, . . . , Gn} then represents the collection of such

genes for a TF A; we then ask whether expression exhibited by the tran-

scription factor expression is significantly associated with a net activation or

repression of the target gene. Transcription factor binding sites (TFBS) were

predicted from PWMs derived for a number of yeast transcription factors

based on intergenic binding (ChIP) in the recent paper by Harbison, et al (3).

We used MotifScanner (18) with these matrices to scan 1000 bp regions in

the 50 upstream area of each open reading frame in the Saccharomyces
cerevisiae genome. Each gene hit, and the corresponding motif sequences

in the input to the expression analysis.

From a set of expression measurements (two-color microarrays), we

denote expression values for a TF A and gene G as the joint distribution

�A,G. We used the Rosetta deletion compendium of �300 expression con-

ditions (19), normalizing the expression of each gene in this set to have zero

mean and unit variance. We use a suitable function F(tA, G) (Eq 2.1) to

represent the magnitude of activation or repression of G with respect to

different expression values of A. We denote this function as the log-

likelihood ratio that some expression change in G occurs when the expres-

sion of A exceeds a threshold value tA(G).

FðtA‚GÞ ¼ � d log10

�
p½ð�G j �A>tA Þ < ð�G j �A<tA Þ�
p½ð�G j �A>tA Þ > ð�G j �A<tA Þ�

�
ð2:1Þ

Values obtained by Eq 2.1 are calculated using bootstrap samplings from

the distribution of gene G, from conditions where the normalized expression

level of TF A is either above or below a threshold value tA. Probability terms

representing the differences in the conditional distributions of G are calcu-

lated using the Kolmogorov-Smirnov test. A sign parameter d ¼ (�1, + 1)

indicates whether the TF is a known to be an activator (+1) or repressor (�1),

based on literature annotation—high values of F(tA, G) indicate significant

shifts in G expression consistent with the TF’s known function.

We estimate the optimal threshold tA(G) that maximizes the value of the

statistic F for gene G by calculating F(tA, G) for many values of tA(G) based

on 100 bootstrapped samplings from the original expression data. Results of

this sampling procedure are then aggregated to produce a mean value of the

scoring statistic �FFðtA‚GÞ, corresponding to an average value of the threshold

parameter �ttAðGÞ. The score �FFðtA‚GÞ then represents an optimum in the

average ‘responsiveness’ of gene G to the expression level of gene A at

expression level �ttA, but doesn’t imply that G is only regulated at this level.

Because we average over many random selected models created from the

data, the estimate of �FFðtA‚GÞ and �ttA summarizes the most persistent effects

over many perturbations and conditions in the original data.

2.2 Computation of TFBS partitioning

Each TF and gene combination produces a model fit by the above procedure,

with varying values of �FFðtA‚GÞ and �ttA. Because the motif scanning proce-

dure exhibits known low specificity, and because expression values between

unrelated gene can be weakly correlated at random, it is appropriate to filter

the results of the expression-based modeling to select combinations for

which both motif and regulation data are both present. Numerous iterations

of the procedure found �FFðtA‚GÞ ¼ 3:0 to be an effective value for removing

spurious associations at minimal cost to further analysis. This filtered set of

modeled genes is G
filtered
A ¼ {G1, G2, . . . , Gn}. In general, any over-fitting

which is likely encountered by having many multiple independently para-

meterized models is avoided by using models averaged over many sets of

conditions, and as we describe next, many sets of genes.

The next step of our procedure seeks to partition or permute the filtered set

of modeled genes, G
filtered
A , into sets having significant differences in cis

motif content. These sets will be explicitly dependent on modeled values of
�ttA, which are obtained in the previous stage. By selecting genes having

average modeled values of �ttA greater than (high) or less than (low) some

threshold value tcrit
A , we produce two new sets G

high
A and Glow

A , whose aggre-

gate maximum �FFðtA‚GÞ occurs at relatively high and low levels of TF

relative to tcrit
A . Each value of tcrit

A yields a new pair of sets of aligned motifs

cis to the genes in G
high
A and Glow

A , from which the information weight matrix

(I) can be calculated by using the PWM of each set of motifs:

IPWM ¼
X

l

X
b

f ðb‚ lÞ log2 ðf ‚ lÞ ð2:2Þ

This process is then repeated for successive values of tcrit
A . In addition,

providing a more robust estimate the mean and variance of the information

content from substituent motifs in the gene set, we additionally bootstrap the

Fig. 2. Regulation Modeling Procedure and Analysis of Expression-Based

Motif Sets. (A) Sets of genes with motifs for a given transcription factor are

analyzed to produce an estimate of the difference in motif information content

as a function of the TF expression threshold parameter t. The method iden-

tifies cases where the divergence in motif content corresponds to a divergence

in regulatory response to the TF. (B) An example of the regulation scoring

function profile for genes with at least one motif for the amino acid biosynth-

esis regulator GCN4, for t¼0.25. Genes in ‘‘high’’ group (red) are maximally

responsive to levels of GCN4 greater than t; genes in the ‘‘low’’ group (green)

to levels less than t. (C) The upper plot shows information content (in bits) of

motifs in high and low gene groups as a function of t. Lower half shows the

probability of observing a difference in information as great as that between

low and high groups at values of t.
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selection of the substituent genes (x100) from both high and low sets at each

chosen value of �tt. The value of tcrit
A producing the maximum bootstrap

significance (bootstrap p � 0.01) in PWM information difference between

set G
high
A and Glow

A defines two optimal average PWMs (PWMhigh and

PWMlow) for the two sets. Finally, a more precise estimate of the average

information difference DIA ¼ IðGlow
A Þ � ðG

high
A Þbetween motifs in the sets,

and the significance of this final difference is estimated from a last much

larger bootstrapped sampling (x1000) of gene sets having equal size as final

sets G
high
A and Glow

A made from the original set G
filtered
A . This probability

estimate final gives the level of surprisal that the information content of

PWMhigh and PWMlow would diverge as much as is observed over many

random samplings from our original large set of motifs.

The output for each TF, therefore, the optimal difference in PWM infor-

mation entropy, DIA as a function of the threshold of expression for the TF,�ttA.

The process implicitly yield two sets of genes, G
high
A and Glow

A , whose regula-

tion appears to respond in aggregate to correspondingly high or low expres-

sion levels of TF A. As noted earlier, an increase in this measure of

information among sets of protein-bound sequences corresponds to an

increase in the statistical thermodynamic estimate of a relative binding affi-

nity between the protein and DNA, Keff
bind . The procedure therefore gives us

way to examine the relationship between the modeled concentration of TF

needed to regulate its genes, and the affinity of sites upstream of those genes.

3 RESULTS

We applied the outlined procedure to several yeast transcription

factors for which PWM data was sufficiently available. We

excluded transcription factors for which we could find no sites,

or TFs for which predicted sites were identical across all genes;

obtaining informative subsets is impossible in these cases. The

results for seven TFs are shown in Table 1.

3.1 Site content and transcription factor level at

transcriptionally active genes

We were able to recover a number of instances where the informa-

tion content of TFBS motifs could be partitioned into significant

subsets depending on the modeled level of transcription factor

which corresponded to activation of different genes in these sets.

A surprising result of the study was that most transcription factors

(10 out of 12 cases) showed some type of significant change in

information content (p� 0.05) as a function of the modeled value of

tA. The probabilities reported in Table 1 are not Bonferroni correct,

however, and therefore possibly of marginal significance when

judge in total, but the individual probabilities of a several cases

are at 0.01 or better, and have supporting evidence as we discuss

further. Based on this evidence it is likely that TF expression cor-

responds in some cases to changes in the information of cis sites on

genes, but it apparent that this change can be positive or negative.

Half of the significant cases we found (5 of 10), the change in

information was positive – Gcn4, Leu3, Hap1, Msn4 and Skn7 made

up this set. The remaining five (Rpn4, Mcm1, Swi4, Abf1 and

Ume6) had significant negative change in PWM information con-

tent between ‘high’ and ‘low’ TF-regulated gene sets. Based on the

predictions of our basic model, we expect cases where the change in

information is positive between high versus low TF levels to reflect

those situations where concentration and binding site affinity are

dominant in governing regulation. The other cases show an opposite

tendency, suggesting certain TFs regulate genes with lower site

affinity even at lower TF levels, perhaps due to cooperativity.

The two transcription factors shown in Table 1 (Mcm1 and Rpn4)

which exhibit strong negative change in gene TFBS information

content (DI) at low TF levels are both known participants with other

factors during DNA binding and regulation. Rpn4p participates in a

proteosomal auto-regulation pathway (20), while Mcm1p alter-

nately binds to alpha1, alpha2 and Ste12p during different stages

of mating and mate-type gene expression (21). The preference of

Rpn4 for high-affinity sites at higher concentrations could be linked

to the observed negative feedback mechanism whereby the targets

of Rpn4 encode proteins that ultimately degrade the TF itself. The

transcription factors which exhibit positive change in motif infor-

mation content, Gcn4, Leu3, Hap1, Msn4 and Skn7 are generally

non-complexed protein regulators of gene expression, although

some (e.g. Gcn4p and Hap1p) are known to dimerize before binding

DNA.

The results of the modeling procedure are suggest that potential

binding mechanisms can be seen in the increased preference for

certain nucleotides in averaged PWMs corresponding to low and

high information sets. For example, in Skn7 sites, the additional

information gained between site partitions is also entirely due to the

conservation of C at position 2. The Rpn4 motif shows an increased

preference for a triplet G in the beginning of the motif, and Hap1

sites show increased conservation in the middle positions between

two highly conserved ends.

3.2 Biological significance of motif partitioning

Our approach assumes that the affinity of transcription factor sites can

be functionally segregated based on regulatory pattens among their

downstream cis genes. If this is true, then we should expect cases

where a biological or functional interpretation can be associated with

this typeof partitioning. As shownin Table 1 we investigated high and

low sets of modeled genes for each TF to see if they were particularly

enriched for binding in large-scale ChIP or for functional information

in the Gene Ontology. These tests potentially provide indirect evi-

dence that the genes sets of different sets exhibit different specificities

in binding assays, or are involved in different types of cellular pro-

cesses. We report for each high and low set the most-enriched TF in

ChIP binding assays and the most common functional category in the

Gene Ontology. In some cases (Gcn4, Mcm1, Msn4) ChIP results

returned the identical TF for least one of the sets. For many other

cases, however, the results returned other high-scoring TFs, suggest-

ing that the binding of these different TFs may have cross-specificity

or target gene overlap. Whether this represents binding of related TFs

to the same or similar upstream sequences in ChIP experiments, or the

binding of TFs to each other, remains to be explored.

Different gene sets obtained by our partitioning method are often

enriched for separate GO categories despite sharing the same TF,

suggesting some degree of functional heterogeneity exists among

genes responsive to different TF levels. For example Skn7 targets

were most represented in metabolism (high SKN7 expression) and

biogenesis (low SKN7 expression). Often, at least one of the gene

sets for each TF represented functional categories that correspond to

processes regulated by the TF. For example Leu3 target genes are

involved in amino acid biosynthesis (22), Rpn4 genes in proteolysis

(20), Gcn4 genes in amino acid biosynthesis (23), Hap1 in catalytic

activity (24), etc., are consistent with literature evidence of function

for these regulators.

3.3 Biological validation of motif variants

We further analyzed examples found as part of this study to see if

supporting evidence exists for the binding and function of motif

An equilibrium partitioning model connecting gene expression and cis-motif content
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variants in experimental literature. We were able to find evidence to

support three of the observed motifs for TFs partitioned on the basis

of regulatory activity.

Leu3
An experimental in vitro selection assay of dissociation constants

(KD) of 43 variants of the binding site of Leu3 was recently per-

formed by Liu and Clarke (25), who found that several variants had

higher affinity than the accepted consensus motif for this TF

(‘CCGGTACCGG’). The classical description of the Leu3p binding

site is of two everted ‘CCG’ repeats separated by four nucleotides.

The PWM for motifs found by scanning the yeast genome indicate

that the majority of positional information is indeed found in the

repeats, which are bound by two domains of the leucine zipper

Leu3, regardless of the gene group targets. Our analysis predicted

that a higher affinity version of this motif (Table 1) has increased

positional information at the two bases at positions four and five

immediately after the first repeat. The binding experiments by Liu

and Clarke confirms the affinity conferred by a T at position four has

over three-fold higher affinity than the consensus motif. The other

T, at position five, has marginally stronger affinity than the con-

sensus G reported for that position in the Leu3 site.

Hap1
Hap1 is a member of the Zn2Cys6 family of binuclear cluster TFs

which bind as homodimers, typically to CGG repeats. Our analysis

of Hap1 binding sites predicted that sites bound by higher levels of

expression of Hap1 have enrichment for information in the spacer

region at positions 3 to 8. This observation is corroborated by a

recent experimental analysis of the composition of the Hap1p bind-

ing site performed by Wang, et al (26), who found that deletion of

the spacer region between repeats lowered the effective affinity of

the TF for sequences in vitro. They also report a binding preference

for a dinucleotide TA in this spacer region.

Gcn4
The sequence specificity of the bZip family member Gcn4 has been

previously reported to bind to a half site in DNA (27) with a con-

sensus seven base-pair sequence ‘TGA(C/G)TCA’(28). The prefer-

ence for T and G at the first and second positions of this core, and for

A at the last position, are more variable among sites in the yeast

genome than the four base pairs at positions three through six. This

observation agrees with the prediction made by our analysis among

gene sets regulated by high and low levels of Gcn4 expression;

specifically, we find there is a preference for the canonical binding

motif among gene regulated at lower levels of the transcription

factor, and this is weakened among gene regulated at higher levels

of Gcn4 expression. An overall difference in PWM information

content of 0.94 ± 0.28 (bits), as seen in Table 1, is due largely

to a preference for TG at the first two positions in the core motif, as

well as A at the last position.

4 DISCUSSION

The equilibrium partitioning of transcription factors among sites of

different binding affinity across the genomes is a simple but poten-

tially important mechanism that plausibly controls whole sets of

genes across different conditions. Using a novel, thermodynami-

cally motivated approach, we’ve presented preliminary evidence

based on predicted TF binding sites and expression data in Sacchar-
omyces cerevisiae that this general effect might play some role

between certain transcription factors and their targeted genes. In

these cases, a significant inverse relationship was noted between the

aggregate information content of a set of motifs, and the expression

level of the TF that putatively binds these motifs. Gene regulation in

these cases is plausibly tuned to respond to various conditions by the

interplay between available transcription factors and the affinity of

sites to which they bind.

Our results also suggest that site affinity plays a more complicated

role in the specificity of TFs acting in tandem, however, where the

affinity of sites is possibly dependent on the activity of other pro-

teins that can bind at or near the same region of DNA. The cases

where we find strong evidence that regulation follows a simpler

model are potentially more attractive targets for forward engineer-

ing in synthetic systems.

The analysis we’ve shown doesn’t prove the actual physical

affinities of partitioned sites, and for this further experiments

will clearly be necessary. A variety of assumptions must be

made in linking the information in the sites with the biophysical

interpretation of binding preferences, but the observed correlations

between modeled target gene activity and motif content lend sup-

port to the model we’ve used, and suggest that functional knowledge

of biological systems can be gained by this simplification. There are

also clear limitations where binding site partitioning, whether sta-

tistical or thermodynamic, is effectively impossible, for example

if a particular site is completely invariant across all genes or has

uniform affinity.

We note that, in general, more complicated cooperative effects

aren’t incompatible with the model of binding and regulation we

describe here, and in fact these cases might adequately be described

as modulations to the single protein equilibrium. These modulations

can be obtained by changing the effective affinity of proteins for

sites secondary binding events, having protein co-localization, co-

orientation, etc. Signatures of cooperativity might therefore be

detectable as in the content of combined cis regulatory signals,

as well, or the expression and activity of combinations multiple

TFs, leading to an enriched understanding of regulatory logic.

The basic model we’ve used here can be extended to consider

combinations and sets of transcription factors, where the affinity

of combinations of TFs is influenced by motif content, as well as

relative orientation. In such cases, factors other than the information

content of motifs may play a much more important role. In work

along such lines, Beer and Tavazoie (29) showed that spatial pat-

terns in motif organization are sufficient to predict the regulatory

response of many genes. The extraction of mechanistic rules in

systems of combinatorial regulation is a remaining challenge for

this and many other modeling approaches.

To summarize, despite a of lack direct methods to (a) verify the

in vivo affinity of any particular cis sites in the genome, (b) to

understand mechanisms of affinity at arbitrary protein-DNA inter-

faces, (c) know the effective protein concentrations of different

active TFs, or (d) measure the availability of TF sites on DNA,

we can still approach some of these questions with modeling meth-

ods based on available data. In this study we examined the relation-

ships between transcription factor affinity and regulatory efficacy by

using model based on an assumed physio-chemical partitioning that

occurs during binding and regulation. In testing this model, and

whether genes are aggregately activated or repressed in response to

An equilibrium partitioning model connecting gene expression and cis-motif content
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high and low levels of a transcription factor’s expression, we found

interesting signatures of the dynamical processes involved in gene

regulation. These patterns are in several cases sufficient to identify

significant and functional differences between cis-elements to

which a transcription factor binds.
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ABSTRACT

Motivation: Biological cells continually need to adapt the activity

levels of metabolic functions to changes in their living environment.

Although genome-wide transcriptional data have been gathered in a

large variety of environmental conditions, the connections between the

expression response to external changes and the induction or repres-

sion of specific metabolic functions have not been investigated at the

genome scale.

Results: We present here a correlation-based analysis for identifying

the expression response of genes involved in metabolism to specific

external signals, and apply it to analyze the transcriptional response

of Saccharomyces cerevisiae to different stress conditions. We show

that this approach leads to new insights about the specificity of the

genomic response to given environmental changes, and allows us to

identify genes that are particularly sensitive to a unique condition. We

then integrate these signal-induced expression data with structural

data of the yeast metabolic network and analyze the topological prop-

erties of the induced or repressed subnetworks. They reveal significant

discrepancies from random networks, and in particular exhibit a high

connectivity, allowing them to be mapped back to complete metabolic

routes.

Contact: nacher@kuicr.kyoto-u.ac.jp, jean@kuicr.kyoto-u.ac.jp

1 INTRODUCTION

Complex interactions between multiple molecular compounds and

mechanisms are responsible for cellular functions. Huge amounts of

experimental data have allowed a growth in knowledge about bio-

chemical processes and interactions, but the integration of all these

data in order to reach a global understanding of the behavior of a

biological cell is just starting. Metabolic processes are a key element

of cellular behavior, and the analysis of metabolic networks has

therefore gained much attention in recent years. Many efforts have

concentrated on the structural analysis of metabolic networks

(Jeong et al., 2000; Wagner and Fell, 2001; Almaas et al., 2004)

and new methods such as elementary mode and extreme pathway

analyses have been developed (Schuster et al., 2000; Schilling et al.,
2000). Genome-scale models of metabolism have been recon-

structed for a growing number of organisms (Edwards et al.,
2000; Förster et al., 2003; Ma and Zeng, 2003). However, the

metabolic network of a biological organism is a highly dynamically

regulated system, and structural analysis alone is not sufficient. In

order to understand the dynamical activity of metabolic processes

and the mechanisms regulating this activity, structural analysis of

metabolic networks needs to be combined with other sources of

information, such as gene expression data.

Genome-scale expression analyses are now routinely performed

for a wide range of experimental conditions, and many tools are

available for the analysis of expression data and the identification of

statistically significant increases or decreases in gene expression.

Changes in expression levels have sometimes been mapped to pre-

cise metabolic pathways (DeRisi et al., 1997; Ideker et al., 2001;

Krömer et al., 2004; Zaslaver et al., 2004), but the relations between

the differential expression of some genes and the activation or

repression of metabolic routes have not been investigated at the

cellular level. Approaches have been presented for the identification

of sets of genes contributing to the same metabolic pathway

and whose expression levels are coordinated to a particular pheno-

type (Barriot et al., 2004; Lee et al., 2005; Tian et al., 2005).

However, these approaches do not allow the mapping of these

gene sets to particular metabolic processes or the identification

of connected metabolic routes. In parallel, several tools have

been developed for visualizing expression data on metabolic path-

ways (Dahlquist et al., 2002; Borisjuk et al., 2004; Mlecnik et al.,
2005), highlighting the interest in combining these two sources of

data for understanding the organization and dynamical evolution of

cellular processes.

The yeast Saccharomyces cerevisiae is well suited to such inte-

grative analyses, firstly because it is one of the most thoroughly

studied organisms, with the structure of its metabolic network as

well as the functions of many genes being well known, and secondly

because it has evolved to be able to survive rapid and drastic

changes in its environment. Unicellular organisms must be able

to rapidly adjust their internal systems to fluctuations in external

conditions, and one aspect of this adaptation is the reorganization

of genomic expression to each new environment (Gasch and

Werner-Washburne, 2002). Recently, it has been shown that in

E. coli distinct transcriptional subnetworks are responsible for envi-

ronmental perturbation processing (Balázsi et al., 2005), and some

approaches have been developed for studying the transcriptional

regulatory architecture of metabolic networks (Guelzim et al., 2002;

Patil et al., 2005). However, the coupling between multiple

environmental changes and the induction (repression) of specific

metabolic routes has not been investigated. In this paper, we first

present a correlation-based analysis of gene expression patterns

corresponding to various environmental conditions. We show

that this approach leads to new insights about the specificity of
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the genomic response to given environmental conditions, and

allows us to identify genes that are particularly sensitive to a unique

condition. We then present an integration of such signal-induced

expression data with structural data of the yeast metabolic network.

We show that the sets of genes that are significantly induced

(respectively repressed) in a given condition build connected

subnetworks. Characterization of the topological properties of

these subnetworks reveals significant discrepancies from random

networks, in particular a higher connectivity, allowing them to be

mapped back to complete metabolic routes.

2 RESULTS

2.1 Genomic response is coupled to specific

environments

The first part of this study consisted of looking for genes whose

expression response is strongly coupled to specific environmental

conditions. Such an analysis requires the availability of expression

data in many different conditions, as well as a rich amount of

data for each condition. We used microarray data obtained from

experimental work by Gasch et al. (2000) for 6152 genes of

S. cerevisiae in 13 different environmental shocks. For each con-

dition, we defined a binary signal representing an idealized expres-

sion pattern that is fully correlated to the given condition (see

Methods). Then, expression patterns of all genes were compared

to this idealized pattern to identify genes with the strongest positive

and negative correlations. This process led to the computation of

individual zi
(s) scores, quantifying the strength of coupling of the

expression of each gene i to each condition s.

These genes were mapped to metabolic pathways using the

KEGG database (Kanehisa et al., 2006). 819 out of the 6152

genes present in the microarray data were found to be involved

in yeast metabolism. As each pathway map in KEGG corresponds

to a particular biological functionality, we analyzed the distribution

of zi
(s) scores in the 85 yeast-specific metabolic maps from KEGG

for each of the 13 environmental conditions.

The distribution of zi
(s) scores was found to be significantly spe-

cific to each condition (Figure 1). Temperature shocks, diamide

treatment and amino acid starvation produced larger numbers of

induced genes in many parts of metabolism, while nitrogen deple-

tion or stationary phase produced more repressed genes (Table 1).

In other cases, the dominant response varied depending on the area

of metabolism: for example, stationary phase experiments showed

a dominance of induction among genes involved in carbohydrate

metabolism and a dominance of repression among genes involved

in amino acid metabolism. In addition, particularly significant

responses could be identified in certain pathways for some con-

ditions. Amino acid starvation induced a large number of genes

in amino acid metabolism; large numbers of induced genes could

also be observed in carbohydrate metabolism for heat shock and

diamide treatment, and in glycan and energy metabolism for diauxic

shift experiments. Large numbers of repressed genes could be

identified in carbohydrate metabolism for alternative carbon source

experiments, in lipid and amino acid metabolism for nitrogen

depletion experiments, and in energy metabolism for hyper-osmotic

shocks.

Fig. 1. Distribution of induced (repressed) genes in metabolic pathways. The fraction of significantly induced genes (zi
(s) > 1) is displayed in red, that of

significantly repressed genes (zi
(s)<�1) in green, and that of non-significantly affected genes in yellow. Each line corresponds to one metabolic map in the KEGG

database, identified by the numbers on the left-hand side. Pathways are classified into the following categories as in the KEGG database: (C) carbohydrate

metabolism, (E) energy metabolism, (L) lipid metabolism, (N) nucleotide metabolism, (AA) amino acid metabolism, (G) glycan biosynthesis and metabolism,

(CV) metabolism of cofactors and vitamins, (S) biosynthesis of secondary metabolites, (X) biodegradation of xenobiotics.

Table 1. zi
(s) scores statistics for different conditions

Condition Average of zi
(s) Standard

deviation of zi
(s)

Nitrogen depletion (N) �0.278 1.019

Stationary phase (S) �0.100 1.071

Hyper-osmotic shock (Hr) �0.014 1.027

Hydrogen peroxide treatment (H2) �0.009 0.969

Diauxic shift (Dx) 0.035 0.982

Alternative carbon sources (AC) 0.057 1.065

Menadione exposure (M) 0.058 1.004

37�C heat shock (HS) 0.084 1.016

Dithiothrietol exposure (DTT) 0.084 0.978

Hypo-osmotic shock (Ho) 0.093 0.972

Diamide treatment (Dm) 0.100 1.002

Amino Acid starvation (AA) 0.153 1.273

Variable temperature shocks (VT) 0.200 0.879
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We focused on those genes with the maximum (respectively

minimum) zi
(s) scores in each condition. Not only do these genes

exhibit a strong induction (repression) in a given condition, but

this maximum (minimum) is furthermore unique to that condition

(Figure 2). The functions of these genes are therefore expected to be

closely linked to these particular conditions. For example, several

GAL structural genes were identified among the most strongly

correlated to alternative carbon source experiments, and it is

known that these genes enable cells to utilize galactose as a carbon

source (Lohr et al., 1995). For genes whose molecular

role is unknown, functional information can thus be inferred by

this approach. Interestingly, almost half on the genes identified

by this analysis have no assigned molecular function in the

Saccharomyces Genome Database (http://www.yeastgenome.org/).

In addition, we analyzed the relations between the expression

responses to different external conditions. To quantify these

relations, we computed the mutual correlation I(s1, s2) of all

pairs of conditions, defined as the Pearson coefficient correlation

between two distributions of z scores zi
(s1) and zi

(s2). This analysis

revealed that the expression responses to some conditions are

significantly correlated (Figure 3a, b): strongly related pairs

include alternative carbon sources and hypo-osmotic shock, nitro-

gen depletion and stationary phase, diamide treatment and heat

shock, and hydrogen peroxide treatment and menadione exposure.

At a larger scale, conditions can be grouped into five main

clusters (see Table 1 for abbreviations): [N, S, AA], [Dm,

HS], [Hr, VT, DTT, AC, Ho], [Dx], [H2, M]. The different

types of couplings are clearly rendered by plotting the density

distributions of pairs of zi
(s) scores. Examples for strongly posi-

tively correlated, uncorrelated, and anti-correlated pairs are

shown in Figure 3c, d, e, respectively. It is worth noting that

some of the responses are clearly uncoupled or anti-correlated

with each other, in particular the first and third cluster described

above. This correlation-based analysis thus reveals that cells can

respond to different types of environmental shocks by signifi-

cantly distinct patterns.

2.2 Signal-coupled gene sets build highly

connected subnetworks

In order to understand to which extent correlations in expression

patterns are linked to genes being involved in the same metabolic

functions, expression data need to be integrated with topological

modeling of metabolism. We reconstructed a network of

genes involved in yeast metabolism from the KEGG database

(see Methods). By considering only the genes with zi
(s) > 1 (respec-

tively zi
(s) < �1), it is possible to construct subnetworks containing

only the most significantly induced (repressed) genes in each

particular condition (Figure 4).

These sets of significantly induced (repressed) genes were

found to build remarkably well-connected subnetworks. In order

to assess this point on an analytical basis, an extensive analysis on

the topology of these induced (repressed) subnetworks was con-

ducted. Several properties of the induced (repressed) subnetworks

obtained under 13 different external conditions (i.e. a total number

of 26 networks) were analyzed. The properties of the subnetworks

were compared with those of the full metabolic network, as well as

with random networks and artificially generated scale-free

networks.

The normalized average path length in induced (repressed)

subnetworks is in the same range as for random networks and

other natural and artificial networks (Figure 5a). All signal induced

(repressed) subnetworks show relative values inside the interval

from 0.5 to 2, indicating that they have similar average shortest-

path lengths as random networks. This behavior has been observed

in many other networks, including the World Wide Web, protein

interaction networks of yeast, collaboration networks of movie

actors, etc (Dorogovtsev and Mendes, 2003; Barabási and Oltvai,

2004; van Noort et al., 2004).

However, signal induced (repressed) subnetworks show a

higher connectivity than would be expected in random networks.

This property is highlighted by plotting the relative values of the

average clustering coefficients normalized by the average degrees

(Figure 5b). The clustering value in the complete network is close to

that of artificial scale-free networks constructed by the Barabási-

Albert model (Barabási and Albert, 1999). Signal induced

(repressed) subnetworks also appear in the vicinity of the scale-

free model, but most of them show higher clustering coefficients.

They are therefore more densely connected than scale-free

networks. The clustering values in these subnetworks are also sig-

nificantly higher than for random networks of equivalent size. This

high connectivity is crucial for tracing back the sets of induced

(repressed) genes to connected metabolic routes.

Two examples of such metabolic pathways are shown in

Figure. 6 The red graph shows highly activated reactions (zi
(s) >

1) when yeast cells are grown in minimal medium lacking amino

acids. Interestingly, several amino acid producing pathways are

entirely activated (for example, leucine, valine and lysine appear

as final products in the bottom part of the figure). The green graph

shows highly suppressed reactions (zi
(s) < �1) when cells are grown

in medium supplemented with glucose, galactose, raffinose, fruct-

ose, sucrose or ethanol as a carbon source. It is worth noting that

glycolysis and the Krebs cycle are suppressed to a large extent.

The high connectivity of induced (repressed) subnetworks can

be understood more widely as deriving from coexpression proper-

ties of genes controlling neighboring metabolic reactions. For

Fig. 2. Genes with maximum and minimum zi
(s) scores in each condition.

Each row corresponds to one gene, with functional information from the

Saccharomyces Genome Database when known. Each column corresponds

to one specific condition, abbreviated as indicated in Table 1
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each metabolite, we computed the average correlation between

expression patterns of all its adjacent genes over all available

experimental data (Figure 7). The distribution of correlation values

with respect to node degree revealed a significant shift towards

positive correlations. In order to verify whether this shift is statis-

tically significant, we plotted the bounds of the interval computed

from Fisher’s transformation for a 99.7% confidence level centered

on zero (see Methods). A large amount of compounds appear

beyond this interval, including all of those with node degree higher

than 10. This finding means that genes that are connected in the

metabolic network tend to have correlated expression patterns at

the genome scale: it is therefore expected that such local correlation

leads induced (repressed) genes to be organized into connected

subnetworks.

3 DISCUSSION

Two main findings have been derived from this analysis. Firstly,

a correlation-based analysis of expression patterns in several

different stress conditions allowed us to identify metabolic units

whose activity is strongly coupled to a specific condition. Although

the expression responses in a few groups of conditions showed

positive correlations, most of these responses were found to be

uncoupled with each other. Cells therefore seem to respond to

different types of environmental shocks by more asymmetric

patterns than described earlier (Gasch et al., 2000). Furthermore,

several genes whose expression pattern is characterized by a

strong and unique induction (repression) in a particular condition

have been identified by this approach. The functions of these

genes are expected to be closely linked to these particular

conditions. The fact that several of these genes have not been

assigned a molecular function previously indicates that this

correlation-based approach can lead to novel insights about the

role of genetic units.

Second, the integration of this correlation-based analysis to

structural metabolic network data revealed that the sets of genes

that are induced (repressed) under specific stress conditions define

highly-connected subnetworks. This high connectivity is crucial for

mapping such gene sets to precise metabolic routes. It should

be noted that the subnetworks obtained by this approach have no

relation with previously described ‘‘gene networks’’. The networks

analyzed in this study are not built by linking genes together based

on a priori information about some interactions or similarities, but

Fig. 3. (a) Mutual correlation I(s1, s2) of all pairs of conditions. (b) Clustering dendogram of all conditions based on I values. Representative examples of density

distributions of pairs of zi
(s) scores for strongly positively correlated (c), uncorrelated (d), and anti-correlated pairs (e).
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they are solely based on neighborhood of the gene products in the

metabolic network. The aim of this study was indeed not to study

the topological properties of known gene networks, but to find out

to what extent genes which act in connected parts of the metabolic

network exhibit coexpressed patterns. Although coexpression of

genes controlling connected metabolic reactions has been

observed in small metabolic subunits (DeRisi et al., 1997; Ihmels

et al., 2004), it has never been observed at the genome scale to our

knowledge.

Our topological analysis revealed the compactness of gene

networks which regulate chemical reactions in active pathways.

Compactness emerges in many real networks when a small average

shortest-path is combined with a relatively high clustering

coefficient. In this situation, a network is said to have the

Fig. 4. Description of the integrative approach followed in this work. The architecture of the yeast metabolic pathways is combined with signal-induced gene

expression data to produce gene networks coupled to each specific external signal. Each gene encoding for an enzyme is represented as a node, and two nodes are

connected by an edge if the chemical reactions they control share at least one common chemical compound. From these networks, sets of significantly induced

(repressed) genes are extracted. These genes define connected subnetworks whose topological properties can be analyzed. The networks shown in this figure are

the ones obtained for amino acid starvation. The radii of nodes are proportional to the number of connections of each node. Colors have the same meaning as in

Fig. 1

(a) (b)

Fig. 5. (a) Ratio between the average shortest-path lengths of studied subnetworks and that of equivalent random networks, versus the network size N. Squares

indicate the ratios of scale-free networks in other biological and non-biological systems. The blue circle indicates the full gene network. Red and green circles

indicate the ratios for the signal-induced (repressed) subnetworks respectively. (b) Log-log plot of relative values of average clustering coefficients with respect to

the average degree <k>, versus the network size N. The continuous line indicates the relation for a classical random graph. The dashed line indicates the behavior

of scale-free networks. The blue circle indicates the relative clustering value for the full gene network. Red and green circles represent the values for the induced

(repressed) subnetworks respectively. The high clustering values of induced (repressed) subnetworks reveal their high connectivity.
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Fig. 6. Two examples of significantly induced (repressed) metabolic pathways. These connected metabolic routes can be reconstructed thanks to the high

connectivity of the signal-coupled gene subnetworks. Colors have the same meaning as in Figure 1.
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small-world property (Watts et al., 1998). In small-world networks,

clustering coefficients are much higher than in the corresponding

random networks. In contrast, the shortest-path lengths tend to be

close to those of random graphs.

Here, the full gene network is characterized by a high

clustering coefficient and by an average shortest-path length com-

patible with random graph networks. Furthermore, the subnetworks

built by significantly induced (repressed) genes in particular exter-

nal conditions show similar topological properties to the complete

network. This effect was observed for all the external conditions we

analyzed.

Recent analyses revealed that it is not possible to draw conclusions

on the topological properties of subnetworks from the original prop-

erties of the full network (Stumpf et al., 2005; Han et al., 2005).

Therefore, the compactness of induced (repressed) subnetworks

could not be inferred without conducting a topological analysis.

The approach presented in this work is simple and fast, and could

be easily applied to higher organisms or plants where the number of

genes is two or three times larger than in S. cerevisiae. An extension

of this approach to higher organisms could be particularly useful for

comparing the metabolic responses of normal and diseased cells,

and elucidating those metabolic functions which are disturbed by

specific pathologies or affected by specific drugs. Furthermore,

metabolites that are connected to highly induced (repressed)

genes are likely to be very affected themselves by the specific

perturbation and therefore constitute interesting potential targets

for drugs.

4 CONCLUSION

The finding that induced (repressed) genes are highly connected

in metabolic pathways raises the question of what mechanisms

regulate this collective response to environmental stress. These

mechanisms may be investigated by embedding the transcriptional

regulatory networks into the current framework. Although this

integration is not straightforward, it would provide valuable insights

into the functionalities of genes and transcriptional factors involved

in responses to external signals. Additional future progress would be

required in the development of automatic procedures for identifying

sets of genes connected in metabolism, mapping these genes back

to biochemical pathways, and visualizing the induced (repressed)

metabolic backbones.

5 METHODS

5.1 Datasets

The structural data for the metabolic network of S. cerevisiae were

obtained from the specialized section of the KEGG database. This network

contains 12456 chemical compounds and 6534 chemical reactions. Genes

encoding the enzymes catalyzing chemical reactions can be identified in

KEGG as well. Data of the whole-genome gene expression of S. cerevisiae,

composed of 6152 genes, were downloaded from the site http://www-

genome.standford.edu/yeast_stress. They are based on the experimental

work of Gasch et al. (2000). From 173 experiments present in the original

expression data, only 162 experiments making use of wild-type yeast

were retained, and experiments using mutant strains were removed for

the dataset. The yeast strain used in our study corresponds to DBY9434.

DNA microarrays were used to analyze the changes in the amount of mRNA

in yeast cells responding to 13 different environmental stresses. The

yeast cells grew in rich medium at 30�C and were shaken at 250-300

rpm before the environmental shocks were applied. These 162 experiments

were classified into 14 different sets, including one control set and 13 dif-

ferent shock sets: 37�C heat shock (HS), variable temperature shocks (VT),

hydrogen peroxide treatment (H2), menadione exposure (M), diamide

treatment (Dm), dithiothrietol exposure (DTT), hyper-osmotic shock (Hr),

hypo-osmotic shock (Ho), amino acid starvation (AA), nitrogen depletion

(N), diauxic shift (Dx), stationary phase (S), and alternative carbon

sources (AC).

5.2 Correlation between expression data and

specific conditions

Gene expression data for the different conditions were gathered in a

matrix. Each row in the matrix corresponded to one gene of S. cerevisiae

and each column corresponded to one environmental condition. Each

environmental condition may be reproduced several times, the number of

occurrences varying between 5 and 22. The total dimensions of the matrix

were Ng ¼ 6152 rows versus Nc ¼ 162 columns.

In order to be able to compare data from different experiments, we

renormalized the gene expression data so that the mean value of gene

expression values was set to 0 and the standard deviation to 1. These rescaled

values were obtained by subtracting for each gene i the average expression

value mi calculated for Nc values and by dividing the resulting value

by the standard deviation si. The value of the expression level for each

gene i in a specific entry t after normalization was denoted by gi(t), with

t ¼ 1, 2, . . . , Nc:

giðtÞ ¼
GiðtÞ � mi

si
ð1Þ

where Gi(t) is the expression value of gene i in specific entry t before

normalization.

For each specific stress condition s, an idealized expression pattern gs(t)
with Nc dimensions was then defined, whose components took the binary

values 1 or 0. For each condition s and for each entry t, vector gs(t) contained

values of one if the stress condition was present in t, zero if not. Next, the

Fig. 7. Average correlation between expression patterns of all adjacent genes

of each chemical compound over all available experimental data, with respect

to node degree. The dash lines indicate the bounds of the 99.7% confidence

interval computed from Fisher’s transformation.
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covariance between gene expression values gi(t) and the idealized pattern

gs(t) was computed as follows:

covi ¼
XNc

t¼1

giðtÞ · gsðtÞ ð2Þ

Finally, for each gene i, covi
(s) was normalized by substracting the average

mcov
(s) and dividing by the standard deviation scov

(s) of all genes. We thus

defined for each gene i and each condition s:

z
ðsÞ
i ¼

cov
ðsÞ
i � m

ðsÞ
cov

s
ðsÞ
cov

ð3Þ

The value of zi
(s) measures the degree of coupling between the expression

pattern of gene i and a given condition s. If gene i is strongly induced

(repressed), zi
(s) has a high positive (negative) value. In particular, we

considered in this study that genes with zi
(s) above (below) the value of 1

were significantly induced (repressed) in the given condition. Genes with zi
(s)

values between �1 and 1 were considered to exhibit a weak coupling to the

condition.

Related approaches have already been presented in different contexts, as

for example medical classification (Golub et al., 1999), the identification of

ploidy-regulated genes (Galitski et al., 1999), and the analysis of transcrip-

tional regulatory networks (Balázsi et al., 2005).

Computations were performed using the R software environment (www.

r-project.org) and custom-designed software.

5.3 Construction of gene network from

metabolic structural data

In this study, the metabolism of S. cerevisiae was analyzed using the

KEGG database, in which nodes represent chemical compounds and

edges represent biochemical reactions. It is possible to define two comple-

mentary representations of a metabolic network (Wagner and Fell, 2001;

Nacher et al., 2005). First, a chemical network consisting of nodes as

chemical compounds can be created. In this representation, two nodes are

connected by an edge if they are involved in the same chemical reaction.

Second, it is also possible to construct a gene network, where nodes are the

genes encoding for enzymes which catalyze the chemical reactions between

compounds. In this network, two genes are connected by an edge if the

reactions they control share at least one common chemical compound. If two

or more genes control the same reaction, they are also connected by an edge.

When the same gene is involved in several chemical reactions it is repre-

sented as a single node.

One drawback of the latter representation is that a large number of

connections are created by ubiquitous metabolites (such as ATP,

ADP. . .) but do not correspond to real metabolic flows (Ma and Zeng,

2003; Arita, 2004; Croes et al., 2005). In order to eliminate most of

those connections, we cured our network by removing all connections cre-

ated by the following list of ubiquitous metabolites: water, ATP, ADP, AMP,

NADPH, NADP, NADH, NAD, CO2, NH3, O2, H+, orthophosphate,

pyrophosphate, and CoA. The following list of compounds were removed

too, because they are used as generic identifiers in KEGG and they can

actually correspond to different chemical compounds in different reactions:

protein, phosphoprotein, alcohol, and aldehyde.

For network visualization, the Pajek software was used (http://www.

vlado.fmf.uni-lj.si/pub/networks/pajek).

5.4 Network analysis

A network consists of nodes connected by edges, and the number of

connections to a node is called degree k. Characteristic properties of a

network include the total number of nodes N, the average degree <k>,

and the degree distribution P(k), which indicates the probability to find

nodes with degree k. While in a random network the degree distribution

has a peak close to the average value k (Erd}oos and Rényi, 1960), in scale-free

networks there is a statistical abundance of nodes with high degree which

generates a degree distribution with a power-law tail (Barabási and Albert,

1999). Interestingly, most of real networks are scale-free networks.

The compactness (or small-worldness) of real networks has recently cap-

tured the attention of the scientific community (Watts and Strogatz, 1998).

Two concepts are useful for studying compactness properties: the average

path length and the clustering coefficient. First, if we consider that the edges

of a network have the same length and use it as a unit of length, then the

distance between two nodes is the length of the shortest path between them.

The distribution of the distances l between all reachable pairs of nodes,

denoted by P(l), indicates the probability that the length of the shortest

path between two randomly chosen nodes is equal to l. In a random network,

the average distance can be calculated by using the following expression:

lrand � ln N / ln <k>. In contrast, for a scale-free network, the expression

reads: lSF � ln N / ln(ln N) (Dorogovtsev and Mendes, 2003).

Second, the clustering coefficient characterizes the density of edges in

the neighborhood of a node. Given a node i with k neighbors, Ci(k) denotes

the probability that two nearest neighbors of node i are connected to each

other, and takes values from 1 (fully connected network) to 0 (tree graph).

Again, it is possible to derive the analytical expressions of the average

clustering coefficient for random graphs and scale-free networks: Crand ¼
<k> / N for a random graph, and CSF � N-0.75 for the Barabási-Albert scale-

free model (Albert and Barabási, 2002).

5.5 Fisher’s transformation

Fisher’s transformation is used for computing confidence intervals on

Pearson’s correlation between two variables. The formula for the trans-

formation is:

1

2
ln

1þ r

1 � r

� �
±

qffiffiffiffiffiffiffiffiffiffiffiffi
n � 3
p ¼ 1

2
ln

1þ r

1 � r

� �
ð4Þ

where n is the number of observations and q is the quantile of the

chosen confidence interval (q ¼ 3 for a 99.7% confidence). For a given

value of r, the two values of r are the bounds of the confidence interval

corresponding to a statistically significant correlation between the two

variables. In our case r ¼ 0, as the aim was to verify whether observed

correlations are significant. Observations whose correlation values are

outside the confidence interval can therefore be considered as

significantly correlated, with a 99.7% level of confidence.
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ABSTRACT

Motivation: An important problem in molecular biology is to identify

the locations at which a transcription factor (TF) binds to DNA, given

a set of DNA sequences believed to be bound by that TF. In previous

work, we showed that information in the DNA sequence of a binding

site is sufficient to predict the structural class of the TF that binds it. In

particular, this suggests that we can predict which locations in anyDNA

sequence are more likely to be bound by certain classes of TFs than

others. Here, we argue that traditional methods for de novo motif

finding can be significantly improved by adopting an informative prior

probability that a TF binding site occurs at each sequence location. To

demonstrate the utility of such an approach, we present PRIORITY, a

powerful new de novo motif finding algorithm.

Results: Using data from TRANSFAC, we train three classifiers to

recognize binding sites of basic leucine zipper, forkhead, and basic

helix loop helix TFs. These classifiers are used to equip PRIORITY with

three class-specific priors, in addition to a default prior to handle TFs of

other classes. We apply PRIORITYand a number of popular motif finding

programs to sets of yeast intergenic regions that are reported by

ChIP-chip to be bound by particular TFs. PRIORITY identifies motifs

the other methods fail to identify, and correctly predicts the structural

class of the TF recognizing the identified binding sites.

Availability: Supplementary material and code can be found at http://

www.cs.duke.edu/~amink/.

Contact: lee@cs.duke.edu, raluca@cs.duke.edu, uwe.ohler@duke.

edu, amink@cs.duke.edu.

1 INTRODUCTION

Transcriptional regulation is governed in large part by interactions

between DNA-binding proteins called transcription factors (TFs)

and the corresponding sites on the DNA to which they bind. TF

proteins have specific three-dimensional structures crucial for

recognition of their binding sites. The binding affinity, and hence

the transcription of the regulated gene, depends on both the TF’s

DNA-binding domain and the site it recognizes. A TF usually binds

multiple sites sharing some common structure, which is typically

represented using a statistical or word-based model.

An important problem in deciphering the gene regulatory code is

to be able to find de novo binding sites for a TF given a collection

of DNA sequences thought to be bound by that TF (Wasserman,

2004; Siggia, 2005). Recent advances in gene-expression arrays

(Spellman et al., 1998; Kim et al., 2001, and many more),

ChIP-chip experiments (Harbison et al., 2004; Liu et al., 2005),

and in vitro DNA-binding arrays (Mukherjee et al., 2004) have

resulted in an explosion of such data. Finding the most probable

locations of binding sites hidden within the DNA sequences, and

hence learning the motif best describing these binding sites, con-

stitutes a problem of parameter estimation over an exponential

search space.

Current motif finding algorithms commonly have difficulty

when the motifs describing a set of binding sites are quite weak,

in the sense that they are not especially over-represented relative

to background. In such cases, additional information might be

useful in guiding an algorithm to these weaker motifs, perhaps

‘up-weighting’ them relative to background so that they can be

detected. This can be done using comparative genomic information,

but even that information will not handle another common problem,

illustrated by the following scenario. Imagine that TF1 binds to a

particular set of DNA sequences but that many of those same

sequences are also bound by TF2. If the motif of TF2 is much

stronger than that of TF1, then the motif for TF2 will be reported

as the motif for both TFs, even if the TFs recognize and bind to

DNA in quite different ways. In this paper, we present a way to

overcome both of these problems.

Most eukaryotic TFs can be classified based on the structure of

their DNA-binding domains. Due to the co-evolution of TFs with

their binding sites, one might expect that just as TFs with a similar

structure have similar DNA-binding mechanisms, there might be

corresponding similarities within the DNA binding sites of TFs

with similar DNA-binding mechanisms. Indeed, in a previous

paper (Narlikar and Hartemink, 2006), we have shown that it is

possible to predict the structural class of a TF using neither its

amino acid sequence nor other protein structure information, but

only the sequences of its DNA binding sites. Briefly, we built a

multiclass classifier to distinguish between TFs of six different

classes—Cys2His2 zinc fingers, Cys4 zinc fingers, basic helix loop

helix, basic leucine zippers, forkheads, and homeodomains—using

only features of the sequences of their binding sites. We were able to

correctly classify 87% of the TFs in a leave-one-out cross-validation

procedure. Here, we build a set of binary classifiers which classify

short DNA sequences as either binding sites of a particular structural

class or not. We extract a large number of sequence features from

these binding sites, and train a sparse Bayesian classifier based on

logistic regression for this purpose. We adopt the output from three

such classifiers as priors in Gibbs sampling to search for TF binding

sites. The goal of these priors is for the search algorithm to be able to

more rapidly and sensitively capture the ‘‘true’’ motif of the TF. This�To whom correspondence should be addressed.
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motif is expected to be based on the known binding properties of TFs

sharing the same DNA-binding domain, and not just statistical over-

representation relative to a background model of the sequence.

We show that our algorithm, called PRIORITY, is able to identify

motifs that are not selected by popular motif finding algorithms.

Along with the best motif, our algorithm outputs the most likely

class to which the TF belongs. Also, when the class of the TF is

known and a specific class prior can be applied by itself, we show that

the resulting algorithm converges in significantly fewer iterations

than when using a uniform prior. Our choice of Gibbs sampling over

other search methods like expectation maximization (Dempster

et al., 1977) is arbitrary; the concept of class-specific location priors

can be applied in either context. Our choice of a position specific

score matrix (PSSM), which stores the preference for each putative

nucleotide at each position of the binding site (Staden, 1984), as a

model for binding sites is also arbitrary; we use this model because it

is widely used, and again, the concept of class-specific location priors

can be incorporated with nearly any model of a TF binding site. The

purpose of this paper is to show how using informative priors with

respect to locations in the DNA sequences (here based on the TF

structural class) improves motif discovery in general.

2 APPROACH

In this section we start with the description of the sequence model,

go on to describe the generation of the class prior, and finally

explain the Gibbs sampling strategy for the actual search.

2.1 Model framework

2.1.1 Sequence model Assume we have n DNA sequences X1 to

Xn believed to be bound by the same TF. For simplicity, we assume

that there is at most one instance of a binding site (or DNA motif) of

that TF of length W hidden in each sequence (analogous to the zero

or one occurrence per sequence model, or ZOOPS, in MEME

(Bailey and Elkan, 1994)), though we can extend this approach

to finding multiple instances of the binding site (analogous to the

two component mixture model in MEME), as is implemented by

Thijs et al. (2002). The motif follows a PSSM model while the rest

of the sequence follows some pre-calculated background model f0.

The PSSM can be described by a matrix f where fa,b is the

probability of finding base b at location a within the binding site

for 1 � b � 4 and 1 � a �W. Let Z be a vector of size n denoting

the starting location of the binding site in each sequence: Zi ¼ j
if there is a binding site starting at location j in Xi and we adopt

the convention that Zi ¼ 0 if there is no binding site in Xi. Thus if

the sequence Xi is of length mi and if Xi contains a binding site at

location Zi, we can compute the probability of the sequence given

the model parameters as:

PðXi jf‚Zi > 0‚f0Þ ¼ ðXi‚ 1‚Xi‚ 2‚ . . . ‚Xi‚ Zi�1 jf0Þ

·
YZi+W�1

k¼Zi

fk�Zi+1‚ Xi‚ k
· PðXi‚ Zi+W‚ . . .‚Xi‚ mi

jf0Þ

and if it does not contain a binding site as:

PðXi jf‚Zi ¼ 0‚f0Þ ¼ PðXi‚ 1‚Xi‚ 2 . . .Xi‚ mi
jf0Þ

2.1.2 Objective function We wish to find f and Z to maximize

the joint posterior distribution of all the unknowns given the data.

Hence, the objective function is:

arg max
f‚Z

Pðf‚Z jX‚f0Þ ð1Þ

2.2 Calculation of the prior

Most motif discovery algorithms assume a priori that a binding site

is uniformly likely to occur in all locations within each sequence.

However, since we have demonstrated that certain sequences are

more or less likely to be bound by various classes of TFs, we can

build an informative prior to reflect such an a priori bias. To do so,

we create three binary classifiers. The first one classifies a DNA

subsequence as a binding site of a basic leucine zipper (bZip) TF or

not a binding site of a bZip TF. The second distinguishes between

forkhead binding sites and forkhead non-binding sites. The third

distinguishes between basic helix loop helix (bHLH) binding sites

and bHLH non-binding sites.

To build training sets for these classifiers, we use binding

sites listed in TRANSFAC 9.4 (Wingender et al., 2001) that fall

into one of these classes. We remove binding sites belonging to

Saccharomyces cerevisiae from this set, since we intend to test the

algorithm on yeast TFs. This leaves us with 1131 bZip, 466

forkhead, and 325 bHLH binding sites. For the training set of

non-binding sites, we use a third-order Markov model from yeast

intergenic regions and randomly sample subsequences of the same

length distribution as the binding sites from that Markov model. We

include three times as many non-binding sites as binding sites for

each classifier to provide enough coverage.

For each sequence in the three training sets we construct a vector

of length 1387 describing possibly relevant features of this

sequence. These sequence features include:

(1) Subsequence frequency features (1364): Integers representing

counts of all subsequences of length 1 (i.e., each of the four

nucleotides) to length 5 (i.e., each of the 45 possible nucleotide

strings). These integers account for a total of 1364 entries in

the vector, comprising the vast majority of possibly relevant

features.

(2) Ungapped palindrome features (8): Binary indicator variables

denoting whether the sequence contains palindromic1 sub-

sequences of half-length 3, 4, 5, or 6 that span the entire

site (i.e., end to end), as well as those that do not span the

entire site (i.e., are somewhere in the middle of the site).

(3) Gapped palindrome features (8): Binary indicator variables

denoting whether the sequence contains gapped palindromic

subsequences of half-length 3, 4, 5, or 6 that span the entire site

(i.e., end to end), as well as those that do not span the entire site

(i.e., are somewhere in the middle of the site). A gapped palin-

dromic subsequence is one in which some non-palindromic

nucleotides are inserted exactly in the middle of two otherwise

palindromic halves.

(4) Special features (7): Binary indicator variables that denote

the presence or absence of features that have been identified

in the literature to be over-represented in the binding sites of

certain classes of TFs.

1Throughout, we mean palindromic in the reverse complement sense.

Structural class information improves motif discovery
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The classifiers are learned using Bayesian sparse multinomial

logistic regression (SMLR), which is designed to select a small

set of features relevant for classification (Krishnapuram et al.,
2005). The fact that features in binding sites can be used to predict

the structure of the DNA-binding domain of a TF has been shown by

Narlikar and Hartemink (2006) where a six-way classifier was built

based on the same DNA sequence features to distinguish between

TFs belonging to one of six different structural classes. We estimate

the generalization accuracy using 10-fold cross-validation and

achieve 89.6%, 95.2%, and 95.1% for the bZip, forkhead, and

bHLH binary classifiers respectively.

Each binary classifier, being based on logistic regression, outputs

the probability of the input sequence being a binding site of the

respective class. Since the classifiers have a nonzero misclassification

rate, instead of using the probabilities reported by the classifier

directly, we linearly scale them to lie in the interval [d, 1 � d],

where 0 � d � 0.5 is a tunable parameter. One can think of this

transformation as a result of mixing with a uniform prior to dilute the

effect of the classifier-based prior to a certain extent. Setting d to zero

would be a special case in which the probabilities from the classifier

are used as they are setting d to 0.5 would be a special case in which

the probabilities from the classifier are ignored and a uniform prior is

used instead. In all our analyses, we arbitrarily set d to 0.3.

In the general case in which r structural classes are modeled,

the transformed output of the r classifiers is stored as a three

dimensional vector C where Cijk is the probability of the

subsequence of length W starting at location j in sequence Xi

being a binding site of class k and (1 � Cijk) is the probability of

it not being a binding site of that class. For Cij0 (the probability of the

subsequence being a binding site of a TF which is not a member of the

r classes for which we have built classifiers), we use a uniform

probability which can be an input from the user. In all our analyses,

we arbitrarily set it to 0.4.

As an illustration, Figure 1 shows the values of Cijk for the

classes bZip, forkhead, and bHLH (r ¼ 3), where Xi is the

intergenic region iYNL311C in yeast. Also shown are the putative

binding sites predicted by Harbison et al. (2004) when they use that

region as a probe. As is evident from the figure, certain positions in

the sequence are a priori more likely to contain a binding site of a

particular class than others. The idea is to have such a prior distri-

bution over locations in each sequence in X to aid motif discovery.

We now introduce c, a vector of length n, where each ci is a

hidden variable representing the class of the TF that recognizes the

binding site starting at Zi in sequence Xi. Each ci can take a value

from 1 to r representing the r classes or 0 to handle the possibility

that the binding site belongs to none of the r classes. This allows us

to robustly find motifs of TFs with totally different DNA-binding

domains from those we model. We use another parameter g, a

vector of length r + 1 to define the multinomial parameters of c.

Using C and c, the prior probability on Z can be calculated as:

PðZi ¼ 0 j ci ¼ kÞ /
Ymi

j¼1

ð1 � CijkÞ ð2Þ

and for u > 0 as

PðZi ¼ u j ci ¼ kÞ / Ciuk

Ymi

j¼1
j 6¼u

ð1 � CijkÞ ð3Þ

P(Zi j ci) is normalized assuming the same proportionality constant

in equations (2) and (3), so that under the assumptions of the model,

we have Xmi

j¼0

PðZi ¼ j j ci ¼ kÞ ¼ 1 for 0 � k � r

The inclusion of parameters c and g changes the objective func-

tion in equation (1) to:

arg max
f‚Z‚g‚ c

Pðf‚Z‚g‚c jX‚f0Þ ð4Þ

2.3 Gibbs sampling

Gibbs sampling is a Markov chain Monte Carlo (MCMC) method

that approximates sampling from a joint posterior distribution by

sampling iteratively from individual conditional distributions

(Gelfand and Smith, 1990). Let Jv denote the distribution function

of parameter v conditional on the current values of all other para-

meters and data. We thus need to iteratively sample v from Jv for all

unknown parameters v.

Applying the collapsed Gibbs sampling strategy developed by

Liu (1994) for a faster convergence, we can integrate out both the f

and g and sample only the Zi and ci.

The expression for sampling Z from its conditional distribution is:

JZ ¼ PðZ j c‚X‚f0Þ
/ PðZ‚c‚X jf0Þ
¼
Z
g‚f

Pðf‚Z‚g‚c‚X jf0Þdfdg

/ PðZ j cÞ
Z
f

PðX jf‚Z‚f0ÞPðfÞdf ð5Þ

We get the above simplification since Z is independent of g con-

ditional on c. By definition, the prior on Z is also independent of f.

 

 

bZip prior

forkhead prior

bHLH prior

  GCN4  PHO4

Probe: iYNL311C

ORF:
YNL311C

ORF:
YNL309W

0.5

d

 d1

Fig. 1. Prior distributions for three classes on intergenic region iYNL311C in

yeast. The Y-axis shows the Cijk value ranging from d to 1� d (see text) for each of

the three classes: bZip, forkhead, and bHLH whereXi is the sequence of the probe

corresponding to iYNL311C. The blue and red boxes are putative motifs for Gcn4

and Pho4, respectively, predicted by Harbison et al. (2004) with the criterion of a

probe for an intergenic region being bound with p-value < 0.001. Gcn4 is a bZip

protein and Pho4 is a bHLH protein. As can be seen, the probabilities at the starting

locations of these motifs are higher for the respective priors.
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Similarly, c is independent of f and f0 conditional on Z. We thus

get an expression for sampling c from its conditional distribution:

Jc ¼ Pðc jZ‚X‚f0Þ
/ PðZ‚c‚X jf0Þ
¼
Z
g‚f

Pðf‚Z‚g‚c‚X jf0Þdfdg

¼
Z
g

PðZ‚g‚cÞdg
Z
f

PðX jf‚Z‚f0ÞPðfÞdf

/ PðZ j cÞ
Z
g

Pðc j gÞPðgÞdg ð6Þ

Proceeding analogously to the derivation of Liu (1994), we can

simplify the integrals using Dirichlet priors on both f and g. We

derive the sampling distribution for Zi, i.e JZi
, by computing

JZ=JZ½�i� using equation (5), where Z[�i] is the vector Z without

Zi. We further simplify the result by dividing it by P(Zi ¼ 0,

Xi j ci, f0) which is a constant at a particular sampling step.

We thus have a sampling distribution for Zi similar to the predictive

update formula as described in Liu et al. (1995), but with the

inclusion of the class prior:

J½Zi¼j� ¼
PðZi ¼ j j ciÞ ·

� YW
a¼1

fa‚ Xi‚ j+a�1

�
PðZi ¼ 0 j ciÞ · PðXi‚ j‚ . . .‚Xi‚ j+W�1 jf0Þ

for j > 0, and

J½Zi¼j� ¼ 1

for j ¼ 0 where f is calculated from the counts of the sites con-

tributing to the current alignment Z[�i] and the pseudocounts as

determined by the Dirichlet prior.

Similarly, we get a sampling distribution for ci:

Jci
¼ Pðci jZ‚c½�i�Þ
/ PðZi j ci ¼ kÞ · gk for 0 � k � r

where g is calculated from the counts for each class from the

current c[�i] and the pseudocounts from the respective Dirichlet

prior for g, where c[�i] is the vector c without ci.

We also provide the option of searching in the reverse comple-

ment of each sequence. This does not make a difference to any of the

derivations. We simply concatenate the reverse complement of each

Xi at the end of the original Xi, and now the algorithm searches for

zero or one occurrence of the motif in this longer sequence. Special

care is taken to ensure that invalid locations (such as those spanning

the concatenation boundary) have zero probability density during

the sampling.

2.4 Scoring scheme

The joint posterior distribution function after each iteration can be

calculated as:

Pðf‚Z‚g‚c jX‚f0Þ / PðX jf‚Z‚f0Þ · PðZ j cÞ
· Pðc j gÞ · PðfÞ · PðgÞ ð7Þ

To simplify the computation, we divide equation (7) by the constant

probability P(X jZ ¼ 0, f0) and use the logarithm of the resulting

function to score a motif.

In order to maximize the objective function and hence the score,

we run the Gibbs sampler for a predetermined number of iterations

after apparent convergence to the joint posterior, and output the

highest scoring PSSM at the end.

3 RESULTS

We examined the ChIP-chip data published by Harbison et al.
(2004) where the intergenic binding locations of TFs in yeast are

profiled under various environmental conditions. We study the set

of intergenic regions (or probes) that are bound with p-value < 0.001

by TFs belonging to one of the three classes for which we have built

binary classifiers. There are a total of 24 TFs which qualify accord-

ing to classification information in TRANSFAC, with a distribution

of fourteen bZip, three forkhead, and seven bHLH proteins. We also

use six more TFs whose binding sites have been well characterized

in the literature, but do not fall in any of the three classes. This set is

used to determine if our algorithm correctly learns motifs belonging

to TFs in other structural classes for which we have not designed a

specific binary classifier.

We compare the motifs found by our method to those found by

Harbison et al. (2004). Harbison et al. use six different popular

motif discovery programs: AlignACE (Roth et al., 1998),

MEME (Bailey and Elkan, 1994), MDscan (Liu et al., 2002), a

method by Kellis et al. (2003), a new conservation-based method

by Harbison et al. (2004) called CONVERGE, and a modified

MEME which was fed conservation information across sensu stricto
Saccharomyces species. In the main text of this paper we consider

only the three programs which do not use conservation informa-

tion, namely AlignACE, MEME, and MDscan; the supplementary

material contains a comparison with all six programs for the TFs

considered in this paper, and profiled in all reported environmental

conditions. Harbison et al. (2004) also do a post-processing step of

clustering results from all these programs using cutoffs for signi-

ficance by various criteria to reach a single motif (if it meets their

significance criteria, none otherwise) per TF. Here we compare our

results with the raw output from each of the three programs as well

as the post-processed single motif derived from all six programs.

Thus, our method is competing with six state-of-the-art motif

finding algorithms, and also their combination.

There are various differences in the inherent properties of these

programs as well as the way in which they are run. AlignACE is

based on Gibbs sampling, but uses only single nucleotide frequency

to model the background. It was run with the default settings ten

times. MEME was run with a fifth order Markov background model

using the ZOOPS option and allowed to look for motifs of width

7 to 18 nucleotides. MDscan was also run repeatedly, once with

each width in the range 8 to 15 nucleotides.

3.1 Performance of PRIORITY

We set the Dirichlet prior parameters for f to 0.5 for all four bases.

We gave 3 pseudocounts to gk when k is the class of the TF and

1 otherwise. We searched for motifs in the reverse complement of

each sequence just as all other programs used for comparison do.

With these parameter settings, we applied PRIORITY on each probeset
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corresponding to all the 30 TFs profiled under various environ-

mental conditions. Our algorithm was applied for a fixed window

size of length 8, so in general it was at a disadvantage with respect to

the other programs where the width is varied. We restarted our

program 10 times to prevent local optima and report the motif

with the highest score.

Table 1 illustrates the results for TFs under the environmental

condition considered by Harbison et al. (2004) in reporting their

final motif. For TFs where they do not report a final motif, we use

the probeset resulting from the environmental condition that

produces the largest number of bound sequences.

We believe, as is also argued by Liu et al. (2002), that a motif

finding algorithm should be evaluated based on whether its top motif

is correct or not. Each algorithm can use whatever method or score it

chooses to rank the motifs and report a top motif. Thus in Table 1, we

list the top motif from each of the four algorithms: AlignACE,

MEME, MDscan, and PRIORITY according to their respective scoring

systems. We also list the final motif reported by Harbison et al., but it

is important to note that this final motif is produced after considerable

human and computational efforts. The post-processing steps include

testing multiple motifs from each of the six programs for significance

by AUC scores as well as enrichment scores, and then clustering them

to produce one motif.

Looking at the table, it is clear that the top motifs from AlignACE

rarely match the true motifs from the literature. We believe this

happens because AlignACE uses such a simple model to capture

features in the background sequence. It has been shown previously

that having a higher order Markov model to model the background

sequence helps in motif discovery (Liu et al., 2001; Thijs et al.,
2001). The other programs are not disadvantaged by a simple

background model as is AlignACE, but in all cases, are outper-

formed by PRIORITY, as discussed in the remainder of this section.

For more clarity, we categorize the TFs listed in Table 1 into three

groups:

� Group I: Literature consensus motif exists, and PRIORITY fails to

find such a motif.

� Group II: Literature consensus motif exists and PRIORITY suc-

ceeds in finding such a motif.

� Group III: No literature consensus motif exists.

We now discuss TFs falling into these groups in detail.

Group I: This group includes only four TFs: Arr1, Yap3, Yap5,

and Yap6. These are all bZip proteins and members of the Yap

family (Arr1 is also called Yap8). No program finds motifs match-

ing the literature for any of these four. Thus when PRIORITY fails, the

other programs also fail. However, in the case of Arr1, Yap5, and

Yap6, PRIORITY predicts a class other than bZip. This is a clue to the

fact that the motif the algorithm converges to in these cases may not

be a true motif of the TF that was profiled. While we still consider

these three cases as failures of our algorithm, at least the algorithm

provides some diagnostic information.

Group II: This group includes a total of 20 TFs: Cad1, Cin5, Gcn4,

Hac1, Sko1, Yap1, Yap7, Fkh1, Fkh2, Cbf1, Ino2, Ino4, Pho4,

Tye7, Leu3, Nrg1, Rap1, Reb1, Ste12, and Ume6. Among the 20

motifs correctly identified by our program, AlignACE finds 2,

MEME finds 13, and MDscan finds 17. None of the three other

programs finds the true motif for bZip Sko1. While MDscan finds

the true motif for Hac1, it does not appear as the post-processed final

motif reported by Harbison et al.
Along with the correct motif, PRIORITY consistently predicts the

true class for TFs in the three classes (100% accuracy). It also

correctly assigns the ‘‘other’’ class to five of the six TFs not belong-

ing to the three classes explicitly modeled; although PRIORITY

learns the true motif of Ste12, it assigns the wrong class. We

believe this case is an instance of the algorithm getting stuck in

a local maximum or a misclassification by the forkhead binary

classifier.

Judging by the performance of PRIORITY on these TFs, we see that

despite the computationally expensive steps of Harbison et al.
in calculating the final motif, our program directly reports better

results than the post-processed combination of all six programs.

Group III: Here we consider the remaining six TFs (Cst6, Met28,

Met4, Fhl1, Phd1, Sok2) for which there is no known consensus in

the literature. For the bZips Cst6 and Met28, without experimental

verification, there is no way of knowing for sure if the motifs found

by our method are indeed true.

For Met4, Harbison et al. find a motif using their algorithm

CONVERGE (which exploits cross-species sequence conservation

information). This long motif is present in only eight of the

37 bound probes, hence it is no surprise that programs that do

not use conservation information are not able to find it. However,

we do not know if it is a true motif; in fact, in the literature search

that we conducted, we did not find any evidence of Met4 binding

DNA directly. Our algorithm finds a different motif for this set of

bound intergenic regions which is present in 29 of the 37 sequences

and assigns it a bHLH class. This leads us to conclude that this motif

could belong to a bHLH protein which is either a cofactor (binds to

the same set of sequences separately) or forms a complex with Met4

and binds DNA. Subsequent literature search proves the latter to be

true: Met4 forms a complex with Cbf1 and Met28, and it is Cbf1

(a bHLH class protein) which makes contact with DNA at

TCACGTG (Kuras et al., 1997). PRIORITY does not find the same

motif for Met28. In addition to being part of this complex, Met28

is part of other complexes which bind DNA (Blaiseau and

Thomas, 1998) and is also capable of binding DNA by itself

with low affinity (Kuras et al., 1997). We believe these different

binding modes dilute the binding site signal.

For forkhead Fhl1, all programs find the same motif (see reverse

complement for MEME). This motif is an exact match to the Rap1

binding site. Rap1 does not fall into any of the three classes, and

PRIORITY diagnoses this by reporting the class associated with the

motif to be ‘‘other’’, suggesting that the motif is most likely not a

motif for Fhl1. More than half of the probes bound by Rap1 appear

in the set bound by Fhl1. Indeed, these TFs are known to be cofac-

tors for some ribosomal protein genes and bind cooperatively

(Schawalder et al., 2004). We could not find any definitive evidence

in the literature either of Fhl1 binding DNA directly, or via a

complex with Rap1 or some other TF. However, if Fhl1 does

bind DNA directly, and the motif learned is its true motif, one

would expect to find multiple copies of the motif (since both

Rap1 and Fhl1 need a site on the same probe to which to bind).

Harbison et al. attempted to determine which TFs tended to use

repetitive motifs, but Rap1 does not seem to fall into this category

(nor does Fhl1). This makes us believe that the motif learned is

bound exclusively by Rap1.
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For the two bHLH TFs Phd1 and Sok2, the final motifs reported

by Harbison et al. are both matches to the zinc-coordinating Sut1 TF

which does not belong to any of the three classes we studied.

Looking at the bound probes, Harbison et al. conclude that both

pairs Sut1/Phd1 and Sut1/Sok2 are highly co-occurring regulator

pairs. This, we believe is a case similar to that of Fhl1, where

a strong motif of a different co-occurring TF is learned by regular

motif discovery algorithms. The difference is that our algorithm

does not find the strong Sut1 motif like it finds Rap1 for

Fhl1. Instead, it finds motifs of the bHLH class for both TFs.

We thus think these motifs could be true motifs of the two

bHLH TFs.

Table 1. Motif comparison for 30 TFs with four different programs. Table shows the motifs learned by various algorithms used by Harbison et al. and those

learned by our algorithm. For comparison, we use the motifs with the top MAP score for AlignACE, MEME, and MDscan, as well as the final motif reported by

Harbison et al. after clustering results from these three and three other motif finding programs which use conservation information. In the fifth column we report

the top motif according to our score. We also report the predicted class and the percentage of entries in c contributing to that class. The last column is the literature

consensus as used by Harbison et al. collected from YPD, SCPD, and TRANSFAC databases at the time their paper was published. The bold sections in the

motifs indicate either a match with the literature consensus in the final column or to a motif we found in the literature search we conducted. In cases where the

match is not obvious, it is probably because the reverse complement of the sequence matches the literature consensus. Lower case letters in the motifs indicate a

weaker preference (less information content at that position). Ambiguity codes: S¼C/G, W¼A/T, R¼A/G, Y¼C/T, M¼A/C, K¼G/T, and ‘.’¼ A/C/G/T.

*

*
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Partitioning the TFs in this manner enables us to draw some

important conclusions about the performance of PRIORITY. Simply

looking at the results of Group I and Group II, we see that our

algorithm finds the correct motif whenever at least one of the other

programs finds it and sometimes when none do. From results on TFs

in Group III, we see that our program learns motifs of co-occurring

TFs and predicts the true class of the co-occurring TF. When the

class of the co-occurring TF is different from the profiled TF, our

program may help to diagnose the existence of this co-occurring TF.

3.2 Performance of single-class PRIORITY

Sometimes, we know in advance the structural class of the TF which

is binding a set of DNA sequences. In such a case, we can fix the

class parameter c in advance and not sample from it. We applied this

single-class version of PRIORITY on the same ChIP-chip data by

setting the class parameter to the respective class of the TF.

Here we do not list the results obtained by using the ‘‘true’’ class

prior on each of the 30 TFs. The final motifs are not very different,

but we notice a big difference in the running times of the sampler

when using a single-class informative prior versus using a uniform

prior (as is done in most programs). As just one example, we con-

centrate on Gcn4, a bZip protein, which seems to have a strong

motif. Our version of the simple Gibbs sampler with a uniform prior

(which is similar to AlignACE with a higher order background

model) also finds it.

Figure 2 is a graph of the score of the sampled motif at each

iteration (explained in Section 2.4) versus the number of iterations.

We ran the sampler with and without the informative prior five

times for 5000 iterations and recorded the score of the motif at

the end of each iteration. The final motif at the end of each run

is simply the motif that scored the best at some point during the run.

We have shown the best and the worst scoring runs with and without

the informative prior. Although both methods have respective

maximum scores at the same values of Z, the sampler with the

informative prior converges much sooner than the one with the

uniform prior. In fact, in one of the runs, the sampler with

the uniform prior gets stuck in a local maximum and remains

stuck for all 5000 iterations. With the single-class informative

prior, the sampler is less likely to suffer this fate.

4 DISCUSSION

We demonstrate the benefits of using class-specific priors in de novo
motif discovery problems. More generally, we show how the

presence of an informative prior over sequence locations makes

it possible to learn the correct motif where conventional methods

that use a uniform prior fail.

A novel feature of our method is its ability to output the probable

class of the TF binding the motif along with the motif. This gives

users more confidence in the learned motif being a description of

‘‘true’’ binding sites in cases where the structural class of TF is

known. In cases where the TF is not known, the predicted class can

be used to limit the possible TFs to be further investigated.

For instance, in the case of searching for binding sites in the

upstream regions of a set of coexpressed genes, an indication of

the class may provide a clue as to which TF could be regulating the

set.

In cases where a strong motif of a different TF exists in the same

probeset (e.g., Met4, Fhl1), PRIORITY correctly finds this strong

motif. In addition, by predicting the class of this motif as the

true class which is different from the class of the profiled TF,

the program is able to diagnose the presence of the co-occurring TF.

Throughout the paper, we have used PSSMs to model motifs.

The PSSM model inherently assumes two things: 1) the binding

sites recognized by a particular TF are of fixed length, and 2)

position-specific nucleotide preferences exhibit independence

between positions. However, experimental and computational stud-

ies over the past few years have shown that positions within binding

sites are not always independent. Bulyk et al. (2002) showed experi-

mentally that for the zinc finger Zif268, there is significant interde-

pendence between the nucleotides of its binding sites. To have a

more flexible model for binding sites, Agarwal and Bafna (1998)

proposed using Bayesian networks. Since learning general Bayesian

networks is an NP-hard problem (Chickering, 1995), Agarwal and

Bafna (1998) relaxed their model to trees, and Barash et al. (2003)

extended this to mixtures of trees and mixtures of PSSMs. Their

work showed that these more expressive models indeed yielded

better likelihood scores. However, incorporation of a more express-

ive model into the de novo motif finding problem makes the search

more complex when no additional information is used. In such

cases, when learning a more complex model, an informative

prior will prove even more useful in focusing the search signific-

antly.

Our method assigns a prior on the locations within each sequence

Xi and not on any specific form of the motif model. Thus in prin-

ciple, we can incorporate our prior into any general motif finding

algorithm and any motif model. Adding a prior on the motif model is

orthogonal to our methodology, and can be used when required.
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Fig. 2. Motif scores for two Gibbs samplers searching for a Gcn4 motif, one

with and the other without the informative prior, over 5000 iterations. Both

programs were run five times from different starting locations. The two black

plots are the best and worst runs for the program with the uniform prior. The

two grey plots are the best and worst runs for the program with the informative

prior. Although the absolute values of the scores are not comparable (due to an

arbitrary constant value assigned to the uniform prior), it is clear that the

number of iterations taken to converge for the algorithm with the informative

prior is almost half. Also, each of the five runs converges to a similar final

motif in the case of the program incorporating the informative prior. On the

other hand, during the worst of the five runs for the program with the uniform

prior, the sampler gets stuck in a local maximum that corresponds to a

suboptimal motif.
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We are the first to propose an informative prior over sequence

locations, but others have used structural information to add a prior

over motif models (in each case, a PSSM). Sandelin and Wasserman

(2004) use JASPAR (Sandelin et al., 2004) PSSMs to build a single

familial binding profile for each TF family and use that as a prior

over PSSMs. However, their work is on narrower domain classes,

each not containing more than 10 members. Also, they need to know

what family the TF belongs to beforehand. Macisaac et al. (2006)

extend this concept of DNA-binding profiles to include more fam-

ilies and more variations within families. They generate hypotheses

from the profiles and test each one on ChIP-chip data in a classifier-

based approach. Xing and Karp (2004) propose a new Bayesian

model to capture structural properties typical of particular families

of motifs. They learn expressive profiles from PSSMs specific to

different classes of TFs. They have results only on simulated data

and unfortunately we could not find the code for comparison.

Slightly different, but based on the same idea of using prior know-

ledge related to PSSM models is the SOMBRERO algorithm by

Mahony et al. (2005). They cluster known PSSMs using self organ-

izing maps (SOMs) and use these clusters as prior knowledge for

their search. All these approaches generate a prior over PSSMs and

thus apply it on PSSMs directly. Sandelin and Wasserman use

pseudocounts to initialize the PSSM they intend to learn, Macisaac

et al. use their profiles as priors on PSSMs during EM, Xing and

Karp use the parameters learned from their profile model as a prior

on PSSMs, and Mahony et al. use clusters learned from known

PSSMs as a starting point for their SOM algorithm which has

PSSMs as nodes. Thus these methods can be used only if the

motif model to be learned is a matrix based model like a PSSM.

Since we include various features from raw binding sites in our

classifiers, we believe we are able to capture inter-position depend-

encies and structures like palindromes where these other methods

cannot. Also, since Sandelin and Wasserman (2004) and Xing and

Karp (2004) consider only PSSMs, they lose information about

binding sites which were not used to form the PSSM, either because

they were of a different size or they just did not contribute to a high

scoring PSSM.

Kaplan et al. (2005) devise a structure-based approach to predict

binding sites from the Cys2His2 zinc finger protein family. Their

approach is the reverse of ours in the sense that they predict DNA-

binding preferences from the zinc finger residue information of the

TF and then scan the genome for putative binding sites with those

preferences. It is not possible for us to compare our results with

theirs due to the difference in the classes under consideration.

Thus far, we have considered only three classes of TFs in yeast.

We are in the process of expanding our work to include other big

classes like Cys2His2, homeodomains, etc. The problem with

increasing the number of classes is not only with finding a good

binary classifier for each new class, but also the increased compu-

tational time required for the Gibbs sampler to converge to sampling

from the posterior and visit good optima. For up to two classes, the

computational time is fine. In fact, as described in Section 3.2, the

sampler reaches its maximum faster with a single-class informative

prior than with a uniform prior. However for more than two class-

specific priors, we notice the sampler begins to get stuck in local

maxima more often. Multiple restarts solves the problem for three

classes (the results of which are described in this paper) but it is

open at this point how well this will scale to an even larger number

of classes. There is a huge body of literature on convergence in

Gibbs samplers and other MCMC methods, and we are in the pro-

cess of exploring other search techniques which may yield faster

convergence.

One current disadvantage of our method and all the methods

considered by Harbison et al. is that none of them provide a

significance score to the discovered motif. As a result, the user

is left having to calculate various significance scores after the

fact based on enrichment, AUC scores, or some other metric as

Harbison et al. do in their paper. Having multiple priors with dif-

ferent distribution values makes it more tricky. In the case of the

single-class version of PRIORITY, a p-value can be calculated using

random sequence sets of similar length distribution (see supple-

mentary material).

The goal of this study is to demonstrate the significant benefits of

informative priors over sequence locations; we have not yet incor-

porated additional features like learning the optimal width of the

motif, searching for multiple copies, etc. We note, however, that

these features are useful and will only further improve the perform-

ance of the algorithm.

In closing, we believe that using algorithms based only on stat-

istical over-representation will fall short when searching for motifs

in more complex organisms having genomes with large intergenic

regions. Using informative priors over sequence locations—

constructed on the basis of conservation among species (Kellis

et al., 2003), class-specific DNA binding preferences as presented

here, or information like nucleosome occupancy (Lee et al.,
2004)—will benefit motif finding algorithms as they are applied

to more complex organisms.
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ABSTRACT

Motivation: Effective algorithms for finding relatively weak motifs

are an important practical necessity while scanning long DNA

sequences for regulatory elements. The success of such an

algorithm hinges on the ability of its scoring function combined with a

significance analysis test to discern real motifs from random noise.

Results: In the first half of the paper we show that the paradigm

of relying on entropy scores and their E-values can lead to undesirable

results when searching for weak motifs and we offer alternate appro-

aches to analyzing the significance of motifs. In the second half of

the paper we reintroduce a scoring function and present a motif-finder

that optimizes it that are more effective in finding relatively weak motifs

than other tools.

Availability: The GibbsILR motif finder is available at http://www.cs.

cornell.edu/�keich
Contact: Uri Keich, keich@cs.cornell.edu

1 INTRODUCTION

The identification of transcription factor binding sites, and of cis-

regulatory elements in general, is an important step in understanding

the regulation of gene expression. To address this need, many motif-

finding tools have been described that can find short sequence

motifs given only an input set of sequences. The motifs returned

by these tools are evaluated and ranked according to some measure

of statistical over-representation, the most popular of which is based

on the information content or entropy [17] (see [19] for a recent

comparative review).

Keich and Pevzner [10] define a twilight zone search as

one in which there is a non-negligible probability that a maximally

scoring random motif would have a higher score than motifs

that overlap the ‘‘real’’ motif (in the model considered there, a

‘‘real’’ motif is implanted into randomly generated background

sequences). In such cases, even if one had access to a hypothetically

ideal finder that was guaranteed to return the highest scoring

alignment in the dataset, the motif might remain unfound. Locating

the twilight zone is necessary in deciding whether or not the

current state of the art in motif finding is good enough: if existing

tools find the correct motif for datasets all the way into the twilight

zone in a reasonable time, further improvement will yield at best

marginal returns. Of course, improving motif finding tools to be

effective into the twilight zone is not merely a theoretical exercise:

a biologist searching for regulatory motifs in DNA sequences

would generally prefer to choose longer rather than shorter regions

in order to avoid missing regulatory elements that are far away

from the transcription start site of a gene. The longer the input

sequences are, the more likely they are to contain high scoring

random motifs, pushing the biologically valid motifs into the

twilight zone.

Most existing motif finders can be divided into two classes

depending on how they model a motif. Tools that rely on a com-

binatorial model of a motif define a motif to be a consensus

sequence with an associated distance (usually Hamming distance),

as described in [14]. Under this definition, the problem of finding

motifs in random sequences is mostly solved. The statistics of

optimal random motifs are well understood in this context,

which led to the characterization of the twilight zone [10]. More-

over, the PatternBranching tool [16] exhibits good performance,

even in the twilight zone for reasonable choices of parameters

leaving little motivation for further improvement.

On the other hand are tools that describe a motif as a profile, a

probabilistic distribution generally modeled with a position weight

matrix (PWM). Prominent examples of this class are MEME [1],

CONSENSUS [6] and the various approaches to Gibbs sampling

(e.g. [11],[13],[7]). Under this definition of a motif, there has been

no definitive demonstration of any particular tool’s dominance.

Moreover there is no reliable characterization of the distribution

of optimal random motifs1, nor is the twilight zone completely

understood.

In most applications of a motif finder, the user must decide whether

or not a motif reported from a motif finder warrants further biological

investigation based on its statistical significance. The first half of this

paper deals with the significance analysis of the ubiquitous entropy

score. We begin by showing that the common practice of using the

E-value of the entropy score (defined below) to evaluate the signi-

ficance of an alignment reported by a motif finder can lead to undesir-

able results in twilight zone searches. We then discuss two additional

intuitively motivated measurements of statistical significance and

some pitfalls in their application to motif finding. The second half of

the paper discusses an alternative scoring scheme. This is motivated

by the observation that comparing entropy scores across different

motif finders often leads to inconsistent results regarding the iden-

tification of the implanted motif. We reintroduce the Incomplete

(data) Likelihood Ratio (ILR) and show it is a better classifier

�To whom correspondence should be addressed.

1Some progress was made recently by Frith, et al. [5], but the analysis

presented there only holds for a small number of sequences.
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when it comes to predicting overlap with implanted motifs. This

motivates GibbsILR, a new variant of the Gibbs sampler that

attempts to maximize the ILR rather than the entropy score.

2 ARE MOTIF FINDERS PSYCHIC? THE
CONUNDRUM OF E-VALUES

One of the key measurements in determining if a motif finder

has identified an important motif is the E-value of the entropy

score defined as follows. The entropy score or information content

of the reported alignment is defined as [17]:2

I :¼
Xw
i¼1

XA

j¼1

nij log
nij/n

bj
‚

where w is the motif width, nij denotes the number of occurrences

of the jth letter in the ith column of the alignment, bj is the back-

ground frequency of the jth letter3, n is the number of sequences in

the alignment, and A the alphabet size (A ¼ 4 in this paper). Intro-

duced originally in this context as the ‘‘expected frequency’’ [6],

the E-value is the expected number of random alignments of the

same dimension that would exhibit an entropy score that is at least

as high as the score of the given alignment. When the E-value is

high, one can have little confidence in the motif prediction, and

conversely when the E-value is low, one can have more confidence

in the prediction. It is computed by multiplying the number of

possible alignments by the p-value of the alignment. The latter is

defined as the probability that a single given random alignment

would have an entropy score � the observed alignment score.

Assuming the customary iid (independent identically distributed)

random model the p-value can be computed accurately using

techniques we previously described [12].

To assess the performance of motif finders in twilight zone

searches, we designed the following experiments containing

400 data sets (see the COMBO experiments in the Methods section).

Each randomly generated data set contained a deliberately

implanted profile motif in such a way that for a non-trivial percent-

age of datasets, the motif finders we considered would pick motifs

that would not overlap the implants. Thus, it is not surprising that

the E-value of the implanted motif is relatively high. However, with

a median E-value of 8 · 1015 it seems this problem is way beyond

the twilight zone. Indeed, one would suspect that in this case even

the ideal finder would not be able to pick out an alignment with

significant overlap to the implanted motif from the large number of

background alignments with better entropy score. Rather startlingly,

exactly the opposite is true: of 400 data sets, the Gibbs sampler

[11] found an alignment overlapping more than 30% of the

implanted sites in 288 cases4. It is important to note that these

data sets are constructed exactly according to the model used in

computing the E-values, thus we can safely assume the E-value is

quite accurate [12].

How can our motif finders be so lucky that they pick a ‘‘real’’

motif out of such a huge haystack? A partial answer to this riddle

is obtained by noting that when a motif is implanted into a set of

long sequences, there is a good chance that a random string in one of

the sequences will slightly improve the entropy score. Of the

288 data sets for which the Gibbs sampler found an overlapping

alignment (above the 30% threshold), the median E-value of the

reported motif was 8.7 · 1011 or 4 orders of magnitude better than

the initial motif. Still, it is a very impressive haystack and a more

complete answer probably lies in what we do not see: how

many alignments that overlap with our implant have a score as

good as the one found? These high scoring ‘‘satellite’’ alignments

define some ‘‘domain of attraction’’ for a motif that is difficult to

characterize analytically. Presumably, its size has to be of the order

of the E-values as sampling optimization procedures such as Gibbs

somehow find it. We remark that characterizing this domain of

attraction is a potential way to describe the twilight zone of a

profile-based motif.

Whatever the explanation is, it is clear that the E-value offers

little benefit in analyzing the significance of twilight zone search.

We next explore alternative approaches to this problem.

3 ALTERNATIVE SIGNIFICANCE ANALYSES

One alternate measure of significance suggested by Hertz and

Stormo [6] is that of the ‘‘overall p-value’’—or OPV(s)—of

an entropy score s. It is defined as the probability that a random

sample of the same size as the input set will contain an alignment of

the same dimensions that scores at least as high as s. While this

statistic is intuitively appealing, its use faces two hurdles. On the

one hand, at present it is all but impossible to calculate OPV(s) for

moderately large datasets: even generating an empirical estimate of

the OPV would necessarily require the ability to reliably find the

highest scoring alignment in any given sample, which cannot be

guaranteed for realistic problem sizes. On the other hand, even if an

accurate method for calculating OPV(s) were known, the evidence

presented next suggests that this significance measure would

impose too high a barrier on the entropy score for functional motifs

to be distinguishable from noise.

The value of OPV(s) may be conservatively estimated by the

probability that at least one of several motif finders would find

an alignment of score �s in the random data. The point is the latter

is amenable to Monte Carlo estimation. Using 1600 randomly gen-

erated datasets with no motif implanted we obtain an empirical

estimate of the 0.95 quantile of the latter distribution; this is the

minimal value s0 such that for 95% of the datasets all our finders

report a top alignment of score�s0. We then use s0 as an empirically

derived conservative estimate of the threshold s1 such that

OPVðs1Þ ¼ 0:95. That is, 95% of the top scoring noise alignments

have entropy less than or equal to s1 and s1 � s0 with high prob-

ability. When this derived 5% significance level was applied as a

threshold for significance of the 400 data sets in the COMBO

experiment, nearly 90% of the correct runs of the Gibbs sampler

(i.e., those runs that overlapped the implanted motif by more than

30%) were classified as noise. Since s0 the conservatively estimated

0.95 quantile is very likely to be greater than the true quantile s1, this

should become more pronounced with better approximations of

OPV(s) suggesting it is also too conservative.

One can see that 1 � OPVðsÞ is the distribution function of the

ideal motif finder. This raises the natural extension of using a finder-

specific OPV: 1 � Ff ðsÞ where Ff is the null distribution of the

score of the optimal alignment detected by the particular finder.

That is, we ask for the probability that the finder will find an

2Strictly speaking, relative entropy is defined as I/n.
3Typically estimated from the entire sample.
4See the Methods section for the parameter setting.
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alignment scoring�s in a random dataset (of the same dimensions).

Again, we can estimate the quantiles of this distribution function

through a Monte Carlo generated empirical distribution. In this case

we found that the .95 quantile threshold of Gibbs, estimated from

1600 datasets, yields 13 false positives (FP) and 228 true positives

(TP) when applied to the same 400 data sets of the COMBO

experiment.5

While the empirical distribution can be extremely useful in

analyzing the significance of a motif finder’s output, generating

it a priori is typically impossible due to the large number of

combinations of parameters. Similarly, generating even a rough

estimate of a 0.95 quantile per problem instance is impractical as

it would require at least 100 additional runs of the motif finder on a

dataset of the same size as the input.

However, if we can characterize the distribution as belonging to

some parametric family of distributions, we might do better to

estimate the parameters of the distribution rather than directly

estimating the quantiles of the distribution. The (limiting) dis-

tribution of a maximal ungapped pairwise alignment between

two sequences is a Gumbel Extreme Value Distribution (EVD)

[9]; the same distribution is encountered empirically in the gapped

case and it is presumed to underly the distribution of scores when

local multiple alignments are scored according to a presumed

phylogeny [15] and in Frith et al. [5], which specifically discusses

motif finding. Oddly, the empirical null distribution of the

reported entropy score for several motif finders exhibited a better

fit to a (shifted) Gamma distribution than to the intuitively more

appealing Gumbel distribution (see Fig. 1 and Fig. 2 for an example

involving Gibbs).6

Naturally, the parameters of the distribution could depend on the

size and background distribution of the dataset, as well as the

parameters used in the motif search. It is surprisingly easy to get

a good approximation of how the empirical distribution of

CONSENSUS behaves with respect to these variables. The key

is to consider the distribution of the E-value of the best reported

entropy rather than the entropy itself. This E-value is fairly

stable for a wide range of sequence lengths (375–1500), motif

widths (10–50), and with different sequence composition (uniform

background versus a biased background of (0.2, 0.2, 0.3, 0.3)),

see Figure 3 and Table 1. That is, the empirical distribution

depends primarily on N, the number of sequences; and q, the

number of sub-alignments that CONSENSUS keeps at each

stage. While the parameter estimates for the shifted gamma dis-

tribution are not perfectly stable, they could be readily improved by

dividing the range of parameters (e.g., motif width) into several

segments and using one shifted gamma distribution per interval.

We demonstrated above that the OPV or equivalently the distri-

bution function of the ideal finder seems too conservative for estim-

ating the significance of a motif finder’s output. Nonetheless it is

useful in delineating the twilight zone, which in turn is important for

understanding to what extent existing tools might be theoretically

improved upon. Indeed, by comparing the empirical distribution

of a motif finder with that of the ideal one for a given set of

parameters, we can assess the efficiency of the finder for these

parameters. It is thus interesting to determine whether this distri-

bution can be approximated by a parametric family. As above we

find the surprising result that a shifted gamma distribution gives a

better fit to the empirical distribution than a Gumbel distribution.

One might expect that the result of maximizing over all possible

alignments would naturally result in an EVD but according to our

observations this is not the case (see Figure 4). One reason is that the

high scoring alignments are heavily dependent, an observation

made by Frith et al. [5] when trying to explain the less-than-perfect

fit they got to a Gumbel distribution.

4 INCOMPLETE (DATA) LIKELIHOOD RATIO
AND GIBBSILR

A good scoring function should separate as much as possible

real motifs or, in the context of our model, alignments that have

overlap with the implant, from purely random ones. The entropy

score is the one chosen by popular motif finders such as MEME [1],

CONSENSUS [6] and Gibbs Sampler [11]. The latter two spe-

cifically try to optimize this scoring function, while MEME uses

it only to rank and analyze the significance of its output. It is thus

tempting to assume that if we run, for example, both CONSENSUS

and Gibbs and take the higher scoring motif we would do better

than if we ran each one of them separately. Amazingly, this might

not be the case, especially in twilight zone searches. In particular, in

our COMBO experiment we find that in 380 of the 400 datasets

CONSENSUS finds a motif with higher entropy score than Gibbs,

yet Gibbs reports more motifs that have �30% overlap with the

true implant (290 of the sets for Gibbs compared to 208 for

CONSENSUS). Comparing the entropy score from different

motif finders is thus not an apples to apples comparison as one

would expect—somehow it matters how the entropy is maximized.

This led us to ask if other scoring functions would possibly capture

better the nature of real (implanted) twilight zone motifs. One
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Fig. 1. Shifted gamma fit to 6400 runs of Gibbs with parameters13-t100-

L100 on 40 random sequences of length 750, uniformly distributed with no

implanted motif.

5That we expect 5% · 400 ¼ 20 false positives and see only 13 is reasonable

since some of those random datasets containing high-scoring alignments are

masked by higher-scoring motifs that overlap the implant.
6To fit a shifted gamma distribution for each shift we find the likelihood of

the shifted data by applying a standard maximum likelihood gamma fit to it,

and then use a simple one dimensional search of the shift that yields the

highest likelihood.
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scoring function presented next shows consistent, and at times

considerable improvement over the entropy score.

Given a set of N sequences S ¼ fS1‚S2‚ . . . ‚SNg, the formal

definition of the Motif Finding problem is to find the set of starting

positions within each sequence that corresponds to the location of

an implanted motif. We assume there is a profile matrix Q ¼ ðQijÞ
of length w that represents the implanted motif model, and another

profile matrix Q0 ¼ ðQ0jÞ that represents the background. We define

the Incomplete (data) Likelihood Ratio as follows:

ILRðQÞ ¼
YN
n¼1

Xj Sn j �wþ1

m¼1

PðSn
m:mþw�1jQÞ

PðSn
m:mþw�1jQ0Þ

·
1

j Sn j � wþ 1

" #
ð1Þ

Intuitively, ILR(Q) is the likelihood ratio between two competing

hypotheses. The null hypothesis is that the data was entirely

generated under the null model Q0. The alternative hypothesis is

that the data was generated under the OOPS (one occurrence

per sequence) model [2] using the motif Q and the background

Q0. Unlike the standard entropy score, the ILR scores a motif by

taking into account all of the data in S, rather than only the data

within a particular alignment. The EM algorithm optimizes the

ILR [3], and by extension MEME does as well. However,

MEME ranks motifs by entropy and assesses the reported

motif’s significance through the E-value of the entropy score. In

particular, the ILR score has not been previously used to score and

rank motifs.

Our tests (described in the Results section) demonstrate that for

twilight zone searches ILR is a consistently better classifier than the

entropy score for identifying motifs that overlap the implant. Since

this holds for all the finders that we tested, most of which optimize

the entropy score, it motivates the design of a new finder that tries

to optimize the ILR: GibbsILR is based on the Gibbs-sampling

technique described by Lawrence et al. [11]. Here we modify

the original Gibbs sampling strategy by using a hybrid optimization

procedure. The Gibbs-sampling motif finder begins each run by

picking a random starting position in each sequence in the data
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Fig. 2. The probability plot of the fit of a shifted gamma distribution and of a Gumbel Extreme Value Distribution to the data collected in Fig. 1.
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Fig. 3. A (shifted) gamma distribution fitted to the empirical null distribution

of –log E-value of the best motif. The data was compiled from 6400 datasets of

40 uniformly distributed sequences of length 750. For each w 2 {10, 13, 16,

20, 30, 50} CONSENSUS was ran on each dataset with q ¼ 1000.
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set. The algorithm then iterates between two steps, commonly

referred to as the predictive update step and the sampling step.

In the k-th iteration, the predictive update step computes a motif

model Qk based on the current chosen set of starting positions.7

The sampling step in turn randomly selects new candidate starting

positions with probability proportional to the likelihood ratio of the

position given the current model Qk.

A well-known property of Gibbs-sampling algorithms is that

they are guaranteed to sample the global maximum given sufficient

time, but this may take an unacceptably long time to happen.

Instead, when the objective function is apparently not making

any headway, we can ‘‘restart’’ the sampling procedure by initial-

izing a new, independent, Gibbs-sampling run using a new set of

random starting positions. Unlike previous Gibbs-sampling motif

finders, GibbsILR runs an EM (Expectation-Maximization)

algorithm that locally optimizes ILR on the final motif of each

Gibbs-sampling run. GibbsILR then produces a motif that exhibits

locally optimized ILR score by taking the highest ILR-scoring

motif among all of the final motifs derived from the EM step.

Finally, for each sequence in the dataset S, the motif instance

corresponds to the position with the highest likelihood ratio with

respect to the highest ILR-scoring motif profile.

5 RESULTS

The first group of results is based on extensive tests of the

performance of six profile-based motif finders on synthetic data.

Each of these randomly generated datasets contained a deliberately

implanted profile motif (see the Methods section for more details).

The output of each of the finders we considered (CONSENSUS,

Gibbs, GibbsILR, GLAM, ProfileBranching, and MEME) was

post-processed to yield both the entropy and ILR scores of the

finder’s top reported alignment. We then asked which of these

two scores is a better predictor of overlap with the implant

(which is a surrogate for a real motif).

We compare the entropy and ILR score by measuring the

area under the ROC curve [18], or discrimination, for each finder

under the two scoring functions. We classify a set of motif sites as

negative if the overlap score is below 0.1; otherwise, we classify it

as positive. Intuitively, given a random pair of positive and negative

set of profile sites, the aROC tells us the probability of the test

correctly identifying the pair’s classification. The tests (Table 2)

using ILR score have consistently better discrimination than the

tests using entropy score. The reader should note that it is however

unfair to compare the performance of the finders using aROC,

because the number of negatives and positives differ across the

finders. For example, GibbsILR has lower discrimination than

MEME for both entropy and ILR in COMBO, but GibbsILR

has 324 positives to discriminate whereas MEME has only 70

positives.

Similarly we can ask how many true positives (TP) are in the test

set if we are willing to accept exactly 10 false positives (FP). Table 2

shows that ILR consistently has higher counts of such TPs

than entropy. Moreover, if we would like to design a classifier

that only accepts 10 FPs, this analysis shows that the combination

of ILR score and GibbsILR would give us the highest number

of TPs.

We next combine five motif finders: CONSENSUS, Gibbs_ss,

GLAM, MEME, and ProfileBranching by choosing the set of

motif sites from the finder with highest ILR. Likewise, we

employ the same technique with the entropy. We found that the

ILR variant of the combined-finder can perform better than any of

its individual finders alone. In the COMBO experiment, the ILR

variant found the implants in 311 datasets (i.e. overlap score greater

than 0.1), whereas its best individual finder, which is Gibbs_ss,

found the implants in only 302 datasets. In the same experiment,

the entropy variant found the implants in 291 datasets, which is

worse than its best individual finder. For a different approach to

combining the output of multiple motif finding algorithms, see [8].

As an additional source of evidence for the utility of the ILR

score we generated synthetic data sets implanted with motifs that

were verifiably in the (entropy score) twilight zone. The branch and

bound algorithm described in the Methods section was then used

to find the motif with the optimal entropy score and the ILR score

of that motif. Then, based on the results from 1000 such runs we

asked the following question: which of the scores, entropy or ILR is

a better predictor of overlap with the implanted motif? For the

twilight zone data sets that we tested, ILR is consistently better

than the entropy score as a predictor of overlap (as measured by the

aROC score, with overlap being defined as an overlap score

greater than 0.1). As a specific example, for N ¼ 14, L ¼ 80

and SHORT (see Table 3), the entropy score has an aROC score

of 0.52 as compared to 0.60 for the ILR score. In practical terms, for

a threshold that allows 50 false positives, the ILR score gives

143 true positives as opposed to 101 for the entropy score. Inter-

estingly, in this example, while the ILR score has a positive

Table 1. Comparison of empirical distributions with the fitted gamma dis-

tribution in Figure 3. A column with heading r(x) contains the ratio of the

CDF of the empirical distribution to that of the fitted shifted gamma distri-

bution at the xth quantile of the fitted distribution. Note that when considering

E-values, small quantiles are good

Test Set w r(0.1) r(0.05) r(0.01)

40 sequences of length 750

to which the gamma was fitted

10 0.91 0.83 0.89

13 1.13 1.21 1.22

16 1.06 1.11 1.19

20 1.10 1.19 1.44

30 1.04 1.12 1.37

50 0.65 0.67 0.87

40 sequences of length 1500 10 0.34 0.30 0.44

13 0.73 0.67 0.94

16 0.98 1.10 1.37

20 0.94 0.91 1.19

30 0.85 0.96 1.25

50 0.51 0.59 0.75

biased composition

20 sequences of length 375

and 20 sequences of length 750

10 0.55 0.56 1.00

13 0.82 0.82 0.75

16 0.96 0.95 1.19

20 1.13 1.24 2.12

30 0.88 0.94 1.44

50 0.49 0.51 0.37

7The model Q is inferred from the starting positions by the rule

Qij ¼ cij + bi

N � 1 +
P

j
bj

where cij is the count of letter j in the i-th sequence

of the alignment and bj is an a priori chosen pseudocount to avoid

0 probabilities.
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Spearman correlation, the entropy score has a statistically signific-

ant negative correlation with the overlap score (Spearman correla-

tion p-value of 5.2 · 10�4)8.

Finally while not an objective demonstration of the advantage

of ILR, GibbsILR did show improvement in our experiments over

the other five finders we tested. Fig. 5 shows the overlap distribution

for the various finders. For example, the bars at 0.1 are the number

of datasets that a particular motif finder found with overlap score

between 0.1 and 0.2. GibbsILR finds the most datasets above

0.1 overlap score for both experiments. In the case of FIFTY

(Fig. 5b), GibbsILR is significantly better. Note that we tried to

equalize the running time of all the algorithms in the benchmark as

described in the Methods section below.

6 CONCLUSION AND FUTURE WORK

We have demonstrated several discouraging observations

regarding the use of E-values to determine the statistical signific-

ance of a motif. However, the E-value of the entropy score has at

least two redeeming qualities. First, it is always conservative, so a

motif exhibiting a very low E-value is probably significant. Second,

the distribution of the overall p-value for CONSENSUS was easy

to characterize when considering the E-value of the entropy score,

rather than the entropy score itself. We acknowledge the possibility

that other motif finders may exist (that we have not yet tried) whose

finder-specific OPV may be similarly quantified.

We have also presented an alternative scoring function to be

used in place of entropy, along with a motif finder that uses this

function to achieve demonstrably better results than existing

algorithms. The motif finder described here is admittedly simplistic,

so it seems likely that more effective algorithms could be

developed.

We were surprised to discover that the empirical distribution

of optimal alignment scores displayed by each algorithm, including

the exhaustive motif finder, fit a gamma distribution far better than

the intuitively more appealing EVD. It would be informative to

determine why the gamma distribution, specifically, seems to

model this problem accurately.
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Fig. 4. The probability plot of a fit of the OPV distribution to a shifted gamma distribution and to an EVD distribution; the OPV distribution was generated from

the output of the ideal motif finder (searching for motifs of width 7; see Methods section) run on 10000 datasets composed of 10 uniformly distributed sequences

with length 100.

Table 2. aROC and only accepting 10 FPs. The column >10% contains the

number of datasets that score above the 0.1 overlap threshold. The column

TPs contains the number of true-positives in a test if it is willing to accept

�10 FPs

Experiment Finders entropy ILR

>10% aROC TPs aROC TPs

COMBO CONSENSUS 223 0.88 154 0.93 169

Gibbs_ss 302 0.88 208 0.91 231

GibbsILR 324 0.85 254 0.90 258

GLAM 170 0.90 117 0.94 127

MEME 70 0.90 43 0.92 48

ProfileBranching 222 0.95 183 0.96 190

FIFTY CONSENSUS 27 0.73 5 0.85 13

Gibbs_ss 87 0.94 70 0.96 76

GibbsILR 186 0.96 171 0.96 171

GLAM 116 0.94 91 0.89 84

MEME 4 0.64 0 0.73 0

ProfileBranching 8 0.60 1 0.72 1

8Recall that the detected motif was optimized for the entropy, rather than

the ILR.
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Finally, an extensive study of the distributional properties of

the ILR is a necessary condition for it to become a widely adopted

scoring scheme.

7 METHODS

To test the efficacy of any given motif finding algorithm, N independent

sequences of length m were sampled by choosing symbols at random from

the four letter DNA alphabet corresponding to an iid model for the back-

ground frequency. A position was chosen uniformly at random from each

sequence and an instance of a profile Q, generated as described below, was

inserted in that position. Thus, the total length of each sequence is L¼m + w

where w is the length of the motif. A profile is represented as a position

weight matrix, a 4 · w array of numbers where Qij denotes the frequency of

letter i in column j in all aligned instances of Q. Since we wanted to have

control over the implanted motifs the instance were essentially generated by

permuting the columns of the alignment. Each column of the alignment

matched the corresponding column of the profile up to discretizing effects.

The parameters N and L were chosen such that the motif finders we

considered would have a non-trivial percentage of failures (i.e. datasets

where they pick motifs with no overlap with the implants). As we allowed

our finders to run for a fairly generous amount of time there is reason to

suspect that at least some of those failures can be attributed to twilight zone

searches [10], in which random alignments with no overlap with the implants

score as high as the best motif that overlaps the implant.

Two of the experiments that we report here were generated according to

the following rules:

(1) COMBO: The motif in this experiment has length 13 with two

degenerate columns (6 and 8) as seen in Table 3. Each dataset has

40 sequences of length 1485 + 13.

(2) FIFTY: Each column in the motif consists only of two equally

probable nucleotides. Each dataset has 40 sequences of length

1485 + 13.

In each experiment, 400 datasets were generated for a given profile, and

various motif finding algorithms were run with parameter settings that

allowed each motif finder to take from 8–10 minutes to place all

motif finders on an equal footing. However, the MEME motif finder does

not employ any parameters that allow the control of running time (MEME

generally runs in much less than 8 minutes on each data set), so the generally

poor performance of MEME compared to the other motif finders is not a

reflection of MEME employing a bad algorithm but a reflection of a design

decision to place a strict limit on the total amount of time MEME takes. The

motif finders used in this study consisted of MEME [1] (-mod oops -

nmotifs 1 -w 13 -dna -text -maxsize 1000000), the Gibbs

Sampler run in Site Sampler (‘‘Gibbs_ss’’) of [11] (13 -d -n -t280 -

L200), Gibbs altered to use the ILR scoring function (‘‘GibbsILR’’, 13 -t

250 -L 200 -p 0.05), GLAM [5] (-n50000 -r10 -1 -z -a13 -b13),

CONSENSUS [6] (-L 13 -c0 -q 3000), and ProfileBranching [16] (-l

13 -verbose). We note that Gibbs_ss is our version of the original

algorithm optimized for site sampling mode, resulting in a three-fold impro-

vement in running time. For this reason, the results of Gibbs_ss are better

than the results of the original algorithm for a fixed running time. All experi-

ments were run under Red Hat Enterprise Linux 4 on a cluster with nodes that

have AMD 248 2Ghz 64-bit processors with 2GB RAM and 1GB swap.

The p-value of the entropy of the highest-scoring reported motif was

computed by the sFFT algorithm described in [12]. An estimate of overlap

for each data set and for each motif finder was computed in the following

manner: Let an be the position of the implanted motif instance in Sn, and let

ânan be the position of the motif reported by a motif finder. We define the

overlap of a motif finder’s prediction as:

max
j i j <w

2

w � j i j
w

·
j fn : an ¼ banan þ ig j

N

� �
All ILR scores in this paper were computed using a uniform pseudocount

of 0.05.

7.1 Finding the optimal motif

For small datasets it is possible to employ a branch-and-bound algorithm

for finding the motif with the optimal entropy (for a more elaborate

approach addressing a similar problem see [4]). To see this, consider the

space of alignments represented as a tree with the root representing the

empty alignment and a node at depth n having L � w + 1 children corres-

ponding to the choices of extending the alignment using the (n + 1)th

sequence. A depth-first search (DFS) can then be employed on this tree

to enumerate all the alignments at depth N and select the optimal motif.

However, since complete enumeration is computationally expensive, even

for very small datasets, we rely on pruning the search tree by not extending

alignments that cannot possibly score better than the best score (smax) that we

have seen till now. This determination is made based on the following

lemma:

LEMMA: Let cn denote the nucleotide counts for an alignment
column of n sequences. Then

max
cN�cn

IðcNÞ ¼ max
a2fA‚ C‚ G‚ Tg

Iðcn þ ðN � nÞdaÞ‚

Table 3. The position weight matrices used in these experiments

COMBO FIFTY SHORT

Pos. A C G T A C G T A C G T

1 0.95 0.00 0.00 0.05 0.50 0.00 0.00 0.50 0.95 0.00 0.05 0.00

2 0.00 0.50 0.50 0.00 0.00 0.50 0.50 0.00 0.00 0.05 0.95 0.00

3 0.70 0.10 0.10 0.10 0.50 0.50 0.00 0.00 0.29 0.29 0.21 0.21

4 0.00 0.70 0.30 0.00 0.50 0.00 0.50 0.00 0.00 0.00 0.50 0.50

5 0.50 0.00 0.00 0.50 0.50 0.50 0.00 0.00 0.00 0.00 0.05 0.95

6 0.25 0.25 0.25 0.25 0.00 0.50 0.50 0.00

7 0.95 0.00 0.00 0.05 0.00 0.50 0.00 0.50

8 0.25 0.25 0.25 0.25 0.00 0.50 0.00 0.50

9 0.70 0.10 0.10 0.10 0.50 0.00 0.50 0.00

10 0.00 0.50 0.00 0.50 0.00 0.50 0.50 0.00

11 0.00 0.70 0.00 0.30 0.50 0.50 0.00 0.00

12 0.70 0.10 0.10 0.10 0.00 0.50 0.50 0.00

13 0.00 0.50 0.50 0.00 0.00 0.50 0.00 0.50
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where da has a count of 1 for a and 0 otherwise, x � y denotes pointwise

inequalities, Ij(x) ¼ x log (x/Q0j
) and I(cn) ¼ ð

P
j Ijðcn

j ÞÞ �n log n is the
entropy for a single column.

PROOF OUTLINE: Suppose that there exists a maximally scored cN � cn

that is not of the form cn þ ðN � nÞda. Let j ¼ argmaxlIlðcN
l þ 1Þ � IlðcN

l Þ
and let k 6¼ j be such that cN

k > cn
k (there must exist such a k by definition of

cN). Then, since IlðxÞ is a monotonically increasing function, it can be shown

that IðcN þ dj � dkÞ > IðcNÞ, giving rise to a contradiction.

In words, the lemma says that an alignment column can be optimally

extended in only four different ways and so we can quickly compute the

optimal score that can arise out of the extension of a given alignment.

In practice, this pruning strategy reduces the search space dramatically

and allows us to find optimal motifs for moderate sample sizes (e.g. w ¼
7, N ¼ 10 and L ¼ 100). Note that we also provide the branch-and-bound

algorithm with a good lower bound for smax, as obtained from a motif-finding

program such as CONSENSUS, to improve the initial pruning process and

thus speed up the algorithm.
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ABSTRACT

Motivation: The study of biological systems, pathways and processes

relies increasingly on analyses of networks. Most often, such analy-

ses focus on network topology, thereby treating all proteins or genes as

identical, featureless nodes. Integrating molecular data and insights

about the qualities of individual proteins into the analysis may enhance

our ability to decipher biological pathways and processes.

Results: Here, we introduce a novel platform for data integration that

generatesnetworks on themacro system-level, analyzes themolecular

characteristicsof eachproteinon themicro level, and thencombines the

two levels by using the molecular characteristics to assess networks. It

also annotates the function and subcellular localization of each protein

anddisplays theprocessonan imageof a cell, renderingeachprotein in

its respective cellular compartment. By thus visualizing the network in a

cellular context we are able to analyze pathways and processes in a

novel way. As an example, we use the system to analyze proteins

implicated with Alzheimers disease and show how the integrated

view corroborates previous observations and how it helps in the formu-

lation of new hypotheses regarding the molecular underpinnings of the

disease.

Availability: http://www.rostlab.org/services/pinat

Contact: pinat@rostlab.org; ofran@cubic.bioc.columbia.edu

1 INTRODUCTION

Protein-protein interaction (PPI) networks are believed to constitute

a valuable framework for the analysis of biological processes.

Several studies attempt to characterize the topological properties

of PPI networks as a whole (Barabasi and Oltvai, 2004), or of small,

recurring elements within them (Wuchty, et al., 2003). The biologi-

cal implications of such topological observations are still debated

(Bork, et al., 2004). However, it has been suggested that the analysis

of PPI networks can help identify biological ‘‘modules’’ namely

networks of a limited number of proteins that interact to carry out a

certain process or function (Ge, et al., 2003; Hartwell, et al., 1999).

Parsing the topology of such networks could help decipher biologi-

cal processes and assign function to un-annotated proteins that are

implicated in these modules (Vazquez, et al., 2003).

The first step in the topological analysis of modules is the gen-

eration of PPI networks from pairwise protein-protein interactions.

Numerous databases curate and sometime even predict protein-

protein interactions based on various criteria (Bader, et al., 2001;

Hermjakob, et al., 2004; Peri, et al., 2003; Rhodes, et al., 2005;

von Mering, et al., 2005; Xenarios, et al., 2002; Zanzoni, et al.,
2002). Although the vast majority of these data come from high-

throughput experiments, they also include manually curated data

from the literature. High-throughput PPI data are often rather noisy,

and include a substantial amount of false positives (Cusick, et al.,
2005). In particular, yeast two-hybrid experiments (Y2H) can

yield false positive results of two kinds. (1) Experimental errors:

two proteins observed to physically bind, may not interact in reality.

(2) ‘‘In vitro’’ error: the conditions under which Y2H experiments

are carried out may lead to interactions that do not occur in vivo.

While the first type of errors can be reduced substantially by rather

simple experimental adjustments, the second type of error is harder

to control. The most effective approach thus far for identifying

these false positives on a large-scale is through in silico analysis

(Cusick, et al., 2005). Problems with the reliability or reproducibil-

ity of data are not confined to high throughput PPI dataset. A

comparison of several datasets that were collected by experts

from the literature revealed that the overlap between such sets is

small (Ramani, et al., 2005), calling for caution when using them in

an automatic manner. Thus, when using these data, it is imperative

to assess the reliability of specific interactions.

Another problem with the analysis of PPI networks relates to data

representation. Many higher-level studies of biological networks

treat individual proteins as featureless nodes and focus their analysis

on the topology of network graphs. Yet, the molecular details of

the individual proteins are crucial for understanding and assessing

networks. There is an essential connection between the structure

of a PPI network and the molecular features of each protein. For

example, most eukaryotic proteins are confined to particular sub-

cellular compartments. Biological processes that span different

compartments often consist of several modules. Each of these

modules is typically localized to a different compartment, and a

small number of proteins serve as connectors between compart-

ments. The localization of a protein is instrumental for assessing

PPI data, as proteins that reside in different compartments are less
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likely to interact than proteins that are located to the same

compartment (Sprinzak, et al., 2003; von Mering, et al., 2002).

Similarly, proteins with incompatible functional annotation are

assumed not to be very likely to interact (Sprinzak, et al., 2003).

It is increasingly acknowledged that there is a need for a framework

that will integrate the micro level, namely the characteristics of each

protein such as its localization and functional annotation, with the

macro level, namely the topology of the network. A system of

representation and analysis that will offer such integration may

improve our ability to elicit reliable and useful insights from

high-throughput PPI data.

Here we introduce PiNAT (Protein interaction Network Assess-

ment Tool)—an automated system that generates PPI networks

around proteins of interest. It automatically analyzes each sequence,

assesses the reliability of the interactions based on molecular cri-

teria, and displays the network within an image of a cell, in a way

that represents the flow of the process between its compartments.

The automatic assessment is based on the results of a large-scale

meticulous analysis of a large, highly reliable dataset of PPI. Once a

list of proteins is submitted to the system, the following sequence of

events is initiated (Fig. 1):

(1) PiNAT automatically queries databases of PPIs and constructs

a network of known PPIs.

(2) The sequences of all proteins are obtained.

(3) Based on these sequences the system predicts the subcellular

localization for all proteins, including proteins that have no

homologue with experimental annotations about localization.

(4) Each interaction is graded using a likelihood based on the

predicted localization of the participating proteins.

(5) Where available, the GO annotation of each protein is

obtained.

(6) Each interaction is graded based on the likelihood of interac-

tion between proteins with these annotations.

(7) Finally, the network of interactions is displayed in a cellular

context. It is readily visible from this display how the process

flows between the different compartments of the cell.

We demonstrate the power of the system by generating, assessing

and displaying the known fraction of the PPI network that underlies

Alzheimer’s disease (AD).

2 METHODS

2.1 Large-scale assessment of PPIs based on

localization

We used the DIP core dataset (Deane, et al., 2002; Xenarios, et al., 2002) to

generate the localization-based scores for PPIs. This is a large, reliable set of

interactions each of which was observed by at least three different methods.

We predicted the localization for each protein in this dataset and checked the

probability of observing interactions between proteins from any combination

of localizations.

Subcellular localization was predicted using two methods: (1) LOCtree,

(Nair and Rost, 2005) that assigns the following major classes to eukaryotic

proteins: extra-cellular space, cytoplasm, organelles, mitochondrion or

nucleus. (2) PHDhtm, (Rost, et al., 1996) that predicts transmembrane heli-

ces. The sustained performance of both methods has been thoroughly estab-

lished. LOCtree assigns each prediction a confidence level between 1 (low)

and 10 (high). We considered LOCtree predictions with confidence scores

<4 as ‘‘low confidence’’ and discarded them from the assessment. PHDhtm

predicts whether or not a certain residue is embedded in a transmembrane

Fig. 1. Flow of the analysis and integration in PiNat. PiNAT accepts protein names as input. Its output is the PPI network around these proteins, rendered on

a figure of a cell representing the interplay between the different cellular compartments. It also returns a table with a score for the biological likelihood of each

interaction. This is done by integrating molecular data regarding the individual proteins, PPI data and systems view of the process. In particular, using analysis of

GO annotation and of predicted SCL PiNAT grades the interactions according to their biological likelihood and renders them at the appropriate SCL.
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helix (TMH) and assigns the prediction a confidence level between 0 (low)

and 9 (high). We deemed a protein transmembrane if: (a) PHDhtm identified

at least 20 transmembrane residues, and (b) the average confidence score of

the 20 most reliable predictions was above 8.5. In the gold-standard analysis

described below, we found that with these thresholds about 7% of the

proteins were identified as transmembrane and approximately 60% of the

nodes were predicted in a particular localization with high confidence. All

other proteins were designated unknown.

For each pair of subcellular compartments, we assigned a likelihood grade

of ‘‘likely’’, ‘‘unlikely’’ or ‘‘neutral’’, indicating the likelihood of interaction

among proteins from these compartments. These grades were determined as

follows: We ran LOCtree and PHDhtm for 4800 interactions from the DIP

core set, involving a total of 2191 proteins. 1482 of the 2191 proteins were

given a high-confidence prediction by either PHDhtm or LOCtree. Of the

4800 interactions, 2312 had high-confidence predictions for both proteins.

Since we had a total of 1482 proteins with high-confidence predictions,

the total number of protein pairs—assuming symmetry—was 1,097,421;

of these, 2312 (�1/475) were well-documented interactions. If we take

as our null hypothesis that the knowledge of localization has no effect on

the probability of interaction, the approximate expected number of well-

documented interactions for each pair of compartments will be the total

number of PPIs in this pair of compartments divided by 475. For each

pair of compartments, we determined whether it was over- or under repre-

sented in the subset of well-documented interactions. We then used the

binomial approximation to the cumulative hypergeometric probability dis-

tribution, to assign a p-value to this over- or under-representation. We used

a p-value threshold of 0.01, i.e. we assigned each pair of categories a like-

lihood grade of ‘‘likely’’ if it was over-represented with a p-value <0.01;

a grade of ‘‘low’’ if it was under-represented with a p-value <0.01; and a

grade of ‘‘neutral’’ otherwise.

When analyzing a network, each edge is assigned a likelihood grade based

on the predicted compartments of its two nodes. An assessment of likely or

unlikely is assigned to an edge only if we have high-confidence predictions,

from either PHDhtm or LOCtree, for both nodes. If one or both of the

nodes have only low-confidence predictions, the edge is always assigned

a neutral grade.

2.2 Automatic generation of networks

The first stage of the analysis in PiNAT is the automatic generation of a PPI

network. This is done by taking the list of protein names submitted by the

user and search both DIP (Xenarios, et al., 2002) and IntAct (Hermjakob,

et al., 2004) for the interactions involving them. Users can specify what

depth of the interaction tree around the proteins they are interested in. For

example, a depth of 1 will retrieve all the proteins that interact with any of

the query proteins; a depth of 2 will retrieve also the proteins that interact

with the proteins at depth 1, and so forth. Finally, based on the protein names

and accession numbers the sequences are retrieved from the relevant

sequence database. It is also optional to submit to the PiNAT server a

list of sequences or a complete interaction network.

2.3 Large-scale assessment of PPIs based on GO

Proteins in one biological process are more likely to interact than proteins in

distinct processes. Therefore, we used the GO annotations of each protein in

order to grade the likelihood of interaction between them. Since GO includes

records inferred electronically (i.e. based on sequence or structure similar-

ity), we only take the annotations that come from trusted experiments such

as direct assays. We measured the distance between two GO terms as the

information content of the minimum subsumer of the two terms (Lord, et al.,

2003). Low information content reflects a highly specific concept shared by

the two terms and indicates a close relationship between them. Since there is

often more than one GO annotation available for a particular protein, for

every annotation ck in protein i, we found its most similar term cj max in

protein j, and vice versa for each annotation in protein j. We then averaged

these best similarities to obtain the GO score between the two proteins

(Eqn. 1).

similarity ði‚ jÞ ¼
Pm

k¼1 simGO ðck‚cj maxÞ þ
Pn

p¼1 simGO ðci max‚cpÞ
mþ n

Eqn:ð1Þ

where m and n are the respective numbers of annotations in i and j, and

simGOðcA‚cBÞ is the GO similarity between terms cA and cB according to

the definition by Lord et al.
We used the proteins in the DIP core set and generated 100,000 random

pairings of these proteins to derive a background distribution of GO

similarity scores.

2.4 Display of networks in the cellular context

The predictions from LOCtree and PHDhtm are also used to visualize the

location of the nodes in the network drawing in the following manner. Given

the network and the predictions from LOCtree and PHDhtm, we generate a

Graph Markup Language (GML) file for Cytoscape (Shannon, et al., 2003),

placing each node in the drawing according to its predicted localization.

Nodes in the drawing are divided among six groups: one for each of

LOCtree’s five categories, and one for membranes. Note that we, incorrectly,

assumed that all membrane proteins reside in the cytoplasmic membrane,

due to the lack of accurate method that distinguishes in silico between

proteins in different membranes. For purposes of placing a node in the

drawing, we used the following intuition-based rules: a high-confidence

prediction from PHDhtm overrides a high-confidence prediction from LOC-

tree; a high-confidence prediction from LOCtree overrides a low-confidence

prediction from PHDhtm; and a low-confidence prediction from PHDhtm

overrides a low-confidence prediction from LOCtree. There is also a seventh

group for nodes for which LOCtree was unable to give even a low-

confidence prediction; such cases, however, are relatively rare (<1%).

2.5 Alzheimer’s disease related pathway

A pathway of proteins implicated in Alzheimer was retrieved from the

KEGG database (Goto, et al., 1997). The pathway includes 21 proteins

and was manually gleaned from the literature. We used the 21 proteins

as input to the PiNAT server, composed the network of interactions around

them (depth¼1), identified the most likely and the most unlikely interactions

and rendered the network in a cellular context.

3 RESULTS AND DISCUSSION

3.1 Interactions across subcellular compartments

A first glance at the results of the large-scale assessment of

PPIs based on subcellular localization (Table 1) confirmed the intu-

ition: almost always, proteins from the same compartment had a

higher chance of interacting with each other than do pairs of

proteins from different compartments. The exceptions for the

intra-compartment interactions were extracellular proteins that

did not show a significant tendency to interact with each other.

This makes biological sense, as extracellular proteins are often

messengers that facilitate communication between cells. Hence,

it is not surprising to find that they show only weak interaction

preferences. In contrast, almost all low scores originated from

distant compartments. Conversely, PPIs between nearby com-

partments were found to be likely. An exception to this was the

interaction between transmembrane and cytoplasmic proteins, and

between transmembrane and organellar proteins. While the first

(transmembrane-cytoplasmic) was significantly lower than random,

the latter (transmembrane-organellar) was significantly higher.

This could be explained by the intricate trafficking system of
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proteins to the membrane, which involves the organelles: globular

proteins that interact with membrane proteins often get to their

destination through the secretory pathway rather than through

free diffusion in the cytoplasm.

3.2 Likely and unlikely interactions across GO

Fig. 2 shows the scores obtained from the analysis of GO annota-

tions for positive interactions (i.e. interactions included in DIP core

set) and negative interaction (randomly paired proteins from the

core set). We found that over 52% of the positive interactions get a

score higher than 3.25 while 95% of the negative ones get a score

lower than 3.25. When using a lower threshold of 1.3, we could

retain 81% of the positives but only reject half of the negatives. We

therefore binned the GO similarity scores into three categories:

‘‘likely’’ for interactions with score greater than 3.25, ‘‘unlikely’’

for interactions with score smaller than 1.3, and ‘‘neutral’’ for any

score within that range. Note, that since the ratio of interacting pairs

to non- interacting pairs in a proteome is very small (Grigoriev,

2003), even at this cutoff false positive interactions will outnumber

true positives. However, most of the negative interactions will be

rejected while most of the positive ones will be accepted.

3.3 Alzheimer in the perspective of PiNAT

The main pathological manifestations in Alzheimer’s are neuritic

plaques and neurofibrillary tangles, both are abnormal protein

aggregations. They differ in the proteins that are accumulated in

them and in their localization. While the first occur in the extra-

cellular space, the latter occur around the cytoskeleton in the cyto-

plasm (Chapman, et al., 2001). All the genes that were found to be

linked to the disease are involved in the production or deposition of

these aggregations (Selkoe, 2001). The mapping of compartments

to the PPI network that is implicated in this process is, therefore,

of particular interest. Fig. 3 shows the Alzheimer’s related PPI,

rendered by PiNAT into a cellular context. The main hub in this

network is the Amyloid beta A4 protein (APP), a derivative of

which constitutes the neuritic plaques. The function of APP is

not entirely clear. It is generally accepted that it is a cell surface

receptor (Selkoe, 2001).

However, it has been shown that APP is often cleaved and that

part of it is secreted (Selkoe, 2001). It has also been reported that

derivatives of APP were observed in the cytoplasm (Selkoe, 2001).

APP can promote transcription activation, and it has been reported

that some derivatives of it are located in the nucleus (Selkoe, 2001).

The figure reflects this unclarity regarding APP’s localization. It is

displayed in the nucleus according to the LOCtree prediction (the

prediction of LOCtree was given a confidence score of 4, which is our

lower bound for accepting LOCtree predictions). However, PHDhtm

identified a short transmembrane segment that due to its length fell

just below the cutoff we set for considering proteins as transmem-

brane (Methods). Yet, the pattern of interactions around APP is in

agreement with all the reported observations regarding its localiza-

tion. APP interacts extensively with almost every compartment of

the cell. For example, there are 17 proteins that are predicted to be

nuclear in this network. Most of them are part of a connected com-

ponent. However, if APP is removed from the network, the con-

nected component immediately disintegrates leaving only two of the

nuclear proteins connected to each other. Hence, PiNAT’s display of

the network corroborates the findings regarding APP’s location.

Thirteen of the Alzheimer PPIs were deemed unlikely according

to their localization (Table 2). Most of these interactions involved

Table 1. scores for interactions between compartments

Extra cellular Cytoplasmm Orgnl Mitochondrion Nuclear TM

Extra cellular Neutral

Cytoplasmic Neutral High

Orgnnellar Neutral Neutral High

Mitochondrial Neutral Low Neutral High

Nuclear Low High Low Low High

TM Neutral Low High Neutral Low High

For each combination of subcellular compartments we computed whether the interaction between proteins from these compartments has a high probability, is neutral or has a low

probability. The calculation is based on a large dataset of reliable PPI. Low, high significance refers to the expected probability under the null hypothesis (H0: localization has no effect on

the probability of interaction) with p-values <0.01 (for under- or over-representation). Combinations that did not differ significantly from the expectation were deemed neutral.

Fig. 2. Scores of interactions according to GO annotations on positive and

negative data. Each point on the graph represents a certain score for inter-

action between proteins with different GO annotations. On the x axis is the

percentage of negative (i.e. random) interaction that are below that score.

On the y axis is the percentage of real PPI that get a score above that score.

For a score 3.25 (arrow) 95% of the negative interactions will be rejected and

the 52.4% of the positive ones will be retained.
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APP. This is understandable, as many interactions between APP,

which was predicted to be nuclear, and proteins in non-nuclear

compartments are considered unlikely. Still, knowing that APP

and its derivatives can reside in different compartments calls for

reevaluation of this classification. By and large, the two scoring

schemes were in agreement about the likelihood of most interac-

tions. The two scoring schemes radically disagreed for only one PPI,

namely the interaction between NEDD8 Amyloid protein binding

protein (ULA1_HUMAN) and APP (A4_HUMAN). The GO anno-

tations of these proteins were very different. Hence their GO derived

interaction score was low. However, since they were predicted

to be in spatial proximity, the localization-based method scored

the interaction between them as highly likely. This disagreement

could also be ascribed to our poor understanding of APP and its

function.

Interestingly, several of the proteins in this network have little

or no functional annotation. Viewing them in the context of the

cellular process can help to postulate hypotheses regarding the

role they may have in Alzheimer’s. It is widely accepted that

inhibiting the cleavage of APP can slow down the advance of

the disease and may even help prevent it. Thus, the exact local-

ization in which the cleavage takes place is of a great interest.

Identifying proteins in the network that may be involved in this

cleavage may offer some important insights into this problem.

Careful analysis of the localized network can suggest some addi-

tional insights into the molecular underpinnings of Alzheimer’s

disease and even help formulate new hypotheses. For example, it

may be possible to determine which of the un-annotated proteins in

the network may be involved in cleaving APP. Their SCL could

serve to identify where the cleavage occurs. Clearly, such analysis

is beyond the scope of this paper.

Table 2. Scores for Alzheimer related interactions

protein 1

(UniProt)

protein 2

(UniProt)

SCL

score

GO derived

score

A4_HUMAN A2MG_HUMAN UNLIKELY NEUT

A4_HUMAN A4_HUMAN LIKELY NEUT

A4_HUMAN ABB1_HUMAN LIKELY NEUT

A4_HUMAN ABB2_HUMAN LIKELY NEUT

A4_HUMAN ABB3_HUMAN LIKELY NEUT

A4_HUMAN ACES_HUMAN NEUT UNLIKELY

A4_HUMAN ACH7_HUMAN UNLIKELY NEUT

A4_HUMAN APA1_HUMAN UNLIKELY NEUT

A4_HUMAN APB1_HUMAN NEUT NEUT

A4_HUMAN APE_HUMAN UNLIKELY NEUT

A4_HUMAN ASP2_HUMAN LIKELY NEUT

A4_HUMAN BACE1_HUMAN UNLIKELY UNLIKELY

A4_HUMAN HCD2_HUMAN UNLIKELY UNLIKELY

A4_HUMAN JIP1_HUMAN LIKELY NEUT

A4_HUMAN LRP1_HUMAN NEUT UNLIKELY

A4_HUMAN Q9UCX5 LIKELY NEUT

A4_HUMAN SHC1_HUMAN NEUT UNLIKELY

A4_HUMAN TGF1_HUMAN UNLIKELY NEUT

A4_HUMAN TGFB2_HUMAN UNLIKELY NEUT

A4_HUMAN TTHY_HUMAN UNLIKELY NEUT

A4_HUMAN ULA1_HUMAN LIKELY UNLIKELY

ABB3_HUMAN A4_HUMAN LIKELY NEUT

APH1A_HUMAN PSN1_HUMAN LIKELY LIKELY

BIR2_HUMAN CASP3_HUMAN NEUT NEUT

BIR2_HUMAN CASP7_HUMAN NEUT NEUT

CASP3_HUMAN BIR7_HUMAN NEUT NEUT

FLNA_HUMAN PSN1_HUMAN NEUT NEUT

G3P2_HUMAN A4_HUMAN LIKELY NEUT

GNB:3712673 PSN1_HUMAN UNLIKELY NEUT

GSK3B_HUMA REN3A_HUMAN LIKELY NEUT

IF38_HUMAN NEP_HUMAN NEUT NEUT

LIPL_HUMAN ACC2_HUMAN NEUT NEUT

LIPL_HUMAN CSN6_HUMAN NEUT NEUT

LIPL_HUMAN L7L2_HUMAN NEUT NEUT

LIPL_HUMAN LRP1_HUMAN NEUT UNLIKELY

LIPL_HUMAN PTN4_HUMAN NEUT UNLIKELY

LIPL_HUMAN Q7L354 NEUT NEUT

LIPL_HUMAN Q9P2H0 NEUT NEUT

LIPL_HUMAN RL18A_HUMAN NEUT UNLIKELY

LIPL_HUMAN ULA1_HUMAN NEUT UNLIKELY

LRP1_HUMAN A2MG_HUMAN NEUT NEUT

NICA_HUMAN APH1A_HUMAN LIKELY LIKELY

NICA_HUMAN PSN1_HUMAN LIKELY LIKELY

O00193 A2MG_HUMAN UNLIKELY NEUT

PEN2_HUMAN APH1A_HUMAN LIKELY LIKELY

PEN2_HUMAN NICA_HUMAN LIKELY LIKELY

PEN2_HUMAN PSN1_HUMAN LIKELY LIKELY

Q7Z4Y5 A2MG_HUMAN NEUT NEUT

Q9H5B5 TAU_HUMAN NEUT NEUT

Q9UJZ5 PSN1_HUMAN NEUT NEUT

R11A_HUMAN PSN1_HUMAN UNLIKELY NEUT

RL10_HUMAN PSN1_HUMAN NEUT NEUT

TAU_HUMAN TBBX_HUMAN NEUT UNLIKELY

List of PPI that were extracted from DIP and IntAct to generate the Alzheimer’s related

network. In the first and second columns are the UniProt protein names for each of the

proteins in a given interaction. The third column is the SCL-based score for this inter-

action and the fourth column is the GO derived score

Fig. 3. Output of PiNAT for Alzheimer’s disease-related PPI network.

The proteins known to be involved in a pathway related to AD were used as an

input to PiNat. Their PPIs were collected from DIP and IntAct to generate a

network. Each protein in the network is displayed in its SCL according to the

predictions of LOCtree and PHDhtm. The major hub of this network is the

APP protein (colored yellow), whose metabolism is a major key for under-

standing the pathologies of AD. The myriad of interactions it has with many

compartments of the cell is in agreement with suggestions regarding its

functional diversity.
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4 CONCLUSIONS

The integration of molecular knowledge and network structure

can enhance our understanding of biological processes and of

pathways. PiNAT, which is fully automated, offers a framework

for combining the micro-level analysis of individual molecules and

the macro-level of network topology. Users can submit a single

protein, a list of proteins, or a whole network as an input. As an

output they will receive a visual description of the predicted spatial

flow of a pathway in the cell. In addition the user will get a list of

scores for each interaction, based on different sequence-level anal-

yses of the individual proteins. PiNAT is easily expandable. Thus, it

will be possible to add many other molecular and network analyses

to improve our insights into pathways and modules. Our example

for the case of Alzheimer’s illustrated just some aspects of the

usefulness of PiNAT. The server is available at: www.rostlab.

org/services/pinat
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ABSTRACT

Motivation. The knowledge of the subcellular localization of a protein

is fundamental for elucidating its function. It is difficult to determine

the subcellular location for eukaryotic cells with experimental high-

throughput procedures. Computational procedures are then needed

for annotating the subcellular locationof proteins in large scale genomic

projects.

Results. BaCelLo is a predictor for five classes of subcellular localiza-

tion (secretory pathway, cytoplasm, nucleus, mitochondrion and

chloroplast) and it is based on different SVMs organized in a decision

tree. The system exploits the information derived from the residue

sequence and from the evolutionary information contained in alignment

profiles. It analyzes the whole sequence composition and the compo-

sitions of both the N- and C-termini. The training set is curated in order

to avoid redundancy. For the first time a balancing procedure is intro-

duced in order to mitigate the effect of biased training sets. Three

kingdom-specific predictors are implemented: for animals, plants and

fungi, respectively. When distributing the proteins from animals and

fungi into four classes, accuracy of BaCelLo reach 74% and 76%,

respectively; a score of 67% is obtained when proteins from

plants are distributed into five classes. BaCelLo outperforms the

other presently available methods for the same task and gives

more balanced accuracy and coverage values for each class. We

also predict the subcellular localization of five whole proteomes,

Homo sapiens, Mus musculus, Caenorhabditis elegans, Saccharo-

myces cerevisiae and Arabidopsis thaliana, comparing the protein

content in each different compartment.

Availability.BaCelLocanbeaccessedat http://www.biocomp.unibo.it/

bacello/

Contact. casadio@alma.unibo.it, andrea@biocomp.unibo.it, gigi@

biocomp.unibo.it, piero@biocomp.unibo.it

1 INTRODUCTION

The eukaryotic cell is a composite system internally subdivided into

membrane-enveloped compartments that perform particular func-

tions. Every subcellular compartment contains specific proteins,

including enzymes, synthesized in the cytoplasm and translocated

into the locations,where theycarry out functional patterns.Therefore,

knowing the localization of every protein is important for elucidating

its interactions with other molecules and for understanding its bio-

logical function. Experimental high-throughput approaches have

been applied to determine protein localization in Saccharomyces
cerevisiae (Huh et al., 2003) and in Arabidopsis thaliana (Kleffmann

et al., 2004). However these techniques cannot be generally applied to

all the eukaryotic cells and computational predictive methods are

needed in order to screen the huge amount of data derived from

genomic projects and to guide the design of experiments.

Intracellular protein sorting involves several post-translational

mechanisms that redirect a newly synthesized chain from the

cytosol to its specific compartment on the basis of the information

contained in its residue sequence. Pre-translational mechanisms,

involving the sorting of the mRNAs inside the cytosol, seem to

play a minor role in the translocation between different compart-

ments (Gonsalvez et al., 2005). These considerations lead to the

conclusion that the residue sequence of a protein is mostly respon-

sible for its localization.

It is well known that many sequences contain cleavable peptides

at the N-terminus that address the protein either to the secretory

pathway, in which case they are called signal peptides, or to mito-

chondria and plastids and in this case they are called target or transit

peptides. Some predictors have been implemented in order to rec-

ognize N-terminal signal peptides (Nielsen et al., 1997; Fariselli

et al., 2003) or both the signal and the transit peptides (Emanuelsson

et al., 2000). However some proteins get secreted by means of a

non-classical way and do not require N-terminal signal peptides

(Nickel, 2003; Bendtsen et al., 2004). Furthermore some proteins

are translocated into mitochondria owing to a localization peptide

at the C-terminal region (Lee et al., 1999; Izeta et al., 2003; Yamada

et al., 2004). For these reasons in order to obtain an accurate pre-

diction it is necessary to add information besides the N-terminal

composition.

Concerning nuclear proteins, they have to span the nuclear mem-

branes through the proteic Nuclear Pore Complexes. Several cross-

ing mechanisms have been described, including free diffusion

and mediated transport. Nuclear Localization Signals have been

reported (Fried and Kutay, 2003) and approaches for finding

them into a protein sequence were tested. However, the methods

that incorporate only this type of information do not achieve sat-

isfactory performance, probably due to the shortness and low spe-

cificity of the signals. Moreover only 30% of nuclear proteins is

estimated to have a NLS (Cokol et al., 2000).

A number of different predictors for the subcellular localization

have been released in the past years, based on different approaches.

They can be divided into two major classes, following Nair and Rost

(2005): predictors based on the knowledge extracted from the anno-

tated databases and the so called de novo predictors. The former

ones are based on the detection of similarity between the sequence

to be predicted and sequences with known localization, by searching

for homology (Marcotte et al., 2000) or for conserved domains or

motifs (Scott et al., 2004). However these tools are able to predict�To whom correspondence should be addressed.
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the localization of half of the sequences in the data bases (Nair and

Rost, 2005). The de novo methods, which we are interested in, are

more general and rely only on the analysis of the residue sequence,

without inferring the annotation from any known sequences. pTAR-

GET (Guda and Subramaniam, 2005) and ESLpred (Bhasin and

Raghava, 2004) are hybrid methods since they take into considera-

tion both the results of PFAM or BLAST and the analysis of the

residue composition. Among the de novo methods, some exploit

only the information contained in the N-terminal portions of the

sequences, some consider the overall residue composition, and oth-

ers take advantage of the evolutionary information contained in

sequence profiles. They make use of both standard statistical

methods and machine learning approaches, such as Neural Net-

works and Support Vector Machines. Moreover they discriminate

different number of classes, from 3 up to 12. All the available

predictors infer their parameters from unbalanced data sets: the

size of different classes merely reflects the presence in the data

bases of annotated sequences and it is unlikely that it can represent

an estimate of the actual proportions in a living cell, as previously

estimated at genomic level (Nair et al., 2005). This lead to an

overestimation of the prediction for the most represented classes,

namely the nuclear proteins for animal or fungi and the chloroplastic

ones for plants.

Here we describe a novel method for subcellular localization

prediction that adopts a balancing procedure by assuming a uniform

a priori probability for the classes. The predictor makes use of

several Support Vector Machines (SVMs), draws information

from both the protein sequence and its profile derived with a

BLAST search in the database of eukaryotic proteins, and considers

in an explicit way the compositions of the whole sequence and of

both the N- and C- termini.

Particular care has been taken in selecting the training set. Indeed

most of the available methods, except LocTree (Nair and Rost,

2005), take into consideration proteins sharing high level of iden-

tity, up to 95%, and do not adopt rigorous validation procedures for

excluding homology between the training and the testing sets. The

justification for this procedure is that the subcellular localization of

a protein can change owing to the change of few residues in the

sequence, as in the case of the short nuclear localization signals.

However, as we prove in this paper, in most practical cases, the high

level of similarity between two sequences determines the same

localization for the two proteins; in these cases a simple assignment

based on the transfer of annotation after a BLAST search achieves a

very good performance, even better than those reported by more

sophisticated methods. Redundant data sets can therefore lead to

methods that have a poor generalization capability. For these reason

we select non-redundant data sets comprising proteins sharing less

than 30% identity.

We consider five subcellular compartments: the secretory path-

way, the cytoplasm, the nucleus, the mitochondrion and the chloro-

plast, when present. We decided not to predict more classes since for

other locations the number of annotated non homologous protein

chians is very low, not enough to train a predictor with a good

generalization capability. We did not consider membrane proteins,

since efficient methods for the prediction of transmembranicity are

available, with very low rate of false positives and false negatives

(about 3%, Martelli et al., 2003).

Differences concerning the localization mechanisms among the

different kingdoms have been reported and we trained three

different systems for animals, fungi and plants, respectively. In

particular BaCelLo is the first de novo predictor that distinguishes

between animal and fungal organisms. BaCelLo also takes advan-

tage of the evolutionary information contained in sequence profiles

that are known to improve performances of predictors for protein

structure and function.

2 MATERIALS AND METHODS

2.1 Data sets

Starting from release 48 of the SWISS-PROT data base (Bairoch et al.,

2005), we generated three data sets for animals (Metazoa), fungi (Fungi)

and plants (Viridiplantae), respectively. Proteins with an experimental anno-

tation of the subcellular location were retained, excluding those in which the

comments ‘fragment’, ‘possible’, ‘probable’ and ‘by similarity’ are reported.

We also excluded proteins with multiple subcellular localization and pro-

teins shorter than 50 residues. The entries annotated as ‘membrane’or ‘trans-

membrane’ were discarded, since we are interested only in globular proteins.

The three data sets were separately clustered with an identity level equal to

30% using the BLASTCLUST tool and checked with BLASTp (Altschul

et al., 1990). One representative protein for each cluster was selected. This

procedure led to 2597 proteins from animals, 1198 proteins from fungi and

491 proteins from plants, distributed in five locations: nucleus, cytoplasm,

secretory pathway (comprehending proteins annotated as ‘Secretory’ and

‘Extracellular’), mitochondrion and chloroplast (Table 1a). Other subcellular

localizations have been excluded because too few (less than 20) non-

redundant representatives have been annotated so far.

Available predictors have been trained with data sets up to the release

41 of SWISS-PROT. For sake of comparison, we reduced our training sets

extracting only the non-redundant proteins contained in that release. The

remaining proteins have been used as independent test sets (Table 1b). Since

the number of proteins in the plant test set is small, we don’t report the

results. All the data sets are available at www.biocomp.unibo.it/bacello

For predicting the localization of proteins in whole genomes, we down-

loaded the protein sequences from the EnsEMBL web site (www.ensembl.

org, Hubbard et al., 2005). We considered the releases NCBI 35 for

Homo sapiens, NCBI m34 for Mus musculus, WS 140 for Caenorhabditis

elegans and SGD 1 for Saccharomyces cerevisiae. The realease TAIR6 of

the Arabidopsis thaliana has been downloaded from the TAIR web site

(http://www.arabidopsis.org/, Rhee et al., 2003).

Two more data sets containing experimental annotated data are used:

a data set of 2618 globular proteins deriving from the Yeast GFP fusion

databases localized in cytoplasm, nucleus or mitochondria (http://yeastgfp.

ucsf.edu, Huh et al., 2003) and a set of 499 globular proteins localized in

the Arabidopsis thaliana chloroplast downloaded from the Plastid Protein

Database (http://www.plprot.ethz.ch, Kleffmann et al., 2004)

2.2 BaCelLo architecture

Support Vector Machines (SVM) were first introduced by Cortes and Vapnik

(1995) and are now broadly used in protein classification tasks. SVMs are

able to discriminate two classes of examples by creating a hyperplane that

optimally separates them with the best possible margin. Typically the hyper-

plane is built in a h-dimensional space H in which the examples are mapped

by means of feature vectors, that result from the input vectors upon a

transformation induced by a kernel function. We used the SVM-light pack-

age, version 6, freely available at http://svmlight.joachims.org. We adopted

the Radial Basis Function (RBF) kernel since it gives the best performances

(data not shown). All the parameters were set as default, except for Gamma

and C, which were varied to get the best results.

Our predictor is composed of four support vector machines (SVM)

arranged in a decision tree. Each node of the tree is a binary SVM. Different

tree architectures were implemented and the most efficient were chosen. The

architectures of the trees are shown in Figure 1 and are the same for animals
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and fungi, while the plant tree contains an additional node for separating

chloroplastic and mitochondrial proteins. Different levels of prediction can

be distinguished, each discriminating a different number of classes. For sake

of comparison with the other methods we will always consider the level 2,

discriminating three classes (Secretory pathway, Nuclear/Cytoplasmic and

Organellar) and the level 4, discriminating four and five classes for non

plants and plants, respectively.

We used different information as input for SVMs at each node of the tree,

depending on the type of discrimination to be performed. Depending on

the SVM, we considered the compositions of the whole sequence, of the

N-terminal and C-terminal portions. In all cases, both the sequence com-

position and the sequence profile composition were taken into account.

Sequence profiles were obtained aligning with BLAST each sequence

with the eukaryotic sequences released in the version 48 of SWISS-

PROT. A threshold for the E-value equal to 10�4 was used. From the

alignment a sequence profile is derived by counting the frequency of

each residue in the aligned sequences in each position of the query sequence.

The sequence profile composition for a given portion of the protein is

obtained by summing up, over all the considered positions, the contributions

of each one of the 20 residues. This procedure gives a 20-valued vector that

is then normalized. Summing up, three different types of information were

considered:

(1) the whole sequence composition, encoded with a 40-valued vector

containing both the raw sequence composition (20 components) and

the sequence profile composition (20 components);

(2) the N-terminus composition, encoded with a 120-valued vector,

containing both the sequence and the profile compositions for three

N-terminal portions, formed by the first 20, 40 and 60 residues,

respectively;

(3) the C-terminus composition, encoded with a 120-valued vector,

containing both the sequence and the profile compositions for three

C-terminal portions, formed by the last 20, 50 and 100 residues,

respectively;

Different input codes (including a thorough space search for the best input

window lengths) have been tried for each node and Table 2 reports the best

performing ones, together with the optimal SVM parameters Gamma and C

that were selected.

2.3 Evaluation of the performances

We used different accuracy indexes that were computed starting from the

confusion matrix Z in which any element zij, counts the number of examples

belonging to the class i and predicted in the class j. First of all, for each class

we computed the coverage (Cov) that is the percent of correctly predicted

proteins over the total number of proteins belonging to the class. Defining the

number of proteins of ith class:

xi ¼
X

j

zij ð1Þ

coverage can be computed as:

CovðiÞ ¼ zii

xi
· 100 ð2Þ

Table 1a. Number of proteins in the three kingdom specific datasets derived

from SWISS-PROT 48

Plants Animals Fungi

Nucleus 121 1166 711

Cytoplasm 58 439 211

Extracellular 41 804 88

Mitochondria 67 188 188

Chloroplast 204

Total 491 2597 1198

Table 1b. Number of proteins in the training sets extracted from SWISS-

PROT 41 and in the testing sets extracted from subsequent releases up to

SWISS-PROT 48

Animals Fungi

Train Test Train Test

Nucleus 803 363 589 122

Cytoplasm 302 137 181 30

Extracellular 632 172 72 16

Mitochondria 153 35 177 11

Total 1890 707 1039 179

Fig. 1. Architecture of the BaCelLo’s decision tree. Abbreviations: Secr:

Secretory Pathway, Intr: Intracellular, Org: Organelles, Nu and Nucl:

Nucleus, Cy and Cyto: Cytoplasm, Mi and Mito: Mitochondion, Ch and

Chlo: Chloroplast.

Table 2. Input vector definition and RBF kernel parameters for the SVMs

SVM Whole

protein

frequency

N-ter

frequency

C-ter

frequency

g C Input vector

length

1 + + � 3 6 160

2 + + + 3 6 280

3 + � � 150 2 40

4 + � � 150 2 40

SVMs are numbered as in Figure 1.
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The other standard index for the evaluation is the accuracy (Acc) that

measures the probability of correct prediction for a class:

AccðiÞ ¼ ziiP
j zji

· 100 ð3Þ

When evaluated on very unbalanced databases, the accuracy tends to be

low for those classes containing a small number of sequences, since even a

very low error rate in such a class can lead to a great number of false positive

in the big complementary classes, increasing the denominator in Eq. 3. For

these reasons we introduced the Normalized Accuracy (nAcc), in which any

term of Eq. 3 is divided by the abundance of the respective class in the

data set:

nAccðiÞ ¼ zii=xiP
j zji=xj

· 100 ð4Þ

To define a global predictive performance for each class, we used the

geometric average (GAv) between coverage and normalized accuracy:

GAvðiÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CovðiÞ · nAccðiÞ

p
ð5Þ

In order to evaluate the global performance on all the classes, different

parameters are adopted.

Routinely the overall accuracy is computed, defined as the number of

correct predictions over the total number of proteins:

Q ¼
P

i zii

N
· 100 ð6Þ

where N is the total number of proteins.

In unbalanced data sets, this parameter is biased towards the performance

of the most abundant classes. We introduced the normalized overall accu-

racy, that counts the number of correct predictions assuming the equiproba-

bility for each class:

nQ ¼
P

i zii=xi

K
· 100 ð7Þ

where K is number of the classes.

We also used the Generalized Correlation (GC) as proposed by Baldi

et al. (2000) to analyze the multiclass accuracy. Defining the number of

proteins predicted in the ith class:

yi ¼
X

j

zji ð8Þ

and the matrix:

eij ¼
xiyj

N
ð9Þ

the generalized correlation is computed as

GC ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ij
ðzij�eijÞ2

eij

NðK � 1Þ

vuut ð10Þ

It is worth noticing that the generalized correlation does not make use

of explicit normalization and can be considered independent of the

normalized overall accuracy as defined in Eq. 7.

2.4 Balancing procedure

For all the three datasets the number of sequences for the different classes is

highly uneven (Table 1) and the SVMs at each stage discriminate between

two classes that are not equally represented in the training set. In the case of

mitochondrial versus nuclear/cytoplasmic compartments, for example, the

disproportion of the number of sequences is about 8. Under such condition,

SVMs tend to over-predict the most abundant class and this can seriously

affect the prediction of the under-represented classes (Wang et al., 2004). To

solve this problem we adopted the following procedure. For each kingdom,

the data set was split in ten subsets. Eight sets are used to train the binary

SVM classificators. Each one of the SVMs finds a (h-1)-plane in the

h-dimensional hyperspace H of the features; for any point in the feature

space a distance from the separating plane was defined. A conventional sign

was computed in order to determine in which side the vector point lies with

respect to the plane. Routinely a threshold of this ‘signed distance’ equal to

zero is considered for separating the two classes, but a bias can be added to

shift the hyperplane (Cortes and Vapnik, 1995). We adopted this possibility

to overcome the problem of unbalanced data. The basic idea is to shift the

plane in the direction that favors the classification for the less abundant class.

Thus a threshold on the ‘signed distance’ is evaluated on a validation set. The

goal is to minimize the unbalance of the predictive performances between

the two classes and this can be obtained searching for the threshold on the

signed distance that minimizes:

jGAvkðþÞ � GAvkð�Þ j ð11Þ

where GAv is the geometric average of the normalized accuracy and the

coverage, as defined in Eq. 5. The threshold that minimizes Eq. 11 typically

maximizes also the sum of the two geometric averages and leads to the

optimal performance. The final performance is then evaluated on the remain-

ing set, called the test set, that is not used to set the SVM parameter nor to

pick the optimal threshold. The procedure is repeated ten times, in order to

predict each one of the split sets with methods whose parameters have been

computed using all the other sets.

3 RESULTS AND DISCUSSION

3.1 Necessity of a non-redundant training set

Many available predictors with the exception of LocTree (Nair

and Rost, 2005) were implemented using redundant training sets.

Sequences sharing up to 95% identity were routinely selected. The

rationale for this is the fact that little differences in the sequences

can lead to different subcellular location. It is therefore important to

quantify to which extent sequence identity affects subcellular

location and to which extent redundancy in the training set leads

to a tool with poor generalization capability when predicting

sequences scarcely related to those considered for training. The

most largely adopted of these data sets was firstly released by

Reinhardt and Hubbard (1998) (RH Dataset) and contains 2427

eukaryotic proteins divided into four subcellular classes: extracel-

lular (325 sequences), cytoplasm (684), nucleus (1097) and mito-

chondria (321).

Table 3. Performances of BLAST assignment in the RH dataset

Classes no E-value threshold E-value < 10�3

Cov Acc nAcc GAv Cov Acc nAcc GAv

Nucleus 93.3 98.0 82.4 87.7 98.5 91.9 95.4 96.9

Cytoplasm 86.1 90.1 74.7 80.2 93.2 82.5 81.6 87.2

Secretory Pathway 91.0 99.0 95.0 93.0 97.3 89.7 99.6 98.4

Mitochondria 69.2 90.6 91.4 79.5 81.5 82.2 96.0 88.5

Q 87.8 94.8

nQ 84.9 92.6

GC 0.81 0.92

Not Assigned (%) 0.0 14.1

Not assigned proteins are sequences for which no homologous (under the E-value thresh-

old) can be found in the RH dataset. Values are normalized on the number of assigned

sequences. Abbreviations: Cov: Coverage, Acc: Accuracy, nAcc: normalized Accuracy,

GAv: Geometric Average, Q: number of proteines correctly predicted, nQ: normalized

number of proteins correctly predicted, GC: Generalized Correlation: see the Materials

and Methods section for their definition.
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We predicted the localization for every protein in the RH dataset

with a BLAST search on the same dataset. The results of the assign-

ment based on the closest non identical homologue are shown on

Table 3. Setting a threshold for the E-value equal to 10�3 (corre-

sponding approximately to a local sequence identity higher than

25%) 86% of the RH sequences are similar to at least another

sequence of the set. A simple procedure based on transfer annotation

is then able to correctly assign 94% of the proteins (1974 chains).

When no E-value threshold is considered, and the annotation is

transferred from the closest homologous regardless of the sequence

identity level, the accuracy is still as high as 88%. Notably, this

performance is similar to that achieved by methods trained on the

same RH dataset: LOCSVMpsi (Xie et al., 2005), ESLpred (Bhasin

and Raghava, 2005) and SubLoc (Hua and Sun, 2001) that reach

overall accuracies (Q) as high as 90%, 88% and 79%, respectively.

The goal of a good predictor is to assign a subcellular localization

especially when no homology is detectable and for this a non-

redundant data set needs to be selected.

3.2 BaCelLo performances

Three non-redundant sequence sets were selected, for animals, fungi

and plants, respectively. In each set the sequences share less than

30% identity. We generated three eukaryotic datasets in order to

take into account the differences in the subcellular localization

mechanism between evolutionary distant kingdoms.

BaCelLo is a system of SVMs organized in a tree structure, which

exploits the information from the sequence composition and from

the sequence profile composition. The input of the SVMs considers

the whole sequence and different portion of the N- and C- termini,

which are likely to contain localization signals. However it does not

make explicit search for localization signal or implement annotation

transfer by homology. Different tree architectures have been tried

and the best performing one is adopted. The performance of

BaCelLo, computed on the test sets with a rigorous 10-fold cross

validation procedure, is shown in Table 4. The decision tree struc-

ture of our system allows to predict the subcellular location at

different stages with different accuracy. In all the kingdoms

extracellular/secretory proteins are well discriminated from intra-

cellular proteins. When the normalized overall accuracy is con-

sidered (nQ), BaCelLo at the first level of the tree (Fig. 1)

correctly discriminates 96%, 93% and 91% of the proteins from

fungi, animals and plants, respectively. This level of discrimina-

tion is achieved using information from the whole sequence

and from the N-terminal portions, where signal peptides are

supposed to be. Adding one more level, BaCelLo discriminates

among 3 classes: extracellular/secretory, nuclear/cytoplasmic and

mitochondrial/chloroplastic. The normalized overall accuracy

ranges from 89% in fungi to 84% in plants. At this stage the pre-

diction exploits the information extracted from the whole sequence

and from both the N- and the C-terminal portions. In the next step of

the decisional tree nuclear and cytoplasmic proteins are discrimi-

nated. Since up to date no conserved nor general localization signal

is known, this step is done using only information about the whole

protein. The performance on the four classes ranges between 75%

(fungi) and 74% (plants). For plant proteins an additional step is

introduced to separate mitochondrial from chloroplastic proteins.

Trying different input coding we verified that there is no advantage

in using information from both termini portions (data not shown).

For this reason the step exploits only the information from the whole

protein sequence. The overall accuracy achieved for plant proteins

is then 66% on 5 classes.

The data in Table 4 show that the best performance is reached in

discriminating extracellular proteins. Prediction at level 2, where

proteins of organelles are discriminated, is very good, while the

distinction between nuclear and cytoplasmic proteins (level 3) and

between chloroplastic and mitochondrial proteins (level 4) is more

problematic, leading to a quite poor coverage for cytoplasmic and

mitochondrial proteins and a quite poor accuracy for chloroplastic

proteins.

It is evident that the accuracy value of each class is strongly

influenced by the dimension of the class, being remarkably higher

in most abundant classes, namely nuclear in non-plants or nuclear

Table 4. 10-fold crossvalidation performances of BaCelLo on three kingdom-specific datasets

Level Classes Plants Animals Fungi

Cov nAcc Acc GAv nQ Q GC Cov nAcc Acc GAv nQ Q GC Cov nAcc Acc GAv nQ Q GC

1 Secr 85.4 95.3 64.8 90.2 90.6 94.9 0.72 90.8 95.6 90.7 93.2 93.3 94.3 0.87 94.3 97.7 76.9 96.0 96.0 97.5 0.84

Intr 95.8 86.7 98.6 91.1 95.8 91.2 95.8 93.5 97.7 94.5 99.5 96.1

2 Nucl/Cyto 80.4 76.0 80.4 78.2 84.4 84.7 0.73 92.9 82.9 94.6 87.8 86.6 91.0 0.78 91.2 83.2 96.7 87.1 89.0 89.9 0.78

Secr 85.4 89.8 64.8 87.6 90.8 85.0 90.7 87.9 94.3 92.8 76.9 93.5

Mito/Chlo 87.5 88.2 91.9 87.8 76.1 93.6 66.2 84.4 81.4 91.8 69.5 86.4

3 Nucl 71.9 69.1 75.7 70.5 74.1 79.2 0.65 64.8 67.8 84.9 66.3 74.2 73.8 0.67 67.1 65.7 87.0 66.4 75.8 70.1 0.66

Cyto 51.7 65.5 46.9 58.2 65.3 60.3 41.4 62.8 60.2 62.3 39.4 61.2

Secr 85.4 81.3 64.8 83.3 90.8 83.1 90.7 86.9 94.3 90.6 76.9 92.4

Mito/Chlo 87.5 78.1 91.9 82.7 76.1 87.4 66.2 81.6 81.4 83.8 69.5 82.6

4 Nucl 71.9 66.8 75.7 69.3 66.6 68.2 0.59

Cyto 51.7 61.6 46.9 56.4

Secr 85.4 80.0 64.8 82.7

Mito 50.7 77.3 54.0 62.6

Chlo 73.0 53.6 76.4 62.6

Abbreviations: See caption of Table 3 Secr: Secretory Pathway, Intr: Intracellular, Nucl: Nucleus, Cyto: Cytoplasm, Mito: Mitochondria, Chlo: Chloroplast.
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and chloroplastic in plants. This is due to the fact that also a great

rate of false positives on the most abundant classes gives a low

number of false positive on the other classes and then scarcely

affects the accuracy. Since the proportion of the classes in the

data set does not reflect any reliable a priori hypothesis, a more

meaningful evaluation can be carried out considering the normal-

ized parameters, defined in the Material and Methods section. It is

worth noticing that the balancing procedure leads to performances

in which the coverage and the normalized accuracy are similar for

each class, except in the case of chloroplasts and mitochondria in

plants, where the latter tend to be under-predicted. This may be due

to the under representation of mitochondrial proteins from plants

(67 examples of non-redundant mitochondrial proteins are known in

plants while 188 are known in both animals and fungi).

The performances of the three kingdom-specific predictors are

quite similar, but it is worth to noticing that merging the fungi and

the animal proteins, similarly to what the other predictors do, leads

to a poorer performance, in particular for fungi (data not shown).

3.3 Comparison with the other methods

The performance of BaCelLo has been compared to those of the best

publicly available methods for the prediction of the subcellular

localization. Some of them discriminate among three classes,

namely TARGETp (Emanuelsson et al., 2000), ProteinProwler

(Boden and Hawkins, 2005), SLP-local (Matsuda et al., 2005)

and Predotar (Small et al., 2004); others discriminate among

four classes in animals and five classes in plants and are Loctree,

SubLoc, ESLpred and LOCSVMpsi. pTARGET and Psort II (Nakai

and Horton, 1999) discriminate more classes than BaCelLo does,

however we did not consider these classes since very few redundant

examples are known. All the considered predictors, but pTARGET,

have been trained on a dataset at most derived from SWISS-PROT,

rel. 41. Then, in order to compare the performances, we retrained

BacCelLo using only the subset of training sequences that were yet

included in the release 41 of SWISS-PROT. The test and the com-

parison has been performed on the remaining sequences, up to

release 48, that, by construction, are less than 30% identical to

those of the training. It is important to note that some 30% proteins

of this test set share identity with proteins included in SWISS-PROT

41, so that methods different from BaCelLo can still have some

homology with the training set. Moreover, when comparing with

pTARGET it has to be kept in mind that it was developed using

proteins derived from release 46 of SWISS-PROT and then that it

has been successively updated.

Predictions were run with default options, except for

LOCSVMpsi, for which the four class classification option was

selected. For the predictors that consider more than four classes,

proteins predicted in classes not considered by BaCelLo are con-

sidered as badly assigned.

On the fungi dataset (Table 5), BaCelLo outperforms the other

methods by at least 7% in terms of normalized overall accuracy,

for the three classes predictions and 14% for the four classes ones.

It performs remarkably better in discriminating secreted and mito-

chondrial proteins, even when compared with TARGETp, Proteins

Prowler and Predotar that are explicitly designed to recognize

signal and target peptides for these localizations. Furthermore we

achieve the best average prediction (GAv) in each class and, out-

performing other methods, a good balancing between coverage

(Cov) and normalized accuracy (nAcc). As a general consideration,

most of the methods achieve on this test a worse performance than

that reported in the original papers, corroborating the notion that

the redundancy of their data sets affects the generalization perfor-

mances. Similar considerations are valid for the animal test set

(Table 5). In this case the improvement with respect to other

methods is about 5% on four classes. All the predictors perform

worse on the animal set than on the fungi set. However the large

improvement of the BaCelLo performances in predicting fungal

proteins confirms the advantage in implementing a fungal-specific

predictor.

3.4 Genome predictions

We adopted BaCelLo for high-throughput prediction of protein

subcellular localization. Five proteomes have been tested in

order to estimate the composition of protein localization. We pre-

dicted the localization of proteins from H. sapiens, M. musculus and

C. elegans for animals, S. cerevisiae for fungi and A. thaliana for

plants. Membrane proteins predicted with SpepLip (Fariselli

et al., 2003) and ENSEMBLE (Martelli et al., 2003) were excluded

from the set predicted with BaCelLo. The results of this large

scale analysis are reported in Table 6, where both the number

and the frequency of proteins predicted in each class are listed.

In all the examined proteomes the sum of nuclear and cytoplasmic

proteins accounts for about 50-60% of all proteins. Protein local-

ization composition for Human and Mouse are very similar, as

Table 6. Prediction of protein localization for whole genomes

H.sapiens M.musculus C.elegans S.cerevisiae A.thaliana

Nucl 8725 (26%) 6811 (24%) 5878 (23%) 2078 (32%) 7050 (25%)

Cyto 10399 (31%) 10909 (31%) 6674 (26%) 1611 (25%) 6033 (20%)

Secr 4960 (15%) 5417 (15%) 4767 (19%) 227 (3%) 3001 (10%)

Mito 2452 (7%) 2793 (8%) 1516 (6%) 971 (15%) 963 (3%)

Chlo 4875 (16%)

Memb 7017 (21%) 7610 (22%) 6879 (25%) 1657 (25%) 8078 (26%)

Total 33553 35340 25714 6544 30600

For each species the number of proteins predicted in each localization and the Percentage with respect to the total are shown. Abbreviations: Secr: Secretory Pathway, Nucl: Nucleus,

Cyto: Cytoplasm, Mito: Mitochondria, Chlo: Chloroplast, Memb: Membrane.
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expected, while C. elegans contains about the same number of

secreted and membrane proteins as the other animals, but signifi-

cantly fewer proteins in the nucleus and cytoplasm. S. cerevisiae is

a unicellular organism, not endowed with an extracellular matrix

nor communicating with other cells. Interestingly and accordingly,

only 3% of its proteome is predicted as secreted. Concerning plants,

up to 19% of the A. thaliana proteins are directed to organelles and

more than 80% of them are directed to chloroplasts. The results are

available at http://www.biocomp.unibo.it/bacello.

3.5 Comparison with high-throughput

experimental data

As a proof of the reliability of the prediction of BaCelLo we

compared predictions with data obtained with high-throughput

methods in A.thaliana and in yeast. The PLPROT data base

contains 499 annotated chloroplast proteins from A.thaliana and

we correctly assign 53% of them, an amount similar to that reported

for LocTree. From the Yeast GFP fusion database we extracted

2618 sequences experimentally annotated: 483 ‘mitochondrial’,

496 ‘nuclear’, 818 ‘cytoplasmic’ and 821 ‘nuclear and cytoplas-

mic’. The performance on mitochondrial proteins is 87%. The rate

of correct prediction for nuclear and cytoplasmic proteins reaches

about 50%. Nevertheless considering ‘nuclear’, ‘cytoplasmic’ and

‘nuclear and cytoplasmic’ proteins together, level 2 of our predictor

correctly assigns 88% of proteins.

4 CONCLUSIONS

BaCelLo is a new method for predicting the subcellular localization

of a protein sequence from animals, fungi or plants. Three kingdom-

specific sets of parameters have been inferred from non-redundant

data sets of annotated proteins. This is at the basis of the imple-

mentation of the first de novo predictor specific for animals and

fungi. The reduction of the redundancy of the training sets guar-

antees the generalization capability of BaCelLo. We prove that

predictors trained on very redundant data sets don’t perform better

than a simple annotation transfer based on a BLAST search.

The key feature of BaCelLo is the procedure to balance the

prediction scoring indexes, overcoming the biases in the dataset

composition. BaCelLo outperforms other predictors on a test set

of proteins that don’t share identity with sequences used for training.

Furthermore BaCelLo can be easily used for large scale analysis of

whole genomes to produce an estimate and annotation of the protein

content in each subcellular compartment.

BaCelLo is available at the site http://www.biocomp.unibo.it/

bacello.
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ABSTRACT

Motivation: Gene expression profiling is a powerful approach to

identify genes that may be involved in a specific biological process

on a global scale. For example, gene expression profiling of mutant

animals that lack or contain an excess of certain cell types is a common

way to identify genes that are important for the development and

maintenance of given cell types. However, it is difficult for traditional

computational methods, including unsupervised and supervised

learning methods, to detect relevant genes from a large collection of

expression profiles with high sensitivity and specificity. Unsupervised

methods group similar gene expressions together while ignoring

important prior biological knowledge. Supervised methods utilize train-

ing data from prior biological knowledge to classify gene expression.

However, for many biological problems, little prior knowledge is

available, which limits the prediction performance of most supervised

methods.

Results: We present a Bayesian semi-supervised learning method,

called BGEN, that improves upon supervised and unsupervised

methods by both capturing relevant expression profiles and using

prior biological knowledge from literature and experimental validation.

Unlike currently available semi-supervised learning methods, this new

method trains a kernel classifier based on labeled and unlabeled

gene expression examples. The semi-supervised trained classifier

can then be used to efficiently classify the remaining genes in the data-

set. Moreover, we model the confidence of microarray probes and

probabilistically combine multiple probe predictions into gene predic-

tions. We apply BGEN to identify genes involved in the development

of a specific cell lineage in the C. elegans embryo, and to further

identify the tissues in which these genes are enriched. Compared to

K-means clustering and SVM classification, BGEN achieves higher

sensitivity and specificity. We confirm certain predictions by biological

experiments.

Availability: The results are available at http://www.csail.mit.edu/

~alanqi/projects/BGEN.html

Contact: hge@wi.mit.edu or gifford@mit.edu

1 INTRODUCTION

Gene expression profiling is a powerful approach to probe global

transcriptional programs underlying biological processes. However,

it is a challenge to identify candidate genes with high sensitivity and

specificity from large compendia of gene expression profiles.

For example, in order to uncover transcriptional changes relevant

to the development of certain cell types, gene expression profiles are

often compared between wild-type animals and mutants that lack or

contain an excess of the cell types (Reinke et al., 2000; Furlong

et al., 2001; Gaudet & Mango, 2002; Robertson et al., 2004; Baugh

et al., 2005). Genes that are spatially or temporally enriched can be

identified in this way and then tested to confirm their expression

patterns. In these cases, gene expression data are usually obtained

from whole animals instead of single cells, so differential expres-

sion may be partially masked.

Unsupervised clustering methods have been applied to expression

profiles to identify candidate genes (Eisen et al., 1998). Clustering

methods group together genes with similar expression profiles by

modeling the distribution of an entire dataset. However, they do not

incorporate knowledge about genes that are already known to be

differentially expressed. Consequently, genes clustered together are

coherent in terms of expression profiles, yet they may have diverse

biological functions.

Another approach to identify candidate genes is to use supervised

classification methods. These methods train a model using prior

biological knowledge of gene expression, including known regula-

tors and experimentally confirmed candidate genes, and use the

trained model for predictions on other genes. However, for many

biological processes, either only a few key regulators have been

identified, or only a few candidates are experimentally verified. Most

classification methods, including Support Vector Machines (SVMs),

use training data on known regulators and confirmed candidate

genes. Therefore, with a limited amount of training data, it is difficult

for supervised methods to achieve accurate predictions.

We propose a semi-supervised learning method that combines

the advantages of supervised classification with the benefits of

unsupervised clustering. We call this method BGEN (Bayesian�To whom correspondence should be addressed.
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GENeralization from examples). By using information from both

prior biological knowledge and the entire expression dataset, BGEN

allows us to perform accurate predictions even when we only

have scarce information about the known regulators. There have

been a large number of approaches proposed in recent years for

semi-supervised learning and the spectrum of these approaches

include random walks, spectral methods (Belkin & Niyogi, 2004;

Joachims, 2003; Zhou et al., 2004; Zhu et al., 2003), and

information-regularization (Szummer & Jaakkola, 2003). BGEN

differentiates itself from these previous semi-supervised learning

approaches in the following ways. First, it provides a principled

kernel classifier to classify new data points. Second, we offer

a computationally efficient way to choose parameters of the

method. Third, specific to microarray data, BGEN explicitly models

probe confidence and probabilistically combines predictions from

multiple probes corresponding to the same gene.

We apply BGEN to analyze development and differentiation

of a specific cell lineage in the C. elegans embryo. C. elegans is

a free-living soil nematode widely used in developmental biology.

The adult nematode contains 959 somatic cells. Embryonic cell

divisions from a fertilized egg have been traced by microscopy

and the cell division patterns are invariant (Sulston et al., 1983).

The early asymmetric divisions produce six founder cells: AB, MS,

E, C, D and P4. Each of these founder cells maintain a distinct

pace of cell divisions and produce a specific subset of tissues and

cell types. In this paper, we focus on the differentiation of the C

lineage, which mainly gives rise to epidermis and muscle cells.

Using previously published expression profiles of wild-

type and mutant C. elegans embryos (Baugh et al., 2005), we identify

genes enriched in C lineage and compare the prediction results of

BGEN to those of K-means clustering and SVM classification.

BGEN outperforms them with improved sensitivity and

specificity. We further classify the candidate C-lineage genes

from the whole genome into two sub-categories: epidermis

enriched genes and muscle enriched genes. The classification is vali-

dated by the experimental results obtained by Baugh et al. (2005). To

further validate our methodology, we experimentally test one

gene predicted to be enriched in C-lineage epidermis cells

and one gene predicted to be enriched in C-lineage muscle

cells. Our experimental results are consistent with our predictions.

2 APPROACH

We begin with a gene expression compendium, X¼ {x1,.., xn+m} where

xi is the feature vector extracted from the gene expression of probe i. We

also have a few (n) labeled genes and their corresponding probes, for

which XL ¼ {x1, . . . ,xn} are labeled as tL¼{t1, . . . , tn}, and many

unlabeled probes XU ¼ {xn+1, . . . , xn+m}. Each label ti is a binary

variable. For identification of C-lineage specific genes, labels 1 and

�1 correspond to C-lineage and non-C-lineage genes, respectively.

For classification among C-lineage candidate genes, labels 1 and �1

correspond to epidermis and muscle enriched genes, respectively.

Similar to traditional classification methods, we will classify a

data point xi based on a classifier w. Given w, the probability of the

label ti ¼ 1 for xi in X is

pðti j xi‚wÞ ¼ Qðtiw
TfðxiÞÞ ð1Þ

where Q(·) is a link function that maps a continuous unbounded

value into a value between 0 and 1, and f(·) is a basis function,

allowing nonlinear separation of data points. Equation (1) is known

as the likelihood function of the data (ti, xi). We assume that the

data labels are conditionally independent of each other given

the input and the classifier, such that p(tL jXL, w) ¼Q
i:i2{1, 2, . . . , n}Q(tiw

Tf(xi)). Later, we will discuss the likelihood

function in more detail.

What distinguishes BGEN from traditional classification or

clustering methods is the following: while traditional methods

uses either labeled or unlabeled information, BGEN employs

the information in both labeled and unlabeled data points. We

achieve this by both assigning a data dependent prior p(w jX),

which contains the information in unlabeled data points XU, and

using the likelihood p(tL jXL, w), which encodes labeled infor-

mation. We fuse the information in labeled and unlabeled data

points by the Bayes rule to compute the posterior distribution

p(w jX, tL).

Unlike the maximum likelihood or maximum a posteriori

approach, which are both point estimates of w for prediction, we

average our predictions for ti based on the posterior distribution

p(w jX, tL) to classify unlabeled data points. Note that when given a

new data point that is not in the training set X, we can easily classify

it based on the classifier posterior p(w jX, tL).

Moreover, in microarray datasets, a gene often corresponds to

multiple probes. Therefore, we combine probabilistic predictions

of multiple probes to classify their corresponding gene as well as to

obtain classification confidence.

In the following subsections we present the prior and the likeli-

hood distributions, describe how to compute the posterior distribu-

tions for classifier w and for label ti, and show how to combine

multiple probe predictions for gene classification, and describe

experimental approaches to confirm our predictions.

2.1 From graph regularization to prior on classifiers

The prior plays a significant role in semi-supervised learning,

especially when there is only a small amount of labeled data. In

those cases, the prior greatly influences the posterior distribution,

since the information from the data likelihood is relatively weak.

It is not an easy task to design a sensible prior on w that incor-

porates the information in the data X. So instead of finding a

good prior on w directly, we first introduce a latent vector to w,

for which it is relatively easy to assign a prior that contain the data

information. Specifically, we introduce a latent vector y ¼
[y1, . . . , yn+m]T:

yi ¼ wTfðxiÞ

where yi can be viewed as a soft label for the data point xi and can

be converted into the hard label ti through the link function Q(·).

Setting H ¼ [f(x1), . . . ,f(xn+m)] yields

y ¼ HTw ð2Þ

If we give a prior on the label y conditional on the data X, we

can then transform the prior p(y jX) to the prior p(w jX) on the

classifier w.

Intuitively, we want the prior p(y jX) to impose a smoothness

constraint on the soft labels and to encourage similar labels between

similar data points. Inspired by graph regularization (Zhou et al.,
2004) we use similarity graphs and their transformed Laplacian to

induce priors on the soft labels y.
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To construct the prior p(y jX), we first form an undirected

similarity graph over the data points. The data points are the

nodes of the graph and the edge-weights between the nodes are

based on similarity. This similarity is usually captured using a

kernel function k(xi, xj). Examples of kernels include Gaussian

and polynomials kernels. For Gaussian kernels, k(xi, xj) ¼
exp(kxi�xjk2/s2) where the kernel width s controls the similarity

between xi and xj. Given the dataset X and a kernel, we can con-

struct an (n +m) · (n +m) kernel matrix K, where Kij ¼ k(xi, xj) for

all i, j2{1, . . . ,n+m}. Note that the kernel matrix for semi-

supervised learning involves both labeled and unlabeled data points.

This is different from SVM kernels, which are defined by labeled

data points only.

Given the similarity graph, we transform the kernel matrix K

associated with the graph into the combinatorial Laplacian or the

normalized Laplacian. Let us construct a matrix ~KK the same as the

matrix K, except that the diagonal elements of ~KK are set to zero,

and define a diagonal matrix G where Gii ¼
P

j
~KKij. The combina-

torial Laplacian D and the normalized Laplacian ~DD of the graph are

defined as

D ¼ G � ~KK ð3Þ

~DD ¼ I � G�
1
2 ~KKG�

1
2 ð4Þ

where I is the identity matrix. Both the Laplacians are symmetric

and positive semidefinite. For brevity, we slightly abuse the

notation by using D for both the Laplacians. The construction of

these Laplacian matrices are based on graph regularization theories.

We impose a regularizer preferring soft labeling for which the norm

yTDy is small. In a Bayesian framework, we assign a Gaussian prior

distribution on y:

pðy jXÞ / e�
1
2

yTDy / Nðy j 0‚D�1Þ ð5Þ
where N (· j 0, D�1) denotes a Gaussian probability function

with mean 0 and variance D�1. We can adjust the Laplacian mat-

rices by changing their eigen-spectrum. Here, we use the normal-

ized Laplacian matrices and add diagonal matrices with small

values to them, avoiding the matrix inversion singularity.

Given the Gaussian prior on the labels y, we construct the prior

on the classifier w as follows:

S ¼ ðHTÞ�1D�1ðHTÞ�1 ð6Þ

pðw jXÞ ¼ Nðw j 0‚SÞ ð7Þ

where (HT)�1 is the pseudo-inverse of H
T. This prior p(w jX) is

consistent with the prior p(y jX) under the constraint between y and

w, i.e., y ¼ HTw. Again, we add some small positive values to

the diagonal elements of S to enhance its stability.

2.2 Modeling probe confidence by likelihood

Assuming conditional independence of the observed labels, we have

the factorized likelihood function pðtL j yÞ ¼
Qn

i¼1 QðtiwTfðxiÞÞ.
The likelihood function Q(tix

T
i w) for each data point models the

probabilistic relation between the observed label ti and the input

feature vector f(xi). Gene expression datasets often contain noise,

which may lead to labeling errors. Also, the qualities of different

probes may vary. To model the probe confidence, we adopt the

following flipping-error likelihood:

Qðtiw
TfðxiÞÞ ¼ eið1 � stepðtiwTfðxiÞÞÞ

+ ð1 � eiÞstepðtiw
TfðxiÞÞ

¼ ei + ð1 � 2eiÞstepðtiwTfðxiÞÞ
ð8Þ

where step(·) is a step function such that step(tiw
Tfxi)) ¼ 1 if

tiw
Tf(xi) >¼ 0 and step(tiw

Tf(xi)) ¼ 0 if tiw
Tf(xi) < 0, and ei

models the uncertainty from the noise. This admits labeling errors

with probability {ei}. In our dataset, we have multiple probes that

correspond to the same gene. The probe that is the closest to the

most 30 end of a gene more accurately measures the expression level

of the given gene than the other probes, because the reverse tran-

scription and amplification procedures introduce a bias against

probes that are further away from the 30 end. To model this effect,

we set

ei ¼
el if probe i is most 30

eh if probe i is not most 30

(

where el > eh. By doing so, we give non-30 probes a higher error rate

than 30 probes. Since this likelihood (8) explicitly models the label-

ing error rate, the model should be more robust to the presence of

labeling noise in the data.

2.3 Computing the classifier posterior

Given the prior and the likelihood, the classifier posterior is

pðw jX‚tLÞ / pðw jXL‚ XUÞ
Yn
i¼1

Qðtix
T
i wÞ ð9Þ

Because of the nonlinear likelihood terms, we can not compute the

exact posterior in a closed form. Instead of using computationally

expensive Monte Carlo methods, we apply an efficient deterministic

Bayesian approximation technique, expectation propagation (EP)

(Minka, 2001; Qi, 2004), to obtain a Gaussian approximation of the

posterior p(w jX, tL). By exploiting the multiplication form (9) of

the posterior, we iteratively refine the approximation of each like-

lihood term, eventually achieving an accurate approximate poster-

ior. The algorithmic details for EP approximation of Gaussian

classifiers can be found in Minka (2001).

2.4 Computing and combining probe predictions

As mentioned before, multiple probes are used to measure the expres-

sion levels of the same gene in the dataset we analyze. BGEN can

classify each probe based on the classifier posterior p(w jX, tL). To

combine multiple probe predictions, we use a soft decision procedure.

Instead of simply averaging the binary probe classification results, we

compute the predictive posterior probability for each probe and

average these predictive posteriors for all corresponding probes to

obtain the prediction for each gene. Specifically, given the approxi-

mate classifier posterior p(w jX, tL)
N (w jmw, Vw), where mw and

Vw are obtained from the EP approximation, we compute the

predictive posterior for a probe as follows:

pðti jX‚tLÞ ¼
Z

pðti jwÞpðw jX‚ tLÞdw ð10Þ

¼ ei + ð1 � 2eiÞwðzÞ ð11Þ
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where

z ¼ tifðxiÞTmwffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðxiÞVwfðxiÞ

p ð12Þ

and w(·) is the cumulative distribution function of a Gaussian

with mean 0 and variance 1. Equation (12) shows that the predictive

posterior is controlled not only by the posterior mean mw of the

classifier, but also by the uncertainty, the variance Vw for the trained

classifier. We average the predictive posteriors of the probes

corresponding to the same gene k to obtain a gene predictive

probability p(genek jX, tL). Note that non-30 probes contribute

less to the gene prediction, since with a larger ei their predictive

posteriors are less informative than the predictive posteriors of

30 probes.

2.5 Automatic hyperparameter tuning

BGEN has a few hyperparameters, including kernel width s and

probe confidence levels el and eh. To achieve a good test perfor-

mance, we need to tune these hyperparameters. Here we adopt

an automatic procedure to estimate them in a principled way. As

a side-product of EP for our Bayesian learning, we estimate the

approximate-leave-one-out error count or probability without car-

rying out leave-one-out cross-validation. The details can be found in

Qi et al. (2004). We use the approximate leave-one-out error proba-

bility to estimate these hyperparameters.

2.6 Experimental validation of gene expression

patterns

We examine gene expression patterns by using a reporter assay.

We fuse selected gene promoters to yellow fluorescence protein

(YFP) and a dominant rol-6 gene by PCR (Hobert, 2002). 50

genomic sequences up to the next upstream gene are used as pro-

moters. YFP is amplified from pPD132.112 (Fire et al., 1990). The

rol-6 gene, a co-transformation marker, is amplified from pRF4

(Mello et al., 1991). Transgenic lines are obtained by injection

of the reporter constructs. Chromosomal integration is performed

by gamma irradiation. Using fluorescence microscopes we observe

expression patterns of reporter genes in embryos from integrated

transgenic lines.

3 RESULTS

This section describes the expression profile dataset used for

our task, presents our prediction results for genes enriched in the

C lineage, and compare the prediction accuracy of BGENs with

those of K-means and SVMs. Finally, we confirm some predictions

with biological experiments.

3.1 Summary of expression dataset

Baugh et al. (2005) profiled global gene expression for wild-type

C. elegans embryos and two types of mutant embryos at 0, 23, 41,

53, 66, 83, 101, 122, 143, and 186 minutes after 4-cell stage.

Embryos of the pie-1;pal-1 (RNAi) genotype lack C-lineage

cells, while embryos of the mex-3;skn-1 (RNAi) genotype bear

excess C-lineage cells (Figure 1).

Expression patterns of selected reporter genes in C. elegans
embryos reflected whether these candidates were specific to the

C lineage, and the confirmed candidates could be further classified

as epidermis or muscle enriched (Baugh et al., 2005). Among the

40 candidates tested, 25 were confirmed to be C-lineage enriched. A

non-specific gene list comes from an RNAi screen that identified

661 genes required for the first two cell divisions of the C. elegans
embryo (Sonnichsen et al., 2005). The first two cell divisions

occur well before the development of C lineage and these genes

are believed to encode proteins for the basic mitotic machinery.

Therefore, these genes are likely not to be specific to any lineage

development.

3.2 Semi-supervised learning and comparison with

K-means clustering and SVM classification

We use experimentally confirmed C-lineage genes reported by

Baugh et al. (2005) as labeled positive examples, and use the

non-specific genes required for early cell divisions as labeled

negative examples.

For each gene, we calculate the difference of its expression

levels in mex-3;skn-1 (RNAi) embryos and pie-1;pal-1 (RNAi)

embryos at each time point, and use the ratios of this difference

over the expression level in wild-type embryos as extracted features

for clustering and classification. The maximum value of the ratios

during development is also used as an extracted feature.

Fig. 1. Use of wild-type and mutant embryos to identify genes enriched in C lineage (adapted from Baugh et al. (2005)). Cell lineages are illustrated for wild-type

embryos (middle), embryos of pie-1;pal-1 (RNAi) genotype (left), and embryos of mex-3;skn-1 (RNAi) genotype (right). C and EMS lineages are shown in red

and purple, respectively.
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We compare BGEN with K-means clustering and SVM classi-

fication. First, we perform K-means clustering, which does not

use the labeled information at all. The performance of K-means

depends on the number of clusters which is unknown a priori. We

use Silhouette scores to determine the optimal number of clusters

(Kaufman & Rousseeuw, 1990). The Silhouette scores measure

the tightness of a cluster and the separation of the given cluster

from other clusters. More specifically, the Silhouette scores show

how close a data point in one cluster is to data points in the

neighboring clusters. The score ranges from +1, indicating that

data points in one cluster are close to one another and are distant

from data points in neighboring clusters, to �1, indicating the

opposite. We compute the average Silhouette scores for all

genes in the dataset. K-means with 2 clusters has the highest

average score 0.8481. This score suggests that the two clusters

obtained by K-means are coherent among themselves and

well-separated from each other. To evaluate the capability of

K-means to detect C-lineage genes, we designate a cluster to

be C-lineage cluster if the ratio of labeled C-lineage genes to

all genes in that cluster exceeds a specified threshold between

0 and 1; otherwise we designate it as a non C-lineage cluster.

Genes in a C-lineage cluster are predicted to be C-lineage

genes, and vice versa. We vary the threshold value and average

the detection results over 200 runs with random initializations. The

Receiver Operating Characteristic (ROC) curve from the averaged

detection results is shown in Figure 2. K-means clustering

performs poorly in terms of detecting C-lineage genes, though

the clustering achieves a high average Silhouette score. The under-

lying reason may come from the fact that K-means clustering

ignores any prior biological knowledge and purely depends on

the expression dataset, and that C-lineage expression profiles

are diverse.

For BGEN and SVM, we use experimentally confirmed C-lineage

genes reported by Baugh et al. (2005), excluding genes used as

positive training data, to evaluate the sensitivity. We use the non-

specific genes required for early cell divisions, excluding genes used

as negative training data, to assess the specificity.

For SVM training, we construct a pool of representative positive

labels: pal-1, vab-7, cwn-1, elt-1, elt-3, mab-21, hnd-1 and hlh-1.

Each time 4 genes are randomly selected from this pool and serve as

positive training examples. We randomly select 20 genes as nega-

tive training examples from the non-specific genes. We test the

SVM prediction performance on the rest of the labeled data points.

For BGEN, we use the same labeled examples, as well as about

900 unlabeled examples for training. We repeat this training and

prediction procedure 10 times. We use Gaussian kernels for both

SVM and BGEN. The regularization and kernel widths of SVM are

tuned by leave-one-out cross-validations. For BGEN, both the

kernel width and probe confidence levels are tuned based on the

approximate leave -one-out error probability without actually car-

rying out leave-one-out cross -validations, as described in section

2.5. Based on the averaged prediction results, we plot ROC curves

for BGEN and SVM (Figure 2). Overall BGEN performs sig-

nificantly better than SVM. For example, with the same 80%

specificity (i.e.,20% false positive rate), BGEN achieves 99%

sensitivity (i.e., true positive rate), while SVM achieves only

82% sensitivity. Moreover, BGEN clearly outperforms K-means

clustering in terms of detecting C-lineage genes as shown in

Figure 2.

3.3 Whole genome prediction of C-lineage genes

Having tested the efficacy of BGEN, we predict C-lineage genes

in the whole genome. We use 20 negative examples and all positive

examples except for pal-1, because pa1-1 is a maternally-supplied

regulator while we are interested in identifying genes which are

active in zygotic transcription during development. With 97%

specificity evaluted by the non-specific gene set, we predicted

317 genes as enriched in C lineage, in addition to the previously

confirmed C-lineage genes.

Our whole genome prediction is highly efficient in the sense that

we use a kernel classifier pre-trained in a semi-supervised fashion

to classify whole genome. This is different from many previous

semi-supervised learning methods (Joachims, 2003; Zhou et al.,
2004; Zhu et al., 2003), where either a re-training or a simple

nearest-neighbor classifier is needed to classify new data points

in addition to the training set.

BGEN may reduce potential false-positives from the original

analysis. For example, F45E4.9(hmg-5), a HMG-box containing

protein, which was previously predicted to be enriched in C lineage

while our method classifies it as a non-C- lineage gene with a

probabilistic confidence of 0.10. The experimental result showed

that the expression pattern of F45E4.9 is not specific to the C

lineage. This is also consistent with other reports in the literature

that F45E4.9 is ubiquitously expressed in C. elegans embryos (Im &

Lee, 2003). Another example is Y71F9AL.17, an uncharacterized

gene that may be involved in intracellular trafficking and vesicular

transport. Y71F9AL.17 was previously identified as a C-lineage

candidate gene. In our analysis this gene receives a probabilistic

confidence of 0.46 and is classified as non-C-lineage (Figure 3). The

result of biological experiment was consistent with our prediction.

To visualize our predictions, we plot representative expression

profiles for C-lineage genes and non-C-ineage genes with high pre-

diction confidence (Figure 3). D1005.2 and F54D7.4 (the first

column), two high-confidence C-lineage genes, are up- regulated
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Fig. 2. Receiver Operating Characteristic (ROC) curves of BGEN, SVM, and

K-means. Our semi-supervised learning method BGEN outperforms both

SVM and K-means.
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in mex-3; skn-1 (RNAi) embryos during development. F52E4.7 and

F36A2.6 (the second column), two high-confidence non-C-lineage

genes, do not exhibit such up-regulation of expression. The two

examples of false-positives (F45E4.9 and Y71F9AL.17) by the pre-

vious analysis are also plotted. These two genes are prone to mis-

prediction since they are up- regulated in mex -3; skn-1 (RNAi)

embryos. These examples illustrate the capability of BGEN to

distinguish C-lineage genes from non-C-lineage genes even in

some subtle cases.

3.4 Predictions of C epidermis and C muscle genes

During embryonic development, C-lineage cells differentiate

into epidermis and muscle cells. Epidermis and muscle enriched

genes are likely to exhibit slightly different expression profiles in

wild-type and mutant embryos. Given our whole genome predic-

tions of C-lineage genes, we apply BGEN to further distinguish the

C- lineage genes as epidermis or muscle enriched. Baugh et al.
(2005) showed by reporter assay that among the confirmed

C-lineage genes, 15 were specifically expressed in epidermis

cells and 4 were specifically expressed in muscle cells. We use

this information to train and evaluate K-means, SVM, and

BGEN. In addition to the normalized features used in 3.3,

2-level Daubechies wavelet decomposition of the difference

features that explicitly represents the temporal and frequency

information in the data is also computed as features.

Similar to what we have done before, we use the Silhouette

scores to determine the number of clusters for K-means. For

SVM and BGEN, we randomly select 6 epidermis and 2 muscle-

genes and use them as training data. We use the rest of

experimentally confirmed genes as the test set, which includes

9 epidermis genes and 2 muscle genes for each run. We repeat

this procedure 5 times.

We evaluate the average area under the ROC curves for these three

methods. For K-means, we compute the ROC curve using the same

method as in the previous section. The average area under the ROC

curve of BGEN is 0.80, indicating its prediction potential. The aver-

age areas achieved by K-means and SVM are only 0.56 and 0.50

respectively, indicating the failure of the K-means and SVM predic-

tions. This further demonstrates the advantage of our semi- super-

vised learning method. For the run in which BGEN achieves the

largest area under the ROC curve, we correctly predict all 9 epidermis

genes and 2 muscle genes in the test set. The prediction accuracy

achieved by BGEN suggests the epidermis genes and muscle genes

may be separable from each other in terms of expression profiles.

However, this prediction accuracy should not be over- interpreted,

because both the training and testing datasets are small. In the future,

more labeled data and additional microarray datasets may be

integrated to improve the predictions. The lists of predicted C

epidermis and C muscle genes can be downloaded at http://www.

csail.mit.edu/~alanqi/~projects/BGEN.html.

3.5 Experimental verification of predictions

We predict K01A2.5 and R11A5.4, two uncharacterized genes,

as enriched in C lineage. These two genes were also identified

in previous analysis as C-lineage candidates but were not tested

(Baugh et al., 2005). We further identify K01A2.5 as epidermis

enriched and R11A5.4 as muscle enriched. We examine their

expression patterns by reporter assay. The expression patterns

Fig. 3. Expression profiles of prediction examples. Red lines represent expression profiles in mex-3;skn-1 (RNAi) embryos. Green lines represent expression

profiles in pie-1;pal-1 (RNAi)embryos. Blue dotted lines represent expression profiles in wild-type embryos. D1005.2 and F54D7.4 are high-confidence

predictions of C-lineage genes. They receive confidence scores of 0.99 and 0.98, respectively. F52E4.7 and F36A2.6 are high-confidence predictions of non-C-

lineage genes. They both receive confidence scores of 0.01. F45E4.9 and Y71F9AL.17 are less obvious examples. They receive confidence scores of 0.10 and

0.46, respectively, and are classified as non-C-lineage specific genes. Baugh et al. (2005) identified F45E4.9 and Y71F9AL.17 as C -lineage genes in their data

analysis, but subsequent experimental results showed that these two genes were not specific to the C lineage.
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of reporter genes in C. elegans embryos are consistent with our

predictions (Figure 4). The reporter gene that contains K01A2.5

promoter is expressed in C epidermis cells, and the reporter gene

that contains R11A5.4 promoter is expressed in C muscle cells. The

experimental results support that our methodology yields relevant

biological insights to elucidate developmental processes.

4 CONCLUSIONS

We have developed BGEN, a novel semi-supervised learning

method, which utilizes both large-scale expression datasets and

prior biological knowledge to identify target genes. Using

BGEN, we have predicted genes enriched in C lineage during

C. elegans embryonic development, and have further classified

C-lineage candidate genes according to tissues where they are

enriched. In comparison with unsupervised K-means clustering

and supervised SVM classification, our semi-supervised learning

method achieves higher sensitivity and specificity. We experi-

mentally confirm two examples from our predictions, which further

supports our methodology. As a powerful computational tool,

BGEN can be used to refine target selection from large-scale

expression datasets for many other biological problems in the

future.
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ABSTRACT

Motivation: The reliable identification of presence or absence of bio-

logical agents (‘‘targets’’), suchasvirusesorbacteria, is crucial formany

applications from health care to biodiversity. If genomic sequences of

targets are known, hybridization reactions between oligonucleotide

probes and targets performed on suitable DNA microarrays will allow

to infer presenceor absence from theobservedpattern of hybridization.

Targets, for example all known strains of HIV, are often closely related

and finding unique probes becomes impossible. The use of non-unique

oligonucleotides with more advanced decoding techniques from

statistical group testing allows to detect known targets with great suc-

cess. Of great relevance, however, is the problem of identifying the

presenceof previouslyunknown targetsor of targets that evolve rapidly.

Results: We present the first approach to decode hybridization

experiments using non-unique probes when targets are related by a

phylogenetic tree. Using a Bayesian framework and a Markov chain

MonteCarlo approachweareable to identify over 94%of known targets

andassignup to 70%of unknown targets to their correct clade in hybrid-

ization simulations on biological and simulated data.

Availability:Software implementing themethoddescribed in thispaper

and datasets are available from http://algorithmics.molgen.mpg.de/

probetrees.

Contact: alexander.schliep@molgen.mpg.de, Sven.Rahmann@

cebitec.uni-bielefeld.de

1 INTRODUCTION

Identifying biological targets. Identifying viruses infecting a

patient, detecting bacteria spoiling food, or deciding whether a

water sample is safe for humans to drink are tasks which share

the same underlying problem: to identify certain targets in bio-

logical (DNA) samples. Targets refer to the biological agents,

the viruses, bacteria or other organisms that we want to detect.

Recent developments in the Avian influenza pandemic brought

virus identification into the front-news spotlight. In addition to

accurately determining the lethal virus strain [Putonti et al.,
2006], it is crucial to screen humans and animals, which might

host several viruses and thus allow cross-species recombination.

More optimistic applications of target detection are the study of

biodiversity, say on the microbial level, and environmental micro-

biology. The target identification problem is also central in the area

of biothreat reduction.

In clinical applications, target identification has classically been

achieved for individual targets with unique markers such as staining

techniques for specific antibodies. While one test per potential target

is acceptable for many medical applications, it is not a cost-effective

strategy if the number of potential targets is large, if several targets

might be present simultaneously, or if many samples must be

investigated. In South Africa for example, HIV super-infections,

i.e., simultaneous infections with multiple HIV strains, are much

more prevalent than in the Western world. In these cases, clinical

marker kits for strain identification are more prone to failure.

Approaches based on unique probes. One experimental assay

widely used in molecular biology is the hybridization reaction of

fluorescently labeled DNA or RNA molecules to complementary

DNA or RNA. Such hybridization reactions can be used for target

detection if (partial) genomic sequences of targets are available.

Often, short oligonucleotide DNA microarrays are used as techno-

logy platform (the approach in principle generalizes to other

hybridization-based technologies). Assuming ideal conditions, we

would select one specific oligonucleotide probe that hybridizes to its

intended target only and does not cross-hybridize to any other target.

Subsequently, we detect presence and absence of targets in a sample

from the observed hybridization pattern. This unique probe
approach has been originally developed for the design of gene

expression DNA microarrays using oligonucleotide probes (e.g.,

[Kaderali and Schliep, 2002; Rahman, 2003a]). However, in the

applications described above, targets are often closely related and

thus unique probes cannot be found.

Non-unique probes. The use of non-unique probes, hybridizing

to several targets simultaneously, poses problems in the analysis of

experiments. If one assumes that at most one target can be present

simultaneously, the problem can be handled effectively [Wang

et al., 2003, Rash and Gusfield, 2002]. This assumption is unreal-

istic, however, and [Schliep et al., 2003] introduced a statistical
group-testing approach to address the case when multiple targets are

present simultaneously. Subsequent work [Klau et al., 2004] has

attempted to minimize the number of probes required to reliably

identify small-cardinality target sets by an integer linear program-

ming approach. In all of the above work, only the ability to detect

known targets has been evaluated.
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Novel contributions. We extend the group-testing approach

using non-unique probes to targets related by a phylogenetic

tree. This allows us to consider an intriguing and highly relevant

question: Can we even detect the presence of yet unknown targets,

e.g., can we detect the presence of a new strain, or can we detect the

presence of a known target if it (and its hybridization pattern) has

changed because of fast evolution? Even if we restrict ourselves to a

specific virus, the targets used as input will only represent a sample

of all existing strains and new strains are likely to arise between the

time of microarray design and its large-scale use. To our knowledge,

this article is the first work to address these issues.

Outline. We describe the probe selection strategy and group

testing methods in Section 2, particularly focusing on the novel

aspect how they can be integrated with phylogenetic tree informa-

tion. Section 3 presents artificial and real datasets for evaluating

these methods, describes our evaluation criteria, and shows the

evaluation results. A concluding discussion is given in Section 4.

2 METHODS AND MODELS

Notational Remarks. If S is a finite set, jSj is its cardinality. We identify

binary vectors T 2 f0‚1gm
with the index set fi : Ti ¼ 1g � f1‚ . . . ‚mg, for

which we also write T, so jTj ¼
Pm

i¼1 Ti.

2.1 Overview: Problem setting

Initially, we are given a set T of DNA target sequences (the known targets)

and a phylogenetic tree B relating them. Depending on the application, the

targets might be whole genomes (e.g., all known HIV strain genomes), or

single gene sequences (e.g., the cytochrome C sequences of several related

species). We assume that the target set contains many closely related and

hence similar sequences.

Our objective is to be able to decide which of these targets are present and

which ones are absent in unclassified DNA samples when we observe an

oligonucleotide probe hybridization fingerprint for the sample. To be more

precise, we assume that we observe which probes react to some target(s) in

the sample, but that this observation is noisy. In most applications, we may

assume that the target set contained in the sample is small compared to the

whole set T (e.g., the set of HIV strains infecting a single patient).

Additionally, we expect that the sample may contain unknown targets,

that is, sequences similar to those in T that were not available when T was

prepared. This would be the case for new virus strains or fast evolving

genomes, for example. Although we cannot expect to perfectly classify

these unknown targets, we would at least like to place them at the correct

location in the tree B.

Our first tasks are thus

(1) to select suitable probe candidates for the given target set T . Note that

the usual probe design methodologies that look for target-specific

probes do not have a good chance of success on the typical datasets

we consider: Because of the high sequence similarity between targets,

only very few specific probes will be found. Our proposed solution

is to use a group testing approach that allows non-unique probes. We

deal with the ensuing complications in a subsequent decoding step.

The candidate selection step also ensures that no probes are selected

that could hybridize to genomes of contaminating organisms or host

organisms (e.g., the human genome for HIV viruses);

(2) to reduce the candidate set to a final probe set P;

(3) to compute the jT j · jPj basic hybridization matrix Hbasic, a

binary matrix defined by Hbasic
ij ¼ 1 if target i hybridizes to probe j,

and Hbasic
ij ¼ 0 otherwise;

(4) to extend the hybridization patterns (rows) of Hbasic from targets

to whole subtrees (monophyletic groups) of B by deciding which

hybridization pattern would be ‘‘typical’’ for unknown targets in a

monophyletic group. We obtain an (extended) hybridization matrix H

of size ðjT j þ jIjÞ · jPj, whereI denotes the set of internal (non-leaf)

nodes of B.

The above steps are described formally in Sections 2.2 (probe selection)

and 2.3 (computing H), followed by a small example.

Given H and a target set T � f1‚ . . . ‚ jT j þ jIjg, it is straightforward

to compute the theoretical (i.e., error-free) hybridization result

r ¼ rðTÞ 2 f0‚1gjPj: We will observe rj ¼ 1 if there exists a target i 2 T

to which probe j hybridizes (Hij ¼ 1). In other words, rj ¼ _i2T Hij, so r is

the logical or of the rows indicated by T. In reality, however, we need to take

noisy results into account: Probes not showing a hybridization signal

although they should are called false negatives, and probes showing a signal

although they should not are called false positives. The error model is

described in Section 2.4.

For an unidentified DNA sample, we need to solve the inverse problem

of the above one: We observe a certain result r, and our task is to find T,

which may consist of both known targets t 2 T and unknown targets t 2 I
modeled by internal nodes of B, such that T best explains r. We adopt a

Bayesian framework and introduce a target set prior in Section 2.5. Then our

goal becomes to find the target set that maximizes the posterior probability

given r, which turns out to be a difficult problem to solve exactly. We thus

switch to a Gibbs sampling strategy, which we describe in Section 2.6.

2.2 Probe selection

We start with a set T ¼ ft1‚ . . . ‚ tmg of m distinct but similar DNA

sequences, the targets. The first step is to find characteristic substrings

(the probes) either for single targets or for whole target sets T � T . The

idea is that an unidentified DNA sample can be tested quickly and

(relatively) cheaply for the occurrence of all probe sequences, e.g., by a

microarray hybridization experiment, whereas determining the precise

sequences of all sample members would be a more complicated procedure.

A good (specific or unique) probe p is characterized by the fact that it

hybridizes well to a single target and not at all to the remaining targets.

Because of the high sequence similarity in T , however, unique probes will be

difficult to find in sufficient number. Instead of attempting a bad compro-

mise, we turn this problem into a feature and allow that p hybridizes to

a small group T p of targets; this need not be a monophyletic group in B.

We require, however, that the probe makes a clear distinction between T p

and T \ T p in the sense that there is a strong observable signal for all t 2 T p

and no signal for all t 2 T \T p.

The dynamics of DNA-DNA hybridization are quite complicated and not

fully understood. However, it is reasonable to assume that a probe will give a

clear positive signal if it is an exact substring of the target, and that no signal

will be observed if the longest common substring between probe and target is

very short. This so-called longest common factor approach was first pro-

posed in [Rahmann, 2003a, 2002] and provides a practical and efficient

surrogate measure for the true probe-target affinity. What must be avoided

are probes that have long but not full-length common substrings with some

targets in T .

We thus proceed as follows. Every substring p in a given length range (our

method is mainly applicable to short oligonucleotides between 20 and 30 nt)

of any target in T is tested against the other targets for long (but not full-

length) common substrings and discarded as a probe candidate if any are

found. For the remainder, the hybridization stability (Gibbs free energy) is

estimated using the nearest-neighbor model described in [SanataLucia,

1998]. The probes are accepted only if their estimated Gibbs free energy

falls into a small homogeneous range to ensure similar hybridization behav-

ior. All of these steps are implemented in the existing PROMIDE software

described in [Rahmann, 2003a]. The main reason to choose PROMIDE is that it

is one of the few programs that allows non-uniqe probe selection.

The nature of the selection process allows to model hybridization as a

yes/no event that can be described by a binary matrix Hbasic: Consider the
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relation of target i and probe candidate j: Either the probe is a substring of the

i (in which case we assume a stable hybridization and set Hbasic
ij :¼ 1), or they

share only a short common substring (in which case stable hybridization

does not occur and we set Hbasic
ij :¼ 0). The intermediate case where

‘‘almost’’ the whole probe occurs in some target is ruled out by the longest-

common-factor-based selection process.

In the resulting set of probe candidates, maybe no probe identifies any

target uniquely, but certain combinations of probes still identify certain

combinations of targets (target sets). This places our approach in the

field of group testing: Each probe tests whether some member of a certain

target group is present, but cannot tell which one. The resulting decoding

problem is described in Section 2.6.

Reducing the set of probe candidates. In previous work [Klau et al.,

2004], we have shown that the resulting probe candidate set can often be

reduced considerably (up to 50%) without sacrificing decoding resolution

if the probes are picked carefully. However, in this study, we face a different

task: One of our goals is to detect unknown or fast-evolving targets. There-

fore, any optimization of the probe set, even if it does not adversely affect

our ability to identify known targets, would certainly decrease our chances of

identifying unknown targets. Therefore, we have not reduced the probe set.

2.3 Extending the hybridization matrix to

monophyletic groups

After probe selection, we have n probes P ¼ fp1‚ . . . ‚png for the m targets

T ¼ ft1‚ . . . ‚ tmg, we know the basic hybridization matrix Hbasic
ij , as

described above, and are given a phylogenetic tree B with the targets at

the leaves and a set I of internal nodes defining monophyletic target groups.

Since we want to detect unknown targets t =2 T to a degree that we can

place them at an approximately correct location in the phylogenetic tree B,

we need to model a ‘‘typical’’ hybridization pattern of an unknown target

that belongs to each particular monophyletic group.

Let v denote an internal node in B and let LðvÞ :¼fi : ti is a leaf below vg
denote the set of target indices that form the monophyletic group below v.

Our approach is to postulate that probe pi is ‘‘typical’’ for v if it hybridizes to

more than half of the targets in LðvÞ. We thus define the hybridization vector

hðvÞ by the strict majority function,

hðvÞ 
 ðhv‚ 1‚ . . . ‚hv‚ nÞ 2 f0‚1gn
with

hv‚ j :¼ 1()
X

i2LðvÞ
Hbasic

i‚ j > jLðvÞj/2:

One alternative would be to use the logical and function (i.e., set

hv‚ j :¼ ^i2LðvÞ Hbasic
ij ), but intuitively this does not capture the ‘‘typicality’’

of probes as well as the majority function. Nevertheless, other alternatives

are certainly possible; the aim being to guess as precisely as possible the

hybridization behavior of unknown targets in a monophyletic group, which is

per se an impossible task.

To build the extended hybridization matrix H of size ðmþ jIjÞ · n, we

define the first m rows as those in Hbasic. To define the remaining jIj rows, we

assign numbers iðvÞ ranging from mþ 1 to mþ jIj bijectively to the internal

nodes v 2 I and define the iðvÞ-th row of H as the majority vector hðvÞ.
An example of an extended hybridization matrix H with 5 targets and

10 probes, along with the phylogenetic target tree B with 4 internal nodes, is

shown in Figure 1 (left).

2.4 Probabilistic hybridization model

As stated in Section 2.1, the expected hybridization result r ¼ rðTÞ of a

target set T � f1‚ . . . ‚mþ jIjg is obtained by computing the logical or of

the indicated rows of the hybridization matrix H. It is understood that if

I contains representations of unknown targets u (indices ranging from mþ 1

to mþ jIj), r is not the actual hybridization pattern of T, since the actual

behavior of u is unknown and only hypothesized to look similar to the

corresponding row in H.

As an example, consider Figure 1 (right). The expected result for singleton

target sets can be read directly from H (examples a, c). If jTj � 2, the result is

the logical or of the corresponding rows (examples b, d–f). The set fv1‚ 2g
represents a single typical unknown target somewhere below v1‚ 2 (and no

further targets) and must be distinguished from f1‚2g that consists of two

particular known targets (and no further targets). Target sets may mix known

and unknown targets (example d). Sometimes, the same result may occur for

several distinct target sets (examples e, f; there are many more target sets

giving rise to this ‘‘all ones’’ result). Other results may not be explainable by

any target set at all without allowing errors (example g).

In order to model false positive and false negative hybridizations, we

switch to a probabilistic model, where r becomes a random vector whose

distribution depends on T and the assumed error rates. We use a model with

two error parameters: f� denotes the (per probe and target) probability that a

hybridization fails, and fþ denotes the (per probe) probability that a probe

shows a signal although no hybridization should take place. In practice, we

must assume error rates of up to 0.1.

We define Pi :¼fj 2 f1‚ . . . ‚ng : Hij ¼ 1g as the set of probes hybrid-

izing to target i, and T j :¼fi 2 f1‚ . . . ‚mþ jIjg : Hij ¼ 1g as the set of

targets hybridizing to probe j.

For given T, in order to observe no signal at probe j, all of the jT \ T jj
expected hybridizations must fail. Assuming independence between these

failures, this event occurs with probability f jT \T j j
� . Additionally, the probe

must not show a false positive reaction; this event has probability 1 � fþ and

Fig. 1. Left: A small hybridization matrix H. Rows 1–5 define a hypothetical basic hybridization matrix Hbasic, as it would result from a probe selection process.

Rows 6–9 are associated to the internal nodes of the phylogenetic tree B shown to the left of Hbasic. They are computed as strict majority functions and represent

any so far unknown target that could exist in the monophyletic group below the respective node. Right: Seven examples (a–g) of sets of known and unknown

targets and their expected hybridization results (the or of the rows indicated by the target set); see Section 2.4 for details.
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is also assumed to be independent of potential failure events. It follows that

hjðTÞ : 
 Pðrj ¼ 0 j TÞ ¼ f jT\T j j
� · ð1 � fþÞ‚ ð1Þ

and that Pðrj ¼ 1 jTÞ ¼ 1 � hjðTÞ.
We further assume that all probes react independently, such that the joint

probability that the observed result is a particular vector r ¼ ðrjÞ is given by

the product

Pðr j TÞ ¼
Yn
j¼1

ð1�hjðTÞÞ
rj · ðhjðTÞÞ

1�rj : ð2Þ

For example, assuming fþ ¼ f� ¼ 0:05, the result r ¼
ð1‚0‚1‚0‚1‚0‚1‚1‚0‚1Þ in Figure 1 (Example g) has probability

2:1 · 10�7 if T ¼ f4g and 1:3 · 10�8 if T ¼ fg.
As an example on a larger scale, consider error rates of 10% in an

experiment with 1000 probes and a target set T with a single target covered

by 10 probes. We expect one false negative, nine true positive and 100 false

positive probes. Even though the number of false positives is much larger

than the number of true positives, correct target identification will be pos-

sible in most cases because the false positive probes do not paint a consistent

picture, while the true positive probes do.

2.5 Target set prior

To identify a DNA sample, we are given a realization of r and are asked for

the target set T that best explains the observation. In principle, we could

proceed by a maximum likelihood approach, i.e., attempt to find T* that

maximizes Pðr j TÞ over all T . However, from the example in Figure 1, we

see that this would cause problems for results such as r ¼ ð1‚1‚ . . . ‚1Þ that

have many good explanations. In accordance with our sparseness assump-

tions and Occam’s razor, we prefer a parsimonious explanation (small jTj),
but the likelihood model specified by Eqs. (1), (2) actually prefers larger

target sets.

We thus move to a Bayesian framework and introduce a prior probability

distribution on the potential target sets, defined by a ‘‘prevalence’’ vector

f ¼ ðf 1‚ . . . ‚ f mþjIjÞ 2 ½0‚1/2�mþjIj, where fi denotes the a-priori probability

that target i is contained in T, and all target occurrences are assumed

independent:

PðTÞ ¼
YmþjIj
i¼1

f Ti
i · ð1 � f iÞ

1�Ti : ð3Þ

The relative magnitude f i=f k determines how much more likely it is

a-priori to see target i in an unclassified sample than target k. Such ratios

are available for many applications, e.g., the relative prevalences of HIV

subtypes in patients. If nothing is known, a flat prevalence prior may be used

where all fi are equal. The absolute magnitude F ¼
P

i f i should be chosen

such that f i�1/2 for all i, and depending on how many probes are available

to decide reliably on inclusion or exclusion of target i. In practice, we

recommend f i 	 0:01 to favor non-inclusion of each target 99-fold over

its inclusion a-priori.

2.6 Decoding hybridization results

Maximum a-posteriori. By Bayes Theorem, the posterior probability of a

target set T given a hybridization result r is

PðT j rÞ ¼ PðTÞ ·Pðr jTÞ
PðrÞ / PðTÞ ·Pðr j TÞ‚ ð4Þ

where PðrÞ is a constant. We are interested in finding sets T � f1‚ . . .,
mþ jIjg that explain r well in the sense that PðT j rÞ is high. For very

small examples, such as the one in Figure 1, we can compute the posterior

for all T directly and find the maximizing set T* by brute force. For example,

assuming error rates fþ ¼ f� ¼ 0:05 and prior prevalences f i ¼ 0:33 for

all i, the two best explanations for the observation r in Figure 1 (Example g)

are T1 ¼ f4g with PðT1 j rÞ ¼ 0:775 and T2 ¼ fg with PðT2 j rÞ ¼ 0:094.

However, since PðT j rÞ is a complicated function of T, direct maxim-

ization seems out of reach for realistically large datasets. Additionally, there

may be several good distinct solutions.

Posterior marginals. For the above reasons, instead of maximizing the

posterior, we estimate the posterior marginals mi :¼PðTi ¼ 1 j rÞ and the

posterior target set cardinality M :¼E½jTj j r� ¼
P

i mi to decide how many

and which targets are the best candidates for explaining r. In the toy example,

we find that m4 ¼ 0:81 and m2 ¼ 0:06 are the highest posteriors and M ¼
0:95 indicates that we expect slightly less than one target to be present.

In larger problems, we estimate these quantities by Gibbs sampling from

the posterior. The next paragraphs show that this can be done efficiently in

our model.

Gibbs sampling. In our setting, Gibbs sampling consists of a pre-defined

number of rounds, during each of which we update the target set T, which is

initially random. Each round consists of mþ jIj steps, and in step i of each

round we decide whether target ti should be included in or removed from

T by considering the posterior ratio r 
 riðTÞ defined as follows: If i =2 T,

let Tþ :¼ T [ fig, otherwise, if i 2 T, let T� :¼ T\fig, and let

r :¼
�
PðTþ j rÞ/PðT j rÞ if i =2 T‚

PðT j rÞ/PðT� j rÞ if i 2 T:

In other words, r is the conditional posterior probability ratio of including

and not including ti in the target set, given the observation result r and the

remaining components of the target set.

The update rule is then: If i =2 T, add i to T with probability

PðTþ j rÞ/ðPðTþ j rÞ þ PðT j rÞÞ ¼ r/ðr þ 1Þ (and leave T unchanged with

the remaining probability 1/ðr þ 1Þ). If i 2 T, remove it with probability

1/ðr þ 1Þ(and leave T unchanged with the remaining probability r/ðr þ 1Þ).
In this way, we cycle through all targets in either a fixed or random order

in each round. This defines an ergodic Markov chain on T with the posterior

as stationary distribution, from which we sample the quantities of interest

during S sampling rounds after W warmup rounds to allow for the Markov

chain to converge towards its stationary distribution.

We estimate the posterior marginals as follows. In round t when updating

target i, remember the value p
ðtÞ
i :¼ r/ðr þ 1Þ, where r is computed as

described above. Then our estimate m̂m i for mi is m̂m i :¼ 1
S

PWþS
t¼Wþ1 p

ðtÞ
i ,

and our estimate for the target set size is M̂M :¼
Pm

i¼1 m̂m i.

Efficient computation of r-ratios. A key feature of this procedure is that

the above ratios r can be efficiently computed in each step by taking advan-

tage of the following observations.

Consider an update attempt T Tþ ¼ T [ fig with i =2 T, where, using

Eqs. (1)–(3),

r ¼ PðTþÞ
PðTÞ ·

Pðr jTþÞ
Pðr j TÞ

¼ f i

1 � f i

·
Y
j2Pi

�
1�hjðTþÞ
1�hjðTÞ

�rj

·

�
hjðTþÞ
hjðTÞ

�1�rj

¼ f i

1 � f i

·
Y
j2Pi

f� if rj ¼ 0‚

1 � hjðTÞ · f�
1 � hjðTÞ

if rj ¼ 1

(

¼ ji ·
Y
j2Pi

rj¼1

1 � hjðTÞ · f�
1 � hjðTÞ

‚

where ji :¼ f i

1 � f i
:f jfj2Pi :rj¼0gj
� : Note that in the prior ratio, everything except

the i-th term cancels out, and in the likelihood ratio, all terms related to

probes that do not hybridize to the i-th target also cancel out. The prior ratio

and probability of necessarily false negative probes to include ti in the target

set is summarized in the factor ji. Similarly, for an update attempt T T\fig‚
we have

r ¼ ji ·
Y
j2Pi

rj¼1

1 � hjðTÞ
1 � hjðTÞ/f�

:

The ji can be pre-computed and never change during the sampling phase,

and the remaining product generally has few terms: the relevant probe
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set Pi \ fj : rj ¼ 1g can also be precomputed for every target i and will

generally be sparse.

To evaluate the ratios within the products quickly, we maintain and update

the vector h ¼ ðhjðTÞÞj¼1‚...‚ n ¼ Pðrj ¼ 0 jTÞ as defined in Eq. (1); in fact,

we only require the elements hj for which rj ¼ 1. Initially, T is empty, and

hjðTÞ ¼ 1 � fþ for all probes j. When T is enlarged to T [ fig (resp. reduced

to T \fig), we update hj hj · f�(resp. hj hj/f�) for all j 2 Pi with rj ¼ 1.

3 EVALUATION

3.1 Datasets

We evaluate the proposed method on one biological dataset of

organisms from the Meiobenthos and on two simulated datasets.

Summary statistics of the datasets are shown in Table 1. The

simulated datasets were generated with the REFORM (Random

Evolutionary FORest Model) software [Rahmann, 2003b], freely

available at http://gi.cebitec.uni-bielefeld.de/people/rahmann, that

applies an evolutionary Markov process along a phylogenetic tree

(specified in a small modeling language) to a random root sequence.

Simulated dataset bal. We generate 256 targets (leaf

sequences) from a balanced tree as shown in Figure 1 (left). The

tree has four levels below the root, and each internal node has out-

degree four. For the internal branches, the evolutionary time is

1 percent of expected mutations (PEM), for the branches to the

leaves, it is 0.1 PEM. Additionally, there are small insertion and

deletion probabilities (details not shown). This leads to target

sequence lengths between 970 and 1030, generated from a root

sequence of length 1000. In order to have both known and unknown

targets available, we traverse the tree top-down and prune the

second and third child of each (internal or leaf) node we encounter

with 20% probability. We generate 8 instances of this dataset with

different random root sequences and random prunings. This leads

to 146–210 known targets.

Simulated dataset cher. The tree consists of 80 nodes arranged

in a linear chain with an inter-node distance of 3 PEM; see Figure 1

(right). Each chained node has three children in addition to the next

node in the chain at distance 0.2 PEM, and each of these has in turn

three children at the same distance. From the visual impression of

this tree topology, we call this the cherry tree model. The 720 targets

are generated from a root sequence of length 600, and their length

ranges between 580 and 620. To generate unknown targets, the

second child of each node is pruned away from the tree with

40% probability, leading to 527–555 known targets in the 8 gener-

ated instances of the dataset.

Real dataset meio. We use a set of 358 28S rDNA sequences

from different organisms present in the Meiobenthos related by a

phylogenetic tree [Markmann, 2000]. The set contains redundancies

and many close homologs and finding unique probes is difficult

[Schliep et al., 2003, Kaderali and Schliep, 2002]. To generate

unknown targets, we remove the the last leaf child of an internal

node (if more than one exists) with 50% probability. We generated

5 instances of this dataset; in each distance, a different random

target set is removed from the tree (cf. Table 1).

Probe selection. After randomly separating the sequences into

known and unknown targets as described above, we use PROMIDE

to select short oligonucleotide probes for the known targets. We

pick all group-specific (groups were restricted to be of size 50

or below) 19–21-mers with Gibbs free energy between �20 and

�19.5 kcal/mol at 40�C and a salt correction parameter of �2.6,

according to the model parameters from [SantaLucia, 1998]. We

create the extended hybridization matrix of all known targets

against all probes, as described in Section 2.3.

We emphasize that the unknown targets have no influence on the

probe selection process, but after the probes have been determined,

we can of course compute their hybridization patterns. Although

here we might face the problem of unclear signals (long common

substrings), we take the approach that only exact full-length

probe-target matches lead to a signal. The possibility of weaker

cross-hybridization signals is handled by a correspondingly high

false-positive error rate in our error model (up to fþ ¼ 0:10), see

below.

3.2 Hybridization simulations and decoding

Simulations. We performed simulations of hybridization experi-

ments to estimate the efficiency of our approach in detecting both

known and unknown targets. We randomly sample target sets which

are taken as the true result of the experiment. The sampling strategy

is different for sets of known targets, for unknown targets, and

mixed sets.

(1) known: We attempt to correctly detect the empty target set

T ¼ fg and each of the jT j singleton sets T ¼ ftig,
i ¼ 1‚ . . . ‚m, where m varies for each dataset instance. For

target sets cardinalities 2, . . . , 6, we sample 500 random sets

each.

(2) unknown: For each unknown target (each removed leaf from

the original phylogenetic tree), we determine its lowest exist-

ing ancestor in the remaining tree; this is an internal node. As

discussed above, we take this node as a representative of any

1

0.1

1

1

#80
0.2

0.2

3

Fig. 2. Left: Balanced treemodel with 256 leaves. Right: Cherry tree model

with 720 leaves.

Table 1. Summary statistics of the datasets. #Known refers to the number of

known targets in the dataset, #Probes is the number of probe candidates

selected by PROMIDE. #Hybs is the number of 1s in the hybridization matrix

Hbasic. The average number of hybridizations per probe and per target is

shown in the next two columns. Finally, #Unknown denotes the number of

unknown targets. Numbers are averages over the dataset instances

Name Known Probes Hybs H/probe H/target Unknown

bal 181 4038 10557 2.61 58.2 75

cher 539 8536 24485 2.87 45.4 181

meio 302 8837 16439 1.89 54.5 56
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unknown target in the subtree below it. Therefore, ideally, this

node is the target that we would like to detect, although

the hybridization pattern of the unknown target will generally

differ from the ‘‘majority vote’’ pattern of the internal node.

Also, different unknown targets may map to the same node.

Because of these inherent difficulties, we only attempt to detect

a single unknown target.

(3) mixed: Finally, we attempt mixed sets with exactly one

unknown target and between 1 and 3 known targets. For

each cardinality, 500 random sets are sampled.

For each target set T � f1‚ . . . ‚mþ jIjg, we simulate 10 inde-

pendent hybridization results according to the error model described

in Section 2.4, i.e., for each probe pj, we determine the number of

targets in T to which pj would hybridize and let each hybridization

fail independently with probability f�; finally, there is a probability

of fþ that pj shows an unspecific positive signal. This simulation

was performed once with error rates fþ ¼ f� ¼ 0:05 and again with

fþ ¼ f� ¼ 0:1.

Decoding. We ran our own TPDC decoding software with a

uniform prior f ¼ ðf iÞ, i ¼ 1‚ . . . ‚mþ jIj on all targets such thatP
i f i ¼ 3. The error parameters f� ¼ fþ 2 f0:05‚0:1g were the

same as used in the simulations. In practice, the error rates are not

known and must be estimated. After 200 warmup rounds, the mar-

ginal target posteriors were estimated from the subsequent 2000

rounds; these values were found to be sufficiently accurate when

compared to substantially longer runs. The output consists of a list

of targets sorted by marginal posterior and additional diagnostics.

Only targets with a posterior exceeding 0.001 were included in

further analysis.

3.3 Results

Ideally, we observe exactly the true targets as the top entries of the

list returned by the decoder. Depending on the similarity of hybrid-

ization patterns and on the noise level, we must expect a number of

high-posterior targets that do not belong to the target set. In some

of those cases, the ‘‘offender’’ is likely to be a close relative of the

true target. We take this fact into account in our evaluation.

The success rates of our approach for a total of about 2,292,380

simulated experiments are summarized in Table 2. Simulation

results for the datasets bal, cher are averaged over the 8 instances,

for meio over the 5 instances, over all target set cardinalities, and

over the 10 repetitions of simulated hybridizations.

Our method is able to correctly identify over 94% of known

targets in simulated experiments with realistic error rates. If

there are neither known nor unknown targets present, the maximal

target posterior observed in all repetitions and data sets was 0.15 and

posteriors exceeding the 0.001 posterior threshold were pre-

dominantly (over 95%) below 0.01, implying a negligible false

positive rate. The results for unknown targets suggest that our

simple approach for defining the hybridization pattern of its parent

is not sufficient. There is a jump in performance when also direct

children are counted as a hit. Then, up to 70% of the unknowns were

correctly assigned to their clade in the complete tree. Detailed

summaries for the 2,292,380 simulated experiments are found in

the supplementary material.

4 DISCUSSION

We present an approach for decoding hybridizations experiments

when targets are related by a phylogenetic tree and non-unique

oligonucleotide probes are used in a statistical group testing setting.

Hybridization patterns of internal nodes of the tree are obtained

from leaves based on a majority rule as typical patterns for unknown

targets in the respective subtree. A Bayesian framework combined

with a Markov chain Monte Carlo approach allows efficient and

robust estimation of target posterior marginals.

Our method correctly identifies over 94% of known targets, and

about 45% to 70% of unknown targets were correctly assigned to

their clades in the phylogenetic tree. The lower figures for unknown

targets are explained by the fact that the majority-vote hybridization

patterns of the internal nodes do not (and cannot) match exactly the

hybridization patterns of unknown targets.

We found that our estimate of the target set size jTj matches the

true value in virtually all of the cases when rounded to the nearest

integer. It follows that the rate of falsely identified targets is between

2% and 6% for known targets.

More detailed analysis of the high-ranking targets may improve

the resolution of the method in the presence of unknowns, as we

correctly identify clades but do not provide a statistical test for the

hypothesis that unknowns belonging to this clade are present.

In a practical application of the method, the true target set size jTj
and the error rates fþ, f� for the decoding procedure will be

unknown. However, we can estimate jTj by the sum of the posterior

marginals, and our results show that the method is robust, even for

relatively high error rates, which makes it reasonable to use with

slight overestimates of error-rates, possibly at the expense of less

pronounced posterior magnitudes. For the robustness of the method,

a high probe coverage per target is necessary, and future work may

show to which degree the probe set may be reduced without affect-

ing our ability to detect unknown targets too severely.

Our results on biological and simulated data demonstrate that we

can cope effectively with the incomplete phylogenies available in

practical applications and that the method is robust with respect to

evolution of targets between time of design and time of experiment.

We are not aware of previous studies that consider the problem of

recognizing unknown or fast evolving targets in such a manner.

Table 2. Average fraction of correctly identified true j T j targets (hits)

among the j T j top randed targets given by the decoder for different datasets

(rows) and different types of datasets (columns). For unknown and mixed

datasets, a target is counted as a hit if either either the internal node repre-

senting the unknown target (colums ‘‘Exact’’), or taking a broader view, the

node or its direct children (columns titled ‘‘Fam.’’ for family) are detected

known unknown mixed

Name f+ ¼ f� Extract Fam. Exact Fam.

bal 0.05 0.98 0.38 0.69 0.80 0.89

0.1 0.94 0.36 0.68 0.77 0.86

cher 0.05 0.97 0.11 0.51 0.77 0.84

0.1 0.94 0.11 0.54 0.71 0.83

meio 0.05 0.97 0.08 0.45 0.71 0.83

0.1 0.96 0.06 0.44 0.70 0.82
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ABSTRACT

Motivation: Array comparative genomic hybridization (aCGH) is a

pervasive technique used to identify chromosomal aberrations in

human diseases, including cancer. Aberrations are defined as regions

of increased or decreased DNA copy number, relative to a normal

sample. Accurately identifying the locations of these aberrations has

many importantmedical applications. Unfortunately, the observed copy

number changes are often corrupted by various sources of noise,

making the boundaries hard to detect. One popular current technique

uses hidden Markov models (HMMs) to divide the signal into regions

of constant copy number called segments; a subsequent classification

phase labels each segment as a gain, a loss or neutral. Unfortunately,

standard HMMs are sensitive to outliers, causing over-segmentation,

where segments erroneously span very short regions.

Results:Weproposeasimplemodification thatmakes theHMMrobust

to such outliers. More importantly, this modification allows us to exploit

prior knowledge about the likely location of ‘‘outliers’’, which are often

due to copy number polymorphisms (CNPs). By ‘‘explaining away’’

these outliers with prior knowledge about the locations of CNPs, we

can focusattentionon themoreclinically relevantaberrated regions.We

show significant improvements over the current state of the art tech-

nique (DNAcopy with MergeLevels) on previously published data from

mantle cell lymphoma cell lines, and on published benchmark synthetic

data augmented with outliers.

Availability: Source code written in Matlab is available from http://

www.cs.ubc.ca/�sshah/acgh.
Contact: sshah@cs.ubc.ca

1 INTRODUCTION

Array comparative genomic hybridization (aCGH) is a high-

throughput genetic technique to measure DNA copy number

changes in a disease sample compared to a normal sample [20].

Chromosomal aberrations that exhibit DNA copy number changes

are indicative of numerous diseases including cancer and mental

retardation. Identifying such aberrations can help to locate diagnos-

tically important regions in the genome, that harbour important

genes. For example, oncogenes or tumour suppressor genes con-

tained in aberrated regions could in turn exhibit differential expres-

sion due to the copy number changes in the DNA. Application of

aCGH is widespread in molecular analysis of cancer and holds great

promise as a technique to identify clinically relevant diagnostic

biomarkers.

The aCGH technique is based on spotting clones that span a

discrete region in the human genome on an array. The size and

number of clones vary depending on the technological platform and

the desired resolution: see Pinkel and Albertson [20] for a review. In

this paper, we use aCGH data from eight mantle cell lymphoma

(MCL) cell lines (see deLeeuw et al. [4] for details) generated using

sub-megabase resolution tiling arrays (SMRT) [13]. We use the

midpoint of the clone along the chromosome to denote its location.

The output of all aCGH platforms is represented as a log2 ratio of the

reference and tumour fluorescence intensities for every clone in the

array. The log2 ratios are expected to be proportional to copy num-

bers. In a neutral state, one would expect to see log2(2/2) ¼ 0; with

one copy lost, one would expect to see log2(1/2) ¼ �1; with one

gain log2(3/2) ¼ 1.58, etc. The goal of analysis techniques is to

detect contiguous regions, that are expected to share the same mean

log2 ratio. We call these regions segments. The identification of

segments is called ‘‘segmentation’’. Once segments are identified,

each segment is labeled as a loss, neutral or gain (sometimes it is

useful to distinguish gains of 1 copy from gains of more than 1).

This latter task is called ‘‘classification’’.

In reality, segmentation and classification of the data are much

more difficult than the above description suggests. Figure 3 (A)

shows a typical plot of aCGH data for chromosome 1 from MCL

cell line HBL-2 (see Section 3.1 for more details on MCL). The

yellow squares represent clones that are found in a region of loss

identified manually by an expert [4]. Similarly, blue circles repre-

sent clones in a region of gain. The figure demonstrates that

although copy number changes in DNA is a theoretically discrete

process, the intensity ratios for aCGH do not produce a clean piece-

wise constant signal. Also note that aberrated regions tend to span

contiguous sets of clones along a chromosome. This suggests that

any analysis technique should exploit such spatial correlation.

In Figure 3 (A), we also depict ‘outlying’ clones (detected by eye)

with light blue stars. Treating such points as inliers can significantly

affect the remaining points, by causing over-segmentation, resulting�To whom correspondence should be addressed.
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in segments that span only a single clone, for example. There are

several possible causes of such outliers. The first is some kind of

measurement noise, or mislabeling (sometimes the locations of

clones is mis-recorded). Second, there is the possibility that the

single clone outliers correspond to known locations of copy number

polymorphisms (CNPs). Finally, they could truly represent

aberrated regions. In our experience, this is rare.

The full impact of CNPs on aCGH analysis is not yet known,

however indications from two recent large scale studies by Sebat

et al. [22] and Iafrate et al. [12] measuring background frequencies

of copy number variations in the normal human population have

revealed hundreds of loci in the genome that are polymorphic in

copy number. Buckley et al. [2] suggest that the results produced by

these two studies represent the ‘‘tip of the CNP iceberg’’. For

example Sebat et al. report a CNP at a gene involved in food intake,

suggesting a differential propensity for obesity. They also report

CNPs at loci related to neurological development and at loci

implicated in leukemia and breast cancer drug resistance [22].

These latter examples indicate that for cancer studies, the ‘baseline’

copy number should be considered when assessing aberrations. We

anticipate that the impact of CNPs will be greater on high-resolution

arrays and/or full genome coverage arrays, as they are intended

to reveal all aberrations in a sample and will detect a larger number

of CNPs. Note that the MCL data is both high-resolution and full

coverage and therefore is likely to contain CNPs.

1.1 Our contributions

In this paper, we introduce a joint classification and segmentation

method that is designed to handle outliers and integrate CNP

knowledge into the analysis. Our method extends the standard

HMM framework, outlined in Scott [21] and proposed for aCGH

in Guha et al. [9]. The basic idea is to replace the Gaussian obser-

vation model with a mixture of Gaussians; one mixture component

represents the log2 ratio we would expect from the given state (loss,

neutral or gain); the other mixture component represents the log2

ratio we would expect from an outlier. This simple change makes

the model much more robust.

More significantly, we can incorporate knowledge about CNPs

into the mixing weights of the mixture model. That is, we can set the

prior probability of using the outlier component at location i to the

known frequency of CNPs at location i, if i overlaps with a known

CNP location; otherwise we set it to the general background outlier

probability (which is estimated from data). We explain our model in

more detail in Section 2.1.

Several authors (e.g., [9,21]) propose estimating the parameters

of the HMM using MCMC (Markov chain Monte Carlo) techniques,

as opposed to the more common EM (expectation maximization)

algorithm. The advantage of MCMC is that it provides full posterior

estimates over the parameters, rather than just point estimates, thus

properly modeling uncertainty (see e.g., [8] for an introduction to

MCMC and Bayesian data modeling). MCMC also partly mitigates

problems with local minima that EM is well known to suffer from. It

also turns out to be simpler to exploit informative prior constraints

in a sampling framework than in an optimization framework. We

explain how to perform efficient MCMC in Section 2.4.

We first evaluate performance of our model on real data

representing aCGH profiles from eight MCL cell lines published

in deLeeuw et al. [4] in a study aimed at identifying important

signature regions in non-Hodgkin’s lymphoma. This data set

contains ground truth annotation of regions of gain and loss,

some of which are recurrent across cell lines. In addition some

of these aberrations have been validated in the laboratory. Using

this rich data set, we were able to assess performance quantitatively

using standard performance metrics. We compare our method to

DNAcopy+MergeLevels (using default parameters), which has

been shown in two previous comparative studies [24,16] to be a

leading current method. Henceforth we will refer to this method as

MergeLevels. Having established that our method is better than

current techniques, we then validate our findings on an additional

synthetic data set, which we believe to be ‘harder’ than the real data.

The advantages of using synthetic data are two-fold. First, the

ground truth locations of the aberrations are known. Second, we

can control the difficulty of the problem. We used data published

in Willenbrock and Fridlyand [24]. This data is considerably

harder (but more realistic) than other synthetic datasets used in

earlier papers. We make the Willenbrock and Fridlyand data

even harder by adding outliers, to check the robustness of our

method and to validate results obtained using MCL data. Our results

are in Section 3, which we discuss in Section 4.

1.2 Related work

A recent survey paper by Lai et al. [16] describes and evaluates

eleven algorithms for aCGH data analysis. We can loosely group

these methods into three main approaches: smoothing, segmenta-

tion, and combined segmentation and classification. Smoothing

approaches such as Quantreg, developed by Eilers and Menezes

[5], and the wavelet approach of Hsu et al. [10], attempt to fit a

curve to the data, while handling abrupt changes. Smoothing meth-

ods generally filter the data using a fixed size window, and therefore

will be unable to detect outliers or CNPs that span a single clone. In

addition, they are primarily designed as a visual aid to interpret the

data and do not accomplish the main objective of automatically

identifying aberrated clones.

As mentioned previously, segmentation methods identify con-

tiguous sets of clones (segments) that share the same mean log2

ratio. The output of the segmentation methods usually consists of

the boundaries and means of the segments. The clones within a

segment are assumed to share the same copy number. We refer to

the boundaries of segments as breakpoints. Examples of segmenta-

tion algorithms include DNACopy [18], which is based on a recur-

sive circular binary segmentation algorithm; CGHSeg [19] which

uses a penalised likelihood model to determine breakpoints; aCGH-

Smooth [14], which uses a genetic algorithm to find breakpoints;

and the GLAD method of Hupe et al. [11], which includes a median

absolute deviation model to explicitly treat outliers as separate from

its surrounding segment. In Lai’s comparison, CGHSeg and DNA-

Copy are consistently the best. Willenbrock and Fridlyand [24]

compared performance of DNACopy and GLAD and report better

performance with DNACopy. We therefore use DNAcopy as our

baseline model. Note that Lai et al. [16] determined that as the noise

level in the data increases, all segmentation methods—including

DNAcopy, show less than satisfactory results.

A general limitation of segmentation is that the output needs to be

further analysed in order to infer which segments are aberrated

regions, i.e., to ‘‘call’’ the gains and losses. Methods such as

GLADMerge [11] and MergeLevels [24] perform this post-

processing task by merging together segments with ‘‘similar’’

mean levels, and then classifying them. However, as noted by
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Engler et al. [6] and Willenbrock and Fridlyand [24], it is much

better to perform the segmentation and classification simultane-

ously, since the class labels can help with the segmentation as

well as vice versa.

An obvious way to perform simultaneous segmentation and clas-

sification is to use an HMM. The first approach to do this was by

Fridyland et al. [7]. However, in their approach, the states of the

HMM do not have any intrinsic meaning (they are just indices

to represent a discrete number of mean levels, typically K ¼ 5).

Hence post-processing was necessary to determine the labels.

Guha et al. [9] modify this to use a ‘‘supervised’’ 4-state HMM,

where the states are defined to mean loss, neutral, one-gain or

multiple-gain. The advantage of this is two-fold: first, it is easy

to perform simultaneous segmentation and classification using

the Viterbi algorithm; secondly, we can impose informative priors

on the parameters, since they now have biological meaning. This

paper extends the model by adding robustness to outliers and

location-specific priors (LSPs), which can be used to encode CNPs.

In addition to the work mentioned above, two recent papers have

explored some interesting variations. Broet and Richardson [1]

propose using a latent 1D Gaussian random field, as opposed to

a latent 1D discrete random field (i.e., an HMM), to model spatial

correlation between levels. However, this does not solve the

classification problem. Engler et al. [6] introduce spatial

dependence by breaking the data into overlapping triples, and

then using a hierarchical random effects model. Unfortunately,

because the triples are overlapping, the data is over-counted, so

optimizing the likelihood turns out to be intractable. Instead,

they compute a local maximum of the pseudolikelihood. We also

use a hierarchical Bayesian model, but we are able to compute

posterior estimates using an exact likelihood function.

2 METHODS

2.1 A mixture model HMM that considers outliers

Our model, sketched in Figure 1, is similar to the 4-state HMM in Guha et al.
[9], where the states represent loss, neutral, one-gain and multiple-gain. (We

also tried a 3-state model, where we combined the gain states, but results

were not as good.) The main difference from Guha is that in our model the

observation density is a mixture of 2 Gaussians, one representing inlier

(clones belonging to one of the states) and the other representing outlier.

We introduce binary indicator variables Oi 2 f0‚1g where Oi ¼ 1 means

Chromosome Chromosome 2

Fig. 1. Our model represented as a Bayesian network. Square nodes are parameters, round nodes are random variables. Shaded nodes are observed (known),

unshaded nodes are hidden (unknown). We depict the start of 2 chromosomes (indicated by large rounded rectangles). Let c denote the chromosome, i represent

the location along the chromosome and k represent the kth LSP on the chromosome;pc is the initial state distribution of chromosome c; dp are hyperparameters for

thepc’s; Sc
i is the state; yc

i is the observation (log2 ratio); Oc
i indicates if this is an outlier or not;m1:4 ands1:4 are the means and variances of states 1 to 4;m0 ands0

is the mean and variance of the outlier state; rc
k is the probability of outlier for LSP locations; r0 is the general background outlier probability; A is the Markov

chain transition matrix; d are the hyperparameters for A. For state j, mj‚tj are hyperparameters formj;aj‚bj are hyperparameters forsj; ac
k‚bc

k are hyperparameters

for rc
k and are determined by LSPs; Hyper-parameters are shown shaded since they must be set by the user. In this example, we have assumed that locations 2 and 4

on chromosome 1 and location 2 on chromosome 2 correspond to known CNPs; other locations use the background outlier probability r0. Hence the prior on

O1
1‚O1

3‚O2
1 and O2

3 are all the same and equal to r0:
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location i is an outlier, and Oi ¼ 0 means it is an inlier. We model the outlier

distribution with a Gaussian, m0‚s2
0.

Using the mixture of Gaussians, the class-conditional density becomes

pðyi jOi‚Si ¼ sÞ ¼ Gaussðyi jm0‚s0Þ if Oi ¼ 1

Gaussðyi jms‚ssÞ if Oi ¼ 0

�
ð1Þ

where yi is the log2 ratio for clone i where the clones are ordered by their

physical location on a chromosome. Si ¼ s is the state label at i, where s is a

discrete random variable 2{1,2,3,4} with 1 corresponding to the loss state;

2 to the neutral state; 3 to the one-gain state; and 4 to the multiple-gain state.

The unobserved sequence of states is governed by Markovian dynamics

encoded in the transition matrix A. The transition matrix therefore models

the spatial correlation expected to occur in the data. The clones labeled with

a given state s are generated from a a common Gaussian distribution with ms

and ss. The initial state distribution for i¼ 1 is multinomial random variable

p that models the probability of starting in each state. In the observation

density of our model, Oi acts like a ‘‘switching parent’’ variable, which

selects between the outlier parameters m0, s0 or the inlier parameters, ms, ss.

The Oi variables are modeled as conditionally independent. Hence there

are no Markovian dynamics on the outliers. This allows the model to

make temporary ‘‘excursions’’ to the outlier state, without incurring any

‘‘penalty’’ implicitly encoded by the state transition matrix.

Modeling the outliers as conditionally independent also allows us to

encode CNPs. For each location that is known to be a CNP, we have an

outlier probability, ri ¼ pðOi ¼ 1Þ; for all other locations, we have the

‘‘background’’ outlier probability, r0.

2.2 Parameter estimation using ‘pooling’

across chromosomes

In addition to the outlier extension, we extend our model by estimating some

of the parameters using pooled data across all chromosomes in the sample.

Parameters A, m, s, r0 are estimated by pooling. This assumes that the

posterior distributions of these parameters are expected to be consistent

across chromosomes, and therefore pooling is advantageous as their esti-

mates are guided by more data. Moreover, the algorithm is more likely to

‘visit’ all the states by pooling the data, resulting in more robust estimates of

the mean and variance of each state. However, not all the parameters can be

estimated in this way. Sampling of the states S must be estimated on each

chromosome separately as there is no physical interpretation for a state

dependency between location 1 on chromosome c and the terminal location

on chromosome c � 1. p must also be estimated independently for each

chromosome since the telomeric regions of the chromosomes can have gains,

losses or remain neutral and these initial states are not expected to be

consistent across chromosomes. The model, showing pooling across chro-

mosomes and the outlier parameters, is depicted as a Bayesian network in

Figure 1. Since the figure shows pooling across chromosomes, (S,y,O,p and

r) are indexed by both chromosome and location. The chromosome index

was omitted above for notational clarity.

An obvious extension of pooling data across chromosomes is to pool data

across samples, such as in Engler et al. [6]. However, due to numerous

factors that are sample-specific such as ploidy of the tumour genome and

proportion of tumour cells in the sample[24], we do not assume that mean

levels of copy number change will be consistent across samples. Therefore

we do not estimate mean levels of the states across samples. However, we

suggest that jointly considering samples has considerable value for goals

other than classification. Indeed, multiple aCGH samples of the same cancer

subtype have something in common—this is precisely what scientists hope

to discover! Presumably, multiple samples of the same cancer subtype will

exhibit commonalities such as minimally overlapping aberrations (see [4] for

examples in MCL cell lines) and locations of breakpoints. Detecting such

features is the subject of future work, and for now, we limit our attention to

modeling samples separately.

2.3 Priors

We use standard conjugate priors (see e.g., [8]) for all the parameters, as

follows:

pðms jssÞ ¼ Gaussðms‚tsssÞ ð2Þ

pðs�2
s Þ ¼ Gaðas‚bsÞ ð3Þ

pðAÞ ¼ DirðdÞ ð4Þ

pðriÞ ¼ Betaðai‚biÞ ð5Þ

As is apparent, these priors themselves have parameters, called hyper-

parameters. We set these by hand. Specifically, we use a small fraction

of validation data in order to estimate (by eye) the typical mean and variance

of the loss, neutral and gain states. A more rigorous Bayesian approach

would be to extend the hierarchy even further, and add priors to the

hyperparameters. Previous work has shown that 3 levels of hierarchy

(parameters, hyper-parameters, and hyper-hyper-parameters) is usually suf-

ficient to obtain robustness to (hyper-hyper-)parameter settings. We plan to

investigate this in the future. A summary of all the user-settable parameters is

shown in Table 1.

Prior knowledge about CNPs is encoded as follows. Locations i 2 P which

are known to come from CNPs get an adjustable parameter ri which reflects

the probability of outlier at that location. The parameters of the (Beta) prior

on ri is set so that the expected value of ri is equal to the frequency of

polymorphisms at that location in the population. Locations i =2 P, which are

Table 1. User settable hyper parameters for our model, along with the values we used for the Willenbrock synthetic data and the real MCL data. fi is the

frequency of a known CNP at position i. In the synthetic data, we set this to 0.001. To help interpret these numbers, recall that the mean of a beta(a,b) random

variable is a/(a+b), and the mean of a Ga(a,b) random variable is a/b. In particular, this means s1
2¼ 0.1 for synthetic and 0.07 for MCL, s2

2¼ 0.01 for synthetic

and 0.05 for MCL, etc

Parameter Description Synthetic MCL

d Dirichlet prior on transition matrix A 1, 1, 1, 1 1, 1, 1, 1

a1:4 shape of gamma prior on inverse variances s�2 10, 100, 5, 5 15, 20, 10, 10

b1:4 scale of gamma prior on inverse variances s�2 1, 1, 1, 1 1, 1, 1, 1

m1:4 prior mean on means m �0.1, 0, 0.58, 1 �0.4, 0, 0.3, 0.5

t1:4 prior variance on means m 0.5, 0.001, 1, 1 0.2, 0.1, 0.2, 0.2

a0 a for beta prior for r0 (prob of outlier) 0.01 0.00001

b0 b for beta prior for r0 (prob of outlier) 0.99 0.99999

ai a for beta prior for ri (prob of outlier at CNP i) 0.001 fi
bi b for beta prior for ri (prob of outlier at CNP i) 0.999 1 � fi
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not known to come from CNPs, share the same parameter r0, which rep-

resents the background probability of outlier. The (Beta) prior on r0 is set so

that the expected value of r0 is equal to the expected fraction of outliers,

which we estimate by eye on a per dataset basis (once for synthetic data, once

for MCL). We will let C ¼ jP j be the number of CNP locations, so r is a

vector of length C + 1.

In order to ensure the model is identifiable (i.e., to avoid label switching),

we enforce the following constraint on the mean parameters: m1 < m2 < m3 <
m4, where the states represent loss, neutral, one-gain and multiple-gain. (We

do this using a truncated Gaussian prior.) We impose a similar constraint on

the state variances: s3,4 � s1 � s2, which means that the gain states have

higher variance than the loss state, which has higher variance than the neutral

state (an empirical fact about most aCGH data). (We encode this using

a truncated Gamma prior.) Note that handling truncated priors in EM

(for MAP estimation) is harder than with MCMC, since it would require

constrained optimization methods in the M step. Indeed, EM is usually only

used to fit unidentifiable HMMs.

2.4 Algorithm

The algorithm is sketched in Figure 2. The output of the algorithm is the

following: estimates of the states gi (s) ¼ p(Si ¼ s j y1:n) and outlier proba-

bilities viðoÞ ¼ pðOi ¼ o j y1:nÞ, as well as estimates of the parameters,

pð� j y1:nÞ where � ¼ ðp‚A‚m‚±s‚rÞ. We use an MCMC algorithm called

block Gibbs sampling to infer these quantities. The key to making this

efficient is to use the forwards-filtering backwards-sampling algorithm for

HMMs [21]. This is very similar to the more familiar forwards-backwards

and Viterbi algorithms, except we sample state sequences from their pos-

terior, rather than computing the most probable sequence or marginal state

probabilities. Conditioned on knowing the states, it is easy to update the

parameters of the model. The same intuition is used in EM, but the advantage

of sampling is that we can model uncertainty in the parameters more easily.

To evaluate the effect of pooling across chromosomes, we implemented

our model in two modes, one which models each chromosome of each

sample independently (single), and the other which estimates the parameters

of the model by summarizing over chromosomes in each sample (pooled), as

shown in Figure 1. The algorithm for pooled mode is shown in Figure 2.

To reduce the pooled model to the single model, we consider a single

chromosome at a time and assign each chromosome its own set of private

parameters A, m, s and r0. We assess the relative performance of these two

implementations in Section 3.

The running time is O(NT) where N is the number of clones in the input

and T � 100 is the number of MCMC iterations needed to obtain conver-

gence (which we assess informally by monitoring quantities of interest by

eye). The method is entirely standard except for the update of r. We update

the ri parameters (based on the sampled value of Oi) for those locations i 2 P

known to correspond to CNPs; for all other locations, we update r0 using

the sufficient statistic
P

i=2P Oi. In pooled mode, the forward-filtering,

backwards-sampling step (which samples a state sequence) is performed

on each chromosome separately, as imposing dependencies on the terminal

clone from one chromosome and the initial clone of the next chromosome is

non-sensical. In both algorithm variants, we parameterize p separately with

its own Dirichlet distribution; this allows the use of Gibbs sampling to update

the hyperparameters by simple counting. In contrast, Guha solve for p using

the stationary distribution of A, which requires a Metropolis-Hastings step

[9]. Currently we estimate ĝg iðsÞ ¼ pðSi ¼ s j y1:nÞ by counting the number of

inlier samples for which Si ¼ s.

2.5 Evaluation methods

We evaluated our algorithm by calculating precision and recall for

aberrations (gains and losses grouped together). Given a ground truth label-

ing and a predicted labeling of the clones (obtained by taking the max

pðSi j yÞ probability), let ntp be the number of true positives (correctly pre-

dicted aberrations), let nt be the number of true aberrations, and let np be the

number of predicted aberrations. Recall is defined as ntp
nt , meaning the pro-

portion of true aberrations detected by the algorithm. Precision is defined as
ntp
np , meaning the proportion of predicted aberrations that are true. By varying

the threshold on the probabilities, we can vary the trade-off between pre-

cision and recall. To summarize the precision-recall curve in one number, we

use the F-measure, which is the geometric mean:

F ¼ 2 ·
precision · recall

precisionþ recall
ð6Þ

To summarize accuracy results over many samples or chromosomes, we use

distributions of F-measures.

We now explain how we modify the above method to handle outliers. We

first compute the posterior probability of outlier for each clone, pðOi ¼ 1 j yÞ.
We then rank these probabilities and take the top po% of them; finally, we

select those whose absolute probability is above a threshold to. We then

remove all those clones, which are deemed outliers, and compute precision-

recall on the remaining locations in the usual way. Note that these parameters

are not part of the algorithm. They are only used in the evaluation process.

We use po ¼ 10% and to ¼ 0:01.

3 RESULTS

To systematically test our approach, we ran three variants of our

algorithm on each data set:

� The baseline HMM (Base-HMM) which clamps the probability

of outlier at each location to 0, p(Oi¼ 1)¼ 0.0. This reduces the

model to an HMM with no outlier processing ability, as in [9].

� The robust HMM (Rob-HMM), which uses C ¼ 0 CNPs but

updates the global outlier probability p(r0 j y) given data from all

locations.

� The robust HMM augmented with location specific prior (LSP)

knowledge (LSP-HMM). In particular, we allow all locations

i 2 P to have their own prior probability of outlier, ri.

For each of these variants, we also ran the algorithm in single
and pooled mode. We also ran MergeLevels, considered to be

the current best method.

3.1 Mantle cell lymphoma cell line data

To illustrate the performance of our method on real data, we used a

set of 8 MCL cell lines (Granta-519, HBL-2, NCEB-1, Rec-1, SP49,

UPN-1, Z138C and JVM-2) whose aCGH profiles were manually

Fig. 2. Pseudo code for the pooled algorithm. c1 and cn indicate the initial

and terminal positions on chromosome c. n indicates the total number of

clones in the sample.
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analysed and published by deLeeuw et al. [4]. The data was gen-

erated using the Sub-Megabase Resolution Tiling (SMRT) arrays

[13] using a set of approximately 32,000 clones that cover the

human genome. We normalised the data published in deLeeuw

et al. [4] according to the stepwise method described in Khojasteh

et al. [15]. The normalized data was then manually labeled by

identifying contiguous regions of gains and losses and then labeling

the clones contained in the regions as gains or losses. This ‘ground

truth’ labeling allowed us to test our model on high resolution real

data, likely to contain CNPs. Only the autosomes (chromosomes 1
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Fig. 3. Array CGH profile for chromosome 1 of the MCL cell line HBL2. The x axis for all panels indicate position in nucleotides (bp) along the chromosome.

Panel A shows the log2 ratios (right axis) plotted against the position of each clone on the chromosome. The yellow squares indicate clones contained in a region

labeled as a loss by an expert. The blue circles similarly indicate clones that are in a gain region. Clones marked with light blue stars indicate outliers. Panel B

shows the predicted gains (vertical green bars) and losses (vertical red bars) output by MergeLevels. Note that while predicting all the ground truth aberrations

correctly, MergeLevels predicts six additional aberrated regions, including two large loss regions near the ends of each chromosome arm. MergeLevels does not

produce probabilistic output so we fix predicted aberrations at probability¼ 1 and all other locations at probability¼ 0 for comparative purposes. Panel C shows

the output of the Base-HMM. The green curve indicates the marginal probability of gain at each location, the red curve indicates 1 minus the marginal probability

of loss at each location (left axis). There are numerous false positive predictions with the Base-HMM, many of which are caused by single clone outliers. Panel D

shows the output of the LSP-HMM (pooled mode) with green and red the same quantities as in panel C and purple stars indicating the set of predicted outliers. The

LSP-HMM predicts all ground truth aberrations correctly and there are much fewer clones falsely predicted as aberrated compared to both MergeLevels and the

Base-HMM. Note that the locations of the predicted outliers overlap many of the falsely predicted single clone aberrations by the Base-HMM. Notably, there are

several outliers predicted in the leftmost loss region on the p-arm of the chromosome. These correspond to CNPs and therefore alert the user that the significance of

this region of loss should be carefully considered.
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to 22) contained ground truth labeling therefore only these chro-

mosomes were considered in our analysis. This reduced the number

of clones per sample to 29,992. The data set contained a total of 195

aberrated regions: 123 losses and 72 gains covering approximately

1% of the human genome.

We used a list of CNPs (Wong et al., unpublished) detected using

SMRT arrays on a population of 95 normal individuals to set the

LSP probability of an outlier. The list contains all the observed

CNPs in the population. We discuss the potential use of other

available CNP lists in Section 4.

Figure 3 shows chromosome 1 of HBL-2 with ground truth labels

(A), with MergeLevels predictions (B) with Base-HMM predictions

(C) and with LSP-HMM predictions (D). The Base-HMM and the

LSP-HMM were both run in pooled mode. The LSP-HMM was

given the complete list of CNPs described above that covered

approximately 20% of the clones. We used po ¼ 10% and to ¼
0.01 to determine outliers. Other parameters used for this data set

are listed in Table 1. For MergeLevels, red bars indicate predicted

regions of loss, green bars indicate predicted regions of gain. For the

HMMs, red indicates 1 minus the probability of loss and green

indicates probability of gain. These plots are similar in spirit to

Engler et al. [6]. Figure 3 shows that the LSP-HMM predicts all

of the aberrated clones with far fewer false positive predictions than

both MergeLevels and the Base-HMM. Interestingly, MergeLevels

and the Base-HMM are prone to different kinds of false positive

predictions. MergeLevels tends to mis-label a small number of large

segments with means slightly different than the neutral state mean,

whereas the Base-HMM mis-labels a large number of very short

segments usually corresponding to outliers. The LSP-HMM is rela-

tively immune to both problems. In addition, the panel (D) depicts

predicted outliers as purple stars, showing the qualitative advantage

of providing additional information to the user in the output. This is

particularly relevant to the left-most loss region in the p-arm. The

ground truth labeling actually contains several clones that overlap

CNPs. These clones are labeled as outliers by the LSP-HMM and

therefore can instruct the user to treat the predicted loss with some

degree of caution. In addition to this qualitative assessment of our

algorithm, Figure 4 shows distributions of F-measures over the

eight MCL cell lines. Distributions are shown as box-and-whisker

plots where the line within the box indicates the median of

the distribution, the top and bottom edges of the box indicate the

third and first quartiles, the ends of the whiskers indicate the 95%

confidence intervals of the distribution. The single point shown

for Rob-HMM is outside the 95% confidence interval. The distri-

butions show systematic improvement of the Base-HMM over

MergeLevels, Rob-HMM over the Base-HMM and the LSP-

HMM over the Rob-HMM. MergeLevels had a mean F-measure

of 0.73 ± 0.10. Base-HMM had an F-measure of 0.77 ± 0.12

indicating that using an HMM framework improves accuracy

over MergeLevels. Further gains were obtained by running the

Base-HMM in pooled mode (F-measure for Base-HMM-C was

0.84 ± 0.07). Adding robustness in pooled mode (Rob-HMM-C)

contributed additional improvement (F-measure was 0.88 ± 0.06).

Finally using the robust model in pooled mode combined with

prior knowledge on locations of CNPs (LSP-HMM-C) resulted

in the highest accuracy (F-measure was 0.89 ± 0.05). In

Figure 4, we can easily see from the boxplots that Base-HMM-

C, Rob-HMM, Rob-HMM-C and LSP-HMM-C are all significantly
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Fig. 4. Distributions of F-measures over eight MCL cell lines for

MergeLevels, the Base-HMM, the Rob-HMM and the LSP-HMM with the

CNP location prior in single and pooled mode (labeled with ‘-C’). All HMM

variants performed better than MergeLevels (mean F-measure 0.73 ± 0.11).

The LSP-HMM-C variant had the highest mean F-measure (0.89 ± 0.05),

followed by the Rob-HMM-C (0.88 ± 0.06), followed by Base-HMM-C

(0.84 ± 0.07). In all cases, pooled mode outperformed single mode.
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Fig. 5. Distributions of recall over eight MCL cell lines for MergeLevels, the

Base-HMM, the Rob-HMM and the LSP-HMM with the CNP location prior

in single and pooled mode (labeled with ‘-C’) . All HMM variants had higher

recall rates than MergeLevels (mean recall rate 0.82 ± 0.18). In all cases,

pooled showed considerable improvement over single mode and showed very

high recall rates. For Base-HMM-C, Rob-HMM-C and LSP-HMM-C the

recall rates were the same at 0.97 ± 0.03.
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Fig. 6. Distributions of precision over eight MCL cell lines for MergeLevels,

the Base-HMM, the Rob-HMM and the LSP-HMM with the CNP location

prior in single and pooled mode (labeled with ‘-C’). Base-HMM had higher

precision (0.76 ± 0.10) which was actually worsened slightly by pooling

(Base-HMM-C: 0.74 ± 0.10). The Rob-HMM and Rob-HMM-C had preci-

sion of 0.78 ± 0.09 and 0.81 ± 0.09 indicating that robustness and robustness

with pooling improves precision over the base model. Finally the LSP-

HMM-C had the highest precision rates (0.83 ± 0.08). Pooling for the

LSP-HMM showed the most benefit of all the HMM variants.
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better (at the 5% level) than MergeLevels. Base-HMM and LSP-

HMM are not. We also performed a one way anova test (which is

slightly less robust), and found that Rob-HMM-C and LSP-HMM-C

are both significantly different (at the 5% level) to MergeLevels.

Similar comments apply to the results on simulated data (see

Section 3.2). Although the LSP-HMM-C is basically the same as

the Rob-HMM-C, it is notable that it does not do worse despite

being ‘informed’ by 20% of the locations in the LSP. This suggests

that the model is robust to LSPs that are not supported by the data.

This is significant given that our CNP list covers about 20% of the

clones, yet in any one sample a much smaller portion of clones are

expected to overlap a CNP (recall that the CNP list is made up of

a union of all observed CNPs from a population of individuals).

We note that the pooled mode worked considerably better for all

HMM variants, demonstrating the advantage of ‘‘borrowing statis-

tical strength’’ from all the data in the sample during parameter

estimation.

To assess what was contributing to the differences in F-measure,

we plotted precision and recall separately. The recall rates are

shown in Figure 5 and demonstrate that pooling shows considerable

improvement over single mode for the HMM variants. The

recall rates were equally very high for the pooled HMM variants

(0.97 ± 0.03). In contrast, differences in the HMM variants were

observed for precision (see Figure 6). We observed improved

precision of Rob-HMM-C over the Base-HMM-C indicating that

considering outliers reduced the number of false positives. LSP-

HMM-C had the highest precision (0.83 ± 0.09), therefore the CNP

knowledge further reduced false positives (see Figure 6). The high

recall rates for LSP-HMM-C suggests that any future effort to

improve accuracy should first focus on reducing false positive

predictions to improve precision. However, we noted numerous

examples, such as at the centromeric end of the q-arm of HBL-2

chromosome 1 (Figure 3 D) where the falsely predicted aberrations

could indeed be real.

3.2 Simulated data with outliers

To validate our model on additional data set with ground truth, we

used the synthetic data created by Willenbrock and Fridlyand [24],

downloaded from http://www.cbs.dtu.dk/�hanni/aCGH/. This data

is fairly realistic, since it is generated by sampling segments from a

large set of primary tumours [24]. To simulate CNPs, we modified

this data by adding outliers planted randomly at 10% of the loca-

tions in the samples. The positions were sampled from a uniform

distribution from 1 to 2000 (the number of clones in each sample).

The log2 ratios for these outliers were sampled from a Gaussian

distribution with mean 0 and variance 2. This gave us a data set with

ground truth locations for the aberrated clones and for the positions

of the outliers.

We chose 10% as the outlier fraction for the following reason.

Our internally generated list of CNPs covers nearly 20% of the

SMRT clones. However, publicly available CNPs represent

approximately 1% of the SMRT clones. Therefore, we chose 10%

as a reasonable compromise between these extremes. We also ran

the Base-HMM and Rob-HMM on the original synthetic data and

both performed extremely well (mean F-measure 0.95 ± 0.10 and

0.93 ± 0.12 respectively). This provided further justification to

create a harder data set that contained the outliers.

In our experiments, we compared the effects of considering all

the known outliers to adding additional locations to the prior

which were not outliers. This simulated the effect of an incorrect

prior. Note that we can choose the strength of the prior. We set the

prior probability to 0.01.

Figure 7 shows the distributions of accuracy on 100 samples

for the three variants of our algorithm, including the LSP-HMM

informed by a superset of the positions, and exactly all the positions

of known outliers. Results on this data echo our results on MCL.

MergeLevels performs considerably worse than all the HMMs: its

F-measure was 0.37 ± 0.26 over 100 samples. The Base-HMM had a

F-measure of 0.58 ± 0.16, validating that by using an HMM frame-

work, significant improvement is attained over MergeLevels. As for

MCL data, further improvement was attained by adding outlier

detection. The Rob-HMM-C had a F-measure of 0.64 ± 0.24.

Finally the versions of the LSP-HMM-C performed better when

informed by a superset of the positions (F-measure¼0.66 ± 0.22),

and exactly all the positions (F-measure 0.68 ± 0.19) of the known

outliers. This indicates that a weak prior, when supported by the data

can help discover outliers, however contradictory evidence will

usually overwhelm the prior when it is wrong.

4 DISCUSSION

We have presented a new model for classifying aberrated clones in

aCGH data, which is robust to outliers and is able to leverage prior

knowledge about CNP locations. We have demonstrated that on

real and simulated data this model works better than a standard

HMM and a state of the art method, DNAcopy+MergeLevels.

We also determined that estimating parameters of the HMM

using pooled data across chromosomes improves accuracy.

Our results showed that recall rates were very high for all HMM

variants on the MCL data, and the differences in performance can be

mainly attributed to precision rates. We showed that the LSP-HMM
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Fig. 7. F-measures for 100 samples of Willenbrock and Fridlyand’s simu-

lated data augmented with outliers. From left to right: MergeLevels had an

F-measure of 0.37 ± 0.26. The Base-HMM had better accuracy (F-measure

of 0.58 ± 0.16). Further improvement was gained with the Rob-HMM-C

(F-measure ¼ 0.64 ± 0.24). As expected, informing the LSP-HMM with

the locations of the outliers (LSP-HMM1-C) resulted in the best performance.

LSP-HMM2-C (F-measure ¼ 0.66 ± 0.22) was informed with a superset of

the outlier locations, and LSP-HMM1-C (F-measure 0.68 ± 0.19) was given

all and only the outlier locations.
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is immune to falsely predicting large regions that MergeLevels

typically will mis-label and single clone outliers which the standard

HMM falsely predicts as gains. We also showed qualitatively

how the LSP-HMM enables the user to cross-reference predicted

outliers with known CNPs and therefore allows for a more thorough

interpretation of any predicted gains and losses.

As mentioned previously, the hyperparameters for both MCL and

the synthetic data were set by hand. We believe that sensitivity to

parameter settings (in particular with LSPs) are partially mitigated

by pooling data across chromosomes. We showed in Figure 5 and

Figure 6 how pooling improved both recall and precision rates for

the LSP-HMM. We also noted that even though the CNP list for the

MCL data consisted of 20% of the clones, the data overwhelms the

prior at most locations. In pooled mode this phenomenon is signifi-

cantly more pronounced as there is substantially more data available

to help overwhelm the prior in locations where it is wrong. To

further test this theory, our future work will involve accumulating

a set of CNPs that is a union of numerous sets of previously pub-

lished CNPs, for example Iafrate et al. [12], Sebat et al. [22], Tuzun

et al. [23], Conrad et al. [3] and McCarroll et al. [17]. We anticipate

that as long the the prior is not too strong a more comprehensive list

of LSPs will further help aCGH analysis and the interpretation

of results.

In addition to pooling, we plan to add levels to the hierarchy of

the model to make it robust to parameter settings. We will put

hyper-hyperparameters on the hyperparameters as discussed in

Section 2.3. This increases the number of parameters to estimate,

but the potential benefits of avoiding hand-tuning of parameters

offset this additional cost. In addition, we also set the number of

states of the HMM by hand. We noticed that the 4-state model

performed better than the 3-state model, however the variance

on the 4th state always converged to high values. This allowed

the 4th state to ‘compete’ with the outlier process to explain the

outliers, and therefore may have resulted in false positives. We are

currently working on a new model that solves the ambiguities

observed between high-variance states and the outlier process.

To evaluate the clinical applicability of our model, we plan to

apply the method to samples extracted from a cohort of lymphoma

patients. The aCGH profiles for these patients have been manually

classified and numerous clinically relevant aberrations have been

identified. We are also developing new models to identify

locations of recurrent aberrations across samples, and to use

other forms of prior knowledge, such as the locations of fragile

sites. Combined with CNP information, we anticipate that such

models will be extremely useful in profiling sub-types of cancer

with aCGH.
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ABSTRACT

Analysis of increasingly saturated sequence databases have shown

that gene family sizes are highly skewed with many families being

small and few containing many, far-diverged homologs. Additionally,

recently published results have identified a structural determinant of

mutational plasticity: designability that correlates strongly with gene

family size. In this paper, we explore the possible links between the

two observations, exploring the possible effect of designability on

duplication and divergence.

We show that designability has an inverse of expected relationship

with strength of selection. More designable domains that should have

more mutational plasticity evolve slower. However, we also present

evidence that recently duplicated genes have variable probability of

locus fixation correlated with strength of selection. As expected, para-

logs under stronger evolutionary pressure have a lower failure rate.

Finally, we show that probability of pseudogene formation from gene

duplicationcanbedirectly tied todesignabilityand functional flexibility of

the family.

We present evidence that gene families with higher designability

havediverged farther becauseof lowerprobability of pseudogenization.

Additionally,mutationalplasticitymayplayan integral roleby influencing

pseudogenization rate. Either way, we show that considering the failure

rate of duplications is integral in understanding the determinants and

dynamics of molecular evolution.

Contact: borya@acs.bu.edu

1 INTRODUCTION

Evolution progresses through an iterative process of duplication and

differentiation. The fate of genes that have undergone duplication

was hypothesized by Ohno (Ohno, 1970) to fall into one of three

categories: (i) Neo-functionalization when the newly duplicated

gene evolves under purifying selection to acquire novel function,

(ii) Non-functionalization when the newly duplicated gene becomes

non-functional through accumulation of deleterious mutations and

(iii) sub-functionalization when both copies mutate to divide ances-

tral pleiotropy. (Kondrashov, et al., 2002; Petrov and Hartl, 2000) In

order to understand the driving forces behind duplication and diver-

gence Kimura and Ota in their seminal paper from 1974 (Kimura

and Ota, 1974) outlined the principles governing the progress of

molecular evolution. One of the principles described in that paper is

‘‘evolution by mutational pressure’’. This principle outlines the

strong preferential elimination of deleterious mutants e.g. those

that destroy the structure or function. Kimura and Ota go so far

as to suggest that it is the pressure on the deleterious mutants more

than positive pressure canonical to Darwinian evolution that is the

predominant force driving evolution of multigene families (Kimura

and Ota, 1974).

Driven by the recent availability of sequenced genomes coupled

with high-throughput functional assays, researchers observed a

number of significant correlations between intrinsically functional

characteristics of gene sequences such as essentiality (Hirsh and

Fraser, 2001; Hurst and Smith, 1999; Yang, et al., 2003), number of

protein-interaction partners (Fraser, et al., 2002), or expression level

(Drummond, et al., 2005; Pal, et al., 2001), and the strength of

purifying selection. However, the relative importance of each

characteristic has been a subject of vigorous debate. (Drummond,

et al., 2005; Drummond, et al., 2006; Jordan, et al., 2003; Wall,

et al., 2005) While the process of duplication and differentiation is

well documented (Haldane, 1933; Ohno, 1970), gene-specific

characteristics that influence this process are largely unknown.

Finally, there is considerable debate concerning the relationships

between the strength of selection and subsequent dynamics of gene

duplication and divergence. Recently, several researchers found that

duplication occurs under influence of purifying selection (Shiu,

et al., 2006). Newly duplicated genes undergo a brief period of

relaxation followed immediately by increase of selection.

(Conant and Wagner, 2003; Jordan, et al., 2004; Kondrashov,

et al., 2002; Zhang, et al., 2003). On the other hand, survivorship

curves for worm duplicates show that simple stochastic models

considering only the age of the duplicate pair do equally well at

predicting distributions of duplicates (Lynch and Conery, 2000).

The unifying characteristic of these models lies in their attempt to

understand the determinants of duplication success and forego the

evaluation of the equally important duplication failure rate. Since

the most frequent outcome of duplication is non-functionalization of

at least one paralog (Nei, 1973; Petrov and Hartl, 2000), under-

standing that process is fundamental to relating gene function,

selection and duplication.

While we showed that protein structure correlates with the diver-

gence of homologs (Shakhnovich, et al., 2005), there have been no

investigations into the relationships between protein structure,
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selection and the dynamics of duplication and divergence. Thus, in

this work we evaluate the relationships between designability,

selection and rate of pseudogenization. First, we show that gene

pairs under stronger purifying selection have a lower probability of

pseudogenization. We then show that that structural determinants of

mutability e.g. designability (England, et al., 2003; England and

Shakhnovich, 2003) inversely correlates with strength of purifying

selection. Since we previously established the link between

divergence and designability, we explain this link here by showing

that higher designabiltity domains enjoy a lower pseudogenization

rate. Consistent with previous results, we find that the lower

pseudogenization rate of higher designability domains results in

farther diverged paralogs. These observations carry fundamental

implications for understanding and application of Kimura’s theory

(Kimura and Ota, 1974) of evolution by mutational pressure.

2 STRUCTURAL DETERMINANTS OF
SELECTION

The strength of selection on the paralogs after duplication may be

influenced by many factors such as lethality (Venkatesan, et al.,
2003; Yang, et al., 2003), paralogy (Jordan, et al., 2004), ability to

neo-functionalize (Lynch and Conery, 2000; Lynch, et al., 2001)

and protein interaction neighbors (Fraser, et al., 2003). We were

interested in probing whether structural properties of domains have

significant impact on evolutionary pressure. Recent theoretical

investigations showed that designability can be used a measure

of mutational plasticity allowable for a structure. While measures

for designability were first derived using lattice models from the-

oretical arguments of stability (England and Shakhnovich, 2003;

Shakhnovich, et al., 2005; Shakhnovich and Max Harvey, 2004),

recent investigations have seen a generalization that enabled cal-

culation of designability on real protein structures. Specifically,

England and Shakhnovich showed that contact density (CD) of

structure (England and Shakhnovich, 2003) can serve as an approx-

imation to a determinant of protein designability: domains with

higher CD tend to be more designable.

Indeed, when investigating real protein domains, we found that

those with higher CD tend to have farther diverged homologs

(Shakhnovich, et al., 2005). We also found that designability is a

potential for sequence diversity. This potential has to be fulfilled

through an iterative process of duplication and divergence in each

genome. Since designability is related to mutational plasticity,

it may also influence the evolutionary pressure on the recently

duplicated paralogous pair. Thus, the null hypothesis would be

that designability relaxed evolutionary pressure.

To test the influence of designability on evolutionary pressure, we

compare CD with the strength of purifying selection. Evolutionary

pressure can be measured by computing the ratio of accepted

non-synonymous substitutions Ka to the synonymous substitution

rate Ks between homologous sequences (Gaut and Doebley, 1997;

Hughes and Hughes, 1993; Li, 1997). We used the widely used

PAML package to estimate the Ka and Ks ratios (Yang and Nielsen,

2000). Duplicates under stronger evolutionary pressure exhibit

Ka/Ks ratios close to 1. Deviations from 1 are usually taken to

mean that the paralogs are under relaxed pressure.

We found that Ka/Ks ratio of recently duplicated gene pairs in

C. Elegans (Lynch and Conery, 2000) correlate inversely with the

theoretical determinant of designability: the CD of the structure. To

further test the robustness of this relationship we performed the

same calculation on orthologs from S. Cerevisiae and Paradoxus.

We found the same general trend of higher designability domains

under stronger evolutionary pressure (Fig 1). This is a surprising

result since higher designability should impart a more relaxed muta-

tional regime. This result is also surprising in light of previous

evidence that more diverse gene families encode more designable

domains. (Shakhnovich, et al., 2005) Thus, it seems that paralogs

encoding more designable domains are under stronger selection, but

diverge farther away to yield gene families with higher sequence

entropy. We attempt to reconcile these by looking at the effect of

stronger selection on duplication and divergence.

3 HOW SELECTION AFFECTS
PSEUDOGENIZATION RATE

Thus, it seems that designable domains evolve slower, but have

farther diverged families. One possible explanation is that domains

under relaxed evolutionary pressure pseudogenize more often.

Thus, these families may not have a chance to diverge as functional

paralogs leading to more compact families with less sequence

entropy. We can conjecture, based on evidence from previous

work (Conant and Wagner, 2003; Kondrashov, et al., 2002;

Zhang, et al., 2003) that mutation and diversification of a newly

duplicated locus may be related to the strength of selection on the

paralogous pair. In order to assess the influence of evolutionary

pressure on duplication events, we consider the relationship

between selection and failure of a duplication event e.g. pseudogene

formation (Harrison and Gerstein, 2002; Harrison, et al., 2002;

Kimura and Ota, 1974). We test this relationship directly using

pseudogenes identified in a number of recently sequenced genomes.

Fig. 1. Correlation of designability with strength of selection for C. Elegans
paralogs. CD was calculated (see Methods) as the average over all domains

encoded by a gene with more than one domain. Each bin contains between

20-25 genes. The red line indicates a linear fit to the scatter plot R¼.91. The

error bars represent variance inside each bin. The same correlation was

calculated for S. Cerevisiae-Paradoxus orthologs with similar results (inset).

Red line is the linear fit R¼.92, P<.001.
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Recently Gerstein and coworkers have identified all putative

pseudogenes in a number of genomes (Harrison, et al., 2002;

Harrison, et al., 2001; Harrison and Gerstein, 2002; Harrison,

et al., 2002). Pseudogenes are disabled copies of genes (or decayed

remnants of genes) that do not produce a full-length protein chain.

Pseudogenes can generally be divided into two types. Processed

pseudogenes arise from reverse transcription from messenger

RNA (mRNA) and re-integration into the genomic DNA. By

contrast, ‘‘duplicated pseudogenes’’ arise from duplication in the

genomic DNA and subsequent disablement, most commonly

through disruptive frameshift mutation or premature stop codon

formation. Clearly we want to focus on this class of pseudogenes

as a measure of locus fixation failure.

We start our analysis of the differential failure rate of duplication

by calculating the probability of successful duplication versus

pseudogenization of one of the duplicates in C. Elegans. We employ

simple sequence comparison methods to identify paralogous mem-

bers of multigene families and pseudogenes likely formed from a

duplication event of any member in those families. (See Methods) In

this paper, the probability of pseudogene formation is just the ratio

of the number of pseudogenes weakly homologous to a multigene

family versus the number of paralogs belonging to the same mul-

tigene family. (See Methods) This ratio may not be direct evidence

of variable probability of locus fixation, since failure may not

always lead to pseudogene formation. It may, however, be used

as a first-pass approximation given the assumption that deletion of

pseudogenes from the genome is nearly uniform, i.e. without pref-

erence to individual duplication locii.

We first plot average Ka/Ks(Lynch and Conery, 2000) of

C. Elegans paralogs against Ppseudo (Harrison, et al., 2001).

Figure 2 shows that recently duplicated paralogous pairs under

strong selection are less likely to leave pseudogenes. Thus, higher

Ka/Ks ratios have higher Ppseudo. This is an intuitively obvious result

underlining the relationship between evolutionary pressure and

duplication success. Of course, the absence of pseudogenes does

not imply success. However, controlling for age of duplicates does

not qualitatively change results. Additionally, we observe no

difference in the duplication rate of paralogs. (data not shown)

Unfortunately, the number of pseudogenes is relatively small and

thus we can calculate only average behavior and the its impossible

to relate designability and duplication directly using data from

C. Elegans.
The insight here is that duplication and differentiation is a

stochastic process. This process has a certain success and failure

rate. Accumulation of deleterious mutations will increase the

chance that the protein becomes non-functional and thus turn

into a pseudogene. This is consistent with the postulate of evolution

by mutational pressure. Thus, the implication from Fig 1 and 2 is

that more designable domains, under stronger selection are able to

avoid accumulation of deleterious mutations and thus fewer duplic-

ates pseudogenize. This could, potentially, result in farther diverged

families, despite the relatively slower rate of divergence.

4 STRUCTURAL AND FUNCTIONAL
DETERMINANTS OF DUPLICATION FAILURE

We saw in the previous two sections how structure can affect the

dynamics of duplication and diversification through increased selec-

tion on higher designability domains. Along with considerations of

structural stability, we can hypothesize that dynamics of molecular

evolution may be affected by the functional landscape of gene

family. Some recently duplicated paralogs may have finding new

functions with fewer mutations. (Shakhnovich, et al., 2003) If

neo-functionalization is easier, the duplicate is more likely to be

fixed in the population through positive selection. In fact, we

previously reported the correlation between designability and

functional diversity (Shakhnovich, et al., 2005). Thus, to test the

relationship between designability and dynamics of molecular

evolution, we have to take into account both the positive selection

due to neo-functionalization and structural determinants of muta-

tional plasticity.

We begin by calculating the probability landscape of pseudogene

formation with respect to designability and the potential for func-

tional diversity (FFS) in the M. Leprae (Smith, et al., 1997) genome.

We calculate the contact density (CD) of each gene using homo-

logous structures in PDB. The potential for functional flexibility

(FFS) is calculated using GO annotations (Shakhnovich, et al.,
2005). All homologous sequences in a non-redundant database

(NRDB) are annotated on GO (Ashburner, et al., 2000), the entropy

of annotation on each level is the FFS (See Methods).We chose the

M. Leprae genome mainly for statistical reasons, because it has the

largest number of pseudogenes of any prokaryotes (Cole, et al.,
2001; Smith, et al., 1997).

The pseudogenization probability landscape shown in Fig. 3

shows that the fixation of the duplication event in M. Leprae is a

function of both the structural designability (CD of the structure)

and functional diversity of the protein domain. Duplicates of genes

coding for the most highly designable domains with the higherst

potential for functional diversity have the least chance of becoming

pseudogenes. The fact that the maximum probability of pseudogen-

ization is away from the minimum designability is probably due to

finite size effects and inherent error in the calculations. The land-

Fig. 2. The average probability of pseudogenization (Ppseudo) versus strength

of selection as estimated by Ka/Ks. The data was binned on the X axis with step

.01. In case no pseudogenes were found the multigene families were not

considered for this plot. The red line is the linear fit with R ¼ .89 and

P<1e-4. The relatively small number of multigene families with identifiable

pseudogenes prevents reliable analysis of statistical robustness of the fit.
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scape on Fig 3 shows that both structural and functional character-

istics of genes, and more importantly the families to which these

genes belong affect the potential success of duplication and diver-

gence of paralogs. These finding are consistent with farther diver-

gence of homologs of more designable domains. (Shakhnovich,

et al., 2005) While this evidence is suggestive of a link between

designability and the dynamics of molecular evolution, it is not

necessarily sufficient due to possible transitive relationships not

controlled for in this particular study (Drummond, et al., 2006).

Some researchers have argued that the M. Leprae genome has

undergone reductive evolution (Cole, et al., 2001; Harrison and

Gerstein, 2002; Smith, et al., 1997) instead of an explosive period

of duplication. However, the principles of Kumura and Ohta e.g.

evolution by mutational pressure remain in effect for gene deletion

as well as gene accumulation. We can justifiably interpret results in

Fig. 3 as the probability of deletion of a member of a multigene

family is inversely proportional to the designability of the structure

encoded by its members and diversity functions inherent in the

members.

5 DISCUSSION

The question of the relationship between functional or genetic char-

acteristics and evolutionary pressure is at the forefront of studies in

molecular evolution (Drummond, et al., 2005; Drummond, et al.,
2005; Jordan, et al., 2002; Jordan, et al., 2003; Jordan, et al., 2004).

A comprehensive theory of this relationship may lead to a better

understanding of the phenotype-genotype relationship. Since we

previously reported that mutational flexibility as measured by struc-

tural designability correlates with sequence entropy of the gene

family (Shakhnovich, et al., 2005). However, exploration of

sequence space occurs through iterative duplication and differen-

tiation of paralogs in genomes under evolutionary pressure. Thus,

we wanted to explore the genetic mechanisms that could result in

association of larger sequence families with higher designability

structures. We initially hypothesized that genes coding for higher

designability domains evolve faster and are thus able to diverge

farther.

Contrary to our initial expectations, we found that genes coding

for higher designability domains are under stronger selective pres-

sure. However, the fact that they diverge slower doesn’t preclude

them from diverging farther. (Shakhnovich and Koonin, 2006) To

explain the seeming inconsistency, we postulated that there exists an

increased success rate of locus fixation for paralogs under stronger

evolutionary pressure. Indeed, using data from C. Elegans, we found

that paralogs under stronger selection pseudogenize less. We are in

the process of exploring this dependency between pseudogenization

and selection in more detail in our upcoming publication.

(Shakhnovich and Koonin, 2006)

Since we show above that lower evolutionary pressure confers a

higher probability of failure upon duplication, we are able to show

directly in Fig. 3 that genes encoding domains with higher

designability have a lower probability of pseudogenization. In

fact, we show that probability of success in locus fixation

correlates with both the designability of the structure and the

functional flexibility of the gene family. The interpretation is

that larger functional flexibility confers a smaller mutational path

for neo-functionalization e.g. the paralogs have to accept fewer

mutations before finding new function. At the same time, mutational

plasticity granted by higher designability structures allows the

paralogs more ‘‘time’’ before deleterious mutations destroy

protein stability. Both of these factors can be seen using the

pseudogenization landscape in Figure 3.

The above evidence is a striking observation of the effect of

fitness and the mechanism of natural selection on protein domains.

Akin to organismal evolution, protein domains undergo cycles of

trial and tribulation in the form of stochastic duplication and diver-

gence. Some domains survive the duplication cycle and others turn

into pseudogenes. The difference between the domains that survive

and those that perish lies in the origin of the duplication event with

respect to sequence space. The newly duplicated gene pairs that

encode more designable structures have a higher probability of

success due to the fact that both copies may accept more mutations

and are less likely encounter a deleterious mutation that destroys

structure.

One caveat from this study is the assumption of equal dupli-

cation rate and pseudogene deletion across genes coding for

variable designability domains. Furthermore, there could be other

transitive correlations with designability and functional flexi-

bility, not accounted for in this study. For example, more work

has to be done in order to determine the underlying reasons

for higher selection on higher designability domains. These

reasons could be historical e.g. higher designability domains are

older (England, et al., 2003) or functional e.g. that designable

domains code for ‘‘more important’’ functions. Moreover, the

relative contributions of mutational plasticity and stronger

Fig. 3. The probability of pseudogene formation with respect to both the

functional flexibility score (FFS) and designability (CD) of the domain. For

each domain we calculated the number of paralogs in M. Leprae and the

number of duplicated pseudogenes likely to have come from that domain

found in the same genome. We then calculated the probability of pseudogene

formation and plotted it with respect to CD and FFS of that domain. The plot

was made by binning FFS and CD into bins with step .35 and averaging the

probability inside each bin. Each bin contains between 20 and 30 domains. It

is striking how the probability of successful duplication depends on both the

designability of the structure and the functional diversity of the domain. At

highest CD and FFS the probability is around 25 percent of failure while at the

lowest CD and FFS the probability increases to more than 50 percent. This

would suggest that for a given duplication attempt, some domains enjoy more

than fifty percent increase in their ability to ‘‘produce offspring’’.

Structural designability and functional diversity in molecular evolution

e443



selection of designable domains in achieving more divergent fam-

ilies is unclear.

A comprehensive model describing the interplay between these

parameters is needed for a complete understanding of the effect of

structure on dynamics of molecular evolution. While the above are

only first studies of the average effect of natural selection on protein

domains, it represents a striking confirmation of a paradigm first laid

out by Kimura and Ota of evolution by mutational pressure. In that

paper Kimura and Ota stated that ability to sustain mutation is the

fitness characteristic driving molecular evolution of multigene

families. The dependency of pseudogene formation on designability

through higher probability of survival of both duplicates opens the

door to including structural characteristics in modeling ‘‘fitness’’ of

the multigene families.

METHODS

The data for Ka/Ks values for pairs of C. Elegans genes was taken directly

from (Lynch and Conery, 2000) http://www.csi.uoregon.edu/projects/

genetics/duplications/C.elegans.txt. Since this dataset was prepared before

the current wormpep database, we excluded genes that were found to be part

of pseudogenes, not in the current release of wormpep or were subsequently

to Lynch and Conery analysis found to be the same gene. This yielded 1518

duplicate pairs instead of 1770 included in the original file.

To calculate the number of paralogs for each C. Elegans gene (Ndupl) we

performed an all-against all BLAST of the C-elegans genome. We took

reverse best hits at 1e-6. For each gene we calculated the number of best

hits. We also performed BLAST homology search for the genome against all

known pseudogenes. The results were used to calculate Npseudo. Ppseudo was

then calculated using eq2. We also performed a domain-centric calculation

of the same quantity. We took all HSSP (Holm and Sander, 1997) domains

and counted the number of different ORFs to which they are homologous,

this was used for Ndupl. We also calculated the number of pseudogenes

homologous to the same HSSP(Holm and Sander, 1997) domain and

used that for Npseudo. The results were not significantly affected between

the two approaches.

To calculate designability for each gene we took all structurally resolved

domains from HSSP homologous to the gene with E<1e-6 and more than

40% sequence identity. We then averaged the contact density, if the gene

contained more than one domain. Designability of each domain was calcu-

lated through contact density as explained in detail below.

As before(Shakhnovich and Max Harvey, 2004), for FFS we calculate the

average amount of information per GO(Ashburner, et al., 2000) annotation

level needed to fully describe the function of each set of sequences that fold

into a domain by using the following equation

FFS ¼ � 1

MaxðLÞ
X

l

X
i2fnodes on Level lg

piLogðpiÞ ð1Þ

Here, Max(L) is the maximal number of levels of annotation, the sum-

mation is taken over all levels l and over all nodes i filled by the functions on

the GO (Ashburner, et al., 2000) tree, and pi is the percentage of the

sequences that are annotated with function i.

We used data from Gerstein and co-workers who identified all putative

duplicated pseudogenes in a number of genomes. (Harrison, et al., 2002;

Harrison, et al., 2001; Harrison and Gerstein, 2002) We downloaded the M.

Leprae genome from (from Sanger Centre Pathogen Sequencing Group

(ftp://ftp.sanger.ac.uk/pub/pathogens/leprae) and C. elegans from NCBI

because these organisms have the largest number of observed pseudogenes.

In contrast to finding functional domains in genomes, the acceptable E value

for identifying pseudogenes was lowered to 1e-3 to signify the increased

propensity of pseudogenes to diverge in sequence since pseudogenes are not

under pressure to be structurally of functionally viable.

To avoid confusion of which domain corresponds to the failed duplication

attempt, we require that there is at most one structure that corresponds to any

pseudogene sequence. Thus for each domain we can estimate the probability

of becoming a pseudogene using the following simple equation

Pgenefam
pseudo ¼

Npseud

Npseudo þ Ndupl

ð2Þ

where Npseud is the number of pseudogenes with high sequence similarity to a

domain and Ndupl is the number of paralogous genes for the same domain in a

given genome.

Designability

England and Shakhnovich showed recently (England and Shakhnovich,

2003) that for a large class of amino acid interaction potentials B, the

free energy per monomer f in sequence space for a protein structure defined

by its contact matrix (CM) C is given by

f ¼ � 1

N

X1
n¼2

ðTr CnÞan ð3Þ

where the weights ai are all positive functions which depend on the inter-

action energies B. The contact matrix C is defined as Cij¼1 if amino acids i

and j are in contact and 0 otherwise. Definitions of contact may vary, but in

this paper we use the standard cutoff of 7.5 angstroms between Cb atoms (Ca

for Gly). Elementary matrix algebra suggests that trace of high powers of a

matrix is determined by its maximal eigenvalue. Thus, protein structures that

have greater maximal eigenvalues of their contact matrices are expected to

be more designable.

ACKNOWLEDGEMENTS

The author would like to thank Eugene Koonin and Eugene

Shakhnovich for their support and insight into the work presented

in this manuscript. The work was supported by NIH.

REFERENCES

Ashburner,M., Ball,C.A., Blake,J.A., Botstein,D., Butler,H., Cherry,J.M., Davis,A.P.,

Dolinski,K., Dwight,S.S., Eppig,J.T., Harris,M.A., Hill,D.P., Issel-Tarver,L.,

Kasarskis,A., Lewis,S., Matese,J.C., Richardson,J.E., Ringwald,M., Rubin,G.M.

and Sherlock,G. (2000) Gene ontology: tool for the unification of biology. The

Gene Ontology Consortium. Nat Genet, 25, 25–29.

Cole,S.T., Eiglmeier,K., Parkhill,J., James,K.D., Thomson,N.R., Wheeler,P.R.,

Honore,N., Garnier,T., Churcher,C., Harris,D., Mungall,K., Basham,D., Brown,D.,

Chillingworth,T., Connor,R., Davies,R.M., Devlin,K., Duthoy,S., Feltwell,T.,

Fraser,A., Hamlin,N., Holroyd,S., Hornsby,T., Jagels,K., Lacroix,C., Maclean,J.,

Moule,S., Murphy,L., Oliver,K., Quail,M.A., Rajandream,M.A., Rutherford,K.M.,

Rutter,S., Seeger,K., Simon,S., Simmonds,M., Skelton,J., Squares,R., Squares,S.,

Stevens,K., Taylor,K., Whitehead,S., Woodward,J.R. and Barrell,B.G. (2001)

Massive gene decay in the leprosy bacillus. Nature, 409, 1007–1011.

Conant,G.C. and Wagner,A. (2003) Asymmetric sequence divergence of duplicate

genes. Genome Res, 13, 2052–2058.

Drummond,A.D., Raval,A. and Wilke,C.O. (2005) A single determinant for the rate of

yeast protein evolution, arxiv.org. .

Drummond,D.A., Bloom,J.D., Adami,C., Wilke,C.O. and Arnold,F.H. (2005) Why

highly expressed proteins evolve slowly. Proc Natl Acad Sci USA, 102,

14338–14343.

Drummond,D.A., Raval,A. and Wilke,C.O. (2006) A single determinant dominates the

rate of yeast protein evolution. Mol Biol Evol, 23, 327–337.

England,J.L., Shakhnovich,B.E. and Shakhnovich,E.I. (2003) Natural selection of more

designable folds: a mechanism for thermophilic adaptation. Proc Natl Acad Sci

USA, 100, 8727–8731.

England,J.L. and Shakhnovich,E.I. (2003) Structural determinant of protein designab-

ility. Phys Rev Lett, 90, 218101.

Fraser,H.B., Hirsh,A.E., Steinmetz,L.M., Scharfe,C. and Feldman,M.W. (2002)

Evolutionary rate in the protein interaction network. Science, 296, 750–752.

B.E.Shakhnovich

e444



Fraser,H.B., Wall,D.P. and Hirsh,A.E. (2003) A simple dependence between

protein evolution rate and the number of protein-protein interactions. BMC

Evol Biol, 3, 11.

Gaut,B.S. and Doebley,J.F. (1997) DNA sequence evidence for the segmental allo-

tetraploid origin of maize. Proc Natl Acad Sci USA, 94, 6809–6814.

Haldane,J.B.S. (1933) The part played by recurrent mutation in evolution. Am Nat, 67,

5–19.

Harrison,P., Kumar,A., Lan,N., Echols,N., Snyder,M. and Gerstein,M. (2002) A small

reservoir of disabled ORFs in the yeast genome and its implications for the dynam-

ics of proteome evolution. J Mol Biol, 316, 409–419.

Harrison,P.M., Echols,N. and Gerstein,M.B. (2001) Digging for dead genes: an ana-

lysis of the characteristics of the pseudogene population in the Caenorhabditis

elegans genome. Nucleic Acids Res, 29, 818–830.

Harrison,P.M. and Gerstein,M. (2002) Studying genomes through the aeons: protein

families, pseudogenes and proteome evolution. J Mol Biol, 318, 1155–1174.

Harrison,P.M., Hegyi,H., Balasubramanian,S., Luscombe,N.M., Bertone,P., Echols,N.,

Johnson,T. and Gerstein,M. (2002) Molecular fossils in the human genome: iden-

tification and analysis of the pseudogenes in chromosomes 21 and 22. Genome Res,

12, 272–280.

Hirsh,A.E. and Fraser,H.B. (2001) Protein dispensability and rate of evolution. Nature,

411, 1046–1049.

Holm,L. and Sander,C. (1997) Dali/FSSP classification of three-dimensional protein

folds. Nucleic Acids Res, 25, 231–234.

Hughes,M.K. and Hughes,A.L. (1993) Evolution of duplicate genes in a tetraploid

animal, Xenopus laevis. Mol Biol Evol, 10, 1360–1369.

Hurst,L.D. and Smith,N.G. (1999) Do essential genes evolve slowly? Curr. Biol, 9,

747–750.

Jordan,I.K., Rogozin,I.B., Wolf,Y.I. and Koonin,E.V. (2002) Essential genes are more

evolutionarily conserved than are nonessential genes in bacteria. Genome Res, 12,

962–968.

Jordan,I.K., Wolf,Y.I. and Koonin,E.V. (2003) No simple dependence between protein

evolution rate and the number of protein-protein interactions: only the most prolific

interactors tend to evolve slowly. BMC Evol Biol, 3, 1.

Jordan,I.K., Wolf,Y.I. and Koonin,E.V. (2004) Duplicated genes evolve slower than

singletons despite the initial rate increase. BMC Evol Biol, 4, 22.

Kimura,M. and Ota,T. (1974) On some principles governing molecular evolution.

Proc Natl Acad Sci USA, 71, 2848–2852.

Kondrashov,F.A., Rogozin,I.B., Wolf,Y.I. and Koonin,E.V. (2002) Selection in the

evolution of gene duplications. Genome Biol, 3, RESEARCH0008.

Li,W.H. (1997) Molecular Evolution. Sinauer, Sunderland, MA.

Lynch,M. and Conery,J.S. (2000) The evolutionary fate and consequences of duplicate

genes. Science, 290, 1151–1155.

Lynch,M., O’Hely,M., Walsh,B. and Force,A. (2001) The probability of preservation

of a newly arisen gene duplicate. Genetics, 159, 1789–1804.

Nei,M. and Roychoudhury,A.K. (1973) Probability of fixation of nonfunctional genes

at duplicate loci. Am Nat, 107, 590–605.

Ohno,S. (1970) Evolution by gene duplication. Springer-Verlag, Berlin, New York.

Pal,C., Papp,B. and Hurst,L.D. (2001) Highly expressed genes in yeast evolve slowly.

Genetics, 158, 927–931.

Petrov,D.A. and Hartl,D.L. (2000) Pseudogene evolution and natural selection for a

compact genome. J Hered, 91, 221–227.

Shakhnovich,B. and Koonin,E.V. (2006) The Origins and Impact of Constraint in

Molecular Evolution of Gene Families. Genome Res, In Review.

Shakhnovich,B.E., Deeds,E., Delisi,C. and Shakhnovich,E. (2005) Protein structure

and evolutionary history determine sequence space topology. Genome Res, 15,

385–392.

Shakhnovich,B.E., Dokholyan,N.V., DeLisi,C. and Shakhnovich,E.I. (2003) Func-

tional fingerprints of folds: evidence for correlated structure-function evolution.

J Mol Biol, 326, 1–9.

Shakhnovich,B.E. and Max Harvey,J. (2004) Quantifying structure-function uncer-

tainty: a graph theoretical exploration into the origins and limitations of protein

annotation. J Mol Biol, 337, 933–949.

Shiu,S.H., Byrnes,J.K., Pan,R., Zhang,P. and Li,W.H. (2006) Role of positive selection

in the retention of duplicate genes in mammalian genomes. Proc Natl Acad Sci.

USA, 103, 2232–2236.

Smith,D.R., Richterich,P., Rubenfield,M., Rice,P.W., Butler,C., Lee,H.M., Kirst,S.,

Gundersen,K., Abendschan,K., Xu,Q., Chung,M., Deloughery,C., Aldredge,T.,

Maher,J., Lundstrom,R., Tulig,C., Falls,K., Imrich,J., Torrey,D., Engelstein,M.,

Breton,G., Madan,D., Nietupski,R., Seitz,B., Mao,J.I. et al. (1997) Multiplex

sequencing of 1.5 Mb of the Mycobacterium leprae genome. Genome Res, 7,

802–819.

Venkatesan,K., McManus,H.R., Mello,C.C., Smith,T.F. and Hansen,U. (2003)

Functional conservation between members of an ancient duplicated

transcription factor family, LSF/Grainyhead. Nucleic Acids Res, 31, 4304–4316.

Wall,D.P., Hirsh,A.E., Fraser,H.B., Kumm,J., Giaever,G., Eisen,M.B. and Feld-

man,M.W. (2005) Functional genomic analysis of the rates of protein evolution.

Proc Natl Acad Sci USA, 102, 5483–5488.

Yang,J., Gu,Z. and Li,W.H. (2003) Rate of protein evolution versus fitness effect of

gene deletion. Mol Biol Evol, 20, 772–774.

Yang,Z. and Nielsen,R. (2000) Estimating synonymous and nonsynonymous

substitution rates under realistic evolutionary models. Mol Biol Evol, 17,

32–43.

Zhang,P., Gu,Z. and Li,W.H. (2003) Different evolutionary patterns between young

duplicate genes in the human genome. Genome Biol, 4, R56.

Structural designability and functional diversity in molecular evolution

e445



Vol. 22 no. 14 2006, pages e446–e453

doi:10.1093/bioinformatics/btl235BIOINFORMATICS

Integrating image data into biomedical text categorization
Hagit Shatkay�, Nawei Chen and Dorothea Blostein
School of Computing, Queen’s University, Kingston, Ontario, Canada

ABSTRACT

Categorization of biomedical articles is a central task for supporting

various curation efforts. It can also form the basis for effective bio-

medical text mining. Automatic text classification in the biomedical

domain is thus an active research area. Contests organized by the

KDD Cup (2002) and the TREC Genomics track (since 2003) defined

several annotation tasks that involved document classification, and

provided training and test data sets. So far, these efforts focused on

analyzing only the text content of documents. However, as was noted

in the KDD’02 text mining contest—where figure-captions proved to

be an invaluable feature for identifying documents of interest—images

often provide curators with critical information. We examine the pos-

sibility of using information derived directly from image data, and of

integrating it with text-based classification, for biomedical document

categorization.Wepresentamethod forobtaining features from images

and for using them—both alone and in combination with text—to per-

form the triage task introduced in the TREC Genomics track 2004.

The task was to determine which documents are relevant to a given

annotation task performed by the Mouse Genome Database curators.

We show preliminary results, demonstrating that the method has a

strong potential to enhance and complement traditional text-based

categorization methods.

Contact: shatkay@cs.queensu.ca

1 INTRODUCTION

Categorization of biomedical text is pivotal both for supporting

curation tasks in biological databases and for providing researchers

with literature appropriate for their specific information needs. For

example, curators for the Mouse Genome Database (MGD) need

publications with specific contents to validate the expression of

genes under certain conditions. Other examples for curation-related

task include the identification of papers discussing subcellular local-

ization in support of the annotation of proteins with Gene Ontology

(GO) codes for subcellular component, or of papers discussing

function—to be used as evidence for functional annotation. On

the other side of the quest for information, scientists in individual

labs may want to easily identify papers that are likely to be related to

their own research, or may look for papers discussing a new area of

interest into which they are ready to venture. Underlying all these

examples is the need to identify a subset of documents, with some

common topical characteristic, within a large set of documents. The

latter set may include hundreds of documents returned by a broad

PubMed search, or possibly thousands of documents in a certain

journal, or even the millions of documents comprising the whole of

MEDLINE.

In the past few years several initiatives were established to

encourage and evaluate work on biomedical text categorization.

The KDD’02 cup (Yeh et al., 2003) had a task in which documents

were to be categorized as containing (or not containing) evidence

for gene expression within the Drosophila wild type, in support of

FlyBase curation. For the past two years the TREC Genomics track

(Hersh et al., 2005, 2006) featured a text categorization task, in

which documents were to be classified according to their evidence

contents in support of assigning GO annotation to mouse genes. Part

of Task 2 of the BioCreative challenge (Hirschman et al., 2005)

involved identifying papers that contain evidence for assigning GO

codes to human proteins, in support of Swiss-Prot curation.

In all these tasks the documents were categorized based only on

the text occurring in them. While participating in the KDD cup,

Regev et al. (2002) noted that the use of figure captions proved

particularly helpful for their high performance in identifying

documents discussing gene expression. Following this work, figure

captions were also used by participants in the TREC Genomics track

(Darwish and Madkour, 2005) as part of the text-features used for

categorization. The success of using figure captions is related to

the fact that figures contain important cues that are typically used by

database curators and annotators to quickly scan documents and

distinguish relevant from irrelevant ones. FlyBase curators have

indeed indicated that the experimental results shown in papers

and used in support of curation, are often presented in figures

and their captions (Yeh et al., 2003). Figures are often content

rich and concisely summarize the most important results or methods

used and described in an article.

Our present work is motivated by this idea, taking it one step

further; namely, we investigate the use of features derived directly

from the image data of the figures (as opposed to just from the text of

the figure captions) for biomedical document categorization. It is

intuitively clear that image and text data, especially in scientific

documents, tend to complement each other. Moreover, psychologi-

cal studies on the contribution of multimodal data (image, anima-

tion, text) to effective understanding in human readers, confirm the

efficacy of the combination of image and text for improving the

processing and understanding of information by humans, compared

with the unimodal form (i.e. either text or image data alone)

(Mayer and Moreno, 2002). We report here a first experiment,

introducing image features into the text categorization process,

and show preliminary results in applying it to a subset of the

TREC Genomics data.
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Notably, image-based categorization of documents is an

established research field (Chen and Blostein, 2006). It is applied

in diverse areas ranging from digital library construction and

document image retrieval to office automation. Document image

classifiers differ vastly in the problems they solve, in their use of

training data to construct class models, and in the choice of

document features and classification algorithms. There is no single

general, adaptable, high-performance image-based classifier, due to

the great variety of documents, the diverse criteria used to define

document classes, and the ambiguity in the class definition itself.

Thus, the specific task at hand needs to be considered when

choosing and applying image-based categorization methods in

the biomedical domain.

To the best of our knowledge, the use of figure images themselves

has not yet been considered for general biomedical document triage

and for automated support of biomedical annotation and curation.

Perhaps closest to ours is work by Murphy et al. (Huang and

Murphy, 2004; Murphy et al., 2004), which uses image cate-

gorization for identifying subcellular localization articles. They

provide an excellent in-depth investigation of a specific task: iden-

tifying and interpreting a specific type of image that is characteristic

of localization experiments. While their extensive work utilizes

information extraction from text to help improve image cate-

gorization and interpretation, it is not directed at the integration

of text and image features for the purpose of document cate-

gorization. Moreover, the research focuses on protein subcellular

localization and is not generalized to other biomedical cate-

gorization tasks.

In this paper, we explore the possibility of using figures for

the document triage task in support of biomedical database

curation. We describe a first attempt at using image features

for biomedical text categorization, as well as at the integration

of such features with the more traditional text-data. The next section

outlines the methods we apply, while Section 3 describes the data

set and demonstrates preliminary results of applying our integrated

categorization method. Section 4 concludes and outlines future

work.

2 USING FIGURES FOR DOCUMENT TRIAGE

Document triage can be viewed as a binary classification task.

The input is a set of full-text documents, and each document is

classified as either positive (relevant for annotation) or negative
(irrelevant for annotation). To automate the task, a classifier is

trained using a set of labeled training documents, and is then applied

to the test documents to predict their class. Our basic idea is to create

an image-based vector description for each document in both the

training and the test sets. Once a vector description is created,

traditional classification methods can be applied to the data. In

this paper we focus on the simple naı̈ve Bayes classifier, although

more advanced methods are likely to yield improvement. The

image-description approach is adapted from work by Duygulu

et al. (2002) on content-based image retrieval. Duygulu et al.
segment images into regions, cluster similar regions across the

different images into what they call ‘‘blobs’’, and thus create

and use a small vocabulary of characteristic segments for represent-

ing images. Through most of this section, (2.1, 2.2), we describe our

image feature extraction and the document representation in terms

of image features. The last part of the section (2.3) provides a brief

description of a first integrated framework for combining image

features and text data for biomedical document classification.

Our experiment and results using a subset of the TREC Genomics

2004 data are described in Section 3.

2.1 Document descriptors via image features

As with any supervised text categorization task, the training data

consists of documents that have been manually labeled by human

curators as positive or negative. Typically in text categorization, the

documents are then represented as weighted vectors of terms or of

words. (For reviews see: de Bruijn and Martin, 2002, Shatkay and

Feldman, 2003.) In the heart of our approach is the representation of

documents as vectors of image features rather than of text features1,

which we describe in detail below.

Before delving into the details, in a nutshell the method comprises

five main steps: First, figures are extracted from the full-text

documents. As single figures often display multiple pictures, they

are broken in a segmentation step into subfigures. These subfigures

are then classified into several high-level types of images that we

have defined. These three steps are shown in Figure 1. Within each

class, clustering is then applied to refine the grouping of images by

specific contents. Each subfigure is assigned an identifier coding its

class and its cluster. In the final step, each document is then

represented as a vector over the space of subfigure-identifiers as

features (similar to the vector space over terms or words typically

used in text). We discuss these steps in detail below.

a) Figure extraction. This step starts with full-text XML docu-

ments. Captions and links to the figures are extracted from the XML

format, figure images are downloaded from the publisher’s web site.

A sample document is shown in Figure 1(i). One of the extracted

figures is shown in Figure 1(ii). For the training and tests described

here we used a total of about 4,400 figure images, of which 1,900
came from the training and 2,500 from the test documents.

b) Figure segmentation. As evident from Figure 1(ii), each

image may consist of several subfigures. Each image is thus seg-

mented into its subfigures using an approach based on connected

components analysis (Gonzalez and Woods, 2002). Such analysis is

performed on thresholded black-and-white images, where con-

nected components are regions of neighboring foreground pixels.

The connectedness is defined based on eight-neighbors of each

pixel. Figure 1(iii) demonstrates the results of such segmentation.

We note that this is not a fool-proof procedure, and errors are

expected to occur. In the data described here, we identified a

total of about 26,500 subfigures (�11,000 in the training and

�15,500 in the test set).

c) Subfigure classification. The subfigures identified in step b
may illustrate various types of data and be organized in a variety of

layouts. As pointed out by Murphy et al. (2002), there are no uni-

form standards for figure organization in the scientific literature. As

shown in Figure 2, we have identified several prominent types of

figures in the scientific literature and use these types for categorizing

subfigures. Obviously this ‘‘ontology’’ of image types is neither

complete nor perfect, but has proven to be a useful first step for the

limited scope in which it is used here.

Subfigure classification forms the basis for creating labels that are

later used to represent image features in each figure. Currently, at

1We note that for combining text and figures we do use both text and image

features.
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the first level, images are classified into Graphical, Experimental
and Other classes. For the Experimental class, we currently define

only three subclasses: Fluorescence Microscopy, Gel Electro-
phoresis, and Other Microscopy. These three subclasses are visually

distinct and correspond to clearly different experimental settings.

Obviously, more classes should be defined to accommodate other

types of experimental imaging. Graphical images can also be

partitioned into subtypes. For instance: Line Chart, Bar Chart

and Other Diagrams. However, in the experiments described

here graphical images are not further partitioned.

In order to train a classifier to categorize subfigures under

this classification scheme, we manually labeled a few hundred

subfigures in each class (500 Graphical subfigures, 500 Fluores-
cence Microscopy, 300 Gel Electrophoresis, and 300 Other
Microscopy). We use two Support Vector Machine (SVM) classi-

fiers: one at the root level to classify the images into Graphical vs.

Fig. 1. (i) A sample input document with PubMed Identifier 12235125 (Widlund et al., 2002). (Figures reproduced with permission of the Rockefeller Univsrsity

press.) The document has nine pages and six figures. (ii) Extract all the figures from the document and save as image formats, such as JPEG or GIF. One of the

extracted figures is shown enlarged. (Corresponds to step a below.) (iii) Figure segmentation based on Connected Components analysis. Subfigures are extracted

from each figure. Connected components whose bounding box areas are too small are discarded since they are most likely characters used to label figures. The

example document has a total of 39 subfigures. (Step b below.) (iv) Subfigure classification using a hierarchical scheme as defined in Figure 2. (Step c below.)

Fig. 2. The hierarchical image classification scheme for subfigures. A sample image is shown for each class. At the top level, images are classified into Graphical

and Experimental images. Other types of images found in publications include photographs such as pictures of mice, author images, etc. In our current work, we

manually pre-filter the extracted subfigures to remove such Other images. At the second level, Experimental images are classified into Fluorescence Microscopy,

Gel Electrophoresis, and Other Microscopy images. Graphical images are classified into Line Charts, Bar Charts, and Other Diagrams. In our experiments,

Graphical images are not further classified. We focus on classification of Experimental images into Gel Electrophoresis, Fluorescence Microscopy, and Other

Microscopy images.
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Experimental images, and the other at the second level of the

classification hierarchy to further classify Experimental images

into one of the three subclasses. Thus, every subfigure is assigned

one of four class labels: Graphical, Fluorescence Microscopy, Gel
Electrophoresis, or Other Microscopy. Examples of subfigure clas-

sification results are shown in Figure 1(iv). Using a stratified 10-fold

cross validation, the first level classifier for separating Graphical
from Experimental subfigures demonstrates about 95% accuracy,

while the second classifier that separates the three types of experi-

mental subfigures demonstrates a level of 93% accuracy. Note that

this is not the ultimate categorization task discussed in this paper;

rather, it is a preprocessing step used towards representing images

that appear in scientific papers.

To facilitate classification by SVM, subfigures must be repre-

sented as feature vectors. The following 46 features are used for

representing subfigures in this stage:

� Statistics based on gray-level histograms. The histograms

represent the distribution of pixels in the subfigures according

to their gray-level. Four statistics are derived from the histogram:

the first three moments (mean, variance, and skewness) as well

as the entropy of the gray-scale distribution (Gonzalez and

Woods, 2002).

� Haralick’s texture-features (Haralick et al., 1973), based on the

co-occurrence of pixels within the subfigure. The co-occurrence

matrix provides information about co-occurring pixels of spe-

cific values, orientation and distance. Six features are derived

from the matrix including, among others, contrast (variation

in gray level), correlation (likelihood of co-occurrence for

specified pixel pairs), and homogeneity (formally described as

Inverse Difference Moment).

� Edge direction histogram (Jain and Vailaya, 1998), originally

used for shape-based retrieval. Edges are detected in the sub-

figure, using Canny’s edge detector (Canny, 1986). A histogram

which bins together edges sharing a similar direction is then

formed. Our implementation uses a bin granularity of 10�, result-

ing in a histogram of 36 bins. The bin sizes (i.e. the number of

edges in each of the bins) are used as features.

The image feature vectors are normalized before classifying

them. Classification is done using Weka’s (Witten and Frank,

2005) implementation of Support Vector Machines, with the radial

basis function kernel.

d) Subfigure clustering into finer groups. In the previous step

subfigures were classified into one of four coarsely-defined classes.

In the relatively small training set (256 documents) described here

alone there were about 11,000 subfigures. As it was expected that

the four broad manually defined classes, while intuitively clear, are

unlikely to provide sufficient discrimination among thousands of

subfigures, we use unsupervised clustering to refine the grouping

of similar and related images into tight subsets. Since the number of

subfigures assigned to the Fluorescence Microscopy class is about

4 times larger than the number of subfigures assigned to each of

the other two classes, the Fluorescence Microscopy class is sub-

clustered into 20 clusters, while the other classes are sub-clustered

into 10 clusters each. Clearly, a different number of clusters may be

used, and may yield different results. We have chosen the current

numbers based on the total size of the image set used here, the total

number of sub-figures stemming from it, and based on several

experimental runs. We expect to test more methodically in future

studies how the number of clusters affects the classification perfor-

mance. While this is an interesting point whenever clustering is

concerned, it is not a central issue for the work presented here.

The clustering step groups together images with similar charac-

teristics. In this study, we use the simple k-means algorithm,

as implemented in Weka (Witten and Frank, 2005). The features

considered are the same ones used for the subfigure classification

described in step c above. As this is a first study on the use of images

for biomedical text categorization, we have not yet explored the

range of possibilities for representation, classification and cluster-

ing, and expect to do so in the future. A discussion of the variety of

methods for document image classification techniques is given in a

previous survey (Chen and Blostein, 2006).

To summarize this stage, subfigures within each of the four

classes that were formed in step c are clustered into finer groups.

The clustering results are used to assign a cluster label to each

subfigure, which together with the class label serve to characterize

each subfigure in every document.

e) Document representation as an image-based feature vector. In

steps c and d each subfigure has been assigned both a class name and a

cluster number. Combined, this information forms a label character-

izing each subfigure in terms of its class and cluster. For example, the

top left subfigure in Figure 1(iii) is assigned the label F17, where F
stands for Fluorescence Microscopy and 17 stands for cluster 17
among the 20 clusters of Fluorescence Microscopy subfigures. The

labels of all the subfigures in each document are taken as new kinds of

terms used to represent each document based only on its image fea-

tures. A feature vector is then constructed from the description, similar

to the way weighted term vectors are built from text. For example, the

description of the document shown in Figure 1(i) is shown in Figure 3

(before vectorization and term weighting is performed). In this descrip-

tion, G represents Gel Electrophoresis, F represents Fluorescence
Microscopy and E represents Other Microscopy, while ‘‘graphics’’

denotes subfigures that are non-experimental Graphical images.

This image description was created by concatenating the labels of

39 subfigures, comprising the six figures in the whole article.

The corresponding vector representation under a simple term-

frequency weighting scheme is shown in Figure 4. This is a

41-dimensional vector, as there are 10 Gel Electrophoresis
clusters, 20 Fluorescence Microscopy clusters, 10 Other Microscopy
clusters, and a single Graphical class that is not subclustered. In this

case each number in the vector represents the number of times the

respective feature occurred in the representation shown in Figure 3.

2.2 Image-based classification with naı̈ve Bayes

Given the image-based description created in step e above, each

document is further converted into an n-dimensional feature vector,

Fig. 3. The document shown in Figure 1(i), represented using only subfigure

identifier terms.
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where n is the total number of distinct image-based terms (where

a term is a descriptor such as ‘‘graphics’’ or ‘‘E7’’ above). For each

article, every such term is weighted according to its frequency in

the article, using MALLET’s (McCallum, 2002) default weighting

scheme.

Once the feature vectors are formed, we build a naı̈ve Bayes

Classifier using all the training documents, to distinguish positive
articles (relevant for curation) from negative ones (irrelevant for

curation). Naı̈ve Bayes is a simple and popular classification

method; given its simplicity and ease of implementation, it performs

well in practice (Mitchell, 1997). The naı̈ve Bayes classifier is

built by obtaining statistics from the set of labeled training data.

A document D, represented by its feature vector (d1, . . . , dn),

where in our case di is the weight of the ith subfigure-identifier

term, is assigned to the class C that maximizes the likelihood:

PrðD jCÞ ¼
Qn

i¼1 Prðdi jCÞ.
Expressing the conditional probability Pr(D jC) as a product of

simpler probabilities is based on the (naı̈ve) assumption of condi-

tional independence among the features, given the class. We use the

MALLET toolkit (McCallum, 2002) for feature vector creation and

for the naı̈ve Bayes classification of documents. We note that

although MALLET was originally built for text processing and

categorization, we use here image-derived features (as shown in

Figure 3) rather than text features as input to MALLET.

The representation and training steps given above, when applied

to the training data, result in clusters and classifiers for subfigures

(steps c, d above), which allow each document to be represented

based on its image contents (steps a-e above). More importantly

they yield a naı̈ve Bayes classifier for categorizing documents, using

their image-based representation. Given a new input document, we

classify it by executing the following procedure: First, the document

goes through steps a-c, namely, its figures are extracted, segmented

and its subfigures classified, in a way similar to the preprocessing

applied to the training data. Then each subfigure is assigned the

cluster label of its nearest neighbor in the training set, using the

results of training step d. An image-based description is created

containing a list of labels of all the subfigures in the document,

similar to training step e. Then a feature vector is computed and fed

into the naı̈ve Bayes classifier described above. This classifies the

input document as positive or negative based on its relevance to the

curation task at hand.

2.3 Integration with a simple text classifier

As a first attempt at integration of text data with image features, we

use the simplest and most widely used and readily available text for

biomedical documents, namely only the title and the abstract of

the articles as they appear in PubMed. The titles and abstracts of

all the articles contained in both the training and the test set were

tokenized to obtain a dictionary of terms consisting of single words

(unigrams) and pairs of consecutive words (bigrams), where words

were stemmed using the Porter stemmer (Porter, 1997) and standard

stop-words removed. Rare terms (appearing only in a single docu-

ment) as well as very frequent ones (occurring in more than 10%

of the documents) were also removed. The remaining terms, along

with their frequencies within each of the documents were used

to create, for each article, a representation similar to the one

shown in Figures 3 and 4, only in this case the features are the

actual text-terms. The abstracts of articles in the training set were

then used, as described in Section 2.2 to train a naı̈ve Bayes

classifier using the MALLET toolkit (McCallum, 2002). We note

that both the preprocessing and the classification schemes here are

basic ones, and will be extended in the very near future.

The integration scheme for combining the text and the image

classifiers consists of a simple OR combination, where a document

is considered as relevant for the triage task if either the text-based

classifier or the image-based classifier identified it as relevant. This

strategy is based on the observation that the triage task stressed the

importance of retrieving as many relevant documents as possible,

even at the cost of drawing in false-positives (more detail is given in

the next section).

3 EXPERIMENTS AND RESULTS

3.1 Experimental setting

We test our method on a subset of the data that was used for the

categorization task in the TREC Genomics Track 2004 (Hersh et al.,
2005), and specifically focus on the triage task. The triage task

aimed to classify documents as relevant or irrelevant for supporting

GO annotation by curators for the Mouse Genome Informatics

(MGI) resource at the Jackson labs. The original dataset consisted

of full-text articles from three journals: The Journal of Biological
Chemistry (JBC), The Journal of Cell Biology (JCB), and The
Proceedings of the National Academy of Science (PNAS), over

the period of two years, 2002 and 2003. The 2002 articles

(a total of 5,837) were designated as the training set for the task,

while those from 2003 (6,043 such articles) as the test set. The true

triage decisions were provided by MGI.

In the experiments described here, we use only documents from

the Journal of Cell Biology (JCB) as provided in TREC Genomics

2004. It is important to note that image data was not included in the

TREC data set. Given the non-trivial time and effort needed to

obtain the image data, download and process it, and given that

this is the first study to use biomedical image data for biomedical

literature categorization, we wanted to first validate the feasibility of

the task and establish a well-defined pipeline, before embarking on

the more ambitious task of utilizing the full amount of available

data. The distribution of training and test data used here is shown in

Table 1.

We train a classifier based on the images from the 256 training

documents, and test it on the 359 test documents. A simple text-

based classifier is trained on just the abstracts and titles of the same

set used for training the image-based classifier, and tested on the

Fig. 4. The vector representation for the document shown in Figure 1(i) and Figure 3, using term-frequency weighting. The feature labels are listed above their

weights. In the weight vector, ‘. . .’ indicates a sequence of consecutive 0’s.
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abstracts and the titles of the same test set as used in the image case.

Finally, an integrated classifier assigns a document as relevant for
curation if either of the two first classifiers tagged it as relevant.
To evaluate our results, we use the same metrics used to assess

the triage subtask in the TREC 2004 Genomics track. The primary

evaluation metric for the triage subtask, as defined by Hersh et al.
(2005), was the normalized Utility value, defined as:

Unorm ¼
ð20 · TPÞ � FP

20 · Pos

In this formulation, TP is the number of true positives (documents

that were relevant for curation according to MGI, and identified

by the classifier as relevant), FP is the number of false positives

(documents identified by the classifier as relevant, but not consid-

ered as such by MGI), and Pos is the total number of articles that are

relevant according to MGI. The constant 20 was introduced by

Hersh et al., and serves to bias the evaluation to favor high recall

(that is, including as many positive examples as possible). It reflects

the notion that missing a relevant document that should be curated is

considered much more costly than including an irrelevant docu-

ment. Hersh et al. (2005) indicated that the ideal approach for

determining this constant would involve interviewing MGI curators

and formally determining utility, but they used a simplified approxi-

mation for the time being. Other measures include the standard

precision, recall, and F-score (combining recall and precision).

The formulae for these last three measures are as follows, where

we again use the abbreviations TP (True Positive), FP (False

Positive), FN (False Negative):

Precision:
TP

TPþ FP
Recall:

TP

TPþ FN

F-score:
2 · recall · precision

recallþ precision

3.2 Results

Table 2 summarizes our results from training and testing over the

JCB dataset (as shown in Table 1).

It is important to note that while our results are in the same utility

range as that obtained by TREC — and the combined utility of the

integrated system may look even higher than that achieved by the

average TREC run — our numbers (the top three rows) do not
compare directly with the TREC 2004 Triage results (the bottom

row), because we use only a subset of the TREC training and test

documents. The bottom row is provided not for comparing our clas-

sifiers with those of TREC, but rather to provide a ‘‘ballpark’’ range

for what one may expect to see in such results, and to demonstrate

that our results fall in this range. Meaningful comparative analysis

can only be made among the numbers presented in the top three rows.

All 59 of the TREC 2004 Triage runs were based on full-text

documents2, including figure captions, but not including any anal-

ysis of figure images. In contrast, our results for the image-based

classifier makes no use of text and uses only image data, while the

text-based classifier uses only the title and the abstracts of the

documents with no other information. The combined classifier

takes only the output of these two classifiers to make a categoriza-

tion decision. As shown in Table 2, our results are well within

the numerical range of the average results in TREC 2004 runs.

This is encouraging, indicating that even with very simple features

the image-based classifier can achieve a reasonable level of

performance.

Most importantly, we note that the integration of the image

classifier and our simple text classifier significantly improves

upon the utility obtained by each of the individual classifiers

alone. As explained in the previous section, this integration is per-

formed by assigning the tag relevant, to a document if any of the two

first classifiers categorized it as relevant. The fact that this strategy

improves recall, (and in-turn utility), indicates that the two original

classifiers are not strongly dependent, and use different criteria to

reach their conclusions. This is an important observation, given that

combining classifiers relies on the idea that an ensemble of classi-

fiers improves performance with respect to its individual compo-

nents if these components are mostly independent of each other

(Sebastiani, 2002, Tumer and Ghosh, 1996). These preliminary

results and the nature of both images and text in scientific docu-

ments indicate that the combination of figure and text analysis has

the potential to yield good results. We expect that image data, which

Table 1. The distribution of positive and negative documents in the training and test data sets

Positive documents Negative documents Total figures extracted Total subfigures extracted Total documents

Training JCB’02 26 230 1,881 10,920 256

Test JCB’03 34 325 2,549 15,549 359

Table 2. Classification results, using the evaluation metrics described by

Hersh et al. (2005). Average results from the TREC 2004 Triage runs, taken

from Table 6 of Hersh et al.’s report (2005), are shown for an informal

comparison. Due to the efforts involved in obtaining figure images, we

only used a fraction of the test and training documents used in the TREC

Triage task, as shown in Table 1. Our testing used 34 positive and 325 nega-

tive documents, whereas the TREC 2004 Triage testing used 420 positive and

5,623 negative documents

Utility Precision Recall F-score

Image-features system 0.307 0.279 0.353 0.312

Simple text classifier 0.315 0.647 0.323 0.431

Integrated 0.446 0.315 0.5 0.386

Avg. of 59 runs in

TREC‘04 triage task

0.330 0.138 0.519 0.195

2Notably, not all 59 runs took advantage of the full text; some participants

utilized only parts of it, such as abstract, title or MeSH terms.
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is a condensed form of information specific to certain types of

scientific discussions, will complement the information conveyed

in the natural-language text.

4 DISCUSSION AND FUTURE WORK

The research presented here is a first exploration of the possibility

of using image data in support of document categorization in the

biomedical domain. We note that the idea of using figures for the

end goal of text classification is novel and has not been applied yet

even in the general context of text categorization (i.e. outside the

biomedical domain). In our current work we used a rather small

data set, simple methods for segmentation, classification and clus-

tering of subfigures, as well as a very basic text classification and

integration strategy. The results of even this simple approach are

encouraging and suggest that image data has much to offer in sup-

port of biomedical text categorization. A refinement of all these

steps is expected to improve the end result. An important immediate

step is the application of both the current and the refined methods to

the full data set, and specifically to the TREC’05 categorization

tasks3. Experiments with the GO and Allele categorization tasks of

TREC’05 (Hersh et al., 2006) over the JCB subset, using appro-

priately adapted utility scaling measures, yield results similar to the

ones shown in Table 2. We are already running the system on the

complete data set, and are currently experimenting with categoriza-

tion, clustering and feature selection strategies that are appropriate

for this much larger and heterogeneous data set.

Experiments with other classifiers, aside from the naı̈ve Bayes,

as well as the application of more advanced text-categorization and

the use of text from captions and other parts of the document, are

natural and essential directions we are currently pursuing. Another

important next step is the study of the complementary role of text

and image data in biomedical text categorization. We are interested

in combining the analysis of text, ontology, and figures for

document triage and annotation tasks.

In our future research, we shall investigate how human curators

use figures in judging whether a document supports annotation, and

how figures are used during the annotation process. Observing how

humans handle the task will provide further ideas on how to auto-

mate (parts of) it. As noted in the introduction, Mayer and Moreno

(2002) examined the role of text and diagrams in understanding

scientific literature and assessed whether visual information

improves recall and problem-solving skills in human readers.

They observe that properly organized multimodal presentations

improve human performance in understanding the presented mate-

rial. Given the condensed and informative nature of scientific

images, and the rapidity in which humans perceive, process, and

reach decisions based on such visual cues, we expect images in

biomedical text to provide an invaluable support for categorization

and mining of such text. We view text- and image- based document

categorization as highly complementary, rather than competing

approaches.

Our current results, along with these observations and the already

accepted notion that database curators strongly rely on image data in

articles to support their decision, strengthen our hypothesis that

utilizing images can improve document categorization. Combining

image analysis with text analysis is thus expected to help resolve

ambiguity and improve the effectiveness of literature mining. The

preliminary results presented here, from categorizing biomedical

documents using both text and image data, further demonstrate and

support this idea.

There are several challenges when applying document image

analysis techniques for biomedical literature mining. In contrast

to the millions of abstracts in MEDLINE, the number of full-text

documents is still limited. Easy-to-use electronic versions (e.g. arti-

cles in XML format), with separately accessible figures and text are

available for some papers, but not for all. For other cases (e.g.

articles in PDF or image format), preprocessing has to be performed

to separate text and figures, and to associate figures with figure

captions. This preprocessing is difficult and error prone. Moreover,

training and test data based on curation decisions is not available for

individual images, but only for complete documents. We are

actively pursuing ways to obtain labeled images that have been

used by curators to determine the relevance/irrelevance of docu-

ments. We believe that having access to such data would form a

major step forward in training classifiers that utilize image data for

text categorization.
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ABSTRACT

Motivation and Results: The position weight matrix (PWM) is a pop-

ular method to model transcription factor binding sites. A fundamental

problem in cis-regulatory analysis is to ‘‘count’’ the occurrences of a

PWM in a DNA sequence. We propose a novel probabilistic score to

solve this problem of counting PWM occurrences. The proposed score

has two important properties: (1) It gives appropriate weights to both

strong andweakoccurrencesof thePWM,without using thresholds. (2)

For any given PWM, this score can be computed while allowing

for occurrences of other, a priori known PWMs, in a statistically

sound framework. Additionally, the score is efficiently differentiable

with respect to the PWM parameters, which has important conse-

quences for designing search algorithms.

The second problem we address is to find, ab initio, PWMs that

have high counts in one set of sequences, and low counts in another.

We develop a novel algorithm to solve this ‘‘discriminative motif-finding

problem’’, using the proposed score for counting a PWM in the

sequences. The algorithm is a local search technique that exploits

derivative information on an objective function to enhance speed and

performance. It is extensively tested on synthetic data, and shown to

perform better than other discriminative as well as non-discriminative

PWM finding algorithms. It is then applied to cis-regulatory modules

involved in development of the fruitfly embryo, to elicit known and

novel motifs. We finally use the algorithm on genes predictive of social

behavior in the honey bee, and find interesting motifs.

Availability: The program is available upon request from the author.

Contact: sinhas@cs.uiuc.edu

1 INTRODUCTION

The study of transcriptional regulation is a pervasive topic in bio-

informatics, due to growing realization of the role it plays in all

cellular processes, and in the evolution of organismal novelty. A

crucial step in such studies is to identify transcription factor binding

sites that mediate the regulation of genes. This has proved to be a

challenging computational task, largely due to the high variability

and short length of binding sites of any given transcription factor

(Tompa et al., 2005). To model this variability, the position weight

matrix (PWM) has emerged as a probabilistic construct of popular

choice. A PWM specifies the frequency distribution of nucleotides

at each position of the binding sites, and is considered to be related

to the energy of binding of the transcription factor to the DNA

(Stormo and Fields, 1998). The motif finding problem is to find

a PWM representing binding sites of an unknown transcription

factor, ab initio from sequence data.

A particular variant of this problem, the discriminative motifs

problem, is to find PWMs that are present in one set of sequences
(the positive set) and absent in another set of sequences (the nega-
tive set). There is an abundance of data sets that pose this problem.

For example, the segmentation pathway in fruitfly comprises genes

that are expressed in certain spatial domains in the embryo, and

genes that are not expressed in those domains. Such information is

easily available (Tomancak et al., 2002), and this spatial partition-

ing of genes is known to be under transcriptional control (Schroeder

et al., 2004). In general, any gene expression data set may be mined

to obtain positive and negative sets of genes (and their promoters/

enhancers), thereby presenting a typical instance of the discrimi-

native motifs problem. Compared to the traditional motif-finding

approach, where the positive set of sequences is contrasted with a

large ‘‘background’’ sequence set, discriminative motif-finding

presents much cleaner and more informative negative sequence

data to contrast with—the promoters that do not contain the desired

motif. However, in contrast to the vast body of literature on

the motif finding problem, the amount of research done on this

useful variant of the problem, especially for the PWM model, is

very little.

To solve this problem, the first question to address is: How do we

‘‘count the occurrences’’ of a PWM in a sequence? No satisfactory

answer has emerged for this problem, despite the wide acceptance of

PWMs as a motif model. Let us see some of the implications of the

question, and pitfalls of some possible answers.

(1) Counting is different from simply asking if a PWM occurs in

the sequence (a ‘‘yes’’/‘‘no’’ question), and it is inadequate to

simply report the quality of the best match to the PWM in the

sequence. This is especially relevant for cis-regulatory

sequences where the number (and strengths) of binding sites

determines function (Schroeder et al., 2004).

(2) An ‘‘occurrence’’ of a PWM has been traditionally defined

by the ‘‘sampling probability’’, which is the probability of

sampling a given k-mer from the probability distribution

induced by a k-length PWM. The naı̈ve approach then is to

count all k-length substrings that have sampling probability

above a certain threshold, as occurrences of the PWM. The

problem with this approach is that one does not differentiate
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strong (high sampling probability) occurrences from weaker

occurrences, as long as they are above the threshold.

(3) In many motif-finding applications today, there is prior

knowledge of one or more motifs that are relevant to the

data set being analyzed. It is thus extremely useful to be

able to count motif occurrences while factoring in the presence

of these known motifs. The standard heuristic used for this is to

mask out (partly or completely) the strong matches to the

known motif(s) in the sequences, as a pre-processing step.

This heuristic may be problematic if a match to a PWM either

overlaps with or is a match to another (known) PWM.

We propose a novel probabilistic score, called the ‘‘w-score’’, to

quantify the total number of occurrences of a PWM in a sequence,

while handling strong and weak occurrences appropriately. (This

addresses points 1 and 2 above.) Intuitively, the w-score may be

understood as the average number of times the PWM is ‘‘planted’’

by a probabilistic model generating the sequence, the average

being over all possible ways to generate the sequence as a concat-

enation of PWM and background sites. Since the score is based on a

probabilistic model for sequence generation, any known

motif(s) may be incorporated into the model as prior knowledge,

and the score of a PWM computed in the context of the known

PWMs. (This addresses point 3 above.) The known motifs may be

those that were computationally discovered in previous executions

of the program.

Having addressed the problem of counting occurrences, the next

question is: How to find PWMs (motifs) with high counts (w-scores)

in the positive set of sequences and low counts in the negative set?

One has to define a ‘‘discrimination score’’, which captures how

different a PWM’s counts are in the two sets, and devise an algo-

rithm that maximizes such a score over the space of PWMs. We

implement two different discrimination scores—one that directly

compares the average counts (w-scores) in the two sets of

sequences, and one that models the problem as a classification

task based on the counts. We propose a novel hill-climbing algo-

rithm that exploits derivative information on the discrimination

score to guide the search. Certain algorithmic choices, explained

in Section 3.3, make the algorithm less susceptible to local optima

as opposed to a conjugate gradients search. (See Section 4.) It is

worth noting that the proposed PWM-finding framework can be

trivially modified to optimize other objective functions (not neces-

sarily a discrimination score), e.g., correlation of motif counts with

gene expression data.

The main novel contributions of this work are:

(1) A probabilistic model-based score to count PWMs while

accounting for number and strengths of occurrences and incor-

porating any known motif(s), within a statistically sound

framework.

(2) An algorithm for the discriminative motif-finding problem,

that is based on the new PWM-counting score, and which is

empirically shown to be resilient to local optima.

2 PREVIOUS WORK

The work of Jensen and Liu, 2004 proposed a Bayesian score to

be used by a PWM search algorithm, though not in a discriminative

setting. This score evaluates a specific set of sites assumed to be

occurrences of an unknown PWM, and their algorithm BioOptimizer

searches for the highest scoring set of sites. In contrast, the w-score

evaluates a PWM by considering all possible sets of occurrences,

weighing each such set by its likelihood. In other words, the w-score

‘‘sums away’’ the hidden variables representing motif occurrence

positions. (This is done at the expense of added but manageable time

complexity.) Segal et al., 2003 counted occurrences (of a k-length

PWM) by summing the sampling probability (defined above) of all

k-mers in the sequence, and deployed a conjugate gradients search

algorithm to find discriminative motifs. However, their underlying

probabilistic model allows exactly one motif occurrence in a

sequence, and their motif-counting score is therefore different

from the w-score. Moreover, the principled incorporation of

known PWMs into the score is an important advantage of our

approach over that of (Segal et al., 2003), and this is demonstrated

experimentally in Section 4. The work of Xing et al., 2003

(LOGOS) provides a general framework for sequence analysis

with multiple motifs. It takes a Bayesian approach to motif detec-

tion, allows for prior distributions on PWMs, and in fact allows for a

more general motif model than PWMs. LOGOS uses a Hidden

Markov model (HMM) for distribution of motif occurrences in a

sequence, which is identical to the model used in defining the w-

score. As such, both LOGOS and our approach can learn motifs

while allowing for multiple motifs and handling the statistical

dependency of overlapping motif occurrences. However, in contrast

to the Bayesian approach of LOGOS, we use an expectation

(derived from the same model) as the motif score, and this choice

is crucial in how the discriminative motif-finding problem is solved.

(The LOGOS framework does not allow finding discriminative

motifs.) The DME program of Smith et al., 2005 finds PWMs

that are most overrepresented in one set of sequences relative to

another set, and uses an enumerative search of a discrete PWM

space with a specific lower bound on information content of the

PWM. The enumerative search affords nice guarantees on the

optimization procedure, but this program, unlike our approach,

does not allow incorporating a priori known motifs during the

search. (It discovers additional motifs by erasing the predicted

occurrences of the currently predicted motifs.) Finally, note that

the commonly used ‘‘relative entropy’’ score (Lawrence et al.,
1993; Stormo and Fields, 1998) of a PWM measures the specificity

of the PWM itself, and does not ‘‘count’’ its occurrences in

sequences.

The discriminative motif-finding problem was also addressed

earlier in Sinha, 2003, Sumazin et al., 2005 and Takusagawa and

Gifford, 2004, among others. The motif model assumed was the

‘‘consensus string’’ model, for which the motif counting problem is

trivially solved. However, this is a less sensitive motif model than

the PWM, and arguably less realistic for complex transcriptional

systems.

3 METHODS

3.1 The w-score

This is a score to represent the number and strength of occurrences of a

PWM in a given sequence. We go through an informal description first, and

a formal definition will follow. Consider the sequence illustrated in Figure 1a

that has substrings (‘‘sites’’) A, B, and C matching one of two motifs M1 and

M2 as shown in Fig. 1b—overlapping sites A and B are matches to M1 and

M2 respectively; site C matches M1. Fig. 1c shows six different ‘‘configu-

rations’’ for the sequence. A configuration labels non-overlapping sites as
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matches to particular motifs. The probability of a configuration depends on

the strengths of these (site, motif) matches. For instance, configuration (1)

has lower probability than (2) because the (A, M1) match is weak and the

(B, M2) match is strong. We can count the occurrences of a motif, say M1, in

each configuration, and compute an average of this count, over all configu-

rations weighted by their probability. Roughly speaking, this average count

is the ‘‘w-score’’ of M1. Note that configurations with weak sites will also

contribute (albeit less) to the count. In general, every substring (and not just

the three shown) is considered as a potential site for a transcription factor

(motif), and will be labeled as a match to that motif, in some configurations.

Also note that the set of configurations includes all combinations of

(site, motif) matches for both motifs M1 and M2. Therefore, taking an

average of M1’s count over all configurations accounts also for matches

to M2 in the sequence, in a natural way.

More formally, the w-score is defined as follows. Suppose we are given

a set of PWMs W¼ {w1, w2, . . .wk}, in addition to a ‘‘background’’ PWM wb

of length 1. We assume, as in Sinha et al., 2003, a stochastic process

that generates the sequence from left to right by successively ‘‘planting’’

occurrences of PWMs. (Fig. 1d.) At any position, the process chooses to

plant a PWM wi (i 2 {1, 2, . . . k, b}) with probability pi. A substring is

sampled from the probability distribution defined by wi (see Appendix), and

appended to the sequence generated so far. The process stops when the total

length of generated sequence reaches a fixed value L. The pi, called ‘‘tran-

sition probabilities’’ are parameters of the model, with
Pk

i¼1 pi + pb ¼ 1.

The sequence of PWMs chosen in successive steps of the process is called a

‘‘parse’’ of the sequence, which is exactly the same as a ‘‘configuration’’ in

the informal description above. Note that the motif location model described

here is a zeroth order HMM. (Fig. 1d.)

The model parameters F ¼ {pi} and the PWMs W[{wb} associate

a well-defined probability Pr(S, T jF) with each parse T of a

sequence S of length L. This allows us to compute, via Bayes rule, the

conditional probability of parse T given the sequence, i.e., Pr(T j S, F).

We define the w-score of any PWM wm in the sequence S, with model

parameters F, as

sðwm‚S‚FÞ ¼
X

T

xmðTÞPrðT j S‚FÞ ð1Þ

where xm(T) is the number of times wm occurs in parse T. As we can see, the

w-score is the expected number of occurrences of wm planted while gener-

ating S with model parameters F. The integral count of wm in T is weighted

by the probability of T given the sequence S. In this sense, the w-score is a

natural probabilistic extension of the notion of motif ‘‘count’’. The condi-

tional probability Pr(T j S, F) is lower for a parse T with weak (low sampling

probability) sites than for a parse with equal number of strong sites, implying

a lesser contribution made to the w-score by weak sites. Notice that the

w-score is defined in terms of a probability distribution induced jointly by

all PWMs W [ {wb}, though this dependence is not made explicit in the

notation. The w-score can be computed using the Forward-Backward

algorithm (Durbin et al., 1998) in O(L · jW j · l) time, where l is the

maximum length of a PWM.

3.2 The discrimination-score

We now define a score to discriminate positive and negative sets of

sequences based on w-scores of a PWM wm in the sequences. Suppose

we are given two sets of sequences S+ and S�, and the w-score ss of wm

for each sequence s, i.e., ss¼ s(wm, s, F). The ‘‘t-score’’ is a discrimination

score defined as

tðS+‚S�‚wmÞ ¼
P

s2S+ ss/Ls

j S+ j �
P

s2S� ss/Ls

j S� j ð2Þ

( j S j for a set S represents its cardinality; Ls for a sequence s represents

its length.) The t-score is the difference in mean w-score of the PWM in the

two sets of sequences, after normalization of each w-score ss by the respec-

tive sequence length Ls.

We also defined and implemented an alternative discrimination score,

called the ‘‘logistic-score’’, described in the Appendix. It is similar in spirit

to the treatment in Segal et al., 2003 and Hong et al., 2005, where a motif

score is transformed to a soft class prediction using the logistic function.

3.3 Algorithm

We first provide details of the algorithm, followed by a clearly marked

explanation. The algorithm separates the search space from the objective

function. Any set of substrings of positive sequences is a candidate motif in

the search space, while the objective function is the discrimination score of

the unique PWM constructed from the candidate motif.

Input : Two sets of sequences S+ and S�, integer lm (desired motif length),

background motif wb and any known motifs.

Parameters : The model parameters F ¼ {pi}, integer n (called ‘‘motif

cardinality’’).

Search space : Any set of n substrings (of length lm each) of sequences in

S+ is a candidate motif, also called a ‘‘site-set’’.

Notation : d(w) denotes the discrimination-score to be maximized, e.g.,

d(w)¼ t(S+, S�, w) if the t-score is being used. wka is the weight matrix entry

for base a in column k. For any site-set C, we use W(C) to denote the PWM

constructed from C in the obvious manner.

Desired Output : Site-set C such that d(W(C)) is maximized over all C.

Algorithm : Initialize the site-set C to one chosen randomly from the

search space. In successive iterations, update C (as described next) to

improve d(W(C)) until no improvement is obtained. Repeat the entire pro-

cess a fixed number of times, starting from new initial site-sets, and report

the site-set with the highest score over all such random restarts. Construct a

PWM from this site-set, and report the PWM and its occurrences sorted

by their quality of match (sampling probability).

Update : The goal of the update step is to go from the current site-set C

to any new site-set C0 such that d(W(C0)) > d(W(C)). This is achieved in

two steps, as follows. (Also see ‘‘Explanation’’.)

(1) DELETE STEP: For each site c 2 C, compute the score d(W(C �
{c})). Choose the c that gives the highest such score, and delete it

from C to obtain a site-set Cdel, of cardinality n � 1.

(2) ADD STEP: For each lm-length substring s of each sequence in S+

(on both strands), let Cadd
s represent the result of adding s to Cdel.

Estimate the score of Cadd
s as

destðWðCadd
s ÞÞ ¼ dðWðCdelÞÞ +X

k‚a

@dðwÞ
@wka





w¼WðCdelÞ

· ½ðWðCadd
s ÞÞka � ðWðCdelÞÞka�

� �
ð3Þ

Sort all s in descending order of dest to obtain a listL. Traverse this list,

and for each encountered s, compute the exact value of dðWðCadd
s ÞÞ. If

this computed score is better than the score d(W(C)) before the delete-

step, update the current site-set to Cadd
s , and stop the list traversal. In the

Fig. 1. The w-score. (a) Sites in a sequence (b) Matches between sites and

motifs. X means ‘‘no match’’. (c) All possible configurations of the sequence

with sites assigned to motifs, and count of each motif in each configuration.

(d) Generative model (HMM) used to define w-score.
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implementation, the list traversal stops after 500 single-site additions

have been examined without improvement in score.

Explanation: The update step deletes one site from the current site-set C,

and replaces it with a site (substring of some sequence in S+) that improves

the discrimination-score d. The deletion step follows steepest ascent hill

climbing—try all possible single-site deletions, and choose the one that gives

the highest d score, obtaining Cdel. The addition step is a simple hill climbing

heuristic, which attempts to find any single-site addition that causes a net

increase in the d score over that before the deletion step. However, unlike the

deletion step, all possibilities Cadd
s are not evaluated exactly before deciding,

since exact computation is an expensive operation. (See below.) Instead, all

possibilities are quickly estimated using derivative information—for each

possible single-site addition to Cdel, the change in W(Cdel), the 4lm-dimen-

sional vector (PWM) corresponding to Cdel, is computed, and the score of the

new PWM is estimated by using the partial derivative information in each

dimension (k, a). (This estimation ignores quadratic and higher order terms

in the Taylor series expansion of d about W(Cdel).) By then sorting the

possibilities Cadd
s on their estimated score, more promising candidate motifs

are brought to the front of the list L. This drastically reduces the number of

expensive exact evaluations done before finding an improvement, and also

leads to more optimal moves. Note that if the estimated new scores for each

possible addition were accurate, then the estimation step would automati-

cally produce the best (greedy) choice—the head of the sorted list L. How-

ever, the estimations are not accurate due to the linear approximation made;

hence the list L may have to be traversed beyond the head, with an exact

evaluation of dðWðCadd
s ÞÞ for each traversed site s, before finding a score-

improving choice.

Let Ltotal be the total length of all input sequences. Each exact evalua-

tion of d is an O(Ltotallm) operation using the Forward-Backward algorithm

for w-score calculations. The calculation of dest is an inexpensive operation,

requiring only O(Ltotall
2
m) time for all possible single-site addition moves.

(See Appendix.) By using these dest values, we are able to induce an order on

the exact d evaluations that reduces the number of evaluations made before

a score-improving choice is found. Our experiments with the algorithm

(Section 4) revealed that over 90% of the ADD steps require only one

exact evaluation. An implementation that did not sort L by dest typically

required 22 times as many evaluations per successful ADD step, and took

3 times as many updates (moves) to find a solution whose score was typically

about 0.6 times that reported by the default implementation. The reason for

splitting the update into two separate steps (delete and add) is that this causes

the change in W(C) to be smaller for each possible move, giving better

estimates dest. A special move, described in the Appendix (‘‘big move’’),

is executed when the ADD step fails to find an improvement.

An A� algorithm that uses backtracking was implemented and found

to give better solutions in some runs. Use of this algorithm is available

as an option in the code. We also implemented alternative algorithms

such as Gibbs sampling and Conjugate Gradients optimization, which fail

due to reasons explained in Section 5.

Initialization of Parameters : The motif cardinality n is set to 20.

The background PWM wb is trained from a user-specified background

sequence. (Higher order Markov models may also be specified for the back-

ground.) An optional user input e represents the a priori expected number

of sites of the PWM in all of S+. (If not specified, we set e ¼ j S+ j .) We then

set the model parameter pm ¼ e/ð
P

s2S+ LsÞ. There are two implemented

ways to specify the model parameters pi for the known PWMs. One option is

to set all pi except pb to be equal to pm. The other option is based on

maximum likelihood, and is described in the Appendix. The assigned values

of the model parameters are kept fixed during the algorithm’s execution.

3.4 Derivative computation

Here we provide a rough outline of how derivatives of the w-score are

computed. (See Appendix for details.) The w-score defined in Equation 1

is the expectation of the random variable xm(T) over the conditional distri-

bution on parses, Pr(T j S, F). By linearity of expectation, we may express

this expectation as EðxmÞ ¼
P j S j

i¼1 EðxmiÞ, where xmi is an indicator (0/1)

variable for the presence of wm at position i in a particular parse. Obviously,

E(xmi) ¼ Pr(xmi ¼ 1), and this probability can be computed by using the

Forward-Backward algorithm (Durbin et al., 1998). A derivative of this

probability with respect to any PWM entry wm
ka can also be computed by

a similar Forward-Backward algorithm, with the same time complexity, and

the derivative of the w-score follows. Thus, computation of
@sðwm‚ S‚FÞ

@wm
ka

has

O(Llm) time complexity, implying that all the 4 · lm partial derivatives of the

discrimination score d may be computed in O(Ltotall
2
m) time. Once all partial

derivatives have been computed, the dest values from Eqn. 3 can be computed

for all possible single-site additions to Cdel in O(Ltotallm) time, by pre-

computing the change in d due to addition of any given base a in any column

k of the PWM. (See Appendix.)

4 RESULTS

4.1 Synthetic data

We first performed experiments on randomly generated sequence

data, with artificially planted motif instances, to get an insight into

the algorithm’s idealized performance under controlled conditions.

In any experiment, 20 ‘‘positive’’ and 20 ‘‘negative’’ sequences, of

length 400 bp each, were generated randomly. A target motif

(PWM) of length l ¼ 8 was randomly chosen with a fixed ‘‘relative

entropy’’ (with respect to background) of R bits per column on

average. (R is an experiment parameter. Relative entropy is measure

of the column’s specificity.) l-mers were sampled from the target

PWM according to the sampling probability, and planted at

random locations, only in the positive sequences, so that the sum

of the w-scores of the target PWM was 20n. (n is an experiment

parameter, representing the average w-score per sequence.) Finally,

the top 20n occurrences of the target PWM, based on their match

quality, were noted as target motif occurrences. Each tested algo-

rithm was made to report the top 20n occurrences of its optimal

motif. The performance score of an algorithm is the number of its

reported sites that overlap (at least 6 out of 8 bp) target motif

occurrences, as a fraction of 20n. Since the numbers of target

and reported motif occurrences are the same, this represents both

the sensitivity and the specificity. (In some experiments with the

DME program of Smith et al., 2005 below, sensitivity and speci-

ficity were different since the program predicted less than 20n sites,

and a harmonic mean of sensitivity and specificity is reported.)

Effect of algorithm settings: In the first set of experiments, we

compared two different versions of our algorithm on the same data

set. We refer to the algorithm as described in Section 3.3 as

‘‘DIPS’’ (Discriminative PWM Search). Five random restarts

were used by the algorithms in each run. We set n ¼ 1 and R ¼
1.5, and performed 20 replicates of each of the following compar-

isons. These values (of n and R) are typical of PWMs and their w-

scores seen in known enhancers involved in the segmentation of the

early fruitfly embryo. (Data not shown.)

� DIPS was compared to a conjugate gradients (CG) search

algorithm, using the same objective function, and the same

number of random restarts. DIPS significantly outperformed

CG on 17 replicates; CG was better on one replicate, and

both algorithms failed in two cases. Conjugate gradients search

was found to get stuck on low-scoring local optima in 15 of

20 replicates.

� Two versions of DIPS, one using the t-score as the discrimi-

native score, and the other using the logistic-score (defined
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in Appendix), were compared. The t-score implementation

outperformed the logistic-score on 9 of the 20 replicates;

the logistic-score performed better on 3, and 8 replicates were

inconclusive. This is expected since the motif instances were

planted in randomly chosen positive sequences, and were

not necessarily uniformly distributed among the sequences.

Thus, the planting procedure was more akin to the model

assumed by the t-score.

� Two versions of DIPS were compared—one in which a

candidate motif was allowed to include overlapping substrings

from positive sequences (default), and one in which this was

disallowed. Both versions performed equally well.

Insensitivity to model parameter pm: We ran the algorithm DIPS

with different input values of the parameter e that represents the

expected number of sites, and that is used to determine the parameter

pm. (See ‘‘Initialization of Parameters’’, Section 3.3.) While the true

value of e was 20, we ran DIPS with e¼ 10, 15, 20, 25, 30, separately

on the same data. Ten replicates of the comparison were done, and ten

random restarts were allowed in each program run. Figure 2A shows

the performance score as a function of e, for each experimental

replicate. For most replicates, the performance is comparable across

the different values of e. This is an important observation—it shows

that the algorithm performance is not very sensitive to the prior

expectation of number of sites, i.e., to the model parameter pm.

Reported score versus planted motif score: The optimal value

of the discrimination score, as reported by DIPS, was compared to

the discrimination score of the target PWM. In all 20 experimental

replicates, the reported score was better than the target PWM’s

score, typically by a factor of 1.3–1.5. (Fig. 2B.) This shows that

the search algorithm actually always finds a motif that is as good or

better than the planted motif, in terms of the algorithm’s objective

function.

Comparison to alternative motif finding programs: We

compared DIPS to a popular non-discriminative motif-finder,

MEME (Bailey and Elkan, 1995), that was run on the positive

sequences, and made to search for a motif with 20n sites. A

‘‘distractor’’ motif was also planted, mimicking the planting of

the target PWM, except that the distractor was planted in both

the positive and negative sets of sequences, in the same amount

as the target PWM (20n). We expected that MEME, running on the

positive sequences alone, will be confounded by the distractor

motif, while DIPS will correctly identify the target motif as the

true ‘‘discriminative’’ motif. We performed 20 experimental

replicates for each combination of the experiment parameters

R ¼ 1.25, 1.5 and n ¼ 1, 1.5, 2. The results are shown in

Fig. 2C. The average performance of DIPS is significantly higher

than that of MEME for all experimental settings.

We also compared DIPS to two discriminative PWM searchers,

LearnPSSM (Segal et al., 2003) and DME (Smith et al., 2005). (The

LOGOS program (Xing et al., 2003), while similar in the underlying

model, is not a discriminative motif finder.) LearnPSSM takes

into account both positive and negative sequences, and typically

performs comparably to DIPS (and better than MEME), except

for the weak-motif experiments (R ¼ 1.25, n ¼ 1, 1.5) where

DIPS did significantly better. This is presumably because with

weak motifs there is a greater advantage to a model (DIPS) that

rewards multiple occurrences in the same sequence over a model

that allows exactly one occurrence (LearnPSSM) per sequence.

DME (Smith et al., 2005) performs better than all other methods

when the motif is highly specific (R ¼ 1.5), but its performance

takes a hit when the motif is weak (R ¼ 1.25, n ¼ 1.5, 2.0), where

DIPS performs significantly better. We noticed that this drop in

performance actually reflected a drop in sensitivity, not specificity,

and this was because the motif space searched was limited to PWMs

with high information content. (See Appendix for details of how

DME was run.)

We performed a second kind of experiment, where a distractor

motif was planted only in positive sequences, and was made avail-

able to DIPS as a known motif. LearnPSSM was not informed of

this distractor motif. (We tried masking out occurrences of the

distractor motif before input to LearnPSSM, but the program

crashed on such input.) Instead, LearnPSSM was made to report

two motifs, and the performance score of the better of the two was

taken. We also included the program DME in these comparisons.

Since DME cannot take a known motif as prior knowledge, we

treated it similarly to LearnPSSM, i.e., it was made to report two

motifs, and the better performance score taken. (DIPS was made to

report only one motif.) DIPS was found to perform significantly

better than both LearnPSSM and DME in these experiments.

(Fig. 2D). Due to our limited experience with LearnPSSM and

DME, it is possible that the optimal choice of parameters was

not made for these programs, and a rigorous comparison is

beyond the scope of this paper (Tompa et al., 2005). For instance,

the performance of LearnPSSM improves when using seed words

identified by the SeedSearcher program (Yoseph Barash, personal

communication); the same seeds may be used for DIPS also.

4.2 Segmentation network in fruitfly embryo

We next applied our algorithm to cis-regulatory modules

(CRM’s) involved in segmentation of the early fruitfly embryo.

Each CRM is known to drive gene expression in a particular domain

Fig. 2. A: Performance of algorithm DIPS as a function of the input parameter

e, the expected number of sites. Each row represents a data set. B: Comparison

of the d score (re-scaled) of planted (‘‘KNOWN’’) and reported (‘‘FOUND’’)

motifs for each of 20 data sets. The bold line represents FOUND¼KNOWN.

C: Comparison of performance among DIPS, MEME, LearnPSSM (‘‘LP’’)

and DME, in the presence of a distractor motif. Each row represents a parti-

cular combination of experiment parameters n and R. D: Comparison of

performance between DIPS, MEME, LearnPSSM (‘‘LP’’) and DME, where

the distractor motif is known to DIPS. (Each figure in C & D is an average over

20 experiments. Performance score of DME is the harmonic mean of its

average sensitivity and specificity; see text.)
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along the embryo’s anterior-posterior axis. This is achieved by the

combined action of multiple activators and repressors, whose bind-

ing sites are harbored by the CRM. (See Fig. 3A-C.) The goal was to

discover PWMs for these binding sites using knowledge of the

CRMs’ expression patterns. We started with a comprehensive set

of 51 CRM’s, of median length 1383 bp (Schroeder et al., 2004).

While many of the involved activators/repressors and their expres-

sion domains are well-known, we overlooked this information in

this illustrative exercise, to simulate the typical application where

the target genes/CRM’s and their expression patterns are available

and the transcription factors are unknown.

We defined ‘‘activator domains’’, i.e., our guesses for domains

where the activators are present, as broad regions such as

‘‘anterior’’ (50�100% egg length along the anterior-posterior

(AP) axis, measured from the tail), ‘‘posterior’’ (0�50% egg

length), ‘‘terminal’’ (0�20% e.l.,80�100% e.l.), and ‘‘central’’

(30�70% e.l.). This is in tune with the belief that the early stage

activators are maternally deposited proteins with broad expression

domains. Repressors in this pathway are believed to have ‘‘gapped’’

patterns (one or two bands of expression, about 20% e.l. long, at

various positions along the AP axis). Therefore, we defined ‘‘repres-

sor domains’’, i.e., our guesses for domains where repressors are

present, as successive fifths of the axis: ‘‘5.1’’ (80�100% egg

length), ‘‘5.2’’ (60�80%), ‘‘5.3’’ (40�60%), ‘‘5.4’’ (20�40%),

and ‘‘5.5’’ (0–20%). For each defined domain, a ‘‘positive’’ set

of CRM’s and a ‘‘negative’’ set was obtained, as follows. For an

activator domain, CRM’s driving expression in the domain were

labeled positive and the rest were labeled negative. For a repressor

domain, CRM’s driving expression in the domain were labeled

negative, and CRM’s driving expression in the flanking domains

were labeled positive. On average, each data set (of positive and

negative sequences) included 22 CRM’s. Our algorithm was made

to report motifs for each such data set, in phases. In the first phase,

each activator domain was analyzed, and in the second phase, each

repressor domain was analyzed. The third and fourth phases were

repeats of the first two, in that order. The top reported motif from

each domain in each phase was input as prior knowledge in the

following phases. Thus, a total of 4 + 5 + 4 + 5 ¼ 18 motifs were

obtained, each of length 9. These are tabulated in Figure 3D.

Each reported motif was compared to a small compendium of

14 experimentally determined PWMs (Schroeder et al., 2004),

using the relative entropy (per column) as the similarity score. A

p-value was assigned to each similarity score, using 1000 random

permutations of the entries of the reported motif. In Fig. 3D,

reported motifs that match some known motif with a p-value of

0.05 or less are shown in bold. All such matches to known motifs are

consistent with the literature on this pathway (Schroeder et al.,
2004), as discussed next.

Phase 1,3 (activators): Motif anterior.1 matches the PWM of

Bicoid, the known anterior activator. Similarly, posterior.1 and

terminal.1 match known motifs of Caudal and torRE, which are

known posterior and terminal activators respectively. Motif

central.1 matches that of Hunchback, known to have activating

role in the central domain. Motifs anterior.2 and posterior.2,

discovered for activators in the third phase, match known motifs

of Huckebein and Pdm_12, that are known activators in the anterior

and posterior domains respectively. Note that different motifs

(Huckebein and Pdm_12, versus Bicoid and Hunchback res-

pectively) are discovered in Phases 3 and 1, on the same data

sets, showcasing the iterative incorporation of known motifs into

the w-score.

Phase 2,4 (repressors): Motifs 5.4.1 and 5.1.2 were discovered

when searching for a repressor in domains ‘‘5.1’’ (80�100% egg

length) and ‘‘5.4’’ (20�40%) respectively. They both match the

PWM of Knirps, known to be a repressor expressed at 87�100% e.l

and at 25�45% e.l., i.e., the same domains where the motif

was found. An important repressor, Giant, is the best match for

motif 5.4.2, but visual inspection revealed a few differences

between the known and reported motifs. Giant is an appropriate

transcription factor for the domain ‘‘5.4’’ (20�40% e.l.), being

expressed at 15�33% e.l. and known to be a repressor. The

known PWM of Giant was constructed from only eight binding

sites, and is therefore poorly characterized. This may explain the

relatively weak resemblance (p-value 0.05) of the Giant PWM

to motif 5.4.2. The motif 5.2.2 that matches torRE, and that

corresponds to a repressor in domain 60�80% e.l., is presumably

an artifact of the torRE (activator) motif present in the terminal

(80–100%) CRM’s.

Thus, all 10 discovered motifs with a significant match to a

known motif, correspond to transcription factors with consistent

functionality. These 10 motifs correspond to 8 distinct known

motifs, from a compendium of 14 known motifs. Note that this

exercise did not utilize the known expression domains of the

transcription factors in finding their motifs. We expect that if the

positive and negative sequence sets were created based on a

factor’s precise expression domain, the motif recovery would

improve further. The remaining 8 discovered motifs, with insignifi-

cant matches to known motifs, are candidates for being novel

motifs. In particular, motifs 5.3.1, 5.5.2, corresponding to an

unknown repressor in domains ‘‘5.3’’ (40�60% e.l.) and ‘‘5.5’’

(0�20% e.l.), and the motif central.2, corresponding to an activator

in the central domain, are very dissimilar to the known PWMs and

deserve further investigation.

4.3 Social behavior in honey bee

Whitfield et al., 2003 identified a small set of genes whose

expression pattern in whole brain microarray experiments were

most discriminative of foraging behavior versus nursing behavior

Fig. 3. A, B, C: Example of CRM action in fruitfly embryo. A: CRM with

binding sites for transcription factors bcd, Hb (activators) and Kr, Gt (re-

pressors). B: Concentration profiles of each transcription factor along the A-P

axis. The shaded region is where the CRM drives expression. Bcd and Hb

activate, Gt represses from anterior and Kr represses from posterior. C: The

domain of expression driven by the CRM, in the embryo. D: Motifs discov-

ered in each phase, and for each expression domain; the best matching known

motif, and the p-value of this match.
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in honey bees. We analyzed the 2Kbp promoters of these genes

(21 up-regulated in foragers, 11 up-regulated in nurses). The motif

that was most discriminative of these two sets of promoters is shown

in Fig 4A. This motif is very similar to the well characterized

GAGA element (Fig 4B). The GAGA binding factor is known to

regulate gene expression in Drosophila by modulating chromatin

structure. Since foraging and nursing behavior in honey bees are

controlled by social conditions, our finding represents an important

progress in understanding the molecular basis of social behavior.

5 DISCUSSION

The presented algorithm searches the space of site-sets, while

the objective function is defined in terms of PWMs. Using PWM

w-scores in input sequences is a more sensitive measure of motif

occurrence than scores based on the site-set alone (Jensen and Liu,

2004; Lawrence et al., 1993), and is crucial for incorporation

of negative sequence information in our framework. On the other

hand, the search space of site-sets is a restricted subspace of the

space of all PWMs (i.e., R4lm ). This imposes a minimum magnitude

on any local move made by the algorithm, and is possibly the reason

why the algorithm better avoids local optima than a conjugate

gradients search in R4lm . (See Section 4.) A related issue here is

the ‘‘motif cardinality’’, i.e., the number of substrings forming a

site-set. A large value takes us closer to the R4lm space, while a very

small value makes the search space too small and restrictive. We

empirically found a motif cardinality of 20 to work well. Finally, we

note that there are other ways to restrict the search space than using

the space of site-sets; these were not explored.

The algorithm uses a hill climbing heuristic—it moves to

any neighbor that gives an improvement, using derivative informa-

tion to order the evaluation of possible moves. The exact score

computation for any new candidate motif is an expensive operation,

linear in the total length of sequences. An alternative strategy such

as Gibbs sampling would require evaluating a large number of

neighbors (linear in the average length of a sequence) before decid-

ing the move, and is hence impractical in this setting. Another

algorithmic choice was to run our hill climbing algorithm followed

by conjugate gradients search in the R4l space—we tested this

option and found no improvement in performance. The presented

algorithm is fairly robust to the choice of the initial random seed. In

the experiments of Section 4, the optimal motif was typically

obtained in at least two of the five random restarts.

The algorithm is implemented to optimize any differentiable func-

tion of the w-scores in individual sequences, and may be trivially

modified to use only the positive set of sequences (as in traditional

motif finding), or to optimize correlations between sequence and

gene expression data. Such modifications and their performance are,

however, outside the scope of this paper. The w-score may also

be computed in the presence of multiple-species data, using a pro-

babilistic model of binding site evolution (Sinha et al., 2004),

therefore enabling a phylogenetic version of the algorithm.

The model parameters F (including the unknown motif’s pm)

define the ‘‘global distribution’’ (Xing et al., 2003) Pr(T) on

motif occurrences. We then use Bayes rule to compute the condi-

tional distribution Pr(T j S) on parses, and hence compute an aver-

age count of the motif(s) given the sequence data. One option that

was not explored is to include pm as a trainable parameter in the

search algorithm, i.e., to find the wm and the pm that maximize the

discrimination score. However, this will mean that the count

(w-score) of wm in a sequence S will depend on sequences other

than S.

6 FUTURE WORK AND CONCLUSIONS

The choice of the model parameter pm is ad hoc. Further exploration

of this issue, such as specification of a probability distribution over

pm, and integration over that distribution, will be important. Simi-

larly, the choice of the optimal motif (site-set) cardinality is a future

research direction. We will also explore a probabilistic version

of the discrimination score, such as that of Segal et al., 2003,

while using the w-score to count PWM occurrences.

We have proposed a statistically sound method to ‘‘count’’ PWM

(motif) occurrences in a given DNA sequence. This count is

efficiently differentiable with respect to the PWM parameters, enab-

ling search algorithms to use derivative information for a large class

of objective functions. We propose a derivative-guided hill climb-

ing algorithm to find a motif that best discriminates two different

sets of sequences by its counts in those sequences. The algorithm

is tested on synthetic data and is applied to the segmentation path-

way in the fruitfly and on behavioral genes in honey bee to elicit

several interesting motifs.
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7 APPENDIX

7.1 Sampling probability for PWM

Let wka denote the probability of basea in column k of a PWM
w of length l. The weight matrix induces a probability
distribution on all strings of length l. The probability of sam-
pling a string s of length l from the PWM w is defined as
Prðs jwÞ ¼

Ql
k¼1 wksk

, where sk is the kth base of s.

7.2 Logistic-score

The ‘‘logistic-score’’ is an alternative discrimination score
implemented, defined as l(S+, S�, wm) ¼

�
� X

s2S+

ð1 � logitðss/LsÞÞ2 +
X
s2S-

ðlogitðss/LsÞÞ2
�

ð4Þ

where the function logit(x) ¼ 2/(1 +e�vx) � 1 is a rescaled
logistic function with range 0 (at x¼0) to 1 (at x¼1). (Ls for a
string s represents its length.)

The logistic-score represents the least-squares error of a
classifier that uses the logit function as a soft predictor for
class membership, with 0 representing S� and 1 representing
S+. (The negative sign is to minimize the error while max-
imizing the function.) In the algorithm, during the initializa-
tion of parameters, the exponent factor v in the logistic
function is set to 2e/ j S+ j . (See ‘‘Initialization of Para-
meters’’, Section 3.3, for definition of e.)

7.3 The ‘‘big move’’

The update (Section 3.3) uses two separate hill climbing steps.
As such, it may fail to find an improvement even if there exists
a deletion choice that is itself non-optimal, but leads to a score
improvement in combination with the appropriate addition
choice. The ‘‘big move’’ is executed when the above default
procedure fails. This move effects each possible deletion,
computes derivatives, and estimates the score of each possible
addition. It then sorts all such deletion-addition pairs by esti-
mated score, and serially evaluates each pair, stopping when
an improvement is found, or when a certain number of evalua-
tions (500, for the current implementation) have been made.

7.4 Incorporating known PWMs into the score

The algorithm assigns the transition probabilities for the
known motifs Wknown ¼ {w1, . . .wk} separately for each
sequence S, as follows. It first assumes that the only PWMs
in the model are wb and the set Wknown, and computes the
values of the corresponding pi parameters that maximize
the likelihood of the sequence S. This computation, described
in Sinha et al. 2003, uses an Expectation-Maximization algo-
rithm and is known to have good convergence property. The
transition probabilities pi, for i¼ 1. . .k, are then fixed at these
trained values. The transition probability pm for the desired
motif wm is then assigned as described in Section 3.3, and pb is
obtained from the constraint ð

Pk
j¼1 pjÞ + pm + pb ¼ 1. Note

that this step causes little change in pb, since pm is small; hence
the values of p1, p2 ,. . .pk and pb are those determined by the
maximum likelihood inference.

7.5 Computing derivatives of w-score

The w-score of PWM wm in sequence S of length L with model
parameter pm is defined in Equation 1. We re-write the defini-
tion with a slight change of notation as

smðSÞ ¼
X

T

xmðTÞPrðT j S‚QÞ

where xm(T) is the number of times wm is planted in parse T,
and Q represents the model parameters. In the general case,
this includes wm and its transition probability pm, the back-
ground motif wb (with pb), and the set of known motifs Wknown

¼ {w1, w2, . . .wk} with corresponding transition probabilities
p1, p2, . . .pk, with the constraint ð

Pk
j¼1 pjÞ + pb + pm ¼ 1. Let

the indicator (0/1) variable Xml(T) be 1 if motif wm is planted at
position l in parse T. Then sm(S)¼

XL

l¼1

X
T jXmlðTÞ¼1

PrðT j S‚QÞ ¼
X

l

X
T jXmlðTÞ¼1

PrðS‚T jQÞ
PrðS jQÞ ð5Þ

Therefore, we can write the partial derivative of sm(S) as
@smðSÞ
@wm

kg
¼

@
@wm

kg

P
l
P

TjXmlðTÞ¼1

PrðS‚TjQÞ

PrðSjQÞ �
smðSÞ @

@wm
kg

PrðSjQÞ
PrðSjQÞ ð6Þ

Let B and C denote the two terms in the sum on the right
hand side. Let us define the ‘‘forward’’ variable a(l) as the
probability of generating the subsequence S[1. . .l] by the
model, such that some wi ends at l. Similarly, let the ‘‘back-
ward’’ variable b(l) be the probability of generating the sub-
sequence S[l. . .L] by the model, such that some wi begins at l.

Let a
0 ðlÞ ¼ @aðlÞ

@wm
kg

and b
0 ðlÞ ¼ @bðlÞ

@wm
kg

. By definition, a(L) ¼
Pr(S jQ), hence we have @

@wm
kg

PrðS jQÞ ¼ a
0 ðLÞ. This gives us

C ¼ smðSÞa
0 ðLÞ

aðLÞ ð7Þ

B ¼ 1

aðLÞ
X

l

@

@wm
kg

X
T jXmlðTÞ¼1

PrðS‚T jQÞ ð8Þ

Now, the term
P

T jXmlðTÞ¼1 PrðS‚T jQÞ may be expressed using

the forward and backward variables as being equal to a(l �
1)pmPr(S[l. . .l+lm � 1] jwm)b(l + lm), where lm is the length of

wm. Hence we have

@
@wm

kg

P
T jXmlðTÞ¼1 PrðS‚T jQÞ

¼ a
0 ðl-1ÞpmPrðS½l . . . l + lm-1� jwmÞbðl + lmÞ

+ aðl-1Þpm½ @
@wm

kg
PrðS½l . . . l + lm � 1� jwmÞ�bðl + lmÞ

+ aðl � 1ÞpmPrðS½l . . . l + lm � 1� jwmÞb0 ðl + lmÞ

ð9Þ

where @
@wm

kg
PrðS½l . . . l + lm � 1� jwmÞ ¼

Qlm
j¼1 ðwm

jgÞ
ð1-djkÞ, and djk

is the Kronecker delta function. Finally, we consider the derivatives
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of the forward and backward variables. Since a(l) ¼
P

ia(l �
li)piPr(S[l �li + 1 . . .l] jwi), where li is the length of wi, we can

write a
0
(l) ¼

½
X

i

a
0 ðl � liÞpiPrðS½l-li + 1 . . . l� jwiÞ�

+ aðl � lmÞpm

@PrðS½l � lm + 1 . . . l� jwmÞ
@wm

kg

ð10Þ

and b0(l) is obtained by a similar recursion. Combining Equations 7,

8, 9, 10, and replacing into Equation 6, we obtain the partial derivative

of sm(S) with respect to wm
kg .

In the implementation, underflows are handled by
using scaling constants, an issue not considered in the
above description.

7.6 Time complexity

a0 and b0 can be computed using a forward and backward
algorithm in time O(L

P
ili). Computation of B has the same

time complexity, and hence computing each @smðSÞ=ð@wm
kgÞ

takes O(L
P

ili) time, giving an O(Llm
P

ili) time complexity
for the entire derivative computation of the w-score. Since this
computation has to be done for each sequence in S+ [ S�, the
total time complexity is O(Ltotallm

P
ili). If the only PWMs are

wm and wb, this reduces to O(Ltotall
2
m).

Knowing all 4lm partial derivatives, we can compute the dest

for all single-site additions s to the current site-set Cdel as
follows. Note that any site addition s ¼ s1s2 . . . slm changes
the PWM W(Cdel) in a particular way: in column k, the
frequency (integral count) of base sk goes up by 1, and the

frequency of the other bases in that column remains same.
Thus, there are only four possibilities for the (vector) change in
the kth column, regardless of s. Hence there are only
four possibilities for the term

P
a ð

@dðwÞ
@wka
j w¼WðCdelÞ ·

½ðWðCadd
s ÞÞka � ðWðCdelÞÞka�Þ, regardless of s. We can pre-

compute each of these four possibilities, for each k. Then, for
any single-site addition s, we only have to look up lm of these
pre-computed values (one for each k) and sum them to obtain
destðWðCadd

s ÞÞ-dðWðCdelÞÞ, in O(lm) time. Thus, computing the
dest for all possible single-site additions takes O(L+lm) time,
where L+ is the total length of all positive sequences, and hence
the maximum number of single-site additions s.

7.7 Experiments on synthetic data

Our program (DIPS) was run with the ‘-len’ option set to the
desired motif length, with ‘‘-niter 5’’ to try 5 random initial
seeds per motif, and ‘‘-nsites’’ set to the 20n, which is the
number of sites planted.

LearnPSSM was run with seed length (-l) and PSSM length
(-L) both set to the desired motif length, with the ‘-r’ option to
search both strands, and with ‘‘-m 1000’’ to try 1000 seeds for
each motif. The ‘‘Training’’ file assigned a weight of 0.99 to
each sequence in the positive set, and a weight of 0.01 to each
sequence in the negative set.

DME was run with motif width (-w) set to the desired motif
length, and the ‘‘minimum number of bits per column’’ (-i) set
to 1.5. We also experimented with setting the ‘-i’ option equal
to the bits per column of the true (planted) motif, and found the
results to be poorer for weak motifs (-i 1.25), and hence report
the better results (from using -i 1.5).
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ABSTRACT

Motivation: A Robot Scientist is a physically implemented robotic sys-

tem that canautomatically carryout cyclesof scientific experimentation.

We are commissioning a new Robot Scientist designed to investigate

gene function in S. cerevisiae. This Robot Scientist will be capable of

initiating>1,000experiments,andmaking>200,000observationsaday.
Robot Scientists provide a unique test bed for the development of

methodologies for the curationandannotationof scientific experiments:

because the experiments are conceived and executed automatically by

computer, it is possible to completely capture and digitally curate all

aspectsof thescientific process.Thisnewabilitybringswith it significant

technical challenges. To meet these we apply an ontology driven

approach to the representation of all the Robot Scientist’s data and

metadata.

Results: We demonstrate the utility of developing an ontology for our

new Robot Scientist. This ontology is based on a general ontology of

experiments. The ontology aids the curation and annotating of the

experimental data and metadata, and the equipment metadata, and

supports thedesignofdatabasesystems tohold thedataandmetadata.

Availability: EXPO in XML and OWL formats is at: http://sourceforge.

net/projects/expo/. All materials about the Robot Scientist project are

available at: http://www.aber.ac.uk/compsci/Research/bio/robotsci/.

Contact: lss@aber.ac.uk

1 INTRODUCTION

1.1 Our new Robot Scientist

A Robot Scientist is a physically implemented robotic system that

applies techniques from artificial intelligence to carry out cycles

of scientific experimentation (King et al., 2004). A Robot Scientist

automatically: originates hypotheses to explain observations;

devises experiments to test these hypotheses; physically runs the

experiments using laboratory robotics; interprets the results; and

then repeats the cycle.

The first Robot Scientist was built in Aberystwyth to investigate

S. cerevisiae gene function using deletion mutants and auxotrophic

growth experiments. In our original proof-of-principle work we

demonstrated that a Robot Scientist could rediscover biological

knowledge concerning gene function in the aromatic amino acid

synthesis pathway. Recently, we have demonstrated that the same

approach can be extended to the discovery of novel biological

knowledge (King et al., 2005).

An important limitation of our Robot Scientist research has been

that although all the intellectual steps were automatic, for some

experimental steps it was necessary to intervene manually, owing

limitations in our robotic equipment. To eliminate this manual

intervention we are commissioning a fully automated Robot

Scientist (Figures 1 and 2). This new system is designed to auto-

matically execute yeast growth experiments by: selecting frozen

yeast strains from a freezer; inoculating these strains into rich

medium; then harvesting a defined quantity of cells; inoculating

these cells into specified media (base plus added metabolites and/or

inhibitors); and finally accurately measuring growth curves by

measuring optical density (OD) (King et al., 2005). We believe,

after consulting with the laboratory automation industry, that our

new Robot Scientist is one of the most complicated laboratory

automated systems in any academic laboratory.

In constructing this new Robot Scientist we have taken advantage

of the key benefit of automation: its ability to be easily scaled up.

The new Robot Scientist is designed to initiate >1,000 new strain/

defined growth-medium experiments a day, using a minimum of

50 different yeast strains, with up to 7 metabolites per experiment,

and with each experiment lasting up to 3 days (plus an initiation

day). Accurate growth curves will be obtained by observing optical

density for every experiment every 20 minutes. This will result in

>200,000 data measurements a day. In addition, we expect

>1,000,000 meta-data measurements each day. These include hypo-

theses, experimental plans, experimental actions, temperature,

humidity, etc.

1.2 Ontologies for curation and annotation of

scientific experiments

Robot Scientists provide unsurpassed test beds for the development

of methodologies for the curation and annotation of scientific

experiments. This is because, as the experiments are conceived

and executed automatically by computer, it is possible to com-

pletely capture and digitally curate all aspects of the scientific

process: the hypotheses, the experimental goals, the results, etc.

The use of a Robot Scientist removes the often ‘show stopping’

sociological problems associated with trying to capture such data

from human scientists.

The ability to capture all relevant experimental information

brings with it significant technical challenges:

� We require a very detailed and formalised description of all the

domains involved in an experiment: experimental design,

methods and technologies; experimental object models and�To whom correspondence should be addressed.
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background knowledge; reasoning rules for analysis of the

experimental results, etc.

� We need to curate and ensure the integrity of the large amount of

data and metadata that the Robot Scientist will produce.

� We wish to make the experimental information as open as

possible to both the scientific community and the general

public—as part of the mission to improve the public under-

standing of science.

To meet these challenges we have selected an ontology driven

approach to the representation of all the data and metadata relevant

to the project. The value of the utilisation of ontologies for the

curation and annotation of scientific results is now generally recog-

nised (Bard and Rhee, 2004). The use of ontologies make scientific

knowledge more explicit, helps detect errors, enables the sharing

and reuse of common knowledge, removes redundancies in domain-

specific ontologies, and promotes the interchange and reliability of

experimental methods and conclusions.

Bioinformatics has led the way in the application of ontologies to

the curation and annotation of experimental data (Brazma et al.,
2001). Probably the best known application of ontologies to des-

cribing experiments is that developed by the Microarray Gene

Expression Society (MGED) (Stoeckert et al., 2002). The MGED

Ontology (MO) is designed to provide descriptors required by

MIAME (Minimum Information About a Microarray Experiment)

standard for capturing core information about microarray experi-

ments. MO aims to provide a conceptual structure for microarray

experiment descriptions and annotation. Similar approaches have

been made in proteomics (http://psidev.sourceforge.net/ontology/),

metabolomics (Jenkins et al., 2004) and anatomy (Ryn and

Sternberg, 2003).

Unfortunately, the existing ontologies for experiments repres-

entation are not suitable for extension to a Robot Scientist

(Soldatova and King, 2005). They are highly human-oriented,

and they do not contain concepts about general principles for organ-

ising and execution of experiments and analysis of the results. In

Fig. 1. Plan of our new Robot Scientist.

Fig. 2. Our new Robot Scientist (during assembly, Nov., 2005).
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addition, no ontology is yet available for microbiological experi-

ments, the domain of the robot scientist experiments.

We have therefore applied our generic ontology of scientific

experiments EXPO (Soldatova, 2005) to our Robot Scientist and

formed the instantiation EXPO-RS. The goals of this ontology are as

follows:

� To formalise the concepts involved in Robot Scientist

experiments, and to identify what metadata are essential for

the experiment’s description and repeatability.

� To provide a controlled vocabulary for all the participants of the

project. This includes specialists from different scientific areas

(and the general public).

� To organise all the information and knowledge about the Robot

Scientist project into different meta-levels. This ensures a clear

structure, allows maintenance and updating of the knowledge,

and enables coordination of multiple tasks: planning of an

experiment; execution of an experiment; access to the results;

technical support of the robot, etc.

� To design a database for the storage of experimental data and

track experiment execution.

In section 2 we describe a generic ontology of experiments as a

method for representation of the information about the Robot

Scientist project. Section 3 presents three example applications

of the ontology for the Robot Scientist description, namely: its

metadata, representation of the data about the experimental

equipment and the data base model for storing information about

Robot Scientist experiments. Section 4 is devoted to discussion

of problems of the data representation for a robot and new

challenges.

2 GENERIC ONTOLOGICAL DESCRIPTION
OF EXPERIMENTS

We used the generic ontology of scientific experiments EXPO as a

method to represent the metadata and data of the Robot Scientist

experiments (Soldatova and King, 2006). EXPO provides a clear

structured framework for a consistent and shareable description of

experiments for both humans and computer systems. EXPO form-

alises the generic concepts of experimental design, methodology,

experimental objects, subjects, equipment, experimental protocols

and actions, observations and results representation. EXPO is

expressed in the W3C standard ontology language OWL-DL

(www.w3.org/TR/owl-guide/). EXPO contains 200 classes and it

is available at http://sourceforge.net/projects/expo/.

In defining an ontology, we follow the definition given by Barry

Smith1: An ontology is a representation of some pre-existing

domain of reality which: (1) reflects the properties of the objects

within its domain in such a way that there obtains a systematic

correlation between reality and the representation itself; (2) is

intelligible to a domain expert; (3) is formalised in a way that allows

it to support automatic information processing.

To build up the Robot Scientist’s ontology EXPO-RS we use the

following structure elements:

� A concept X (¼class). ‘X is a class if and only if (iff) each

element x of X satisfies the intrinsic property of X. The intrinsic

property of a thing is a property which is essential to the thing and

it looses its identity when the property changes’ (Mizoguchi,

2004).

� An instance x, an element of the class X.

� Is-a relation. ‘<class A is-a class B> relation holds between

classes if and only if (iff) every instance of the class A is also

an instance of the class B’ (Mizoguchi, 2004). In order to provide

a simple hierarchical structure, the concepts are assumed to be

disjoint.

� Instance-of relation. If and only if (iff) the definition above

holds then the relation <x instance-of X> is true.

� Attribute-of (a/o) relation is used for describing properties

of the concept. It can be considered as a predicate attribute

(Concept, Property). This relation can have a fixed

cardinality or a range 0, . . . , n, where n is a natural number;

minimum cardinality 0 means that some of instances of the

class might not have this property, i.e. the property is not intrin-

sic, but still important for the class description as a whole.

� Part-of relation (p/o) is used for describing partronomic

relations between concepts. For simplicity’s sake and because

it is not essential for the selected domain, we do not distinguish

the different types of whole-part relations (Guarino, 1998).

The above comments about cardinality are also true for part-

of relations.

All concepts of the Robot Scientist project are defined as sub-

classes of the following top concepts:

(1) Physical object, i.e. experimental equipment.

(2) Process, such as an execution of experiment, interpreting the

results, experimental actions.

(3) Proposition: tasks of experiments, experimental goals,

hypotheses, experimental design strategy, models, standards.

(4) Substrate for representing time points and intervals, measure-

ment units and locations.

(5) Role, for instance functional role, or subject, object role.

The role concept is particularly important for the Robot Scientist

because the robot can play different roles in the same experiment:

� The robot is the object of an experiment when we study the

automation of science. The experimental domain in this case

is Artificial Intelligence and Robotics.

� The robot is the subject of the experiment when we employ the

robot to discover new knowledge in a scientific domain. In this

article we concentrate on the description of robot-subject

experiments.

EXPO-RS is built as an extension of EXPO by adding the

specifics of the Robot Scientist project to the classes and

instances.

3 APPLICATIONS OF AN ONTOLOGY FOR THE
ROBOT SCIENTIST

3.1 Metadata

We illustrate in Figures 3 and 4 an example of a Robot Scientist

experiment annotated using EXPO-RS (King et al., 2005). In1The Buffalo Ontology Site: http://ontology.buffalo.edu/
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Figure 3 (and further in the text) the terms in angled brackets are

from EXPO-RS. Figure 3 shows the corresponding fragment of

EXPO-RS in a text format and Figure 4 in a graphic format

(Kozaki et al., 2002).

The goal of the illustrated experiment is to investigate the func-

tion of the gene named ‘YER152c’. This gene is currently classified

by SGD/GO as ‘Uncharacterized’, and by MIPS as ‘Unclassified’.

In previous work on predicting gene function we predicted the gene

to be involved in ‘metabolism’ with estimated >80% accuracy

(Clare and King, 2003).

The Robot Scientist used its background bioinformatics know-

ledge in its internal databases to abduce the hypothesis that

YER152c encodes the enzyme 2-aminoadipate: 2-oxoglutarate

aminotransferase. This is formally encoded in the Prolog fact

‘encodes (yer152c, ‘2-aminoadipate: 2-oxoglutarate aminotrans-

ferase’)’. Given this abduction, and its general model of yeast

metabolism, the Robot Scientist deduced that the removal of

this gene would produce a strain with reduced growth (a brady-

trophic mutant) or no growth (an auxotrophic mutant); and that

addition of the metabolite L-2-aminoadipate to the standard

defined growth medium would restore growth. Analysis of the

experimental results provided evidence that was consistent with

YER152c encoding the missing 2-aminoadipate: 2-oxoglutarate

aminotransferase II (N.B. it is a known iso-enzyme: (Masuda

and Ogur, 1969)).

The application of an ontology to this experiment demonstrates

its value in providing the structure for annotating and curating our

Robot Scientist’s experimental information. Note in particular, the

use of the ontology made explicit: the analysis of alternative hypo-

theses, assumptions about the domain model and possible factors

that could affect the experimental results. Finally, as EXPO is a

general ontology of scientific experiments, its application provides

the framework to link the Robot Scientist’s data and metadata

to other scientific data and metadata.

3.2 Description of experimental equipment

Our new Robot Scientist’s laboratory automation hardware is

extremely complicated and comes supplied with substantial

amounts of technical description. Application of an ontology

helps to define which of the equipment characteristics are most

important to describe to ensure experimental reproducibility.

<scientific experiment>:
<admin. info about experiment>:
<title>: Robot scientist
<ID>: exp200401113-0001

<classification by domain>:
<domain of experiment>:
<DDC(Dewey) classification>: 576 Microbiology

<research hypothesis>:
<representation style>: <text>

<linguistic expression>: <natural language>:
Knocked out gene named ``yer152c'' (= met8) has the function named
``2-aminoadipate:2-oxoglutarate aminotransferase'' (E.C.2.6.1.39)

<linguistic expression>: <artificial language>:
encodes(yer152c, '2-aminoadipate:2-oxoglutarate aminotransferase')

<null hypothesis>:
<linguistic expression>: <artificial language>:

˜ encodes(yer152c, '2-aminoadipate:2-oxoglutarate aminotransferase')
<alternative hypothesis>:

<linguistic expression>: <natural language>:
<time effect>: maturation effect (incubator too cold)

<alternative hypothesis>:
<linguistic expression>: <natural language>:

<object effect>: no entry of metabolite into the cells
<alternative hypothesis>:

<linguistic expression>: <natural language>:
<object effect>: cross contamination

<domain model>: <representation style>: <text>
<linguistic expression>: <artificial language>: Prolog

A logical model of yeast metabolism
<reference>: Whelan, K.E. & King, R.D. (2005) Using a logical model to predict

the growth behaviour of yeast cell cultures. Department of Computer
Science Report, University of Wales, Aberystwyth. UWA-DCS-05-045.

<experimental design>:
<subject>: The Robot Scientist
<object>: S. cerevisiae

<experimental model>:
<factor>: Strain - 2 strains: wild [Mat A, by4741] and its yer152c knockout
<factor>: addition or not of metabolite 2-aminoadipate:2-oxoglutarate

aminotransferase
<model assumption>: stationarity

...............................................
<experimental conclusion>: <representation style>: <text>

<linguistic expression>: <natural language>:
The yer152c knockout strain has a quite different growth profile to
the wild type. This is consistent with yer152c encoding a
2-aminoadipate:2-oxoglutarate aminotransferase. We hypothesize that
yer152c is the missing 2-aminoadipate:2-oxoglutarate
aminotransferase II.

Fig. 3. EXPO-RS formalisation of a Robot Scientist experiment in a text format (a fragment).
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A description of the functionality of the equipment highlights the

requirement for collection of metadata from the equipment. For

example: if the equipment can do an action A, do we need to

make sure whether or not A happened is recorded in our data

records; if part of the equipment is replaced due to failure, does

the new equipment satisfy the functionality that the old equipment

provided, and what are the differences? An ontological description

of this functionality gives us a systematic framework for making

decisions about the metadata we need to record, and a framework

for comparing metadata collected from differing pieces of

equipment.

In EXPO-RS each piece of laboratory equipment is defined

through ‘physical’ object. For example, a well is defined as

<plate part> (see Figure 5). As a well cannot exist separately

Fig. 4. EXPO-RS representation of a robot scientist experiment (a fragment).

Fig. 5. EXPO-RS representation of the experimental equipment (a fragment for a plate).

L.N.Soldatova et al.

e468



from a plate it cannot be a single object. A representation of a well is

essential for representing the Robot Scientist’s experimental obser-

vations, because optical density is measured in each individual well,

and stored by well. The ontology describes a concept <well> with its

important characteristics: identification number <well id> (from

plate <column id> and plate <row id>); <well shape> that can

be <round bottom> or <square bottom>, and <well size>. Note

that the attributes <well shape> and <well size> are also used

for plate descriptions. The reason for this is that no plate can

have wells of differing size and shape. Plates for the pregrowth

stage of the experiment will have <round bottom> <well shape>

for better centrifugation separation, while those used in the freezer

and in the growth phase will have <square bottom> wells.

Administrative information about the equipment, contact details

of suppliers and models information are represented as propositions.

Each <model> is characterised by its <id>, <name> and has <model

description>. The latter can have different <representations> (not

shown) on different representation media such as electronic e.g. a

CD or paper e.g. a book. <Plate model> inherits properties of

<model> concept and additionally has <plate size>, <number of

wells> properties, etc. These attributes are not essential in describ-

ing a plate as a piece of experimental equipment or for experiment

Fig. 6. EXPO-RS representation of a plate reader functions.

Fig. 7. Data base model for the Robot Scientist (a fragment), where PK is a primary key and FK is a foreign key.
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representation; thus they characterise a particular plate model and

are stored separately. A record of the <plate model> and

<manufacturer>, and the same for the plate lid (not shown in

this fragment) ensures that experimental variation due to readings

of different types of plate may be noticed.

The ontology also contains a description of the equipment func-

tionality. We illustrate the application of this ontology by showing a

fragment of the functionality of a plate reader. The fragment in

Figure 6 shows the main functions of a Robot Scientist plate reader,

that is to perform an <optical density read>, to <agitate> the plate, to

<record> information such as the plate barcode, timestamp, and

temperature, and to allow the correct parameters of the read and

agitation to be set. The plate readers currently used in the Robot

Scientist are two SpectraMax 190s. This information would be

recorded as the model name under the part of the ontology that

describes the equipment. Describing these readers in terms of the

plate reader functionality part of the ontology enforces a record

of the specifics of our laboratory setup. The <number of readings

per well> is one, and there is one <measurement wavelength> at

595nm. The reader does <maintain internal temperature> at 30

degrees C. Usually the reader does not <agitate> the plate, as the

plates are continually agitated while they are in the incubators but

there is one occasion on which the reader must <agitate> <before

measurement> for a <duration> of 30 seconds. This is to resuspend

the yeast after centrifugation. This particular model of plate reader

does not inform us what the <intensity> or <agitation mode> are.

All this metadata is to be recorded in our database.

The next section describes the use of the ontology in the design of

this database.

3.3 Use of the ontology for the design of a data model

As described above, a Robot Scientist will generate a very large

amount of data and metadata. To ensure the integrity of this data,

and to provide for its easy access, we will store all the data and

metadata in a relational database.

The principal application of the ontology to database design was

as an aid to identifying objects and events that needed to be recorded

in the database. This was of key importance, as the primary aim

when creating a good relational database design is to model the real

world system as closely as possible. You first identify the objects

and events that you want the database to represent: creating a

structured ontology of your system is a good way of doing this.

You then define the tables and all the relevant fields that they should

contain, and finally describe how they are all related.

The ontology also helped with naming both tables and columns,

with defining relationships between various data, and as a verifica-

tion that the database design had incorporated all of the data useful

to the project.

The fragment of the database design shown in Figure 7 handles the

data records of individual 96-well plates; what model of plate and lid

it is, what use it is being put to, what actions have happened to it

during its lifetime within the Robot Scientist project, and the details

of the robotic equipment that have been used to handle it. For each

piece of equipment (e.g. a plate reader) it stores what settings were

used and over what timeframe. This allows you to retrieve exactly

what settings were used on any piece of equipment that interacted

with any particular plate at any time in the history of the project.

To explain the main ‘plates’ table columns in more detail:

� id_plate_barcode: Each physical 96-well plate has a unique

8-digit <barcode> label attached to it for tracking purposes.

There are three barcode readers on the Robot Scientist, one

for each of the three subsystems (see Fig. 1). The plate is scanned

once in the first subsystem to create it, and again on entry into

subsystems two and three to check its identity before it is worked

on. For example, 00012345.

� id_plate_location: Each physical position on the Robot Scien-

tist where a plate can be placed or moved to has a unique

<location> number, with all valid locations stored on the

separate ‘locations’ table. For example the plate reader in sub-

system three is location 3300.

� id_plate_use_type: This is a reference to the <plate usage> for

the specific plate. These are held on the ‘plate_use_types’ table.

There are currently three uses a plate could be put to; as a <yeast

strain library plate>, as a <yeast pregrowth plate>, and as an

<experiment nutrient cocktail plate>.

� id_plate_status: Each plate has a <status> associated with it to

record its current condition. Generally a plate will initially start

off in an <empty> state, then become <in use>, and then when

it is finished with and disposed of it becomes <destroyed>.

This allows us to quickly identify which plates are active and

which are historical.

� id_plate_model: This is a reference to the <model> of plate, we

use different models for different parts of the system; for exam-

ple the yeast library plates are larger to accommodate greater

volumes in deeper wells, whilst the experiment cocktail plates

are made of clear polystyrene and have flat-bottomed wells

to allow optical readings to be taken. Similar plates may also

be made by different manufacturers so we need to record this.

The various models of plate are stored on the ‘plate_models’

table which in turn is linked to supplier information (not

shown).

� is_plate_lidded: A Boolean flag to indicate whether the plate

has a <lid> or not.

� id_lid_model: This is a reference to the <lid model>. For exam-

ple a lid may be flat or it may have ridges to reduce evaporation

from wells. The various models of lid are stored on the

‘lid_models’ table.

� created_ts: This field is used to store the<timestamp> (time and

date) of when the plate was created. In database terms this refers

to the first time its unique barcode was scanned, normally when

a robot arm has first taken it from a consumables plate stack

for use.

� created_by: This field is used to store who or what created the

plate. If the plate was manually created and introduced to the

system (e.g. a yeast library plate) this field will contain the name

of the person who set it up. Otherwise it will contain a name

related to where on the Robot Scientist it was created.

As in the application of EXPO to curating and annotating experi-

mental metadata, and the curation and annotation of metadata on

experimental equipment, the application of a general experimental

ontology to database design allows data and metadata to be com-

pared and shared between experiments and laboratories.
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4 DISCUSSIONS AND CONCLUSION

A Robot Scientist enables us to capture an unprecedented amount of

information about scientific experiments. For the first time it is

possible to completely capture and digitally curate all aspects of

the scientific process. This presents us both with unique opportun-

ities and challenges. The opportunity is the ability for the first time

to record and fully understand how and why a particular experiment

was conceived and executed, and to remove all subjectivity in

experimental actions. This enables all aspects of experimentation,

including hypothesis formation and testing, to be fully repeatable.

The great technical challenge is how to capture and digitally

curate all this information. We argue that formation of a Robot

Scientist ontology is a key step in meeting this challenge. We

have used such an ontology to curate and annotate the experimental

data and metadata and the equipment metadata, and to help design

the associated database systems. As our ontology is linked to a

general ontology of scientific experiments (EXPO) all the data

and metadata captured can be shared with other experiments. We

envisage our ontology as a start point for further community efforts

in developing a general ontology for fully automated laboratories.

We believe that this increased ability to record and curate all

aspects of scientific experiments will have important ramifications

for scientific publishing. As in the e-Science ‘vision’ it will be

increasingly easy to link papers to all the relevant data and meta-

data, ensuring full repeatability. In this task we believe that natural

language will be required less and less to describe experiments. This

is to be welcomed as natural language is notorious for its impre-

cision and ambiguity. Its use is also a great hindrance when using

computers to store and analyse data—hence text-mining. We there-

fore argue that the content of scientific papers should increasingly

be expressed in formal languages with ontological foundations.
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Sören Sonnenburg1, Alexander Zien2,3 and Gunnar Rätsch3,�
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ABSTRACT

We develop new methods for finding transcription start sites (TSS) of

RNA Polymerase II binding genes in genomic DNA sequences.

Employing Support Vector Machines with advanced sequence

kernels, we achieve drastically higher prediction accuracies than

state-of-the-art methods.

Motivation: One of the most important features of genomic DNA

are the protein-coding genes. While it is of great value to identify

those genes and the encoded proteins, it is also crucial to understand

how their transcription is regulated. To this end one has to identify

the corresponding promoters and the contained transcription factor

binding sites. TSS finders can be used to locate potential promoters.

They may also be used in combination with other signal and content

detectors to resolve entire gene structures.

Results: We have developed a novel kernel based method – called

ARTS – that accurately recognizes transcription start sites in human.

The application of otherwise too computationally expensive Support

Vector Machines was made possible due to the use of efficient training

and evaluation techniques using suffix tries. In a carefully designed

experimental study, we compare our TSS finder to state-of-the-art

methods from the literature: McPromoter, Eponine and FirstEF. For

given false positive rates within a reasonable range, we consistently

achieve considerably higher true positive rates. For instance, ARTS

finds about 35% true positives at a false positive rate of 1/1000,

where the other methods find about a half (18%).

Availability: Datasets, model selection results, whole genome

predictions, and additional experimental results are available at

http://www.fml.tuebingen.mpg.de/raetsch/projects/arts

Contact: Gunnar.Raetsch@tuebingen.mpg.de

1 INTRODUCTION

Arguably the most important information about genomic DNA is

the location of genes that encode proteins. For further analysis of the

genes it is necessary to find their promoters and the contained

binding sites of transcription factors, which are responsible for

regulating the transcription of the gene.

Transcription start sites are located in the core promoter region

and are usually determined by aligning complete mRNA or 50-end

EST sequences (for instance obtained by 50 RACE) against the

genome. Note that protein sequences and other ESTs are not suf-

ficient for this task, since they typically start downstream of the

TSS. For some species including human, large scale sequencing

projects of complete mRNAs have been undertaken, but many low

copy genes still evade being sequenced. In order to identify these

genes and their promoter regions, computational TSS finding or

better experimental techniques are the only way out.

Moreover, in the vast majority of species the identification

of promoters must be accomplished without the support of massive

sequencing. One possibility is to exploit homology to well-

characterized genes in other species. While this approach can

work for common genes, for those genes specific to some species

or some family of species it is likely to fail. This leaves a huge

demand for accurate ab initio TSS prediction algorithms.

Consequently, a fairly large number of TSS finders (TSF)

has been developed. Generally TSFs exploit that the features of

promoter regions and the TSS are different from features of

other genomic DNA. Many different features have been used for

the identification: the presence of CpG islands, specific transcription

factor binding sites (TFBS), higher density of predicted TFBSs,

statistical features of proximal and core promoter regions and

homology with orthologous promoters (see Bajic et al., 2004; Wer-

ner, 2003) for two recent reviews on mammalian promoter recog-

nition). Methods for recognizing TSSs employed neural networks,

discriminant analysis, the Relevance Vector Machine (RVM), inter-

polated Markov models, and other statistical methods.

In a recent large scale comparison (Bajic et al., 2004;) eight TSFs

have been compared. Among the most successful ones were Eponine
(Down and Hubbard, 2002) (which trains RVMs to recognize a

TATA-box motif in a G +C rich domain), McPromoter (Ohler

et al., 2002) (based on Neural Networks, interpolated Markov models

and physical properties of promoter regions) and FirstEF (Davuluri

et al., 2001) (based on quadratic discriminant analysis of promoters,

first exons and the first donor site, using CpG islands). DragonGSF
(Bajic and Seah, 2003) performs similarly well as the aforementioned

TSFs (Bajic et al., 2004). However, it uses additional binding site

information based on the TRANSFAC data base (Matys et al., 2006);

thus it exploits specific information that is typically not available for

unknown promoters. For this reason and also because the program is

currently not publicly available, we exclude it from our comparison.1

One characteristic of TSFs is that they normally rely on the com-

bination of relatively weak features such as physical properties of

the DNA or the G+C-content. In none of the above-mentioned appro-

aches the recognition of the actual transcription start site has been

seriously considered. In this work we show that by using very recently

developed discriminative sequence analysis techniques (Sonnenburg

�To whom correspondence should be addressed.

1 Further, unlike DragonGSF all of the above TSFs could – after retraining –

be applied to genomes other than human, where only a few or no TF binding

sites are known.
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et al., 2005) – which previously were only tractable on a much smaller

scale (Rätsch et al., 2005) – we can drastically improve the perform-

ance of TSS recognition.

The remainder of the paper is structured as follows: In Section 2

we discuss the features of the sequences and kernels that we use for

learning in order to recognize transcription start sites. In Section 3

we discuss techniques related to the kernels and Support Vector

Machine training and evaluation, which were necessary in order to

perform the experiments. We discuss the experimental setup and the

data generation for a large scale comparison of our method ARTS
with other TFSs, and provide experimental results in Sections 4 and

5. We conclude with a discussion and an outlook.

2 BASICS, FEATURES AND KERNELS

Binary classification methods aim at estimating a class-

ification function f : X!f±1g using labeled training data from

X · f±1g such that f will correctly classify most unseen examples

(test data). In our case, the input space X will contain sequences

fA‚C‚G‚TgN
centered at any genomic position, while the labels +1

or �1 indicate whether these positions are true TSS or decoy sites,

respectively.

2.1 SVMs and Kernels

We use Support Vector Machines (Cortes and Vapnik, 1995)

(SVMs) for two reasons. First, they exhibit a very competitive classi-

fication performance, since over-fitting is prevented by well-

controllable regularization and training is not hampered by any

local minima. Second, SVMs can conveniently be adapted to the

problem at hand by designing appropriate kernel functions. The

kernel function shortcuts mapping points to a feature space F via

an arbitrary function F and computes dot products in that space via

kðxi‚xjÞ ¼ FðxiÞ ·FðxjÞ. Particularly advantageous for TSS recog-

nition is the possibility to build complex modular kernel functions by

combining several simpler ones. This way of combining different

pieces of information has been shown to be very powerful (e.g. [10]).

For a test example x the classification function generated by

an SVM can be written as

f ðxÞ ¼ sign
XN
i¼1

aiyikðxi‚xÞ þ b

 !
‚ ð1Þ

where yi 2 f±1g is the label of training example xi (i ¼ 1‚ . . . ‚N).

The coefficients ai and the bias b are the results of SVM training.

Please note that (1) is equivalent to f(x) ¼ w · F(x) + b, where

w ¼
PN

i¼1 aiyiFðxiÞ 2 F. The SVM constructs a maximum

margin linear classifier in the F-space. The computation of SVMs

only depends on the inner products of training examples; therefore it

is usually sufficient to specify the kernel function kðx‚x
0 Þ ¼

FðxÞ ·Fðx0 Þ that computes the inner products in feature space.

2.2 Features for TSS recognition

As most other TSFs our method combines several features, thereby

utilizing prior knowledge about the structure of transcription start

sites. We put, however, particular care in analyzing the actual tran-

scription start site. We have considered the following:

� The TSS is only determined up to a small number of base pairs.

Further, nearby binding sites may also not be positionally fixed. In

order to model the actual TSS site, we thus need a set of features

that are approximately localized and allow for limited flexibility.

We have recently proposed a kernel — the extended Weighted

Degree kernel with shifts (WDS) — for the identification of alter-

natively spliced exons [16] which is also well suited for this task:

kðx‚x0 Þ ¼
XK
k¼1

bk

XL�kþ1

l¼1

XS

s¼0
sþl�L

ds mk‚ l‚ s‚ x‚ x0 ‚

mk‚ l‚ s‚ x‚ x0 ¼Iðuk‚ lþsðxÞ ¼ uk‚ lðx0 ÞÞ þ Iðuk‚ lðxÞ ¼ uk‚ lþsðx0ÞÞ;
ð2Þ

where bk ¼ 2ðK � k þ 1Þ/ðKðK þ 1ÞÞ, ds ¼ 1/ð2ðsþ 1ÞÞ and

uk‚ lðxÞ is the subsequence of x of length k that starts at position

l. The idea is to count the matches between two sequences x and x0

between the words uk‚ iðxÞ and uk‚ iðx
0 Þ where uk‚ iðxÞ ¼

xixiþ1 . . . xiþk�1 for all i and 1 � k � K. The parameter k denotes

the length of the words to be compared, and S is the maximum

distance by which a sequence is shifted. See Figure 1 and [16]

for details.

� Upstream of the TSS lies the promoter, which contains trans-

cription factor binding sites. Comparing different promoters, it

was noted that the order of TFBS can differ quite drastically.

Thus, we use the so-called spectrum kernel [11] on a few hundred

bps upstream of the TSS. The spectrum kernel is typically used

to recognize regions in which certain k-mers are over- or under-

represented (‘‘content sensors’’):

kðx‚x0 Þ ¼
X
s2Sk

#fs appears in xg · #fs appears in x0g‚

where #{s appears in x} is the number of times a k-mer s

appears as a substring in x. Since it does not preserve the

information where the subsequences are located, it may not

be appropriate for modeling localized signal sequences such

as the actual transcription start site.

� Downstream of the TSS follows the 50 UTR, and further down-

stream introns and coding regions. Since these sequences

may significantly differ in oligo-nucleotide composition from

intergenic or other regions, we use a second spectrum kernel for

the downstream region.

γ γ γ

Fig. 1. Given two sequences x1 and x2 of equal length, the WD kernel with shift consists of a weighted sum to which each match in the sequences makes a

contributiongk,p depending on its length k and relative position p, where long matches at the same position contribute most significantly. Theg’s can be computed

from theb’s and d’s in (2). The spectrum kernel is based on a similar idea, but it only considers substrings of a fixed length and the contributions are independent of

the relative positions of the matches to each other.
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� The 3D structure of the DNA near the TSS must allow the

transcription factors to bind to the promoter region and the tran-

scription to be started. To implement this insight, we apply two

linear kernels to the sequence of twisting angles and stacking

energies. Both properties are assigned based on dinucleotides

as done by the emboss program btwisted.2 The fourth and fifth

kernel are then computed as the inner product kðx‚x0 Þ ¼ x · x0 ,
where x is derived from a sequence of DNA twisting angles and

stacking energies, respectively, by smoothing with a sliding

window and using only every 20th of the resulting values.

The combined kernel is simply the sum of all sub-kernels, which is

equivalent to appending the feature vectors in feature space. The

sub-kernels can be expected to be of different importance for the

overall performance; thus, it may seem appropriate to use a

weighted sum. Experiments to verify this (not shown) indicated

that a uniform weighting performs just as well as reducing the

weights for the less important sub-kernels. An explanation for

this may be that the SVM is able to learn relative weights itself.

The only requirement is that the (weighted) function values of the

sub-kernels are on a comparable scale; otherwise, those on a low

scale are effectively switched off.

Note that we normalized all kernels with the exception of the

linear kernels such that the vectors F(x) in feature space have unit

length. This can be done efficiently by redefining the kernel as

follows:

~kkðx‚x0Þ ¼ kðx‚x0 Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðx‚xÞkðx0 ‚x0 Þ

p : ð3Þ

This normalization solves convergence problems of SVM

optimizers and balances the importance of the kernels among

each other. In total we combine five kernels which each have several

parameters as listed in Table 1.

3 EFFICIENCY CONSIDERATIONS

Our model is complex in that it consists of several sophisticated

kernels applied to rather long stretches of DNA. Furthermore,

we have to train it on as many examples as possible in order

to attain a high prediction accuracy.3 Even with highly

optimized general purpose SVM packages like LibSVM or SVMlight,

training and tuning our model with tens of thousands of points is

intractable. The main reason is that the kernel computation, in

particular of the WD kernel with shift, is very expensive (single

kernel computation OðKLSÞ). In addition, many kernel elements

need to be computed several times when the kernel cache is not

large enough, which is quite likely with�10,000 examples. How-

ever, fast training is possible without kernel caching, if the SVM

output for any training point xi, i.e. w ·FðxiÞ, can be computed

efficiently. In the following subsection, we show how algorithms

can be modified to take advantage of fast computations of

w ·FðxiÞ during training and testing. In the second subsection we

show how this can be accomplished for the different kernels that

we use.

Table 1. Parameters of the combined kernels and the SVM for TSS recognition. The ranges are specified according to our prior knowledge or intuition. A

parameter value of 0 marked with � means that the sub-kernel is excluded from the combined kernel

Parameter Set of values Init. guess Opt. value Explanation

TSS signal (weighted degree with shift):

� r-start {�100, �90, . . . ,�10} �50 �70 start of considered sequence region

� r-end {+10, +20, . . . , +100} +50 +70 end of considered sequence region

� order {0�, 2, . . . , 24} 10 24 length of substrings compared

� shift {4, 8, . . . , 48} 20 32 positional shift (base pairs)

Promoter (spectrum):

� r-start {�1000, �900, . . . ,�100} [ {�150} �600 �600 start of considered sequence region

� r-end {�200, �150, . . . ,+200} 0 0 end of considered sequence region

� order {0�, 1, . . . , 6} 3 4 length of substrings considered

1st exon (spectrum):

� r-start {�100, �50, . . . ,+300} +100 0 start of considered sequence region

� r-end {+100, +200, . . . ,+1000} +600 +900 end of considered sequence region

� order {0�, 1, . . . , 6} 3 4 length of substrings considered

angles (linear):

� r-start {�1000, �900, . . . ,�200} �600 �600 start of considered sequence region

� r-end {�600, �500, . . . ,+200} �100 �100 end of considered sequence region

� smoothing {0�, 10, . . . , 100} 50 70 width of smoothing window

Energies (linear):

� r-start {�1000, �900, . . . ,�200} �600 – start of considered sequence region

� r-end {�600, �500, . . . ,+200} �100 – end of considered sequence region

� smoothing {0�, 10, . . . , 100} 50 0� width of smoothing window

SVM: � C {2�2.5, 2�2, . . . , 2+2.5} 20 21
regularization constant

2 http://www.hgmp.mrc.ac.uk/Software/EMBOSS/Apps/btwisted.html

3For instance on a splice site recognition task we were able to reduce the

error rate by 20% when doubling the amount of training data – over a wide

range of training set sizes (Sonnenburg et al., 2006).
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3.1 Faster SVM training and evaluation

As it is not feasible to use standard optimization toolboxes

for solving large scale SVM training problems, decomposition

(also called chunking in the machine learning literature) techniques

are used in practice. Most decomposition algorithms work by first

selecting a working set W � f1‚ . . . ‚Ng with (the indices of) Q
variables of the N training points based on the current solution.

Then the corresponding reduced problem is solved with respect

to the working set variables. These two steps are repeated until

some optimality conditions are satisfied [see e.g. Joachims (1998)].

Efficient Updates in Decomposition Algorithms For selecting

the working set and checking the termination criteria in each itera-

tion, the vector f with f i ¼
PN

j¼1 ajyjkðxi‚xjÞ‚ i ¼ 1‚ . . . ‚N, is

needed. To avoid computation of f in every iteration one typically

starts with f¼ 0 and computes updates of f on the changed variables:

f i  f old
i þ

X
j2W

ðaj � aold
j Þyjkðxi‚xjÞ‚ 8i ¼ 1‚ . . . ‚N‚

where Q ¼ jW j is the size of the working set. One typically uses

kernel-caching to reduce the computational effort of this operation,

which is, however, is not sufficient in the case of large training

sets. Fortunately, for all kernels considered in this work we

can efficiently compute linear combinations of kernel elements,

i.e. w ·FðxÞ, where w is of the form
P

i aiyiFðxiÞ. Algorithm 1

implements a simple idea how to use this to speedup SVM training.

For all considered kernels, the operation w ·FðxÞ is almost as

cheap as computing the dot product of two FðxÞ’s. Hence,

Algorithm 1 leads to a speedup of up to factor Q. Note that creating

the data structure for Q examples (e.g. the below-mentioned suffix

tries) can be expensive, however, it is a fixed cost per iteration. If the

number of examples is large enough, then the speedup of the evalu-

ation leads to a great advantage.

Efficient Evaluation In the application we have in mind we

need to compute predictions for every position in the human gen-

ome (	7·109). For kernel methods that generate several thousands

of support vectors, each of which is of length one thousand, this

would mean more than 1016 floating point operations. This is too

much even for modern computer cluster systems. By using the same

idea as in training we can efficiently compute the SVM prediction

f ðxÞ ¼
PN

i¼1 aiyikðxi‚xÞ for new sequences. This leads to a spee-

dup of M, where M is the number of Support Vectors (with ai 6¼ 0),

and makes the genome-wide computation of promoter predictions

feasible — with still 	350 h computing time for the entire human

genome.

3.2. Fast string kernel computations

All considered kernels correspond to a feature space F that can be

very high dimensional. For instance in the case of the WD kernel on

DNA sequences of length 100 with K ¼ 20, the corresponding

feature space is 1014 dimensional (one feature per position and

possible k-mer, 1 � k � K). However, most dimensions in the

feature space are not used since only a few of the many different

k-mers actually appear in the sequences. An appropriate choice of

the data representation is therefore crucial for fast algorithms. If the

data can be efficiently represented as sparse vectors in the feature

space F , one achieves significant speedups in SVM training and

testing.

Spectrum kernels with explicit feature maps If the dimension-

ality of the feature space is small enough, then one can store the

whole vector v 2 F in memory and perform direct operations on its

elements. This is true for our linear kernels (4 and 5) and also the

spectrum kernel for relatively short K-mers (e.g. K ¼ 6 leads to a

4096 dimensional space). For the latter case one may first pre-

process the sequences x into a sparse vector FðxÞ and later perform

computations with mixed sparse and full vectors, which can be

implemented very efficiently. This approach has exponentially

growing memory demands (Oð jS j KÞ), but is very fast and best

suited for instance for the spectrum kernel on DNA sequences with

K � 14 and on protein sequences with K � 6.

WD kernels with suffix tries The difference between the WD

kernel (without shifts) and the spectrum kernel is (a) the position

dependence and (b) the consideration of K-mers vs. 1‚ . . . ‚K-mers,

i.e. also including subsequences of the K-mers. If one would use a

weighted sum of spectrum kernels for all degrees � K at every

position of the sequence, then it is equivalent to the WD kernel

(Sonnenburg et al., 2005). So in principle we could apply the idea

used for the Spectrum kernel to speedup the WD kernel as well.

However, when using long K-mers (e.g. K ¼ 20) the memory

demand becomes intractable and the sparse weight vectors need

to be stored and operated with more efficiently. In (Sonnenburg

et al., 2006) we have suggested to use suffix tries, i.e. trees that store

weights not only at the leaves but also at internal nodes. The idea is

to use one trie of degree four ( jS j ) and depth K per position in the

sequence. A node in the trie at depth k is addressed by a k-mer and

stores its associated value. See Figure 2 for illustration. Note that we

can easily add several sequences to the trie and the worst-case cost

for performing a lookup operation is OðKÞ. This is the key to the

speedup of SVM training and evaluation.

Please note that the tries for the WD kernel with shifts can

be analogously constructed. Now a string has to be found several

times. Either we store it in several neighboring trees (with decaying

weights) or we store it only once and query the neighboring

trees during lookup operations. So far the latter version was

used, which turned out to require too much computing time. The

first option, however, requires rather large tries as each string is

stored in several tries. This particularly matters during testing

when the trie needs to store all subsequences of support vectors

and one tree can grow to more than 200Mb. One therefore

cannot build all trees at once, but only sequentially. For considera-

tions of how to extend this approach to mismatching k-mers

see (Sonnenburg et al., 2005).

Algorithm 1 Outline of the decomposition algorithm that exploits

the fast computations of linear combinations of kernels (e.g. by

suffix tries).

fi ¼ 0, ai ¼ 0 for i ¼ 1, . . . , N
for t ¼ 1, 2, . . . do

Check optimality conditions and stop if optimal

select Q variables i1, . . . , iQ based on f and a

aold ¼ a

solve SVM dual w.r.t. the selected variables and update a

generate data structures to prepare efficient computation of

gðxÞ ¼
PQ

q¼1 ðaiq � aold
iq
Þyiq kðxiq‚xÞ

update fi ¼ fi + g(xi) for all i ¼ 1, . . . , N
end for
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Implementations The implementation of the kernel

functions, their efficient computation during SVM training

(including Multiple Kernel Learning (Sonnenburg et al., 2006))

and evaluation is implemented in C++ and will be made available

as part of a kernel learning toolbox called Shogun interfacing to R,

Octave, Matlab and Python (see http://www.fml.mpg.de/raetsch/

projects/shogun).

4 TRAINING AND TUNING THE MODEL

For training a TSF and selecting its model parameters (‘‘model

selection’’) it is crucial to use proper training and testing data.

In Section 4.1, we elaborate on the generation of suitable

datasets, including all relevant steps of data pre-processing. We

also explain in necessary detail how we perform the model selection

(Section 4.3).

4.1 Datasets

Both for training our TSS finder and for assessing its accuracy we

need known TSSs as well as known non-TSSs.

To generate TSS data for training, we use dbTSS (Suzuki et al.,
2002) version 4 (‘‘dbTSSv4’’), which is based on the human genome

sequence and annotation version 16 (‘‘hg16’’). It contains transcrip-

tion start sites of 12763 RefSeq genes (Kim et al., 2005). First we

extract RefSeq identifiers from dbTSSv4 and then obtain the cor-

responding mRNA sequences using NCBI nucleotide batch

retrieval.4 Next, we align these mRNAs to the hg16 genome

using BLAT [9].5 From dbTSS we extracted putative TSS positions

(Field: Position of TSS) which we compared with the best alignment

of the mRNA. We discard all positions that do not pass all of the

following checks: 1. Chromosome and strand of the TSS position

and of the best BLAT hit match. 2. The TSS position is within 100

base pairs from the gene start as found by the BLAT alignment. 3.

No already processed putative TSS is within 100bp of the current

one. This procedure leaves us with 8508 genes, each annotated with

gene start and end. To generate positive training data, we extract

windows of size ½ � 1000‚ þ 1000� around the TSS.

To discriminatively train a classifier one also needs to generate

‘‘negative’’ data. However there is no single natural way of doing

this: since there are further yet unknown TSS hidden in the rest of the

genome, it is dangerous to sample negative points randomly from it.

So we choose to proceed similarly to Bajic et al., (2004) by extract-

ing ‘‘negative’’ points (again, windows of size ½ � 1000‚ þ 1000�)
from the interior of the gene. More precisely, we draw 10 negatives

at random from locations between 100 bp downstream of the TSS

and the end of the gene.6 We finally obtain 8508 positive and

85042 negative examples, of which we will use 50% for training

a TSS classifier and 50% for validating it. The final evaluation is

done on a differently generated test data set (cf. Section 5.2).

4.2 Performance measures

We use two established measures of performance as guidance

for model selection and, later on, for evaluating our success. The

sensitivity (or recall) is defined as the fraction of correctly classified

positive examples among the total number of positive examples, i.e. it

equals the true positive rate TPR ¼ TP/ðTPþ FNÞ. Analogously, the

fraction FPR ¼ FP/ðTN þ FPÞ of negative examples wrongly clas-

sified positive is called the false positive rate. Plotting FPR against

TPR results in the Receiver Operator Characteristic Curve (ROC)

(Metz, 1978; Fawcett, 2003). Plotting the true positive rate against

the positive predictive value (also precision) PPV ¼ TP/ðFPþ TPÞ,
i.e. the fraction of correct positive predictions among all positively

predicted examples, one obtains the Precision Recall Curve (PRC)

(see e.g. [4]). For both graphs, the area under the curve is a useful

single-numberperformancemeasure,whichwerefer toasauROC (for

area under ROC) and auPRC, respectively.

4.3 Model selection

As seen before (Table 1), there are many (in fact, 17) parameters

that need to be set to reasonable values in order for our approach

to work well. We treat this as a model selection problem: each

parameter setting corresponds to a set of assumptions, i.e. a

model, on what distinguishes the surroundings of TSS from

other genomic loci. We want to select the closest approximation

(within the framework defined by the kernel function) to reality,

which can be identified by having the best predictive power. Thus

we train the SVM with different parameter settings and assess the

resulting prediction performance on a separate validation set.

While model selection is often done by trying all points on

a regular grid in the space of parameters, this is computationally

infeasible for more than a few parameters. Therefore, we resort to

iterated independent axis-parallel searches. First, we specify a start

point in parameter space based on prior knowledge and intuition.

Then, in each round candidate points are generated by changing any

single parameter to any value from a pre-defined small set; this

is done for every parameter independently. Finally, the new para-

meter setting is assembled by choosing for each parameter the value

that performed best while leaving the other parameter values

unchanged.

We choose the model that yields the highest auROC on the

validation set. It achieves 93.99% auROC and 78.20% auPRC

Fig. 2. Three sequences AAA, AGA, GAA being added to the trie. The figure

displays the resulting weights at the nodes, where the b’s correspond to a

weighting over the the depth of the trie and the a’s are the sequence weights.

4 http://ncbi.nih.gov/entrez/batchentrez.cgi?db¼Nucleotide
5 We used the options -tileSize¼16 -minScore¼100 -

minMatch¼4 -minIdentity¼98 -t¼dna -q¼rna.

6 If a gene is too short, fewer or even no negative examples are extracted

from that particular gene.
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(99.93% and 99.91% on the training data, respectively). The selec-

ted parameter settings are shown in the second but last column of

Table 1.

4.4 Importance of the kernels

In addition to optimizing the parameter settings of all sub-kernels,

we investigate whether and how much each sub-kernel contributes to

the overall classification. To do so, we remove each sub-kernel and

retrain the remaining model (with all other parameters kept fixed at

the selected values). The accuracies obtained on the validation set

are shown in Table 2. Removing the WDS kernel, which models the

signal at ½ � 70‚ þ 70� around the TSS, decreases the performance

of the classifier most, although it still performs rather well (auROC >
90%). The 1st exon kernel, which models the 4-mer nucleotide fre-

quency in the range ½0‚ þ 900� downstream, appears to be of second

most importance in our kernel ensemble. Removing the linear ker-

nels, which take into account the binding energies and the twisting of

the DNA, has almost no effect on the result.

A different view on the contribution of the individual kernels

can be obtained by retraining single-kernel SVMs. The respective

results are displayed in Table 3. Again the WDS kernel contributes

most, followed by the two spectrum kernels modeling the first

exon and the promoter. The DNA twistedness angle-measure

performs even worse than at random, probably because SVM’s

regularization parameter C was not properly tuned for the single

kernel case.

For illustration we analyze in Figure 3 how the TSS signal

predictions are localized relative to the true transcription start

sites. We consider a window of ±1000 around a true TSS and record

the location of the maximal TSS signal prediction (TSS signal

kernel only). Figure 3 displays a histogram of the recorded positions

on our validation set. We observe an expected strong concentra-

tion near the true TSS. We also observe that the distribution is

skewed – a possible explanation for this is offered by Figure 4:

the predictor might be mislead by the distribution of CpG islands,

which is skewed in a similar manner.

In conclusion it seems to be the WDS kernel that models the

region around the TSS best. The relatively large shift of 32

found by the model selection suggests the existence of motifs loc-

ated around the TSS at highly variable positions. Neither eponine
nor FirstEF model this regions explicitly. Thus, the WDS kernel

seems to be one of the reasons for ARTS’ superior accuracy.

Table 2. Results obtained by removing sub-kernels. The energies kernel is

already turned off by the model selection

Subkernel Area under ROC Area under PRC

w/o TSS signal 90.75% 70.72%

w/o promoter 93.33% 74.94%

w/o 1st exon 92.76% 74.94%

w/o angles 93.99% 78.26%

Complete 93.99% 78.20%

Table 3. Results obtained when only a single specific sub-kernel is used. The

actual TSS signal discriminates strongest, but also the 1st exon carries much

discriminative information

Subkernel Area under ROC Area under PRC

TSS signal 91.42% 69.38%

Promoter 86.55% 55.33%

1st exon 88.54% 64.29%

angles 45.31% 7.86%
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Fig. 3. Localization of ARTS’s TSS signal predictions: Shown is a histogram

over the location with maximal score in a window ±1000 around true TSSs. In

60 % of the cases the predicted TSSs is within [�150,+ 270]bp of the true TSS
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5 RESULTS AND DISCUSSION

We compare the performance of ARTS, our proposed TSS finding

method, to that of McPromoter (Ohler et al., 2002), Eponine (Down

and Hubbard, 2002) and FirstEF (Davuluri et al., 2001), which are

among the best previously reported methods (Bajic et al., 2004).

The evaluation protocol highly affects a TSF comparison; we thus

give a detailed explanation (Section 5.1) of the criteria we use.

5.1 Setup

As POL II binds to a rather vague region, there seems to be no single

true TSS location, but rather regions of roughly [�20, +20] bp

constituting potential TSSs. For that reason one has to use evalu-

ation criteria different from the ones used in standard two-class-

classification. Bajic et al. (2004) suggest to cluster predicted TSS

locations that have at most 1000bp distance to the neighboring

locations. As evaluation criterion for each gene, they score a true

positive if a prediction is located within ±2000 bp of the true TSS

(otherwise, a false negative is counted); false positives and true

negatives are counted from the TSS position +2001 to the end of

the gene. However, each TSF is tuned to obtain a maximum true

positive rate at a different false positive rate. Hence, this criterion

suffers from the fact that it remains unclear how to compare results

when the sensitivity and positive predictive value are both different

(cf. Table 2 in Bajic et al. (2004)).

To alleviate this problem and allow for direct comparison via

Receiver Operator Characteristic and Precision Recall Curves

(ROC and PRC) we propose a different evaluation criterion. We

compute whole genome point-wise predictions, which are then con-

verted into non-overlapping fixed length chunks (e.g. of size 50 or

500). Within each chunk the maximum TSF output is taken. One

can think of this chunking7 process as a ‘‘lens’’, allowing us to look

at the genome at a lower resolution. Obviously, for a chunk size of

1 this is the same as a point-wise TSS prediction. As ‘‘lenses’’ we

use chunk sizes of 50 and 500. A chunk is labeled as +1 if it

falls within the range ± 20 bp of an annotated TSS; chunks down-

stream of this range until the end of the gene are labeled �1.

Note that according to the above scheme some TSS will label

two chunks as positive. This, however, does not constitute a prob-

lem, as it is a rare event if the chunk size is large. Furthermore, it

is not unlikely that a TSF predicts both chunks as positive, as

the maximum of the scores within each chunk is taken. We also

considered an alternative criterion, in which only the chunk in

which the maximum TSFs output is larger is labeled as positive,

whereas the other chunk is removed from the evaluation. As a

downside, this introduces a labeling that is dependent on the

TSF output (i.e. there is no ground truth labeling over all TSFs),

and leads to only small variations (auROC/auPPV increased/

decreased by �3.5% for chunk size 50 and �1% for all TSFs

for chunk size 500). Chunks obtain negative labels if they were

not positively labeled and fall within the range gene start +20 bp to

gene end and are excluded from evaluation otherwise.

This way the labeling of the genome stays the same for all

TSFs. Considering all TSSs in dbTSSv5 we obtain labelings for

chunk size 50 (500) with 28,366 (16,892) positives and 16,593,892

(1,658,483) negatives where TSS fall into two chunks in 15,223

(1,499) cases, covering in total 829,694,600 bp (	12%) of the

human genome.8 In summary, the chunking allows for a controlled

amount of positional deviations in the predictions. Unlike the clus-

tering of predictions, it does not complicate the evaluation or ham-

per the comparability of TSF.

5.2 Test dataset

To allow for a fair comparison of promoter detectors, one needs

to create a proper test set such that no promoter detector has seen

the examples in training. We decide to take all ‘‘new’’ genes from

dbTSSv5 (Yamashita et al., 2006) (which is based on hg17) for

which a representative TSS was identified (i.e., the field ‘‘The

selected representative TSS’’ is not empty). From dbTSSv5 we

remove all genes that already appear in dbTSSv4 according to

the RefSeq NM identifier. To take care of cases in which IDs

changed over time or are not unique, we also remove all genes

from dbTSSv5 for which mRNAs overlap by more than 30%.

This leads to a total of 1,024 TSS to be used in a comparative

evaluation. The comparison is done on this test set using chunk

sizes 50 and 500 as resolutions (cf. Section 5.1), which results in

1,588 (943) positives and 1,087,664 (108,783) negatives. In

816 (67) cases the TSS fall into two chunks.

5.3 TSF Performance evaluation

ROC curves are an established criterion for comparing classifiers.

While they are meaningful on balanced datasets, they lose explan-

atory value when highly skewed datasets are compared. Exactly

Table 4. Evaluation of the Transcriptions Start Finder at a chunk size res-

olution of 50 on dbTSSv5 excluding dbTSSv4 using the area under the

Receiver Operator Characteristic Curve and the area under the Recall

Precision Curve (larger values are better). For details see text

dbTSSv5-dbTSSv4 evaluation on chunk size 50

TSF Area under ROC Area under PRC

Eponine 88.48% 11.79%

McPromoter 92.55% 6.32%

FirstEF 71.29% 6.54%

ARTS 92.77% 26.18%

Table 5. Evaluation of the Transcriptions Start Finder at a chunk size

resolution of 500 on dbTSSv5 excluding dbTSSv4 using the area under

the Receiver Operator Characteristic Curve and the area under the Recall

Precision Curve (larger values are better). For details see text

dbTSSv5-dbTSSv4 evaluation on chunk size 500

TSF Area under ROC Area under PRC

Eponine 91.51% 40.80%

McPromoter 93.59% 24.23%

FirstEF 90.25% 40.89%

ARTS 93.44% 57.19%

7 Not to be confused with the ‘‘chunking’’ (decomposition) algorithms used

for SVM training.

8Here we used the dbTSS field Position(s) of 5’end(s) of NM_(or known

transcript) as the field Selected representative TSS is often empty.
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this is the case for TSS prediction, where we have about 7 billion

loci of which, even for optimistic guesses, less than 3 million bps,

i.e. only 0.05%, belong to true TSS. Let us consider a TSF that

correctly classifies 100% of the true TSS sites (TPR) while wrongly

classifying 1% of the non TSS loci (FPR). The area under the ROC

would score at least 99% suggesting a particularly good classifier.

However if only 0.05% of the negative examples (which in absolute

values is 300 million) achieve a higher score than all of the posi-

tive examples (3 million), the area under the Precision Recall Curve

will be less than 1%. For a reliably useful measure of prediction

accuracy, we thus resort to the auPRC.

As the performance evaluation via ROC/PRC curve needs

(genome-wide) real valued outputs for each TSF, we set the

TSF’s thresholds to the lowest acceptable values. Eponine is run

with the options -threshold 0.5. As McPromoter provides the out-

puts for every tenth base pair we can use the unfiltered raw values

directly. FirstEF does not provide a single score as output, but

probability scores for the promoter, exon, and donor. By default,

a prediction is made if each probability equals or is larger than a

pre-defined threshold (promoter: 0.4, exon: 0.5, donor 0.4), which

yields just a single point in the ROC and PRC space. We therefore

set all thresholds to 0.001 and later use the product of the scores

as a single output.9

Next we chunk the output, as described above in Section 5.1, and

perform evaluation on all genes whose TSS was found to be newly

annotated in dbTSSv5 (cf. Section 5.2). Tables 4 and 5 display the

results for the performance measures area under the ROC and PRC

curve for ARTS, FirstEF, McPromoter, and Eponine. Table 4 shows
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Fig. 5. Performance evaluation of the ARTS, FirstEF, Eponine and McPromoter TSS predictors. Evaluation was done on all genes whose TSS was found to be

newly annotated in dbTSSv5 (i.e. genes whose TSS was not already in dbTSSv4). Receiver Operator Characteristic and Precision Recall Curves on decreased

output resolution were computed (taking the maximum output within non-overlapping chunks of size 50 (left column) and 500 (right column for more details see

text). Windows were marked positive if a known TSS lies in a range of ±20bp and negative otherwise. Please note that the ’bumps’ in the upper right corner in the

FirstEF/Eponine plots for low window sizes are artifacts, caused by the method not giving predictions for every position. However the interesting area is in the left

(lower false positive rate).

9 As a validation we run FirstEF with the default settings and a variety of

other thresholds. The obtained TPR/FPR and TPR/PPV values fit the curves

produced using the single score extremely well (cf. Figure 5 below).
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results for chunk size 50 and Table 5 for chunk size 500, corres-

ponding to different levels of positional accuracy or resolution. In

both cases our proposed TSS finder, ARTS, clearly outperforms the

other methods in terms of both auROC and auPRC. This is also seen

in Figure 5, which supplies detailed information on the true positive

rates (top) and the positive predictive values (bottom) for a range of

relevant true positive rates.

An interesting observation is that, judging by the auROC,

McPromoter constitutes the second best performing TSF, while,

on the other hand, it performs worst in the auPRC evaluation.

An explanation can be found when looking at the ROC and PRC

in Figure 5 where the left column displays ROC/PRC for chunk size

50 and the right for chunk size 500. Analyzing the ROC figures, we

observe that McPromoter outperforms FirstEF and Eponine for

false positive rates starting around 10% – a region contributing

most to the auROC (note that both axes are on log scale). All of

the three aforementioned promoter detectors perform similarly well.

At a reasonable false positive level of 0.1% the TSFs perform as

follows (chunk size 50): ARTS 34.7%, Eponine 17.9%, FirstEF
14.5%, and McPromoter 9.8%. Also note that the ROC curves

for both chunk sizes are very similar, as the ROC curves are inde-

pendent of class ratios between the negative and the positive class.10

On the other hand class ratios affect the PRC quite significantly: For

instance, at a true positive rate of 50%, ARTS achieves a PPV of

23.5% for chunk size 50 and 68.3% for chunk size 500. ARTS’s

ROC and PRC, however, constantly remains well above its

competitors.

6 CONCLUSION

We have developed a novel and accurate transcription start finder,

called ARTS, for the human genome. It is based on Support Vector

Machines that previously were computationally too expensive to

solve this task. It has therefore been an important part of our work to

develop more efficient SVM training and evaluation algorithms

using sophisticated string kernels. In a carefully designed experi-

mental study we compared ARTS to other state-of-the-art transcrip-

tion start finders that are used to annotate TSSs in the human

genome. We show that ARTS by far outperforms all other

methods: it achieves true positive rates that are twice as large as

those of established methods. In the future, we plan to train and

evaluate the ARTS system on other genomes and make the system as

well as its predictions publicly available. It would be interesting to

see how much of ARTS’ higher accuracy can be translated into

improved ab initio gene predictions.
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ABSTRACT

Summary: We propose here a new concept of peptide detectability

which could be an important factor in explaining the relationship

between a protein’s quantity and the peptides identified from it in

a high-throughput proteomics experiment. We define peptide

detectability as the probability of observing a peptide in a standard

sample analyzed by a standard proteomics routine and argue that

it is an intrinsic property of the peptide sequence and neighboring

regions in the parent protein. To test this hypothesis we first used

publicly available data and data from our own synthetic samples in

which quantities of model proteins were controlled. We then applied

machine learning approaches to demonstrate that peptide detectab-

ility can be predicted from its sequence and the neighboring regions

in the parent protein with satisfactory accuracy. The utility of this

approach for protein quantification is demonstrated by peptides with

higher detectability generally being identified at lower concentra-

tionsover thosewith lowerdetectability in thesyntheticproteinmixtures.

These results establish a direct link between protein concentration

and peptide detectability. We show that for each protein there exists

a level of peptide detectability above which peptides are detected

and below which peptides are not detected in an experiment. We

call this level the minimum acceptable detectability for identified

peptides (MDIP) which can be calibrated to predict protein concentra-

tion. Triplicate analysis of a biological sample showed that these MDIP

values are consistent among the three data sets.

Contact: predrag@indiana.edu

1 INTRODUCTION

Rapid and reliable identification of thousands of peptides from

a complex protein mixture sample using liquid chromatography

tandem mass spectrometry (LC/MSMS) and other MS related

technologies has established the foundation of high throughput

proteomics experiments. Quantitative proteomics, i.e. quantifying

proteins in a complex sample, or comparing protein abundances

across different samples, however, often requires additional experi-

mental strategies. Several labeling techniques applied to various

MS instruments including isotopic coded affinity tag (ICAT)

(Gygi et al., 1999), mass-coded abundance tagging (MCAT) (Cag-

ney and Emili, 2002), stable isotopic labeling (Oda et al., 1999) and

global internal standard technology (GIST) (Chakraborty and

Regnier, 2002), were developed to profile the differential protein

expression of two samples. In spite of their success in some

quantitative proteomics experiments, these approaches have their

own limitations. For example, some of them target one or several

specific amino acids (e.g. ICAT targets Cys and MCAT targets

Lys) and thus are limited to those proteins/peptides containing

the amino acid that is modified by the reagent. A more important

limitation of these approaches is that they all require performing

a proper chemical reaction prior to the proteomics analysis. In

addition to the expense of chemical reagents involved in this pro-

cedure, it remains unclear how the efficiency of these reactions and

the protein capturing techniques used in the procedure will affect the

quantification of different proteins (Zhang and Regnier, 2002).

Label-free protein quantification approaches attempt to quantify

relative protein abundances directly from high-throughput pro-

teomics analyses without applying labeling techniques. Different

measures that can be derived from proteomics experiments and

presumably correlated to protein abundance were proposed for

different MS instruments. For instance, the integration of extracted

ion chromatogram (XIC) peaks is thought to be a good measure for

LC/MS experiments (Higgs et al., 2005) and sophisticated data

analysis tools have been proposed to improve its accuracy (Leptos

et al., 2006). In addition, it has been shown that the spectral count,

i.e. the number of times a particular peptide is identified in an

experiment, is correlated with the number of protein copies in

the sample. Spectral counts have been successfully used to quickly

estimate large changes in protein abundance (Pang et al., 2002;

Gao et al., 2003), however the method appears to be significantly

less sensitive when the count is relatively small and/or when the

difference in protein abundance is 1–2 orders of magnitude (Liu

et al., 2004; Bonner and Liu, 2006). In summary, there is still lack

of systematic testing of the accuracy, robustness and applicability of

the label-free protein quantification methods across different MS

platforms.�To whom correspondence should be addressed at School of Informatics,
Indiana University, 901 East 10th Street, Bloomington, IN 47408, USA
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Here we propose a new approach to label-free protein quanti-

fication in high-throughput proteomics experiments based solely on

peptide identification, a method that has already been shown to be

quite reliable, by learning and applying peptide features to increase

the reliability and accuracy of protein quantification. It is commonly

observed that the sequence coverage of identified peptides differs

from one protein to another in the same proteomics experiment. One

may hypothesize that the number of identified peptides or sequence

coverage of a protein is highly correlated to its abundance, because

the more protein copies in the sample, the higher chance a peptide

derived from this protein will be identified (Washburn et al., 2001;

Ishihama et al., 2005; Nesvizhskii and Aebersold, 2005). Although

it is intuitively sound, it is not the case in practice. For example, in

the analysis of an artificial protein mixture sample, even though

twelve proteins were mixed at about the same concentration, the

resulting sequence coverage of proteins based on identified

tryptic peptides were very different, ranging from almost full cov-

erage to no coverage (Purvine et al., 2004). This indicates that the

abundance of a protein (or a tryptic peptide from it) is not the only

dominant factor that determines whether or not a particular peptide

can be observed in a proteomics experiment (Kuster et al., 2005).

Several factors related to the nature of the peptides clearly

explain the fact that some peptides have higher chances of being

missed in the identification than the others even though they are

from the same abundant proteins in the sample. Let us use the

commonly utilized platform, trypsin digestion coupled with

LC/MS analysis, as an example. Peptides with masses smaller

than 200 Da and greater than about 6000 Da produce ions (as

+1, +2, or +3 ions) that are beyond the m/z range analyzed by

the mass spectrometer, typically 200 to 2000 Da, and will not be

observed. Other peptides will be so hydrophobic (water-insoluble)

that they are not soluble in the LC mobile phase. Still others will

be so hydrophilic (water-soluble) that they are not retained by the

LC stationary phase in the sample trapping column. In both cases,

the peptides will not be ionized for analysis by mass spectrometry.

The amino acid composition of some peptides, such as those with

multiple acidic residues, may dictate that they do not ionize effi-

ciently in the mass spectrometer ion source. Alternatively, a peptide

might ionize well but produce a fragmentation pattern in the MS/MS

spectrum that cannot be easily interpreted. Some predicted peptides

might never be generated because they exist in a region of the

protein’s structure that is very stable and thus resistant to proteolysis

by trypsin. Finally, each peptide will typically co-elute from the

chromatography with other peptides against which it must compete

for limited ionizing protons in the electrospray ionization process.

Although these factors are relatively simple and understandable

when considered separately, determining the reason for the absence

of a peptide is often not straightforward. In fact, it is likely that

multiple factors contribute to the overall result—lack of identifica-

tion. We attempt to learn these ‘factors’ that govern the likelihood

of identifying a peptide by a data driven approach, thus subtract

them from the direct correlation between peptide identification

and protein quantification, and finally obtain an accurate measure

of protein abundance using peptide identification.

This paper is organized as follows. First, we introduce the

notion of peptide detectability and discuss its relationship to protein

quantification. Next, we show that peptide detectability can be

predicted solely from the protein’s primary structure with useful

accuracy and analyze the sequence features most important for this

process. Then, we propose a computational method to quantify a

specific protein by using the coverage of identified peptides from a

proteomics experiment as well as the predicted peptide detectabil-

ity. Finally, we demonstrate the robustness of this approach by

replicated proteomic analysis on the same sample.

2 PEPTIDE DETECTABILITY

There are four classes of factors that govern the likelihood of

observing a peptide in a proteomics experiment: (i) the chemical

properties of the peptide (and its parent protein); (ii) the limitation

of the peptide identification protocol, including the pre-processing

of the sample, the MS instruments and software tools used for mass

spectrum analysis; (iii) the abundance of the peptide in the

sample; and (iv) the other peptides present in the sample that com-

pete with this peptide in the identification procedure. We define the

detectability of a peptide as the probability that the peptide will

be observed in a standard sample analyzed by a standard pro-

teomics routine. Specifically, we are investigating data from sam-

ples treated by trypsin digestion followed by reversed-phase liquid

chromatography tandem mass spectrometry in an ion trap and

searched against known protein sequences using Mascot (Perkins

et al., 1999). By standard sample we mean the sample has a fixed

number of different proteins (peptides) and they are mixed at the

same fixed concentration (e.g. 1 pmol/injection). We stress that, by

this definition, peptide detectability is an intrinsic property of a

peptide that is determined by its primary sequence as well as its

location within the context of the entire protein. Peptides with

higher detectabilities have a greater chance of being identified

than those with lower detectabilities. As a result, if a peptide

with low detectability is identified in a sample, it indicates that

this peptide (or the protein this peptide is from) has a high abun-

dance; if a peptide with high detectability is missed (not identified)

in a sample, it indicates that this peptide (or the protein this peptide

is from) has a low abundance. In addition, a situation in which

a peptide with very low detectability is identified while those

with higher detectabilities are not, suggests a false positive identi-

fication. Therefore, the notion of peptide detectability may be used

to establish a direct correlation between peptide identification and

protein identification/quantification.

Given a protein, we anticipate that the detectability of all

tryptic peptides can be predicted from their sequences. It is, how-

ever, important to generate a sample that satisfies the standard

conditions we described above, as the learning set for such a pre-

diction. An artificial sample (sample B in Section 3) mixed from

12 model proteins in the similar concentration (1 pmol/microliter)

was prepared and analyzed using LC/MS (see Section 5 for details)

and the identification results were used as a learning data set for

a predictor of peptide detectability in LC/MS experiments. We

note that a normal (cellular) proteome sample is not completely

suitable for training purposes because proteins in these types of

samples have different and unknown abundances.

3 PREDICTION OF PEPTIDE DETECTABILITY

Data sets. We used four groups of data sets of mass spectra in

this paper. The first group (data set A) was generated as a standard

protein mixture consisting of 12 model proteins and 23 model

peptides mixed at similar concentrations from 73 to 713 nM

for proteins and from 50 to 1800 nM for peptides (Purvine

H.Tang et al.
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et al., 2004). The second group consisted of six data sets (data sets B

and B1–B5), prepared in our labs, each representing a mixture of the

same 13 model protein chains. To mimic a similar peptide com-

petition environment in the LC/MS analysis, we intentionally mixed

similar total amounts of protein in each sample as indicated in

Table 1. The third group is a data set (data set C) generated

from a real rat proteome, as described later. The last group consists

of three data sets (data sets D1–D3) representing three replicate

analyses of the fruit fly head proteome. With the exception of

data set C, all samples were reduced and alkylated with iodoac-

etamide prior to trypsin digestion. The rat samples were digested in

the presence of an acid-labile surfactant. All MS experiments were

carried out on an ion trap mass spectrometer, either a 3-D ion

trap (data sets A, C, and D) or a linear ion trap (data set B). The

low m/z cut-off was between 250 and 400, and the high m/z cut-off

was between 1500 and 2000 for all experiments.

Due to the large differences in protein concentrations in

the whole cell lysates, we included in our analysis and learning

procedures only those proteins whose coverage of identified pep-

tides was 10% or higher. In the case of the synthetic sample by

Purvine et al. (2004), one of the proteins contained only one iden-

tified peptide and was also removed from the subsequent analysis.

The total number of protein chains, the number of tryptic peptides

and the number of identified peptides in each data set are summa-

rized in Table 2.

Machine learning methodology. Given an unseen n-residue

long protein sequence S¼ s1s2� � �sn and a database of peptides

already detected by Mascot with high confidence, we construct a

model that can approximate the probability of detecting any

particular tryptic peptide from S with the same confidence. We

denote this probability as P(score(s[i, j]) � t j S), where s[i, j] ¼
sisi + 1 � � � sj is a residue sequence of a tryptic peptide from S and t
is an appropriately selected Mascot threshold (by default 40 in all

our experiments). In the case when a Pro residue directly follows a

basic residue (Arg or Lys) the peptide was extended until the first

accessible Arg/Lys or until the C-terminus. As previously men-

tioned, in order to reduce the dependency of the detectability on

the concentration of the protein in a cell, only proteins with �10%

sequence coverage of the detected peptides were used in our

analysis. All peptides whose m/z was outside of the instrument

range were eliminated from training and testing as trivial.

Data representation. To enable learning, each input peptide

sequence s[i, j] was represented by a fixed-length vector of real-

or discrete-valued features. Two groups of features were consid-

ered: those that depend on s[i, j] only and those that also depend on

the flanking regions. Thus, an identical peptide observed in the

contexts of different sequence neighborhoods will in general

have different detectability. The following groups of features

were constructed solely from s[i, j]: (i) amino acid compositions

in the peptide; (ii) length of the peptide, i.e. j – i + 1; (iii) ion

mass m(s[i, j]); (iv) N- and C-terminal residues, si and sj; (v)

sequence complexity (Wootton and Federhen, 1996); (vi) physico-

chemical properties averaged over the entire peptide—aromatic

content and hydrophobicity (Kyte and Doolittle, 1982) and (vii)

predictions obtained from various bioinformatics tools and aver-

aged over s[i, j]—namely, protein flexibility predictors (Radivojac

et al., 2004; Vihinen et al., 1994), hydrophobic moment (Eisenberg

et al., 1984), and predictions of intrinsic disorder (Obradovic et al.,
2003; Romero et al., 2001; Vucetic et al., 2003). Since the

detectability of the peptide may also be influenced by the neigh-

boring regions, the composite features from (vii) were averaged

over the regions of ±5, ±10, and ±15 residues flanking both

sides of s[i, j]. In addition, the residue at position sj + 1 was also

accounted for. Individual amino acids were encoded using orthogo-

nal data representation (Qian and Sejnowski, 1988) while the com-

positional features were encoded by real values. Overall, the total

number of features was 175. A binary class label was finally added

Table 1. Composition (fmol per one microliter injection) of six mixtures of 13 model protein chains (12 proteins). This mixture constitutes six data sets: B and

B1–B5. See Section 5 for detailed description of the sample preparation protocols. MW indicates molecular weight

Protein Swiss-Prot ID MW (kDa) B1 B2 B3 B4 B5 B

Serum albumin, bovine P02769 66.4 3000 300 1000 30 100 1000

Myoglobin, horse P68082 17.0 3000 300 1000 30 100 1000

Beta-casein, bovine P02666 23.6 1000 3000 100 300 30 1000

Catalase, bovine P00432 59.8 1000 3000 100 300 30 1000

Lactoferrin, bovine P24627 76.1 300 30 3000 100 1000 1000

Lysozyme, chicken P00698 14.3 300 30 3000 100 1000 1000

Alpha-casein, bovine P02662 23.0 100 1000 30 3000 300 1000

Pyruvate kinase, rabbit P11974 57.9 100 1000 30 3000 300 1000

Ovalbumin, chicken P01012 42.8 30 100 300 1000 3000 1000

DNase I, bovine P00639 29.1 30 100 300 1000 3000 1000

RNase A, bovine P61823 13.7 30 100 300 1000 3000 1000

Hemoglobin alpha, human P69905 15.1 2000 2000 2000 2000 2000 2000

Hemoglobin beta, human P68871 15.9 2000 2000 2000 2000 2000 2000

Table 2. Summary of the four data sets used in this study. Protein chains with

less than 10% sequence coverage were eliminated from all data sets

Data set Protein chains Total tryptic peptides Identified peptides

A 11 346 100

B 13 294 91

C 124 3403 359

D1–D3 200 3722 526

A computational approach toward label-free protein quantification
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to each feature vector; 1 (positive) for a detected peptide and 0

(negative) otherwise.

Model selection. To build predictors we employed ensembles

of 30 two-layer feed-forward neural networks trained using the

resilient backpropagation algorithm (Riedmiller and Braun,

1993). Due to the asymmetric class sizes and small positive

set (detected fragments), each network was trained on a balanced

selection of positive and negative examples. Each individual

training set contained all the examples from the positive class

and the same number of randomly selected negative examples.

The network contained 1 output neuron, while the number of

hidden neurons h was varied from h 2 {1, 2, 4}. All neurons

contained the logistic activation function. Prior to the network train-

ing, unpromising features were eliminated using the t-test filter

in which features whose p-values were above a given threshold

tfs were eliminated. The threshold tfs for feature selection was varied

from tfs 2 {0.01, 0.1, 1}. Note that in the case of tfs ¼ 1, all features

were retained. Finally, correlated features were removed by

employing principal component analysis and retaining 95% of

the variance. A validation set containing 20% of the training

data was used for model selection and overfitting prevention for

each of the training sets in the ensemble. Thus, the final prediction

was averaged over 30 different models and the single estimated

accuracy is reported.

Performance evaluation. The performance of the predictor

was evaluated within each data set (A to D) and also across various

data sets. In the following, we refer to these two types of perfor-

mance evaluation as cross-validation and out-of-sample estimation,

respectively. In the first case we used a per protein 10-fold cross-

validation. The entire set of available proteins D was first split into

10 non-overlapping sets {Di j i ¼ 1� � �10}. In each step i, dataset

D – Di was used for training while the prediction accuracy was

estimated on the test set Di. The final performance estimates were

obtained as averages over all 10 iterations. In the out-of-sample

case, we were interested in training and evaluating predictor per-

formance on two independent experiments. In particular, a predictor

was trained and optimized on one data set (say, data set A) and then

applied and evaluated on all other data sets (say, data sets B, C and

D). All twelve combinations were explored.

We measured sensitivity (sn)—the fraction of detected

peptides correctly predicted, and specificity (sp)—the fraction of

undetected peptides correctly predicted. Given sn and sp, the class-

balanced accuracy can be calculated as accuracy ¼ (sn + sp)/2. In

this setup, a predictor always outputting the same class and a pre-

dictor outputting uniformly at random would have a balanced-

sample accuracy of 50%. In addition to accuracy, we estimated

the area under the ROC curve (AUC) using the trapezoid rule.

Both accuracy and area under the curve are essentially unaffected

by the asymmetry in class sizes.

Feature analysis. To gain insights into sequence and physico-

chemical properties governing peptide detectability, we analyzed

features that best discriminate between identified and unidentified

peptides. These features were selected using the standard two sam-

ple t-test on each feature independently. More precisely, a feature

was split into two 1-D samples according to the class label and the

hypothesis that these samples were generated according to the same

probability distribution was tested. Even though the features may

not come from a Gaussian distribution, the t-test is known to be

robust to violations of this assumption. In Table 3 we present a

ranking according to the increasing p-value of the 15 individually

best features obtained on data set B. Nine of these features were

based on the overall properties of the peptide including its neigh-

borhood, while the top ranked features based solely on the peptide

itself were sequence complexity, its length, the mass/length ratio

and presence of Lys, Val, and Gly. Other data sets had similar

ordering of the features (data not shown). As a general rule, it

appears that peptides within flexible neighborhoods have lower

detectability. On the other hand, presence of hydrophobic amino

acids (Val, Gly) and peptide length were positively correlated

with peptide detectability. Further work is needed toward deeper

understanding of these properties.

Prediction accuracy. Predictor evaluation was performed in

two steps. In the first step, a 10-fold cross-validation was used to

estimate the prediction accuracy on each data set. In the second

Table 3. Fifteen best features estimated using the t-test on data set B. Features of the same type, but averaged over flanking regions of different sizes, are

presented only for the best performing window. Window ±15 indicates that the feature is averaged over s[i � 15, j + 15]

Feature Window p-value Correlation Reference

Vihinen et al. flexibility ±15 3.1 · 10�10 � Vihinen et al. (1994)

Hydrophobic moment ±15 6.0 · 10�10 � Eisenberg et al. (1984)

B-factor prediction ±15 2.9 · 10�9 � Radivojac et al. (2004)

VL2 disorder ±15 1.3 · 10�7 � Vucetic et al. (2003)

Sequence complexity 0 1.8 · 10�7 + Wootton and Federhen (1996)

VL2V disorder ±15 3.5 · 10�6 � Vucetic et al. (2003)

VLXT disorder ±15 4.1 · 10�6 � Romero et al. (2001)

VL2S disorder ±15 4.3 · 10�5 � Vucetic et al. (2003)

VL3 disorder ±15 5.5 · 10�5 � Obradovic et al. (2003)

Composition of Lys 0 3.3 · 10�4 � N/A

Mass/length ratio 0 1.0 · 10�3 � N/A

VL2C disorder ±15 4.1 · 10�3 � Vucetic et al. (2003)

Composition of Val 0 1.6 · 10�2 + N/A

Length 0 1.8 · 10�2 + N/A

Composition of Gly 0 2.1 · 10�2 + N/A
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step, performance evaluation was performed across data sets, as

described above. The summary of systematic evaluations is

shown in Table 4. Generally, these results strongly support our

hypothesis that peptide detectability is influenced by its sequence

and flanking regions from the parent protein. Interestingly, the

data sets can be grouped into synthetic and whole cell, based on

their out-of-sample performance. For example, best out-of-sample

accuracy on data sets A and B was achieved when the training sets

were B and A, respectively. Training on these synthetic data sets

also achieved good performance even on data sets C and D, despite

small training sizes. On the other hand, the best out-of-sample

performance on data set C was achieved by training on data set

D, while the best out-of-sample performance on data set D was

achieved by training on C.

It can be observed from Table 4 that prediction accuracies

vary between 62.7% and 86.8%, with the mean accuracy of

71.0%, while the area under the curve varied between 68.7% and

93.0%, with the mean of 78.3%. Surprisingly, training on one data

set and testing on another did not generally reach similar perfor-

mance when the two sets were switched. On the one hand, consid-

ering the small size of synthetic data sets, such performance could

be explained by normal variation. On the other hand, the differences

between data sets C and D were large and could be partially

explained by the different sample densities in the feature space.

In particular, it appears that data sets D1–D3 cover only part of the

feature space covered by data set C. Thus, while training on C and

testing on D1–D3 could produce good performance results, the

opposite did not hold true. In order to verify this statement we

trained a separate classification model to distinguish solely between

tryptic peptides from data set C and data set D. A prediction accu-

racy of 57.4% indicates that there exists a difference between these

two samples which can partially explain the inconsistency on the

out-of-sample evaluations. In addition to the sequence biases

between these two sets, there are also differences in the experi-

mental protocol that could contribute to the discrepancy in perfor-

mance, e.g. the way in which cysteines were modified in the samples

was different for data set C (no modification) and D (reduced and

alkylated).

4 PEPTIDE DETECTABILITY AND PROTEIN
QUANTIFICATION

In the previous section, we showed that our predictor can approxi-

mate detectability of a peptide from its sequence as well as from its

context in the complete protein with good prediction accuracy. In

this section, we show the results of utilizing the predicted peptide

detectability to measure protein abundances in the sample.

Here we analyze samples B1–B5 using a predictor trained on

sample B in which all chains were similarly abundant. Figure 1a

shows the predicted detectabilities of all tryptic peptides from

each protein from sample B1. Peptides from the same protein are

shown in the same column, sorted by their detectabilities. Proteins

were sorted by their relative abundances (concentrations) in the

mixture. The identified peptides are shown as empty squares,

while the missed peptides are shown as dashes. It is clear that,

for each protein in sample B1, the identified peptides tend to

have higher detectabilities than those not identified. This is consis-

tent to the prediction accuracy results as shown in the last section.

For each protein, we can determine its minimum acceptable
detectability of identified peptides (MDIP), a cutoff value of

detectability which maximizes the sum of true positive and true

negative rates. If all peptides from a protein are detected, the MDIP

of this protein is set to 0, and if none of the peptides from a protein is

detected, the MDIP of this protein is set to 1. It can be observed from

Figure 1a that the MDIP values, shown as black squares, increase as

the protein abundance decreases. This trend is approximated by a

solid regression line. Similar results were obtained in the remaining

samples B2–B5 (data not shown).

We computed the MDIP for each protein in five different

synthetic mixtures (B1–B5) and show them in Figure 1b. Each

column in Figure 1b corresponds to a particular concentration

and represents proteins from different experiments. For example,

in column 2 the grey diamond and circle represent proteins

ALBU_BOVIN and KPYM_RABIT, respectively, both with con-

centration 1000 fmol. However, ALBU_BOVIN was mixed at this

concentration in sample B3, while KPYM_RABIT was mixed at

concentration 1000 fmol in sample B2 (see Table 1). Similarly to the

trend observed in Figure 1a, we can see from Figure 1b a linear

relationship between MDIP and protein concentration. Moreover,

their relationships are generally similar from one protein to the next.

Figure 2 shows the MDIP for hemoglobin A and hemoglobin B,

which were mixed in the same amount in all experiments (Table 1),

across different samples. It shows low variation of MDIP, suggest-

ing it is a robust measure of protein abundance.

In the last experiment, we show that MDIP may be used as a

measure of protein quantification in high throughput proteomics

experiments. Here, we used three replicate data sets (D1–D3) to

demonstrate the robustness of the protein quantification method

we propose. Using the same predictor trained on data set B, we

predicted the detectability of all proteins in D. melanogaster pro-

teome. In each of the three experiments (D1–D3), we computed the

MDIP score for each protein. Figure 3 shows the scatter plots of

pairwise comparisons of MDIP scores between any two experi-

ments.

5 MASS SPECTRUM ACQUISITION AND
ANALYSIS

Data sets B and B1–B5. Mixtures of twelve standard proteins (listed

in Table 1) were paired or triply-grouped such that the combined

molecular weights in each group totaled about 80 to 90 kDa.

Samples of each protein were prepared as stock solutions of 60,

20, and 2 micromolar concentration, or 90, 30, and 3 micromolar for

Table 4. Results of learning peptide detectability using different training and

testing sets. Each field contains balanced sample accuracy (accuracy) [%]

and the area under the ROC curve (AUC) [%] for a particular training/test set

combination

accuracy/AUC Training set

A B C D1–D3

Test set

A 75.8/79.7 74.8/80.3 68.0/72.0 63.0/79.2

B 68.3/77.5 65.5/70.0 62.8/69.6 62.7/68.7

C 66.7/74.6 66.8/73.5 75.0/84.0 68.0/78.1

D1–D3 78.7/86.5 73.1/79.0 79.9/87.6 86.8/93.0
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the triply-grouped samples. Proteins were then mixed in various

ratios such that the same molecular weight equivalent was present at

3000, 1000, 300, 100, and 30 fmol per microliter of final digestion

solution, combined with buffer, reduced with dithiothreitol

(DTT), alkylated with iodoacetamide (IAM), and digested at

37�C for 18 hours. After acidification, samples were loaded onto

a 15 mm by 100 micron i.d. trapping column packed with 5-micron

BioBasic 18 particles with 300 Å pores (Thermo Hypersil-

Keystone, San Jose, CA). Peptides were separated using a

30-minute reversed-phase liquid chromatography gradient from

3% to 40% acetonitrile at 250 nL/min (Eksigent Technologies,

Livermore, CA) on a 12 to 15 cm, 75 micron i.d. capillary column

pulled to a small (�10 micron) tip and packed in-house with

5 micron C-18 coated particles (Betasil C18, Thermo Hypersil-

Keystone, San Jose, CA). As peptides eluted from the column,

they were electrosprayed into the source of a Thermo Electron

(San Jose, CA) LTQ linear ion trap mass spectrometer and analyzed

by mass spectrometry and tandem mass spectrometry. By using

dynamic exclusion, the mass spectrometer was limited to acquiring

only one tandem mass spectrum for a given parent m/z over a 30-

second window.

Data set C. Rat brain regions (amygdala, caudate putamen, fron-

tal cortex, hippocampus, hypothalamus, and nucleus accumbens)

were digested separately with proteomics grade (modified) trypsin

in the presence of an acid-labile surfactant. Tryptic peptides were

separated by nano-flow reversed-phase liquid chromatography and

electrosprayed directly into a ThermoFinnigan (San Jose, CA)

LCQ Deca XP ion-trap mass spectrometer which recorded mass

spectra and data-dependent tandem mass spectra of the peptide

ions. Dynamic exclusion was employed to limit acquisition of

tandem mass spectra for the same parent m/z over a 60-second

window.

Data set D. Drosophila genotype: elav-GAL4 (Stock number:

Bloomington/458) flies were harvested and separated according

to sex at day 1 of adult life. Flies were cultured on standard corn-

meal medium and maintained at 25�C. Flies (n ¼ 250) were anes-

thetized with CO2, flash frozen and decapitated with shaking in

liquid N2. Heads were collected on dry ice and stored at �80�C.

Proteins were extracted using a mortar and pestle in 0.2 M phos-

phate buffer saline plus 8 M urea plus 0.1 mM phenylmethylsul-

fonyl fluoride (pH 7.0) solution. Proteins were centrifuged (15700 g

at 4�C) for 10 minutes and the supernatant was kept for the deter-

mination of protein concentration using Bradford assay. Extracted

proteins were reduced with DTT, alkylated with IAM, and digested

with TPCK-treated trypsin after diluting the urea to 2 M with

(a) (b)

Fig 1. (a) Peptide detectability of proteins in sample B1. Each column displays peptide detectabilities from the same protein. Proteins are sorted according to the

decreasing concentration (from left to right), however in order to avoid overlaps, proteins with the same concentration were separated (e.g. columns 1 and

2 correspond to the amount of 3000 fmol). Peptides identified by Mascot are shown as empty squares; peptides not identified are shown as dashes. Minimum

acceptable detectability of identified peptides (MDIP) is shown as black squares for each protein. (b) MDIP of the proteins from samples B1–B5 as a function

of protein amount. The columns represent protein amounts and not different experiments. For example, in column 1 RNAS1_BOVIN (top detectability)

corresponds to experiment B5, while CATA_BOVIN (second highest detectability) corresponds to experiment B2 (see Table1). Both proteins have the abundance

of 3000 fmol.

Fig 2. Minimum acceptable detectability of identified peptides (MDIP) of

hemoglobin A (HBA_HUMAN, black diamonds) and hemoglobin B

(HBB_HUMAN, white squares) in samples B1–B5. Each column x in the

figure corresponds to a data set Bx.
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0.2 M Tris buffer (pH 8.0). Tryptic peptides were isolated by C-18

solid-phase extraction, vacuumed to dryness, and stored at �80�C
until future use. Peptides from each SCX fraction were separated by

nano-flow reversed-phase liquid chromatography (15 cm · 75 mm

i.d. fused silica capillary column pulled to a fine tip and packed with

5 mm, 100 s amino-terminated C-18 packing material (Michrom

Bioresources, Auburn, CA), eluted with a gradient from 5 to 45%

acetonitrile at 250 nL/min). Eluting peptides were electrosprayed

directly into the source of a Thermo Finnigan LCQ Deca XP ion trap

mass spectrometer and analyzed by MS (m/z 250–1500) and data-

dependent MS/MS on the three most intense ions.

Tandem mass spectra were searched against protein sequences

for the twelve known proteins (data set B), R. norvegicus in the

Swiss-Prot database (data set C) or D. melanogaster (data set D)

using a licensed copy of Mascot (Perkins et al., 1999) for peptide

identification. Searches were performed with fixed modification of

carbamidomethyl cysteine (where appropriate) and variable modi-

fications of protein N-terminal acetylation and methionine oxidation

selected and a maximum of one missed cleavage site. Mascot result

files were parsed using a Protein Results Parser program written

in-house to create training sets including all peptides with Mascot

scores of 40 or higher for doubly-charged precursors. Peptides

with Mascot scores below 40 were treated as negatives in the

training sets.

6 CONCLUSIONS

In this study we propose a new concept of peptide detectability, an

intrinsic property of a peptide in the context of its parent protein.

This detectability can be used to quantify proteins from the peptide

identification results in a standard proteomics experiment. We sug-

gest that peptide detectability can be successfully approximated

from its amino acid sequence and neighboring regions of its parent

protein. To this goal, we carried out a controlled proteomics experi-

ment in which all protein concentrations were similar to create a

‘‘standard’’ data set from which peptide detectability can be

learned. In addition to the standard data set B we used other samples

to train and evaluate neural-network predictors. Despite small and

noisy data sets, these predictors achieved useful cross-validation

and out-of-sample accuracies, ranging from 62% to 87%, while the

areas under the ROC curves ranged from 69% to 93%.

At this stage, our work is a proof-of-concept study of utilizing the

predicted peptide detectability to measure protein abundances in

high-throughput proteomics experiments. Further experiments will

be necessary in order to precisely determine its sensitivity. It should

also be noted that, while demonstrated here as a method to improve

quantitative measurements of proteins in proteomics experiments,

this approach also offers promise to improve protein identification

in cases where only a limited number of peptides are identified.

From the machine learning perspective, we provide only first

indications that peptide detectability is predictable from the

sequence of its parent protein, thus leaving substantial room for

improvement. It is likely that increased data set sizes and variability

of samples will contribute to the overall increase in accuracy of

detectability prediction, thus somewhat compensating for the class-

label noise in the real proteomic samples used in this study. This

noise was in part introduced by our simplifying the original problem

in which all peptides with Mascot scores <40 were labeled as nega-

tive. In addition, we believe that further improvements can be

achieved by controlled proteomics experiments in which the infor-

matics approaches proposed here could be properly calibrated.

The results presented here are based on data from a common pro-

teomics analytical platform; nanoflow reversed-phase liquid chro-

matography coupled by electrospray ionization to tandem mass

spectrometry in an ion trap mass spectrometer. Several other ana-

lytical methods, such as 2-D liquid chromatography, capillary elec-

trophoresis, MALDI ionization, electron-capture/electron-transfer

dissociation, and photoinduced dissociation, as well as alternative

proteases are also commonly used in the analysis of complex pro-

teomics samples. Measurements of peptide detectability for analyti-

cal platforms based on combinations of these techniques allows for

further training, and the potential to determine the most sensitive

analytical platform to be used for detection of a specific protein.
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ABSTRACT

Motivation: Gene expression variation can often be linked to certain

chromosomal regions and are tightly associated with phenotypic

variation such as disease conditions. Inferring the causal genes for

the expression variation is of great importance but rather challenging

as the linked region generally contains multiple genes. Even when

a single candidate gene is proposed, the underlying biological mech-

anism by which the regulation is enforced remains unknown. Novel

approaches are needed to both infer the causal genes and generate

hypothesis on the underlying regulatory mechanisms.

Results: We propose a new approach which aims at achieving the

aboveobjectivesby integratinggenotype information,geneexpression,

protein-protein interaction, protein phosphorylation, and transcription

factor (TF)–DNA binding information. A network based stochastic

algorithm is designed to infer the causal genes and identify the under-

lying regulatory pathways. We first quantitatively verified our method

by a test using data generated by yeast knock-out experiments. Over

40% of inferred causal genes are correct, which is significantly better

than 10% by random guess. We then applied our method to a recent

genome-wide expression variation study in yeast. We show that our

method can correctly identify the causal genes and effectively output

experimentally verified pathways. New potential gene regulatory path-

ways are generated and presented as a global network.

Availability: Source code is available upon request.

Contacts: fsun@usc.edu

1 INTRODUCTION

Gene expression variation has been observed in human, yeast and

other organisms (Brem, et al., 2002; Morley, et al., 2004; Turk,

et al., 2004). By linkage analysis, the variation of gene expression

can often be explained by the variation of DNA sequences on

chromosomes. Great interests have been arisen in finding the causal

genes and the mechanisms which account for the expression vari-

ation (Friedman, et al., 2000; Brem, et al., 2002; Yvert, et al., 2003;

Bing and Hoeschele, 2005; Li, et al., 2005; Schadt, et al., 2005;

Li, et al., 2006).

In these studies, the expression level is treated as a quantitative

trait and the genetic loci linked to the trait are usually termed as

eQTL (expression quantitative trait loci). Determining the eQTL,

however, doesn’t answer which genes are the causal genes for the

expression variation since tens or even more genes can be contained

in the eQTL. Although further fine mapping will reduce the

confidence interval of the eQTL, it is both time consuming and

laborious. Other factors, such as high linkage disequilibrium

could make fine mapping less powerful. Even when the number

of candidate genes is reduced to be manageable, the underlying

mechanism by which the regulation is enforced remains unknown.

Inferring the casual genes is challenging but very important in

disease studies (Schadt, et al., 2005). Simple method based on

expression correlation was proposed but without solid verification

and large amount of potentially useful information were ignored

(Bing and Hoeschele, 2005). Gene expression regulation is tradi-

tionally divided into cis-regulation and trans-regulation. If the

eQTL are close to the target gene itself (cis-regulation), then the

DNA variation is most likely happened in the transcription regu-

latory regions of the gene, such as the promoter, enhancer, etc. In

trans-regulation, eQTL are far away from the target gene. In this

case, the causal genes can be transcription factors (TFs) which

regulates the target gene or genes which affect the activity of

the TFs. We are particularly interested in trans-regulation as cis-
regulation is relatively trivial to identify. For eQTL containing a

TF which bind to the promoter region of the target gene, the TF is

a good candidate for the causal gene. However, in many cases,

the eQTL do not contain any TFs (Brem, et al., 2002; Yvert,

et al., 2003). An alternative factor therefore must exist and need

to be identified. One possible mechanism by which this alternative

factor regulates the target gene expression is by regulating the

TFs. Through protein-protein interaction and other mechanisms

such as phosphorylation, signal is conveyed from this alternative

factor to the TF and eventually alters the expression of the target

gene. Such (signaling) pathways have been widely found in multiple

biological processes and are considered to be one of the most

fundamental gene expression regulatory mechanisms in biological

systems (Ogawa, et al., 2000; Yoshimoto, et al., 2002; Dodge-

Kafka, et al., 2005).

‘‘Pathway’’ is frequently referred in recent publications but with

rather different meanings (Steffen, et al., 2002; Tian, et al., 2005).

We define a pathway as a set of both directionally and un-

directionally connected proteins which contains at least one TF

at one end. (We don’t distinguish gene and its protein product

and they are used interchangeably throughout the manuscript.)

Both the proteins involved and the topologies are considered as

pathway components. Slightly different from (Steffen, et al.,
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2002), we don’t require the pathway to be strictly linear (i.e.,

we allow network structures) to make more realistic modeling.

A conceptual pathway is shown in Figure 1.

Although related to the research on ‘‘transcription regulatory

network’’ which aims at inferring the regulatory relationship

among transcription factors (Friedman, et al., 2000; Basso, et al.,
2005; Rogers and Girolami, 2005; Xing and van der Laan, 2005),

our work is quite different. On the surface, the difference

appears as we consider the whole gene network (protein-protein

interaction, protein phosphorylation, and TF-DNA binding) instead

of only TFs. Down to the detail, our interests are not in identifying

neighbor-to-neighbor regulations. Instead, we are identifying

pathways linking causal genes and target genes to explain the regu-

latory relationships between them. In Figure 1, a link between gene A

and gene B doesn’t indicate that A regulates B’s expression, which is

usually the case for transcription regulatory network inference. Here,

it stands for that protein A affects the expression of the target gene by

interacting with protein B. Despite of these differences between the

pathway and ‘‘transcription regulatory network’’, connections do exist

as the transcription regulation could be part of the pathway (or even

the full pathway in some cases). We’ll give more details of the dif-

ferences and connections between our method and previous

approaches in the Methods section.

Several approaches have been proposed to systematically identify

function modules, pathways and motifs in the biological system

(Ideker, et al., 2002; Yeger-Lotem, et al., 2004; Qi, et al., 2005;

Pan, et al., 2006). Algorithms are designed specifically for pathway

identification (Steffen, et al., 2002; Scott, et al., 2005). Although

these algorithms can successfully find known pathways, huge

numbers of other ‘‘pathways’’ are also generated. The high false

positive rate significantly limits its application to solving real

biological problems. Another approach proposed by Yeang et al.
is very successful when it is applied to a manually selected sub-

network. However, as the algorithm requires large amount of

perturbation data, it’s much less competent when applied to

genome-wide analysis (Yeang, et al., 2004; Yeang, et al., 2005).

Rather than finding all the ‘‘possible’’ pathways, we try to locate

the functioning ones which can be revealed by analyzing experi-

mental data.

We first designed a test to verify our method quantitatively.

Rosetta compendium data set (Hughes, et al., 2000) was used for

this purpose which interrogated expression profiles of 276 deletion

mutants. We show that over 40% of the inferred causal genes are

correct, which is more than 4 times better compared with 10% by

random guess. We then applied our method to a recent genome wide

expression variation study in yeast (Brem, et al., 2005). We demon-

strate that experimentally verified causal genes and pathways can be

correctly inferred and we also propose new potential pathways.

2 METHODS

An overview of our multi-step procedure is shown in Figure 2. For a target

gene, the procedure identifies the eQTL by linkage analysis using expression

profile and genotype information. This generates a list of genes which con-

tains the real causal gene for the target gene expression variation. Gene

network is compiled by integrating protein-protein physical interactions,

protein phosphorylations and TF-DNA binding information. As the kernel

of the whole process, we designed a network based stochastic inference

algorithm to identify the most likely causal genes in the eQTL and the

underlying pathway.

2.1 Basic assumptions

Given the target gene, the list of candidate causal genes, gene expression

profiles and the network, we infer the most likely causal genes and the

underlying pathways. Two assumptions are made. First, since our focus

is on trans-regulation, we assume that the causal gene regulates the target

gene by affecting the activities of the TF(s) for the target gene through a

pathway. This assumption holds for most known cellular pathways.

Although other regulatory mechanisms do exist, we don’t explicitly consider

them in this study. Second, we assume that the activities of genes on the

pathway correlate with target gene’s expression. The idea is illustrated by

Figure 1(b). When a gene on the pathway is inactivated (e.g., knocked out),

the expression of the target gene is either down-regulated if the inactivated

gene has a positive effect or up-regulated otherwise. Since the activity

of gene product is hard to measure directly, we use gene’s expression

level to approximate it. Clearly, this approximation could be violated as

protein activity is also regulated by post-translational regulations such as

phosphorylation. However, such approximation is still widely in use and

certain successes have been reported (Segal, et al., 2003). We will revisit

this issue in the discussion section. Zien et al. found that genes on the same

pathway had higher ‘‘synchrony’’ in their expressions and this supports our

second assumption (Zien, et al., 2000).

2.2 Searching the network

Based on the assumptions described above, the problem can be rephrased as

to find the pathway which starts from the causal gene and ends at the TFs

regulating the target gene so that the expression of the genes on the pathway

are correlated with the target gene. We designed a network based stochastic

backward searching algorithm to solve the problem. The stochastic model

is chosen over deterministic ones mainly due to two reasons. First, the bio-

logical system itself can be modeled as a stochastic network with various

interactions occurring with different probabilities. It’s natural to design an

algorithm which acknowledges the uncertainties in the system. Second,

deterministic algorithms require the pathway length to be determined in

advance and the length cannot be too large due to high computation com-

plexity. They also require the pathway be strictly linear (Steffen, et al., 2002;

Scott, et al., 2005). All these issues can be avoided with a stochastic algorithm.

The basic idea of our algorithm can be described as follows. We start from

a TF and initiate a ‘‘walk’’ by following edges in the network. Decisions on

what edges to take depend on gene expression profile in a non-deterministic

fashion. Genes in eQTL will be visited at different frequencies. The genes

with higher frequencies are more likely to be the causal genes and the

most frequently traveled paths are regarded as the underlying regulatory

pathways. We formalize the algorithm as follows.

For a target gene gt, the set of transcription factors binding to it are

denoted as Tgt
¼ (t1, . . . , tn), the candidate causal genes in the eQTL regions

are denoted as Cgt
¼ (gc1

, . . . , gcm
). The gene network is represented as a

graph G in which the protein-protein interactions are represented as undir-

ected edges while protein phosphorylation and TF-DNA bindings are rep-

resented as directed edges. For each tk 2 Tgt
, we start a stochastic search

procedure as shown in Figure 3.

We denote all the neighbors of a particular gene in the gene network as

Nei(·), so that b 2 Nei(a) , eba 2 G, where eba represents a directed edge

from b to a. Starting from tk, we estimate for each gi 2 Nei(tk) the likelihood

that gi is the cause for the expression variation of the target gene gt. Based

on our second assumption, we estimate such causal effect by the absolute

value of the Pearson correlation coefficient of the expressions between gi

and gt, denoted as jrðgi‚ gtÞj. Intuitively, a gene showing strong expression

correlation with the target gene has a higher probability of being involved in

the pathway. However, as not all the genes on the pathway necessarily

correlate with the target gene due to other post-translational regulation

mechanisms, we give non-correlated genes a residual chance for being on

the regulatory pathway by defining the casual effect of gi with respect to gt as

jðgi‚gtÞ ¼ max fjrðgi‚gtÞj‚«g, where 0 < « < 1 is the residual causal effect

a non-correlated gene could have upon gt.
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We denote a path as Pðg0‚g1‚ . . .‚gzÞ, where g0‚g1‚ . . .‚gz are nodes in the

graph and cycles are not allowed in the path, i.e., gi 6¼ gj for any gi‚gj on the

path. To ensure paths are non-cyclic, a set U is introduced which contains

only unvisited genes. We stochastically select gi 2 NeiðtkÞ \ U and transit

from tk to gi. The transition probability is determined by equation (1). Based

on this transition probability, unvisited neighbor genes with greater causal

effect will have higher chances of being visited next. The chosen gene will

be removed from U thereafter.

Prfgi j tk‚gi 2 NeiðtkÞ \ Ug ¼ jðgi‚gtÞX
gs2NeiðtkÞ\U

jðgs‚gtÞ:
: ð1Þ

After we arrive at gi, the same procedure is repeated. We select

g0i 2 NeiðgiÞ \ U based on similar transition probability as described by

equation (2).

Prfg0i j gi‚g0i 2 NeiðgiÞ \ Ug ¼ jðg0i‚gtÞX
gs2NeiðgiÞ\U

jðgs‚gtÞ:
: ð2Þ

By noticing that we always calculate the causal effect of a gene gi with

respect to gt, it’s clear that our procedure is different from most transcrip-

tion regulatory network inference algorithm. In our procedure, the objective

is not to identify the relationship between connected genes (i.e., gi and g0i),
but to find connected genes which are likely to be the cause for the expres-

sion variation of the target gene gt.

The above procedure stops when it reaches any gene gi 2 Cgt
or when it

enters a dead end (i.e., NeiðgiÞ \ U ¼ Ø). We also set an upper bound for the

total transitions allowed to ensure a stop. The upper bound is chosen to be

unrealistically high for any known pathway and is different from the path length

in those deterministic pathway finding algorithms. Suppose we stop at gc 2 Cgt

after one round of the procedure, the path can be written as Pðtk‚ . . .‚gi‚ . . .‚gcÞ.
The causal effect of gc on gt through Pðtk‚ . . .‚gi‚ . . .‚gcÞ can be calculated by

(3). Here, we assume that the causal effect of each node on the pathway is

independent with each other. This assumption may not hold in reality. However,

considering interactions among genes on the pathway will make the problem too

complex and we do not consider them in this study.

pðgc‚ tk‚Pðtk‚ . . .‚gcÞÞ ¼ jðtk‚gtÞ · . . . · jðgc‚gtÞ: ð3Þ

As equation (3) measures the causal effect of gc on gt with respect to a

specific potential pathway, the general causal effect of gc considering the

whole gene network can be estimated by equation (4), where P
gc
tk denotes all

the paths starting from tk and ending at gc.

pðgc‚ tkÞ ¼
X
P

gc
tk

pðgc‚ tk‚Pðtk‚ . . .‚gi‚ . . .‚gcÞÞ: ð4Þ

To calculate pðgc‚ tkÞ, each gene gi 2 G is associated with a counter

Vtk ðgiÞ to record the times it’s been visited. We iterate the whole procedure

N times and N is set to be large enough so that (5) can be approximated,

where Vtk ðgcÞ denotes the visit times for gc 2 Cgt
.

lim
N!þ1

Vtk ðgcÞ/N ¼ pðgc‚ tkÞ: ð5Þ

If the target gene has more than one TF, we assign each TF a weight based

on their causal effect on the target gene and linearly combine them as shown

by (6). The probability that gc is the casual gene in the eQTL considering all

the TFs for the target gene gt is estimated by (7).

VTðgcÞ ¼
Pm

k¼1jðtk‚gtÞVtk ðgcÞPm
k¼1 jðtk‚gtÞ

: ð6Þ

dPrðgcÞPrðgcÞ ¼
VTðgcÞX

gs2CðgtÞ
VTðgsÞ

¼
P

kpðgc‚ tc
kÞX

s:gs2CðgtÞ

P
k pðgs‚ tskÞ:

ð7Þ

Since we assume there’s only one causal gene in each eQTL, the gene with

the largest posterior probability is reported as the cause as shown by (8).

g�c ¼ arg max
gs2Cgt

dPrðgsÞPrðgsÞ: ð8Þ

To identify the underlying pathway, we start from g�c and trace backwards.

We find from Neiðg�cÞ the gene with the largest visit count and move to that

gene (not stochastically). We repeat until we arrive at tk . By this way, we find

the most probable pathway which links g�c and tk . The linear pathway gen-

erated by this approach is mainly for simplicity consideration. As indicated

by (4), there could be multiple paths connecting g�c and tk , and all of them

contribute to the causal effect of g�c .

Fig. 1. A conceptual gene regulatory pathway. (a). Genes involved in the

pathway are shown as circles (A,B,C,D,T1 and T2). B represents a kinase

which activates downstream protein C by phosphorylation. T1 and T2 are

transcription factors and T1 positively regulates T2’s expression. T2 binds to

the promoter region of the target gene and activates its expression. Edges

without arrow indicate protein-protein interactions and edges with arrow

imply the transcriptional regulations or phosphorylations. (b) Gene B on

the pathway is inactivated. The expression of the target gene is down-

regulated as consequence. We don’t require pathway be strictly linear so that

indispensable components of the pathway (e.g., D) can be included.

Fig. 2. Overview of our multi-step procedure for causal gene identification

and gene regulatory pathway inference.
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2.3 Select subset of conditions

It’s well known that TFs only actively regulate their target genes under

specific conditions (Ihmels, et al., 2002; Harbison, et al., 2004; Segal,

et al., 2004). It will therefore be beneficial to infer the pathway under

these conditions to exclude the noise introduced by non-relevant conditions.

To achieve this goal, we implemented two different methods.

First, we follow the signature algorithm developed by Ihmels et al. to

select appropriate subset of conditions (Ihmels, et al., 2002). Suppose the

expression levels of gene gt are measured under M conditions in the original

data set, denoted as O1
gt

,. . .‚OM
gt

. A condition m is selected if it satisfies

equation (9), where Ogt
is the average expression level and sgt

is the standard

deviation. We empirically choose t equal to 1 to ensure both sufficient

variation and enough number of included conditions.

jOm
gt
� Ogt

j
sgt

> t: ð9Þ

The subset of conditions is then used to calculate the causal effect of gi on

gt. Conditional on the selected conditions, we search the gene network to find

the pathways as described in 2.2.

As our second method, we designed a sampling scheme. Suppose l (l < M)

conditions are sampled without replacement and denoted as su. We re-

calculate the correlation coefficient using conditions covered by su. su is

considered a valid choice of subset if jsu
ðgt‚ tkÞ > t0, where t0 is a pre-

determined threshold for correlation. To make the selection robust and

not sensitive to one sample, we repeat the sampling multiple times until

we obtain r valid subsets of conditions. The r subsets of conditions (r · l

matrix) is then used to calculate the expected causal effect of gi on gt using

equation (10) and all the previous equations concerning jðgi‚gtÞ need to be

updated accordingly.

js ðgi‚ tkÞ ¼
1

r

Xr

u¼1

jsu
ðgi‚ tkÞ: ð10Þ

It’s obvious that the first method is computationally efficient compared to

the second one. However, this method can be heavily affected by outliers and

conditions cannot be ‘‘tuned’’ for specific TFs. Although the second method

is much more time consuming and could fail either because such conditions

do not exist or due to extremely large sample space, it’s generally more

robust and will be much less affected by outliers.

2.4 Significance measurement

It’s essential to test the reliability of the inferences by the above approaches.

Erroneous inference could be caused purely by false positive interactions in

the gene network and the noisy expression data. Therefore, for g�c which

satisfies (8), the significance of the findings need to be evaluated. As the main

source of error comes from the network topology and gene expression, we

permute the gene network while preserve the degree of each node similarly

as (Milo, et al., 2002). Since the network topology is randomized, the

pathway-wise expressions are permutated accordingly too. For each per-

mutation, we perform the same procedure and obtain one V0Tðg�cÞ. By repeat-

ing the permutation many times and ordering all the V0Tðg�cÞ, we can calculate

an empirical P-value for the VTðg�cÞ. P-values less than 0.05 are considered as

significant and those g�c s will be reported as valid findings.

3 RESULTS

3.1 Data collection

Rosetta compendium data (Hughes, et al., 2000) is used to verify

our method. 276 genes were deleted and each deletion mutant’s

expression profile was measured using microarrays. To build the

gene network, the protein-protein interaction data was obtained

from a previous compiled set by (Steffen, et al., 2002) combined

with protein physical interactions deposited in MIPS (Munich

Information center for Protein Sequences). TF-DNA binding data

was obtained from (Harbison, et al., 2004) where 203 TFs were

tested for their binding profiles in yeast. We chose P<0.001 as the

threshold for positive binding as used by the original authors. The

genome wide phosphorylation information was obtained from

(Ptacek, et al., 2005) which identified over 4,000 phosphorylation

events. After compiling all three types of interactions together, the

gene network covered 4,744 genes and contained more than 10,500

edges. Our main experiment is based on a recent genome-wide study

on expression variation by crossing two yeast strains (Brem, et al.,
2002; Yvert, et al., 2003; Brem, et al., 2005). 112 segregants were

individually genotyped at 2,956 marker positions and 6,228 gene

expressions were measured for each segregant. Since both the geno-

type and expression of each gene are known, these data are excellent

for this study.

3.2 Testing with knock-out data

In order to quantitatively measure the performance of our method,

we designed a test using Rosetta compendium knock-out data. The

main reason to use the knock-out data set is because we know what

gene was deleted. As the true cause for the gene expression variation

is known, we are able to test the accuracy of the inferences.

Although the original experiments are not related to eQTL mapping,

we can easily define regions around the deleted genes so the prob-

lem will be the same as what we are trying to solve. The major steps

of the test are described as follows.

(1) For a deletion mutation experiment, we identify the genes

whose expression are significantly perturbed. We further

identify the common TFs for these significantly perturbed

genes, only genes regulated by the common TFs are considered

as valid target genes and are used for the later inferences.

(2) We simulate an eQTL region around the deleted gene to let the

pretended eQTL contain 10 genes. These 10 genes (the deleted

gene and the surrounding 9 genes) position consecutively on

Fig. 3. The flow diagram of the stochastic searching algorithm.
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the chromosome. The position of the deleted gene is randomly

set to be from 1 to 10.

(3) We pretend that the real causal gene (in this case, the deleted

gene) is unknown and try to identify it from the ten genes.

(4) The overall prediction accuracy is calculated. As random guess

will give a 10% correct identifications in expectation, higher

accuracy is expected given that the method actually works.

For our method to work, it’s essential to ensure that the

‘‘differentially’’ expressed genes are really caused by deletion

mutation instead of by noise. Obviously, a target gene whose

expression is perturbed by random events won’t lead us to any

meaningful findings regardless of the method. Hughes et al.
designed a gene-specific error model to compensate for the

differences in the variation of transcript (Hughes, et al., 2000).

Based on this error model, more than half of the deletion mutation

experiments didn’t show significant changes in expression profiles

and are excluded from our test. 118 knock out experiments contain

at least 2 genes with 3 fold changes with P-value less than 0.01.

The number of perturbed genes varieed significantly among these

experiments (from 2 to several hundred). We further required that

the target genes should share common TFs. By only considering

genes that could be clustered by common TFs, we are more con-

fident in believing that their expression variation is caused by the

knockout instead of by chance.

We developed a simple voting scheme to consider multiple per-

turbed genes for each knockout experiment. The genes obtaining the

most votes are reported as causal genes. Finally, 17/36 valid pre-

dictions are correct (exactly match the deleted gene) using the first

condition selection method and 16/35 are correct using the second

condition sampling method. The accuracy rates (47% and 46%) are

more than 4 times better than what would be expected by random

guess. When the eQTL region is set to contain 20 genes, 15 out of

48 predictions are correct by the first method and 15 out of 44 are

correct using the second method. The accuracy rates (31% and 34%)

are more than six times better compared with random guess (5%).

The correct prediction only decreases by two/one when the number

of genes in eQTL doubles. This indicates that our method is quite

robust and relatively insensitive to the number of genes in eQTL

(details and list of genes are provided in the supporting materials).

The good performance suggests that our approach can indeed

extract useful information from multiple data sources and generate

valid hypothesis. We then applied our method to a recent genome-

wide study on expression variation in yeast where the causal genes

are generally not known (Brem, et al., 2005).

3.3 eQTL mapping

We performed 6,228 · 2,956 Wilcoxon ranksum tests to examine

the association between each gene’s expression level and each

marker as in (Brem, et al., 2002; Bing and Hoeschele, 2005).

We only considered genes whose expression variation could

be significantly linked to exactly one locus on yeast genome

(P-value<10-5) and the false discovery rate (FDR) was estimated

to be 0.005 using methods from (Storey and Tibshirani, 2003). This

gave us a list of 1,226 genes. Based on these genes, we performed

bootstrap to infer the 95% confidence interval similarly as (Bing

and Hoeschele, 2005). A small fraction of genes failed to generate

valid confidence intervals and were excluded for further considera-

tion. Finally, we obtained a list of 1,085 genes. The length of the

confidence intervals ranges from 781bps to 141Kbps, the mean

and the standard deviation are 35Kbps and 28Kbps, respectively.

The number of genes within each interval ranges from 1 to 62, and

the mean and standard deviation are 16.8 and 15.3, respectively.

3.4 Causal gene inference

For the genes in the above list, we applied our algorithm to infer

the causal gene in each eQTL. To identify the TF that really

involves in the pathway, we require that TF displays a strong cor-

relation with the target gene based on our sub-condition sampling

scheme. Clearly, this criterion may be too strong for some TFs

and still not sufficient for others. However, the assumption that

stronger correlation implies higher probability of regulation

could be valid in general. For the 1,085 genes with valid eQTL

regions, 585 genes have in total 1,403 highly correlated TFs

(jrðgi‚ tkÞj>0.5). For these 585 genes, we inferred the causal

genes and measured the significance for them. As described in

2.3, two methods were used to select appropriate subset of condi-

tions. These two methods generated quite similar outputs and we

only present the results generated by the second method. 239

inferences have P-value <0.05 and they are reported in supplement-

ary files. The underlying pathways were inferred and are shown in

Figure 4, drawn by Cytoscape (Shannon, et al., 2003).

Here, we describe two examples which are well supported by

experimental data and previous studies. As the first example, the

target gene is PRP39, a component of RNA splicing factor U1 small

nuclear ribonucleoprotein polypeptide (Lockhart and Rymond,

1994). There’s no report on its expression regulatory mechanism

by SGD (Saccharomyces Genome Database) (Cherry, et al., 1997).

Based on the linkage analysis, variation of PRP39’s expression can

be significantly linked to a locus on chromosome VIII (P-value is

1e-7.3). The 95% confidence interval contains three genes (NEM1,

GPA1 and MRS11). From chromatin (Ch) immunoprecipitation

(IP) experiments, two TFs (DIG1 and STE12) bind to the promoter

Fig. 4. The global view of the inferred regulatory network. List of all the

pathways is provided in the supporting materials.
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region of PRP39 gene. For each TF, we first sample a subset of

conditions so the TF correlates with PRP39 in their expressions.

Conditional on these conditions (Table 1), we stochastically search

paths which connect TF with the candidate causal genes so that

the nodes on the path show significant correlation with PRP39.

Two TFs report the same gene (GPA1) as the causal gene as it

has the highest probability (0.975) among the three genes with P-

value <0.05 by permutation test. The pathways identified by each

TF are also consistent. There are quite a few genes (e.g., FAR1,

FUS1, etc.) having the same inferred causal gene and pathway.

Many of them are known to be involved in pheromone signaling

pathway (Wang and Dohlman, 2004). By comparing the pathway

we found (Figure 5) with the known pheromone pathway, large

fraction of proteins are matched and arranged in a correct order.

To further verify that GPA1 was indeed the cause for the down-

stream gene expression variation, Yvert et al. performed experiment

by making a point mutation on GPA1 in one of the yeast strain

and observed that those downstream genes displayed altered

expression levels as expected (Yvert, et al., 2003). Here, we

show our method can correctly infer the right causal gene and

derive the underlying pathway without any prior knowledge of

the corresponding pathway.

In Table 1, we list the primary nodes on the above pathway

and their expression correlations with the target gene. We show

both the correlations calculated without selecting a subset of

conditions and correlations calculated with subset conditions

sampled. The conditions are sampled based on different thresholds

and it’s clear that as the thresholds increase, the correlations

increase accordingly in a pathway-wise manner. This supports

the validity of the pathway from a different aspect.

We take G1/S phase transition pathway as our second example. In

this example, we identified a group of genes which were reported

to be regulated by CDC28. CDC28 is a catalytic subunit of the

main cell cycle cyclin-dependent kinase (CDK). The pathways

form a complex network and are shown in Figure 6. We list the

Gene Ontology annotations of the proteins involved in the pathways

in Table 2. It’s clear that most genes we inferred are indeed related

to the mitotic cell cycle and most interactions and regulations are

supported by previous studies.

Deriving complicated networks such as the one shown in Figure 6

could take years by biologists using traditional biology experi-

mental methods. Here, we show that it can be easily obtained by

computational methods by integrating multiple sources of high-

throughput data. Although computational approach cannot replace

the traditional experiments, they do generate valid and testable

hypothesis which can help biologists to be more productive.

4 DISCUSSION

We developed a novel approach to estimate the probability for genes

in the eQTL of being the causal gene for the target gene expression

variation. We show that the causal gene inference problem can be

combined with pathway finding problem to achieve a unified solu-

tion. Traditionally, genetic studies can only locate a region on

Fig. 6. Inferred pathways related to G1/S phase transition. The arrow only

represents the direction of the causal relationship and doesn’t stand for phos-

phorylation or TF-DNA interaction.

Fig. 5. An example of the inferred causal gene and the pathway. Edges

without arrows are protein-protein interactions. Edges with arrows represent

phosphorylation or TF-DNA binding. The causal gene is correctly inferred in

this example and proteins involved in the pathway are highlighted in colors.

Only nodes been visited more frequently than GPA1 and have at least two

interactions with primary pathway nodes are shown.

Table 1. Pathway-wise increase of the correlation when appropriate subset of

conditions is selected

Genes on

the path

Target Gene (PRP39)

No subcondition

sampling

�Condition

on >0.4

�Condition

on >0.5

�Condition

on >0.6

DIG1 0.27 0.45 0.52 0.62

FUS3 0.50 0.55 0.55 0.60

FAR1 0.49 0.60 0.62 0.64

STE4 0.37 0.52 0.53 0.53

GPA1 0.53 0.61 0.61 0.62

�When a specific condition is set, we require the TF, in this case DIG1 will have a

correlation coefficient with the target gene (PRP39) at least or above the threshold

under the selected conditions.
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chromosome which likely contains the causal gene. Our approach

digs deep into the biological system to explore the underlying

mechanism. We model biological system as a stochastic network

of interactions and regulations, the causal effect is explained by the

pathways which link the genes in the eQTL and the TFs which

potentially regulate the target genes. The eQTL information plays

an important role in significantly reducing the number of possible

pathways need be considered while pathway identification ulti-

mately helps to answer which gene is the causal gene.

Our methods rely on the network built on protein-protein inter-

action, TF-DNA binding, and protein phosphorylation. The advant-

age of this is that the generated pathways can have direct

experimental supports. However, none of the above data is either

complete or completely accurate (von Mering, et al., 2002; Deng,

et al., 2003). Therefore, important pathways may be missed due to

incompleteness of the data and causal genes may be erroneously

inferred if it’s derived from the inaccurate part of the data. Although

we expect to see more abundant and accurate data available in the

future, a robust method minimally affected by the data imperfect-

ness is always desired. Compared with deterministic approaches,

our method has an inherent stochastic component which makes it

resistant to some errors. We intend to further test the robustness of

our methods in future work.

As described in the method section, we assume that genes on the

pathway will have higher expression correlation with the target

genes. This is clearly true for the pheromone pathway which we

presented as an example. Moreover, our quantitative test on yeast

knock-out experiments indicates this assumption holds for many

cases. However, as the biological system is very sophisticated, we

don’t expect such simple assumption holds for all the cases. Much

deeper understanding of the biological regulatory mechanism is

needed for a more realistic modeling and we’ll improve that in

the future.

Gene expression level changes are found common to many dis-

eases such as cancers (Bals and Jany, 2001; van ’t Veer, et al., 2002;

Hauser, et al., 2003). Therefore, it will be very interesting to explore

on extending our methods to disease causal gene identification

(Schadt, et al., 2005). Once we identify genes whose expression

change significantly between healthy individuals and patients, our

approach can be applied to find the genes responsible for these

changes. Although the findings may at large be hypothesis by itself,

it will significantly improve our understanding of the complex dis-

ease scenario by providing a global view of the whole system.
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ABSTRACT

Motivation: The nematode C. elegans is an ideal model organism in

which to investigate the biomolecular mechanisms underlying the

connectivity of neurons, because synaptic connections are described

in a comprehensive wiring diagram and methods for defining gene

expression profiles of individual neurons are now available.

Results: Here we present computational techniques linking these

two types of information. A systems-based approach (EMBP: Entropy

Minimization and Boolean Parsimony) identifies sets of synergistically

interacting genes whose joint expression predicts neural connectivity.

We introduce an information theoretic measure of the multivariate

synergy, a fundamental concept in systems biology, connecting the

members of these gene sets. We present and validate our preliminary

results based on publicly available information, and demonstrate that

their synergy is exceptionally high indicating joint involvement in

pathways. Our strategy provides a robust methodology that will yield

increasingly more accurate results as more neuron-specific gene

expression data emerge.Ultimately, we expect our approach to provide

important clues for universal mechanisms of neural interconnectivity.

Contact: anastas@ee.columbia.edu

Supplementary Information: Expression and connectivity data will

be available and maintained in the future as new results become

available, together with software and additional clarifying descriptions

of our techniques, on www.ee.columbia.edu/�anastas/ismb2006

1 INTRODUCTION

Nerve cells (neurons) are interconnected by branching pathways

forming complex networks. A fundamental connection mechanism

between two neurons is the chemical synapse, a junction by which a

presynaptic neuron transfers signals, carried by neurotransmitters,

to a postsynaptic neuron. Another connection mechanism is the gap

junction, or ‘‘electrical synapse,’’ by which ions and small mole-

cules pass from one neuron to the other. Chemical synapses have a

well-defined directionality, while gap junctions are bidirectional.

The biological mechanisms governing the selection and forma-

tion of synaptic pairs of neurons are not yet well understood. Roger

Sperry, in his ‘‘chemoaffinity hypothesis,’’ (Sperry, 1963) proposed

that synaptic partners express particular combinations of molecular

determinants acting as chemical ‘‘identification tags’’ that define a

productive interaction. Although several candidate molecules have

been proposed for this task (see Discussion section), it has been

difficult to establish their roles with certainty. One way to infer the

molecules responsible for synaptic connectivity would be to analyze

the single-cell expression patterns of pairs of neurons known to form

synapses. The problem with most nervous systems, however, is that

maps of wiring connectivity are not available.

The exception to this rule is the nervous system of the nematode

C. elegans, which has a simple and well-defined nervous system

with only 302 neurons, for which nearly all synaptic connections are

described in a comprehensive ‘‘wiring diagram.’’ In principle,

candidate genes serving as ‘‘synaptic connectivity factors’’ for

these synapses could be deduced by linking the wiring diagram

with the gene expression repertoires of all individual neurons in

the network. Until now, most efforts have focused on the intercon-

nectivity of particular neurons only (Miller et al., 1992; Winnier

et al., 1999; Shen et al., 2004). However, in our approach, we can

now correlate expression data with the entire wiring diagram.

Correlation between gene expression and neural connectivity has

been previously observed (Kaufman and Ruppin, 2005, personal

communication).

In this paper, we develop computational techniques for this

task and test them on actual data. Our aim is not classification,

which can be achieved using, e.g., SVM-based computational

methodology. Rather, it is biological discovery: we seek to

infer modules of genes synergistically interacting with each

other, which, as expression data become increasingly accurate,

will provide insight into related pathways. Because we infer sys-

tems of genes rather than individual genes, this methodology is in

accordance with the principles of systems biology, and it has the

additional feature that it links two different levels of abstraction:

The intercellular level of the network of interconnected neurons, as

well as the intracellular level of the biomolecular pathways within

the neurons.

Furthermore, we introduce an information theoretic measure

of the multivariate synergy (section 3.3) and prove that it is

exceptionally high in all our results, indicating that the phenotype

of synapse formation is the outcome of the interaction of the gene

products, rather than from the effect of their individual contribu-

tions. This definition of synergy leads naturally to a decomposition

of the gene sets, providing further insight into the nature of the

mutual interactions among its members.�To whom correspondence should be addressed.
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2 NOTATION AND INPUT DATA

The two types of input data that we link contain the information

about connectivity and gene expression. We use the following

notation:

1. We refer to the cells (neurons) using the symbol

ci‚ i ¼ 1‚2‚ . . .‚K, where K is the total number of neurons.

The topology of the chemical synapses in the wiring diagram is

specified by a K·K Adjacency MatrixA, defined so that Aij is

1 if presynaptic ci connects to postsynaptic cj with at least one

chemical synapse, and 0 otherwise. In other words, A is the

adjacency matrix of the directed graph that depicts the wiring

diagram. Each branch of the graph corresponds to an oriented

chemical synapse, which is defined by an ordered pair (ci,cj) for

which Aij ¼ 1. Gap junctions are electrical synapses and their

topology is specified by a different K ·K Adjacency MatrixB,

which is symmetric, because gap junctions are bidirectional.

2. We refer to the genes for which we have expression data using

the symbol gi‚ i ¼ 1‚2‚ . . .‚M, where M is the total number of

such genes. The genes that are expressed in each neuron are

specified by a Gene Expression Matrix E, defined so that Eij

is 1 if gi is expressed in cj and 0 otherwise. In other words, E is

the gene expression matrix in which each condition corre-

sponds to genes known to be expressed in each neuron. For

reasons that we explain below, we assume that the expression

data are binary, i.e. the corresponding gene product is either

fully present, or absent.

We used connectivity data (Chen et al., 2006) recently updated

from an earlier version (White et al., 1986) for K ¼ 280 neurons,

resulting in two adjacency matrices, A and B, corresponding to

chemical synapses and gap junctions respectively.

We extracted single-cell expression data for the gene expression

matrix E from the publicly accessible ‘‘Wormbase’’ project

(Wormbase, 2006) For each of the 280 neurons listed in the con-

nectivity adjacency matrices, we compiled a limited list of genes that

are known to be expressed or not expressed in particular neurons as

detected by GFP-tagging or antibody experiments. Because graded

expression values are generally not available from these results, we

created a binary gene expression matrix in which genes are scored as

either ‘‘on’’ or ‘‘off.’’ Using binary expression values also has the

benefit of providing sufficient statistics to create the probabilistic

models that we use in this paper, and to lead to convenient Boolean

logic functions connecting the expression values.

To acquire a list of genes expressed in each of the 280 neurons

in our connectivity matrix, we first mined Wormbase using the

‘‘Expression Pattern’’ field entry for every C. elegans gene.

Information in the ‘‘Expression field’’ about the tissues or cells

in which the gene is expressed is further organized into three

sub-fields called ‘‘Summary,’’ ‘‘Cell’’ and ‘‘Cell Group.’’ The

‘‘Cell’’ field contains the names of individual cells in which the

gene is expressed; the ‘‘Cell Group’’ field lists the groups of cells

or tissues in which the gene is expressed. We made a list of all the

‘‘Cell Group’’ entries available in Wormbase and then manually

created a ‘‘translation table’’ for each ‘‘Cell Group’’ entry related to

neurons. This translation table contains a list of neurons that

correspond to each cell group entry.

Thus, for each gene, we first compiled all the neurons listed in the

‘‘Summary’’ and ‘‘Cell’’ fields and then augmented this list with

the neurons corresponding to each entry in the ‘‘Cell Group’’ field

using the translation table. Of the total of 3,363 genes for which

expression data are available, we estimated a total of 1,567 genes

that are expressed within the nervous system. We further pruned this

list of genes by ignoring those genes that are expressed in all

neurons (as noted in the ‘‘Cell Group’’field) since they do not

contribute any information for our purposes. A final labor-intensive

task consisted of manually correcting the expression patterns of all

remaining genes by checking the information in the referenced

papers listed in the Wormbase for each gene, and further removing

from the list those genes for which expression data were ambiguous.

The final list consisted of M ¼ 292 genes.

The 280 · 280 matrices A and B, and the 292 · 280 matrix E
are shown at www.ee.columbia.edu/�anastas/ismb2006 and we

will maintain that site updating these matrices as we obtain more

data in the future.

3 ENTROPY MINIMIZATION AND
BOOLEAN PARSIMONY

Entropy Minimization and Boolean Parsimony (EMBP) is a

systems-based computational methodology that we developed,

which identifies, directly from gene expression data, modules of

genes (as opposed to individual genes) that are jointly and syner-

gistically associated with a particular outcome, in this case synaptic

connectivity. Furthermore, the technique provides insight into the

underlying biomolecular logic by inferring a logic function con-

necting the joint expression levels in a gene module with the

outcome. We have recently used the same technique to obtain

insight into the disease-related biomolecular logic by analyzing

sets of microarray data from diseased and healthy tissues

(Varadan and Anastassiou, 2006).

We pose two questions, which are answered sequentially:

(a) Given a number n, identify the set of n genes (subset of the set of

all M genes corresponding to the rows of matrix E), each of

which associated to either the presynaptic or the postsynaptic

neuron, whose joint expression pattern predicts the existence of

a synapse with minimum uncertainty.

(b) Given the above genes, find the simplest logical rule that con-

nects their expression levels to predict the existence of

synapses.

Furthermore, we present an information theoretic analysis of the

‘‘synergy’’ among these genes with respect to their joint contribu-

tion towards synapse formation, which leads to a quantitative mea-

sure of synergy and a determination of a decomposition of the gene

sets into synergistic modules.

Coupled with additional biological knowledge and possible

genetic experimentation, this information can be useful for inferring

pathways related to synaptic connectivity. The joint involvement

of the members of the gene sets into pathways is supported by the

fact that the synergy among them is found to be positive and sig-

nificantly large.

3.1 Entropy minimization

Addressing the first question, consider the set of all available genes,

each of which is counted twice to separately account for its expres-

sion in a presynaptic or postsynaptic neuron. Out of this set of size

V.Varadan et al.
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2M, we wish to identify the subset of size n that minimizes the

‘‘uncertainty’’ of the existence of a synapse given the gene expres-

sion pattern of that subset. It is possible for the optimum subset to

contain the same gene twice, which would imply that the formation

of a synapse is influenced by its expression in both the pre-synaptic

and postsynaptic cell.

We quantify this uncertainty with the information theoretic mea-

sure known as conditional entropy, defined as follows (Shannon,

1948). Each of the subsets of size n has 2n possible gene expression

states. For each expression state S, we count the number N1(S) of

times that it is associated with a synapse, and the number N0(S) of

times that it is not associated with a synapse, creating a table with 2n

rows corresponding to the gene expression states, to which we refer

as the ‘‘state-count table.’’ Each row of the state-count table con-

tains the two counts N0 and N1 for the corresponding state. Table 1

shows an example of a state-count table for n ¼ 3.

We then create a probabilistic model in which probabilities

are equal to relative frequencies derived from the counts N0 (S)

and N1 (S), so that the presence of a synapse and the gene expression

states are random variables. Specifically, we define:

PðSÞ ¼ N0ðSÞ þ N1ðSÞ
K2

QðSÞ ¼ N1ðSÞ
N0ðSÞ þ N1ðSÞ

if PðSÞ > 0

The former is the probability of state S in a random ordered pair

of neurons and the latter is the probability of synapse given state S.

If we know the expression state S of a particular ordered pair of

neurons, then the uncertainty of determining whether or not a

synapse exists from the first neuron to the second neuron is mea-

sured by the entropy H(Q(S)), where the function H is defined by

HðqÞ ¼ � q log2 ðqÞ � ð1 � qÞ log2 ð1 � qÞ.
The average overall uncertainty of determining whether or not a

synapse is formed is then measured by the ‘‘conditional entropy’’ of

the presence of a synapse given the expression state for the gene set:X
PðSÞHðQðSÞÞ

where the summation is over all states S with P(S) > 0. The con-

ditional entropy is always a nonnegative number. If it is zero, this

implies that the expression state of that subset determines the exis-

tence of a synapse with absolute certainty.

More formally, if we use the symbols G1, G2, . . ., Gn for the

binary random variables specifying the individual expression states

of the n genes defining the joint state S, and the symbol C for the

binary random variable specifying the formation of a synapse, then

the above conditional entropy is equal to:

HðC jG1‚G2‚ . . .‚GnÞ ¼ HðCÞ � IðG1‚G2‚ . . .‚Gn;CÞ

where H is the symbol for the entropy of a random variable, same by

convention as the one we used before, and I is the symbol for the

mutual information (Cover and Thomas, 1991).

Finally, to ensure that the range of possible values extends from

0 to 1, we normalize the conditional entropy by dividing by H(C),

the entropy corresponding to the ‘‘null probability’’ Qnull of a

synapse in a randomly chosen pair of neurons:

HðC jG1‚G2‚ . . .‚GnÞ
HðCÞ ¼ 1 � IðG1‚G2‚ . . .‚Gn;CÞ

HðCÞ

For simplicity, in the sequel we will often refer to the above

normalized conditional entropy as just the ‘‘entropy.’’

The last column in Table 1 contains, for each state, the relative

frequency of a synapse normalized by dividing by Qnull. For chemi-

cal synapses, Qnull is equal to 0.028 (number of synapses divided by

K2). If Q is larger than 0.028, this implies that the expression state

contributes favorably towards the creation of a synapse. These

evaluations can identify states in which synapses are either over-

represented or underrepresented. For example, in Table 1, synapses

are overrepresented in state 011, because the relative frequency

of synapses is more than five times larger than the null relative

frequency. In other words, neurons that do not express mig-1 tend

to send synapses with increased frequency to neurons that express

both unc-8 and glr-1. Another conclusion that we reach from

Table 1 is that states 100 and 101 are underrepresented, because,

in those states the relative frequencies of synapse are more than six

times smaller than the null relative frequency. This means that

neurons that express mig-1 tend to not send synapses to neurons

that do not express unc-8.

If the entropy evaluation is repeated for every possible subset

containing n of the 2M genes, we can then select the one for which

the entropy is minimized. The number of these subsets is equal

toð 2M
n Þand becomes large for n � 3, making the exhaustive search

method impractical. Therefore, we address this problem using

heuristic optimization methods.

We used two different search techniques to determine the

minimum entropy gene sets. The first technique starts with a ran-

domly chosen gene set of size n, and iteratively modifies it by replac-

ing one of its genes, chosen at random, with a new gene, also chosen

at random from the entire set of 2M genes, such that the entropy is

minimized. The process is terminated when the entropy has con-

verged. Local minima are avoided by repeating the iterative algo-

rithm with random initial conditions of the same size and select the

gene set that yields the overall lowest entropy. This process is

repeated for gene sets of size n + 1, after ensuring that one of the

chosen initial conditions contains the best gene set of size n.

To confirm that the solution is a global minimum, we also

used simulated annealing (SA) (Kirkpatrick et al., 1983) to search

the space of all gene sets of size n. The ‘‘annealing’’ process starts

at a high ‘‘temperature’’ T, corresponding to a disordered system,

and slowly cools. The system becomes more ordered at lower

temperatures and ‘‘freezes’’ at T ¼ 0. The search starts with a

randomly chosen gene set of size n. A randomly chosen gene in

the gene set is replaced by another randomly chosen gene from the

Table 1. Example of a state-count table.

mig-1 (pre) unc-8 (post) glr-1 (post) N0 N1 Q/Qnull

0 0 0 30472 923 1.05

0 0 1 4412 268 2.05

0 1 0 15334 266 0.61

0 1 1 2491 434 5.30

1 0 0 13641 44 0.11

1 0 1 2031 9 0.16

1 1 0 6571 229 1.20

1 1 1 1254 21 0.59
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entire set of 2M genes. If the conditional entropy of the modified

gene set is lower than the current gene set, it replaces the current

gene set, otherwise, the current gene set is replaced with a proba-

bility that is proportional to the temperature at the time (following

an exponential cooling scheme) and inversely proportional to the

difference between the conditional entropies of the current gene set

and the new gene set. Thus, as the temperature falls, ever smaller

increases in conditional entropy are accepted, constraining the

search only in the local neighborhood of the conditional entropy

value.

Rather than ranking genes based on a score measuring the

genes’ individual contributions to synaptic specificity, this entropy

minimization is a systems-based approach attempting to identify

modules (sets) of genes in terms of their contribution to jointly and

synergistically determine synaptic connectivity. Consequently, the

optimum found set of n1 genes will not necessarily be a subset of

the optimum found set of n1 genes if n1< n2.

3.2 Boolean parsimony

Once we have identified the set of genes resulting from entropy

minimization, we would like to also infer the ways in which the

joint expression levels of these genes determine the resulting

phenotype (in our case, synapse formation). We provide two

complementary ways of doing this, first (in this section) a technique

of determining a simple logic function connecting the individual

expression levels, and then (next section) a way to decompose the

set into synergistically interacting modules.

The state-count table for the gene set gives us a wealth of

information. For example, Table 1 presents the state-count table

for the genes that minimize the entropy for n ¼ 3, and we have

already observed that it indicates that the formation of a synapse is

favored if the presynaptic neuron does not express mig-1, while the

postsynaptic neuron expresses both unc-8 and glr-1. For small

values of n, as in the examples shown in the paper, we can label

the states for which the relative frequencies of synapses is sig-

nificantly higher than Qnull as ‘‘logic 1’’ and use Karnaugh map

logic design methodology (Mano, 1979) to identify a simple

Boolean function describing the logic under which the phenotype

is present. For higher values of n we can use sophisticated

algorithms to derive the Boolean function (Brayton et al., 1985;

Yang and Ciesielski, 2002). The computational problem can be

formulated as deriving the ‘‘most parsimonious Boolean function,’’

defined as the one minimizing the total number of times of appear-

ance of logic variables connected by the operators AND, OR and

NOT. This logic minimization is desirable so that we clarify the

biological role for the genes.

Following conventions of Boolean algebra (Boole, 1854)

we represent the operator AND as multiplication and the

operator OR as addition. For the operator NOT we use the symbol

of prime (0) following the logic variable. For example, the

logic expression ab+a0b0+ab0 is equivalent to the more parsimonious

a+b0.

3.3 Synergy

This paper introduces an information theoretic measure of

multivariate synergy. Because systems biology is based on a holistic

view of biological systems, the concept of synergy lies at the

heart of it.

Consider a set of n genes with expression levels G1, G2, . . . , Gn

and a particular outcome C, which in our case is the formation of a

synapse, but it could also be any other phenotype, such as the

presence of a particular disease or the differentiation of stem

cells into a particular cell type when analyzing expression data

of human tissues.

We define the synergy Syn(G1, G2, . . . , Gn;C) of the gene set with

respect to the phenotype C, by:

IðG1‚G2‚ . . .‚Gn;CÞ � max
all partitions

fSigsuch that

[i Si¼fG1‚...‚ Gngand

\i Si¼[

X
i

IðSi;CÞ

The partition of the gene set that is chosen in the formula above

is the one that maximizes the sum of the amounts of mutual

information connecting the subsets of that partition with the pheno-

type, and we will refer to it as the ‘‘synergistic partition’’ of the gene

setfG1‚G2‚ . . .‚Gng with respect to the phenotype C. The definition

is naturally consistent with the intuitive concept that synergy is the

additional amount of contribution for a particular task provided by

an integrated ‘‘whole’’ compared with what can best be achieved,

after breaking the whole into ‘‘parts,’’ by the sum of the contribu-

tions of these parts. We may wish to divide the above quantity by the

entropy H(C), in which case the maximum possible thus normalized

synergy will be +1.

For the special case of n¼ 2, the synergy Syn(G1,G2;C) is equal to

IðG1‚G2;CÞ � ½IðG1‚CÞ þ IðG2‚CÞ�. This measure of bivariate syn-

ergy has been previously defined by neuroscience researchers

(Gawne and Richmond, 1993; Schneidman et al., 2003). In that

case, remarkably, it happens to be symmetric with respect to the

three random variables and equal to the opposite of the mutual

information I(G1;G2;C) common to the three variables G1,G2,C
(McGill, 1955). Contrary to the mutual information common to

two variables, the mutual information common to three variables

is not necessarily a nonnegative quantity, a fact that is often con-

sidered ‘‘unfortunate’’ by information theorists (Cover and Thomas,

1991, p. 45). For our purposes, however, this is a fortunate fact,

because it allows for strictly positive synergy, as we confirm in

our EMBP results, from which we obtain evidence for, and insight

into, cooperative participation in biomolecular pathways.

The generalization of the mutual information common to all

variables, although elegantly defined in the form of a telescopic

sum, has a complicated and not immediately useful physical

meaning and cannot be used to properly define the synergy for

n > 2. A simpler definition of multivariate synergy in the form

of IðG1‚G2‚ . . .‚Gn;CÞ �
Pn

i¼1 IðGi;CÞ is not appropriate either,

as it fails to consider the various ways by which ‘‘parts’’ may

cooperatively define the ‘‘whole.’’

The concept of synergy can be understood by a simple example:

Assume that each of the genes G1 and G2 is equally (50% of the

time) expressed when C¼ 1 and C¼ 0. In that case, it would appear

that the two genes are uncorrelated with the phenotype C, because

IðG1;CÞ ¼ IðG2;CÞ ¼ 0, and the genes would not be found high up

in any typical ‘‘gene ranking’’ computational method! However, it

is still possible for C to be determined with absolute certainty from

the joint state of the two genes, for example when C¼ 1 if G1¼ G2,

and C ¼ 0 if G1 6¼ G2, in which case IðG1‚G2;CÞ ¼ 1, and the

synergy is positive and equal to +1. On the other hand, if G1 ¼
G2 ¼ C then the synergy is negative and equal to �1. More
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generally, if G1 ¼ G2 ¼ � � � ¼ Gn ¼ C (ultimate redundancy) then

the multivariate synergy can become even more negative and equal

to �(n�1).

Since HðCjG1‚G2‚ ...‚GnÞ¼HðCÞ� IðG1‚G2‚ ...‚Gn;CÞ, EMBP

analysis naturally tends to find high-synergy results, although not

necessarily the most synergistic ones (we have the option, if we

wish, of modifying the objective function so that we maximize the

synergy of the gene set).

Positive synergy implies some form of direct or indirect interac-

tion of all the genes, as a system. An additional advantage of our

definition of synergy is that we can obtain insight into the structure

of potential pathways (complementary to the insight obtained by

performing Boolean parsimony) by making iterative use of the

‘‘synergistic partition,’’ defined earlier, to generate a hierarchical

decomposition of the gene set into smaller modules. In particular,

consider a rooted and not necessarily binary tree with n leaves, each

of which represents one of the genes. Each node of the tree repre-

sents a subset of genes, which contains the genes represented by the

leaves of the clade formed by the node. Therefore the root represents

the whole gene set. The synergistic partition of the whole gene set,

as defined above, can then be represented by the branching of the

root, so that the nodes that are neighboring to the root represent the

gene subsets defined by the synergistic partition. Some of these

nodes may be leaves, representing a single gene. If they are

not leaves, then they represent a subset of genes, which has its
own synergistic partition, defined and evaluated as above, with

respect to the phenotype. This methodology can be repeated for

all gene subsets, until the full tree is formed. We refer to this as the

tree of synergy of the gene set fG1‚G2‚ . . .‚Gng with respect to the

phenotype C. Each intermediate node of the tree of synergy

identifies a gene subset with nonnegative synergy (otherwise our

definition of synergy would be contradicted).

The synergy, as defined above, refers to the combined cooperat-

ive participation of all n genes. If, for example, the expression of

one of these genes is independent of all the other genes including

the phenotype, then the synergy of the n-gene set will be zero, even

if the set contains synergistic subsets. Therefore, for a thorough

synergistic analysis of a gene set, we may wish to also identify

the most synergistic subsets of size n � 1‚ n � 2‚ . . . ‚ 2, which

may not necessarily appear in the tree of synergy. For n ¼ 3,

however, it can be easily proved that the most synergistic subset

of size 2, if it has positive synergy, is always defined by an existing

clade of the full tree of synergy.

For small sizes of gene sets, synergistic analysis can be done with

algorithms that list all the partitions of a particular set of genes. The

total number of partitions of a set with n elements is given by the

Bell number (Kreher and Stinson, 1999). As n increases, however,

the increased computational complexity makes the problem

intractable and in need of heuristic solutions.

4 RESULTS OF EMBP ANALYSIS

In this section, we apply EMBP analysis using matrices A, B, and

E for C. elegans. We ascertain the statistical significance of our

results by confirming that the estimated probability that these results

would be derived on the basis of pure chance is extremely low. We

present the optimum found gene set and the corresponding Boolean

logic function for both chemical synapses and gap junctions, using,

as an example, a gene set size of n ¼ 4.

4.1 Chemical synapses

To validate that our results are biologically meaningful as opposed

to being due to pure chance, we performed entropy minimization

using both the actual expression matrix, as well as a number (50) of

fictitious expression matrices in which the columns were randomly

permuted, so that each neuron is randomly assigned the expression

profile of a different neuron. In all cases, we consistently used

identical predefined values for all parameters, such as the choice

of initial conditions, number of experiments for each gene set size,

number of iterations in each step, etc. In this way, all results could

be meaningfully compared with each other, because the small

probability that a global minimum was missed is identical in all

experiments.

Figure 1 shows the minimum normalized conditional entropies for

gene set sizes ranging from 0 to 6. The solid red line is derived from

the actual expression matrix, while the blue dotted line shows the

average of the 50 experiments with permuted expression matrices.

The standard deviations of the entropies found in the latter experi-

ments are indicated by the vertical line segments for each value of n.

It is evident from the figure that the entropy minimization

algorithm detected real correlation between gene expression in indi-

vidual neurons and formation of synapses among them. We also

observed that the 50 entropy values derived from the permuted

expression matrix consistently fit a normal distribution using any

of the Chi-squared, Lillie and Geary tests (Walpole et al., 2002).

For n ¼ 4 we found the following minimum entropy gene set

(entropy ¼ 0.8973):

a: presynaptic unc-18
b: presynaptic nmr-1
c: postsynaptic F25B5.2

d: postsynaptic unc-8

Given the mean and standard deviation of the entropies and the

normality of the distribution, we estimated the P-value, defined as

0 1 2 3 4 5 6
0.85
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0.95

1

Number of Genes in Set

E
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Average Entropy for randomized E matrix
Actual Entropy

Fig. 1. Comparison of the actual entropies for chemical synapses with

those derived from permuted expression matrices averaged over 50 random

trials.

Computational inference of the molecular logic for synaptic connectivity in C. elegans

e501



the probability of obtaining a minimum entropy of 0.8973 or lower

on the basis of pure chance, to be 6 · 10�275.

Figure 2 shows the corresponding Karnaugh map using ‘‘Gray"

binary code for easier derivation of the logic function (Mano, 1979),

highlighting entries with Q/Qnull > 2. Each entry contains the values

of N0, N1 and Q/Qnull (as in a state-count table). The corresponding

Boolean function is a0cdþ bc0 following Karnaugh map methodo-

logy and treating the zero-count entries as ‘‘don’t care’’ states.

In words, these findings are formulated as follows: Neurons that

do not express unc-18 tend to send synapses at higher frequency

than normal to neurons that express both F25B5.2 and unc-8. Fur-

thermore, neurons that express nmr-1 tend to send synapses at

higher frequency than normal to neurons that do not express

F25B5.2.

Figure 3 shows the corresponding tree of synergy, where the

root and intermediate nodes of the tree are labeled by the norma-

lized synergies of the corresponding gene sets. The quantities

within the box are the amounts of normalized mutual infor-

mation between each gene subset and the formation of synapse,

using compact symbols for convenience. For example,

Iacd ¼ ðIða‚c‚d;CÞÞ=ðHðCÞÞ ¼ 0:070. It is instructive to use

these numbers to confirm the synergy values at the nodes of the

tree. For example, the synergy of the 3-gene set {a, c, d} is evaluated

as +0.020, equal to:

Iacd�max

IaþIcd

IcþIad

IdþIac

IaþIcþId

¼ Iacd�ðIdþIacÞ¼0:070�ð0:004þ0:046Þ

8>><>>:
The Boolean functions for the smaller subsets defined by the

intermediate nodes provide further insight into the nature of

potential gene interactions: It turns out that they are, a0c, a0cd,

a0cd+bc0.
To validate our results, we used the same permutations as in

Figure 1 and we calculated the synergy for the minimum entropy

gene sets for n ¼ 4. We also confirmed that the results consistently

fit a normal distribution with mean and standard deviation both

equal to 0.001. The difference between the actual synergy value

of +0.016 and the mean is therefore 15 times the standard deviation,

corresponding to an extremely low probability that it is due to pure

chance.

Following is a summary of the main properties of the identified

genes, three of which (unc-18, nmr-1 and unc-8) are already known

to encode synaptic components.

UNC-18 and its vertebrate homologs facilitate synaptic vesicle

release and are presynaptically localized (Richmond and Broadie,

2002). In C. elegans, anti-UNC-18 stains all ventral cord motor

neurons, plus additional neurons in the head and tail (Gengyo-

Ando et al., 2003).

UNC-8, a DEG/ENaC cation-selective channel subunit is

expressed in motor neurons, sensory neurons and interneurons

adjacent to the nerve ring (Tavernarakis et al., 1997). In touch

neurons, DEG/ENaC channels are believed to function as

mechanosensitive transducers (O’Hagan et al., 2005). UNC-8 has

been proposed to perform a related function as a stretch receptor in

ventral cord motor neurons (Tavernarakis et al., 1997). Recent

results strengthen our case that UNC-8 is indeed involved in synap-

togenesis (Kawano et al., 2005, personal communication).

nmr-1 encodes an NMDA-type ionotropic glutamate receptor

subunit and is expressed in a subset of neurons in the head region

including command interneurons that drive motor neuron activity

(Francis et al., 2003). In mammals, NMDA-type receptors modulate

excitatory postsynaptic responses to glutamate. This activity can

result in prolonged changes in synaptic structure and function

(Cull-Candy et al., 2001). Synaptic plasticity is also sensitive to

an EphrinB signal from the presynaptic membrane that promotes

association of the EphB and NMDA receptors (Dalva et al., 2000).

In each of these cases, the implicated proteins are involved in

some aspect of synaptic assembly or signaling and thus are plausible

candidates having distinct roles in synaptic specificity.

Expression of F25B5.2 appears to be restricted to early embry-

onic cells of the AB lineage, which later gives rise largely to

neurons. F25B5.2 is not expressed in neurons that arise after hatch-

ing during larval development (WormBase, 2006). It is intriguing

that F25B5.2 appears to also be implicated, in a different way, in the

formation of neuron-specific gap junctions (see next section). This

Fig. 2. The Karnaugh map for the optimum gene set for chemical synapses for

n ¼ 4. The logic variables a and b defining the rows are presynaptic unc-18
and nmr-1, respectively, and the logic variables c and d defining the columns

are postsynaptic F25B5.2 and unc-8, respectively.

Fig. 3. The tree of synergy for the optimum gene set for chemical synapses

for n ¼ 4. The leaves correspond to a: presynaptic unc-18, b: presynaptic

nmr-1, c: postsynaptic F25B5.2, d: postsynaptic unc-8. See text for additional

explanations.
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discovery suggests the possibility that the creation of both electrical

and chemical synapses may be coordinated by a common molecular

mechanism. Indeed, a unified model is also suggested by the finding

that the UNC-4 homeodomain transcription factor orchestrates

neuron-specific assembly of gap junctions as well as chemical

synapses in the larval ventral cord motor circuit (White et al.,
1992; Miller and Niemeyer, 1995).

4.2 Gap junctions

Figure 4 shows the normalized conditional entropies for values of

n ranging from 0 to 6 for both the actual and the permuted expres-

sion matrices, using methodology identical to that described for

chemical synapses. Again, it is evident from the gap of several

standard deviations between the average entropy values and the

actual entropy values that the entropy minimization algorithm

extracted biologically relevant information.

For n¼ 4, as was the case for chemical synapses, we affirmed that

the conditional entropy values estimated over the 50 random experi-

ments fit a normal distribution, which led to the estimation of the

probability of obtaining the minimum found conditional entropy of

0.9010 using the actual E matrix on the basis of pure chance to be

2 · 10�35. Specifically, we found the following minimum entropy

gene set:

a: presynaptic F25B5.2

b: presynaptic unc-6
c: postsynaptic F25B5.2

d: postsynaptic unc-6
Figure 5 shows the corresponding Karnaugh map, where each

contains the values of N0, N1 and Q/Qnull There are five entries

highlighted with bold borders in which the relative frequency of gap

junctions is significantly higher than the null frequency. The

corresponding Boolean function is:

abc0+a0cd+bd

In words, this finding is formulated as follows: Neurons

that express both F25B5.2 and unc-6 tend to form gap junctions

at higher frequency than normal with neurons that do not express

F25B5.2. Furthermore neurons that express unc-6 tend to form

junctions with each other at higher frequency than normal.

Figure 6 shows the tree of synergy for this gene set, constructed

in an identical manner to the tree of Figure 3. A symmetric tree

(substituting a for c and b for d) is equivalent. Remarkably, the

synergy (+0.034) of the whole gene set is particularly high: more

than a third of the mutual information (+0.099) between the gene

set and the formation of gap junctions is due to the synergy (+0.034)

among these four genes. The Boolean functions for the subsets

of the intermediate nodes are ab and abc0.
We validated our results as before confirming that the synergy

values for the permuted data fit a normal distribution with mean and

standard deviation also both equal to 0.001, making the actual

synergy value of +0.034 even more unlikely to be due to pure

chance.

Although local gap junction networks are commonly observed

in nervous systems, molecular mechanisms that govern the creation

Fig. 4. Comparison of the actual entropies for gap junctions with those

derived from permuted expression matrices averaged over 50 random trials.

Fig. 5. The Karnaugh map for the optimum gene set for gap junctions for

n ¼ 4. Each entry contains the values of N0, N1, and Q/Qnull.

Fig. 6. The tree of synergy for the optimum gene set for gap junctions for

n¼ 4. The leaves correspond to a: presynaptic F25B5.2, b: presynaptic unc-6,

c: postsynaptic F25B5.2, d: postsynaptic unc-6. See text for additional

explanations.
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of these electrical connections between specific neurons are

unknown (Hestrin and Galarreta, 2005).

unc-6 encodes a guidance cue (Netrin) that regulates axon

trajectory and cell migration (Hedgecock et al., 1990). Originally

discovered in C. elegans to steer pioneer axon outgrowth along

circumferential tracks, UNC-6/Netrin also performs this function

in the axial nerve cords of mammals and insects (Ishii et al., 1992;

Mitchell et al., 1996; Serafini et al., 1996). This conserved role is

believed to depend on secretion of UNC-6 from selected neurons

and ectodermal cells located at the ventral midline (Wadsworth

et al., 1995; Kennedy et al., 1994). Responding neurons express

specific UNC-6 membrane receptors, UNC-5 and UNC-40/DCC

(Dickson, 2002). Because UNC-6 action in this mode determines

the proximity of potential synaptic partners, it clearly imposes at

least an indirect effect on the creation of gap junctions between

specific neurons. In addition, as a secreted molecule, UNC-6 can

exert this role at some distance from the target cell. In the instance

considered here, however, UNC-6 expression in adjacent neuronal

processes, in concert with F25B5.2, is strongly correlated with gap

junction formation. This finding could be indicative of a potentially

new role for this potent signaling molecule.

As noted earlier, F25B5.2 is broadly expressed in the embryo and

in precursor cells giving rise to a majority of embryonic neurons.

Exclusive expression of F25B5.2 in the embryo is correlated with

the observed preferential formation of gap junctions between

embryonic neurons that do express F25B5.2 and larval neurons

that do not. For example, the command interneurons AVAL and

AVAR are generated in the embryo but make gap junctions with VA

motor neurons that arise during the first larval stage; both of these

neuron classes also express UNC-6 (Wadsworth et al., 1995).

Although the yet undefined function of the F25B5.2 protein does

not inform a molecular model of its mode of action, the observation

that neurons expressing F25B5.2 in one developmental period

(i.e., embryo) are likely to establish gap junctions with neurons

that do not express F25B5.2 at a later developmental stage (i.e.

larvae) provides a simple paradigm of how temporal expression

of other potential determinants may control synaptic specificity.

The exceptionally high value of synergy among F25B5.2 and

UNC-6, combined with the facts that F25B5.2 is expressed in

neuronal precursors and that UNC-6 creates a hierarchy of netrin

cues in the developing nervous system gives rise to the intriguing

speculation that these two molecules somehow interact with

each other during development with respect to gap junction

formation.

5 OTHER COMPUTATIONAL APPROACHES

In its simplest interpretation, Sperry’s chemoaffinity hypothesis

may be realized in the form of certain ordered pairs of expressed

genes in two neurons responsible for the formation of synaptic

interconnections. Although in reality this is too simple to be the

case, this assumption can still be useful for a computational

technique identifying potential synaptic connectivity factors. In

this section, we rank all ordered pairs of genes according to a

numerical score defining the ‘‘degree of fitness’’ to being such

factors. In other words, we identify overrepresented gene pairs in

pre- and post-synaptic neurons.

For example, we assume that a particular such ordered

pairðgm‚gnÞof genes expresses heterophilic receptors such that

synapses are formed connecting presynaptic neurons expressing

gene gm with postsynaptic neurons expressing gene gn. Resulting

synapses ‘‘match’’ the ordered pairðgm‚gnÞ, where we use the term

‘‘A synapse ðci‚cjÞ ‘matches’ an ordered pair of genesðgm‚gnÞ’’ to

indicate that Emi ¼ Enj ¼ 1, i.e., that gene gm is expressed in cell

ci and gene gn is expressed in cell cj.

We define the M · Mmatrix:

W ¼ EAET

Note that element Wmn of the matrix W:

Wmn ¼
XK
i¼1

XK
j¼1

AijEmiEnj

is the total number of synapses that match a particular ordered pair

of genes, ðgm‚gnÞ where m is not necessarily different from n.

The probability Pactual, estimated as relative frequency, that a synapse

chosen at random will match an ordered pair ðgm‚gnÞ of genes is:

Pactual ¼
Number of synapses that match ðgm‚gnÞ

Total number of synapses
¼ WmnXK

i¼1

XK
j¼1

Aij

The above probability can be calculated for each ordered pair

of genes, but cannot be used as a desired numerical score, because it

is biased in favor of the overrepresented ordered pairs of genes, even

if such pairs are unrelated to synapses. For it to be used as a relevant

numerical score, it must be normalized by dividing by another

probability, Pnull of a ‘‘null’’ model, calculated after removing

all influence related to gene expression of particular genes. For

the null model we assume that we only know the number Li of

neurons expressing each gene gi:

Li ¼
XK
j¼1

Eij

The probability that a neuron chosen at random expresses gene gi

is given by:

Number of neurons expressing gi

Total number of neurons
¼ Li

K

Thus, according to the null model, the probability that a synapse (or

any ordered pair of neurons) chosen at random will match ðgm‚gnÞ is

equal to:

Pnull ¼
ffi LmLn

K2
if m 6¼ n

¼ LnðLn � 1Þ
KðK � 1Þ if m ¼ n

8><>:
In the above formula, the former term results from the assumption

that the events of genes gm and gn being expressed in the first and

second neuron, respectively, are nearly independent of each other

and therefore we can use the product of the two probabilities. The

latter term is derived by using Bayes’ rule, as we know that if gene

gn is expressed in one neuron, then, among the remaining K � 1

neurons, the number of them expressing the same gene is Ln � 1. It

is possible to derive precise formulas, and to improve the null

model by making use of the knowledge of the number of genes

expressed in each neuron, but these improvements will add com-

plexity without significantly improving relevance.
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We define the ‘‘log-odds ratio’’:

LogOddsðgm‚gnÞ ¼ log2

Pactual

Pnull

� �
as the numerical score (measured in bits) to rank ordered

pairsðgm‚gnÞ of potential presynaptic and postsynaptic genes

according to the likelihood that they contribute to synapse

formation.

Using the augmented expression matrix, we can estimate the

above LogOdds measure for all the ordered pairs of genes that

correspond with the existence of chemical synapses. The gene

pairs that achieved the highest score (5.16 bits) with the highest

number of connections (12) were (glr-6, rig-5) and (glr-3, rig-5)

where the first element in each pair is expressed in a presynaptic

cell, while the second element is expressed in a postsynaptic neuron.

According to the expression matrix, genes glr-6 and glr-3 are

expressed in the same set of neurons, which are RIAL and

RIAR, and gene rig-5 is expressed in six neurons, which are

RMDDL, RMDDR, RMDL, RMDR, RMDVL, and RMDVR. It

turns out that each of the former neurons forms a synapse to

each of the latter neurons, accounting for a total of 2· 6 ¼ 12

synapses. In other words, this is an example (Figure 7) of a case

in which, without any exception, the pair of genes (e.g., glr-6 and

rig-5) determines a chemical synapse, which would suggest

that, perhaps in some indirect manner, these genes influence

synaptic specificity. Interestingly, rig-5 encodes a member of the

immunoglobulin superfamily of Cell Adhesion Molecules (CAMs)

which includes candidate synaptic specificity determinants

(Shen, 2004).

Other computational approaches can also be used to infer

synaptic connectivity factors. For example, we may wish to address

the question: ‘‘Given a particular neuron, what is the gene expres-

sion pattern shared by all members of its postsynaptic cluster,

defined as the set of its postsynaptic neurons?’’ In other words,

what is the property that the neuron ‘‘seeks’’ in its postsynaptic

partner neurons? EMBP analysis can also be used to answer such

questions.

6 DISCUSSION

The computational approach of entropy minimization and Boolean

parsimony, presented in this paper, is designed to identify modules

of synergistically related genes that are correlated with synapse

formation. We believe that our strategy, which is designed to iden-

tify groups of proteins that together specify synaptic determinants,

embodies the fundamental biological complexity of this key event

and is therefore more likely to define the molecular underpinnings

of synaptic choice than are approaches that seek single genes with

this function.

To detect such modules, it is important that a rich set of

genes is included in the input data. Our results are severely limited,

however, by the small number of genes (1–2% of the predicted

genes) with accurate neuron-specific expression patterns currently

available in WormBase. In the future, we expect to overcome

this limitation by exploiting new microarray-based methods for

obtaining gene expression profiles of specific C. elegans neurons

(Fox et al., 2005; Kunitomo et al., 2005; Von Stetina et al., unpub-

lished data). The cell-type specific expression of genes used in this

paper was largely defined by observations of adult animals. As the

creation of the nervous system is a dynamic process with active

construction underway during both embryonic and larval stages,

temporal patterns of gene expression obtained during these critical

periods may be especially informative. When utilized with whole

genome tiling arrays (Cheng et al., 2005), microarray profiling

offers the additional benefit of detecting differential expression

of alternatively spliced transcripts. These data may be particularly

important to our goal of identifying authentic synaptic specificity

genes as accumulating evidence indicates that alternative splicing

may control neural connectivity. For example, in mammals, various

isoforms of cadherins as well as DSCAMs and neurexins have been

implicated as synaptic connectivity factors (Cline, 2003; Wojtowicz

et al., 2004; Wu et al., 2001).

Despite these limitations, the correlation that we have found

between the wiring diagram and the existing expression data is

remarkable, as evidenced both by the validation results and by

the high levels of observed multivariate synergy (Figures 1–

6). These results establish that the identified expression of combi-

nations of certain gene sets is correlated with synapse formation,

although the cause-and-effect relationship between the two events is

still unclear. Potential functions for these molecules in synapse

formation can be readily tested in C. elegans by wedding the

power of nematode genetics to an emerging suite of GFP-labeled

marker proteins for visualizing synapse formation between

specific neurons (Nonet, 1999; Shen et al., 2004).

In the future, computational techniques presented here will need

to be adjusted to accommodate the substantially increased amount

of input data arising from neuron-specific microarray experiments.

For example, new more efficient algorithms will be needed to deal

with the increased resulting complexity of this analysis. It may also

be useful to devise computational approaches in which relative

Fig. 7. The set of synapses characterized by the gene-pair (glr-6, rig-5).
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levels of gene expression are considered rather than the simple

binary ‘‘on vs. off’’ treatment we have employed in this study.

Once the expression matrix becomes sufficiently enriched

and the computational methodology is enhanced to address these

challenges, we expect to derive more accurate correlations of

specific gene clusters and their alternatively spliced transcripts

with synaptic connectivity. The molecular logic of the biological

pathways suggested by these data can then be experimentally tested

in vivo. This approach is expected to identify key genetic mecha-

nisms for regulating synaptic specificity in C. elegans. In turn, the

results of our work with this simple model organism should reveal

valuable clues for the interconnectivity of neurons in more complex

nervous systems in which homologous mechanisms are employed

to select synaptic partners.
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ABSTRACT

Motivation: Many methods have been developed for selecting small

informative feature subsets in large noisy data. However, unsupervised

methods are scarce. Examples are using the variance of data collected

for each feature, or the projection of the feature on the first principal

component.Weproposeanovel unsupervisedcriterion, basedonSVD-

entropy, selecting a feature according to its contribution to the entropy

(CE) calculated on a leave-one-out basis. This can be implemented in

four ways: simple ranking according to CE values (SR); forward selec-

tion by accumulating features according to which set produces highest

entropy (FS1); forward selection by accumulating features through the

choice of the best CE out of the remaining ones (FS2); backward elim-

ination (BE) of features with the lowest CE.

Results:We apply our methods to different benchmarks. In each case

we evaluate the success of clustering the data in the selected feature

spaces, by measuring Jaccard scores with respect to known classifica-

tions.Wedemonstrate that feature filteringaccording toCEoutperforms

the variance method and gene-shaving. There are cases where the

analysis, based on a small set of selected features, outperforms the

best score reportedwhenall informationwasused.Ourmethod calls for

an optimal size of the relevant feature set. This turns out to be just a few

percents of the number of genes in the two Leukemia datasets that we

have analyzed. Moreover, the most favored selected genes turn out to

have significant GO enrichment in relevant cellular processes.

Abbreviations: Singular Value Decomposition (SVD), Principal

Component Analysis (PCA), Quantum Clustering (QC), Gene

Shaving (GS), Variance Selection (VS), Backward Elimination (BE)

Contact: royke@cs.huji.ac.il
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1 INTRODUCTION

Feature selection is an important tool in many biological studies.

Given the large complexity of biological data, e.g. the number of

genes in a microarray experiment, one naturally looks for a small

subset of features (e.g. small number of genes) that may explain the

properties of the data that are being investigated. This type of

motivation fits into the general scheme of feature exploration,

i.e. searching for features because of their direct biological relev-

ance to the problem. An alternative motivation is that of pre-

processing: searching for a small set of features to simplify

computational constraints, to allow for the handling of high

throughput biological experiments, and to separate signal from

noise. Practically, selection of a small set of genes is of ultimate

importance when a small set of informative genes can be the basis

for cancer diagnosis and a basis for development of gene associated

therapy.

Preprocessing often involves some operation on feature-space in

order to reduce the dimensionality of the data. This is referred to as

feature extraction, e.g. restricting oneself to the first r principal

components of a PCA routine. Note that superpositions of features

appear in this example. Alternatively, in feature selection we limit

ourselves to particular features of the original problem. This is the

subject to be studied here. Let us refer to Guyon and Elissef (2003)

for a comprehensive survey.

It is conventional to distinguish between wrapper and filter

modes of the feature selection process. Wrapper methods contain

a well-specified objective function, which should be optimized

through the selection. The algorithmic process usually involves

several iterations until a target or convergence is achieved. Feature

filtering is a process of selecting features without referring back to

the data classification or any other target function. Hence we find

filtering as a more suitable process that may be applied in an

unsupervised manner.

Unsupervised feature selection algorithms belong to the field of

unsupervised learning. These algorithms are quite different from the

major bulk of feature selection studies that are based on supervised

methods (e.g., Guyon and Elissef, 2003, Liu and Wong, 2002), and

compared to the latter are relatively overlooked. Unsupervised stud-

ies, unaided by objective functions, may be more difficult to carry

out, nevertheless they convey several important theoretical advant-

ages: they are unbiased, by neither the experimental expert nor by

the data-analyst, can be preformed well when no prior knowledge is

available, and they reduce the risk of overfitting (in contrast to

supervised feature selection that may be unable to deal with a

new class of data). The downside of the unsupervised approach

is that it relies on some mathematical principle, like the one to

be suggested in this study, and no guarantee is given that this

principle is universally valid for all data. A common practice to

resolve this quandary is to demonstrate the success of the method on

various biological datasets and compare the results obtained by the

method with external knowledge.

Existing methods of unsupervised feature filtering include rank-

ing of features according to range or variance (e.g., Herrero, 2003,

Guyon and Elissef, 2003), selection according to highest rank of the

first principal component (‘Gene shaving’ of Hastie et al. 2000,�To whom correspondence should be addressed.
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Ding 2003) and other statistical criteria. An example of the latter is

Ben-Dor et al., (2001) where all possible partitions of the data are

considered and the corresponding features are labeled. The parti-

tions with statistical significant overabundance are selected.

Another example is of Wolf et al., (2005), who optimize a function

based on the spectral properties of the Laplacian of the features.

Here we present an intuitive, efficient and deterministic principle,

leaning on authentic properties of the data, which serves as a reliable

criterion for feature ranking. We demonstrate that this principle can

be turned into efficient and successful feature selection methods.

They compete favorably with other popular methods.

2 METHODS

2.1 Mathematical framework and notations

Let us consider a dataset of n instances1 A½nXm� ¼ f�AA1‚ �AA2‚ ::::‚
�AAi‚ :::‚

�AAng,
where each instance, or observation, Ai is a vector of m

measurements or features. The objective is to define a subset of

features ~MM , of size mc < m, that, in a sense to be defined below, best

represents the data.

In PCA (or SVD) studies it is conventional to regard the best representa-

tion as the minimal least-square approximation of the original matrix (Wall

et al., 2003). This principle can be followed also in feature extraction but it

has the disadvantage that it may preserve too many properties of the data,

including systematic noise. We will define our ‘best approximation’ using a

principle based on SVD-entropy, and subject it to an a-posteriori test: given

different selection rules of features choose the ones that prove useful as basis

for the best fit to labeled data, e.g., perform clustering within the data-space

spanned by the selected features and compare the results with known clas-

sification. This comparison will be performed using the Jaccard score.

J ¼ n11

n11 þ n01 þ n10

ð1Þ

where n11 is the number of pairs of instances that are classified together,

both in the ‘expert’ classification and in the classification obtained by the

algorithm; n10 is the number of pairs that are classified together in

the ‘expert’ classification, but not in the algorithm’s classification; n01 is

the number of pairs that are classified together in the algorithm’s classifica-

tion, but not in the ‘expert’ classification.

The Jaccard score reflects the ‘intersection over union’ between the algor-

ithm’s clustering assignments and the expected classification. Its values

range from 0 (no match) to 1 (perfect match).

2.2 Ranking by SVD-Entropy

Alter et al., (2000) have defined an SVD-based entropy of the dataset.

Denote by sj the singular values of the matrix A. sj
2 are then the eigenvalues

of the nxn matrix AAt. Let us define the normalized relative values (Wall

et al., 2003): and the resulting

Vj ¼ s2
j

.X
k

s2
k ð2Þ

dataset entropy (Alter et al., 2000):

E ¼ � 1

log ðNÞ
XN
j¼1

Vj log ðVjÞ ð3Þ

This entropy varies between 0 and 1. E ¼ 0 corresponds to an ultra-

ordered dataset that can be explained by a single eigenvector (problem of

rank 1), and E ¼ 1 stands for a disordered matrix in which the spectrum is

uniformly distributed. Figure 1 demonstrates two examples of 5 eigenvalues,

one with high entropy (left, 0.87) and the other with low entropy (right, 0.14).

As can be seen in Figure 1, when the entropy is very low, one expects a very

non-uniform behavior of eigenvalues. One should not confuse the standard

definition of entropy, based on probabilities (Shannon, 1948), with the one

used here, which is based on the distribution of eigen- (or singular) values.

Although standard entropy considerations appear in feature selection meth-

ods, such as the supervised bottleneck approach (Tishby et al., 2000), the use

of SVD-entropy for feature selection is a novel approach.

We define the contribution of the i-th feature to the entropy (CEi) by a

leave-one-out comparison according to

CEi ¼ EðA½nXm�Þ � EðA½nXðm�1Þ�Þ ð4Þ

where, in the last matrix, the i-th feature was removed.

Thus we can sort features by their relative contribution to the entropy. Let

us define the average of all CE to be c and their standard deviation to be d.

We distinguish then between three groups of features:

(1) CEi > c + d, features with high contribution

(2) c + d > CEi > c-d features with average contribution

(3) CEi < c-d features with low (usually negative) contribution

Features in the first group (high CE) lead to entropy increase; hence they

are assumed to be very relevant to our problem. Retaining these features we

expect the instances to be more evenly spread in the truncated SVD space.

The features of the second group are neutral. Their presence or absence does

not change the entropy of the dataset and hence they can be filtered out

without much information loss. The third group includes features that reduce

the total SVD-entropy (usually c-d <0). Such features may be expected to

contribute uniformly to the different instances, and may just as well be

filtered out from the analysis.

The first feature selection method that we propose is to limit oneself to the

first group of features according to the CE ranking. A will then be represented

by a new matrix of rank mc, the number of features in group 1. Several other

feature selection methods are suggested in the next section. In all of them we

assume that the same value of mc continues to serve as the right guide for

optimal dimensionality reduction.

2.3 Three Feature Selection Methods

Entropy maximization can be implemented in three different ways, as is also

the case in other feature selection methods.

Fig. 1. A comparison of two eigenvalue distributions; the left has high entropy (0.87) and the right one has low entropy (0.14).

1In this paper A (or A[nXm]) is a matrix and A (or Ai) is a vector.
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(1) Simple ranking (SR): select mc features according to the highest

ranking order of their CE values.

(2) Forward Selection (FS): here we consider two implementations.

(a) FS1: Choose the first feature according to the highest CE. Choose

among all other features the one which, together with the first

feature, produces a 2-feature set with highest entropy. Continue

with iteration over all m-2 features to choose the third according to

maximal entropy, etc, until mc features are selected (Box 1).

(b) FS2: Choose the first feature as before. Recalculate the CE values

of the remaining set of size m-1 and select the second feature

according to the highest CE value. Continue the same way until

mc features are selected (Box 2).

(3) Backward Elimination (BE): Eliminate the feature with the lowest CE

value. Recalculate the CE values and iteratively eliminate the lowest

one until mc features remain (Box 3).

One may view the different methods also as specifying alternative

ranking methods. Whereas SR ranks the features according to their original

CE values, FS1, FS2 and BE introduce other ranking orders through the

algorithms defined above. In the examples studied below we display

rankings for the entire range of 1 to m.

In an appendix we analyze the computational complexity of all these

methods. SR is the fastest one and BE is the most cumbersome one for

large numbers of features. In the examples to be discussed next, we will

compare the different methods with one another. However, because of

complexity, the BE method will be used in only one of the examples.

3 Results

Our four feature filtering methods were compared with each

other and with two known methods: Variance Selection (VS) and

Gene Shaving (GS). The latter is a variation of a method of Hastie

et al. (2000) which removes features iteratively according to their

lowest correlations with the first principal component. For compar-

ison we also look at results of random feature selection on several

benchmarks.

3.1 The viruses dataset of Fauquet, 1988

This is a dataset of 61 rod-shaped viruses affecting various crops

(tobacco, tomato, cucumber and others) originally described by

Fauquet et al. (1988) and analyzed more thoroughly by Ripley

(1996). There are 18 measurements of Amino Acid Compositions

(AAC) for the coat proteins of the virus that serve as 18 features.

The viruses are known to be classified into four classes:

Hordeviruses (3), Tobraviruses (6), Tobamoviruses (39) and

Furoviruses (13).

Figure 2 displays the CE values of all 18 features. Our criterion

sets mc ¼ 3. We test the performance of the system for the entire m
range to see if this choice makes sense. Before doing so, let us

display the ranking orders of all methods in Table 1. By definition,

SR has the same ranking order as CE in Figure 2. In this problem,

BE turns out to lead to the same order as FS1, and all our three

methods agree with each other on the first three features to be

selected. We include in Table 1 also the ranking order of VS (vari-

ance selection) and GS (gene shaving). The two last ones are highly

correlated with each other (Spearman correlation 0.76) but highly

uncorrelated with our three methods (see Supplementary Material

for more details). In particular note that VS chooses ASX and GLX

as its second and third features, whereas for our three methods these

two features are unfavorable (15th to 18th) choices.

Next we evaluate the subset selection using the Jaccard score.

This is done by applying the QC clustering algorithm (Horn and

Gottlieb, 2002) on the 61 viruses described by the selected subset of

features. QC was applied after reduction of each space to normal-

ized 3-space dimensions, using the parameter s ¼ 0.5 (for details

see Varshavsky et al., 2005, and COMPACT2). Results are shown in

Box 1: Pseudo-code of Forward Selection method FS1

Box 2: Pseudo-code of Forward Selection in method FS2

Box 3: Pseudo-code of Backward Elimination method BE

Fig. 2. CE of the 18 Amino Acid Compositions (AAC) of the virus dataset.

ASX stands for ASN and ASP and GLX for GLN and GLU. The dashed line

represents the value of c and the dot-dashed line the value of c+d.

2http://adios.tau.ac.il/compact or http://www.protonet.cs.huji.ac.il/compact

Novel unsupervised feature filtering of biological data

e509



Figure 3 for three of our four methods. All three do exceedingly well

at the three features level (J > 0.9) whereas the variance method

obtains J¼ 0.4. Note that our methods, with our choice of mc, lead to

a much better result than J ¼ 0.6, obtained when all 18 features are

taken into account. This exemplifies the importance of keeping

features that maximize the entropy. The feature ranking of FS1

and BE is the only one that keeps performing very well with

more than three selected features. Similar relative successes

of feature selection evaluation (although less favorable

J-scores) were obtained with other clustering methods, such as

K-means. This comparison, as well as other details that could

not be fitted into this paper, can be found in the Supplementary

Material3.

Fauquet et al. (1987) have argued that the AAC of the coat protein

of plant viruses are specific to the structure of the viral particle, to

the mode of transmission and to sub-grouping of viruses to distinct-

ive classes. Our results indicate that choosing only 3–4 features

correctly, not only preserves the classification but allows much

better performance with minimal failure. It is interesting to note

that the 3 highest-ranking amino acids, GLY, THR and LYS are not

dominating the coat proteins. These amino acids account for only

13–21.5% of the coat proteins, a fraction that is similar to the

average percentage in the entire proteins database (18.3%). Further

investigation shows that neither their size nor polarity or electric

charges differentiate these three amino acids from the remaining.

Nevertheless, since GLY, THR, LYS and MET (the fourth ranked

AAC, according to the FS1 method) represent different functional

groups, we conclude that the FS1/BE ranking is consistent

with selecting amino acids that carry different physico-chemical

properties.

3.2 The MLL dataset of Armstrong et al., 2002

The second dataset that we apply our methods to is that of

Armstrong et al., 2002, who have attempted to cluster data of

three Leukemia classes: lymphoblastic Leukemia with MLL trans-

locations and conventional acute lymphoblastic (ALL) and acute

myelogenous Leukemias (AML). In the experiment, 12582 gene

expressions were recorded, using Affymetrix U95A chips on

72 patients, 20 of which diagnosed as MLL, 24 ALL and

28 AML. They showed that these 3 Leukemia types can be divided

according to some gene expression. However, when filtering in an

unsupervised manner (selecting 8700 genes that show some vari-

ability in expression level), the clustering results were unsatisfact-

ory and much inferior to a supervised selection of 500 genes that

best separate between the cancer patients.

Applying our CE criteria we use the method SR, and compare

clustering of these feature-filtered data with VS (Figure 4). Clus-

tering was performed by K-Means, averaging over 100 runs and

using K ¼ 3 with data projected onto a unit sphere in 3D-reduced

space (Varshavsky et al., 2005). The asymptotic Jaccard score is

J ¼ 0.426 for this K-Means method. As can be seen in Figure 4 VS

provides no improved quality, whereas SR leads to J-values

Table 1. Ranking of the 18 Amino Acid Compositions of the virus dataset

according to various feature filtering methods. Colors from white to black

match the numbers that reflect the ranking of each method

Fig. 4. Clustering quality of two feature selection methods. Results are

averages of 100 runs of K-Means clustering.

Fig. 3. Filtering quality of the virus dataset is tested by Jaccard scores of

clustering performed in spaces spanned by them (see text). Best results are

obtained for FS1 (identical with BE in this case) and SR for mc ¼ 3. FS1

continues to perform very well with more features. Feature selection accord-

ing to VS performs worse. For comparison we include also an evaluation

based on a large group of random order rankings.

3http://adios.tau.ac.il/compact/UFF/SUPP
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between 0.7 and 0.8 for filtered gene groups of sizes 250 to 450. The

preferred mc value according to c + d of SR is 254. Better results can

be obtained by using the QC algorithm, but the same trend and

conclusions regarding feature selection hold also there. It is

interesting to note that QC clustering of our unsupervised SR

method, for mc ¼ 254, reaches J ¼ 0.85 (see supplementary).

We display the K-Means analysis in Figure 4, in spite of its poorer

performance compared to QC, in order to emphasize that the quality

of the feature filtering method is independent of the clustering-test

performed on the filtered data.

3.3 The Leukemia dataset of Golub et al., 1999

After demonstrating the effectiveness of our methods on both small

and large datasets, we choose a third dataset (Golub et al., 1999) that

has served as a benchmark for several clustering algorithms (Sharan

and Shamir, 2000, Getz et al., 2000 and more) and feature selection

methods (e.g., Liu B. et al., 2004, Liu H. et al., 2002). The experi-

ment sampled 72 Leukemia patients with two types of Leukemia,

ALL and AML. The ALL set is further divided into T-cell Leukemia

and B-cell Leukemia and the AML set is divided into patients who

have undergone treatment and those who did not. For each patient,

an Affymetrix GeneChip measured the expression of 7129 genes.

The task is clustering into the four correct groups within the 72

patients in a [7129x72] gene-expression matrix. This clustering task

is quite difficult. Using the QC method (in normalized 5 dimensions

with s ¼ 0.54), applied to the data without feature selection, one

obtains J ¼ 0.707, which is the best score for a variety of clustering

algorithms (Varshavsky et al., 2005).

The CE values for the 7129 features of this problem are displayed

in Figure 5. Most of the features have a zero score. There are

about 150 large CE values (see Figure 5) and about the same number

of small CE values. The bright color within the inset indicates the

first 100 features selected by FS1. While their ordering is different

from the SR ranking, most of them belong, as expected, to the class

of large CE values. The overlaps of the first leading features of SR

with those of FS1 and FS2 are shown in the Venn diagrams of

Figure 6.

Next we turn to testing the filtering methods to see how well they

do in the clustering task, i.e. what are the Jaccard scores that are

obtained by applying an identical clustering algorithm to the dif-

ferent spaces spanned by the selected features. The clustering

algorithm is the QC method mentioned above. Figure 7 shows

that good results can be obtained by our filtering methods once

the gene subset is larger than 100 or so. For feature sets of sizes

120 to 200 we find selections (of FS1 and SR) that lead to Jaccard

scores that are better than J ¼ 0.707, the asymptotic limit. Gene

subsets larger than 300 result in Jaccard scores below the asymptotic

limit (for a complete list, see supplementary). Also in this problem

the GS results are inferior to those of the other methods.

3.3.1 Biological interpretations of the Leukemia dataset of Golub
et al., 1999 It is clearly of interest to look at the 100 or so genes

that participate in the sections that lead to the best Jaccard score. In

Figure 6 we saw that there exists a substantial overlap between the

choices of our three different methods. To study the biological

significance of our subset of overlapping 54 genes we have run a

GO enrichment analysis (NetAffx� web tool4) on this subset. As

Fig. 5. CE of the 7129 genes of the Golub dataset (c ¼ 0, dashed lines

represent c ± d). The inset zooms into the highest-ranked 300 genes, with

bright dots signifying the top 100 features according to the FS1 method

Fig. 6. Venn diagram of relations among the first 100 features selected by

different methods.
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Fig. 7. Jaccard scores of QC clustering for different feature filtering methods

on small gene subsets of the Golub data.

4http://www.affymetrix.com/analysis/index.affx
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displayed in Figure 8 (and supplementary), we are able to assign

some prevalent biological processes to the selected genes.

The association of our selected 54 genes with functional annota-

tion related to defense, inflammation and response to pathogen (with

p-value ranging from e-7 to e-22) is intriguing (Figure 8). It may

underlie the difference in AML and ALL in view of the different

susceptibility of the patients to treatment such as chemo and

radiotherapy. Thus the listed protein processes may not only be

considered as ‘subtype cancer markers’ but as an indication of

the biological properties of the cancerous cells. Specifically,

cellular response to pathogen, to stress and to inflammation may

be different for AML and ALL. It may also provide a focused

hypothesis towards the processes and mechanisms that can be

used as a follow up in monitoring the outcome of therapy in

case of Lymphoma.

4 Discussion

We have introduced a novel principle for unsupervised feature

filtering that is based on maximization of SVD-entropy. The fea-

tures can be ranked according to their CE-values. We have proposed

four methods based on this principle and have tested their usefulness

on three different biological benchmarks. Our methods outperform

other conventional unsupervised filtering methods. This is clearly

brought out by the examples that we have analyzed. More details are

provided by our Supplementary Material5. In particular, it is striking

to note how much more successful our methods are compared to VS,

the popular variance ordered method.

The major theoretical difference between the two approaches is

that VS relies on a measurement of one feature at a time. The

entropy-based approach, as implemented by the CE calculation,

takes into account the interplay of all features. In other words,

the contribution of a feature, its CE, depends on the behavior of

all other features in the problem. Thus variance is only one of the

factors that affect the CE value. The CE value depends also on

the correlations (or the absence thereof) of a given feature with

all others. The difference between the ranking of SR and VS

in Table 1 bears evidence to the difference between the two

methods.

We have demonstrated that our selected features have important

biological significance, through a GO enrichment analysis of the

genes in the Golub dataset. A similar analysis of the Armstrong

dataset is presented in the Supplementary Material5. In the virus

dataset, we have shown that the FS1/BE filtering method works

exceedingly well for a large range of numbers of features. The

biological significance of the relevant choices of amino-acids

remains to be uncovered.

The CE ranking leads to an estimate of the optimal mc choice.

This is an important point by itself. In other methods, such as VS, it

is almost impossible to make this choice on the basis of variation of

feature properties. Conventionally one makes therefore an arbitrary

choice, such as selecting 10% or 50% of the features. In the three

datasets discussed in our paper it seems quite clear that our sug-

gested optimal mc, as judged from the CE scores, leads indeed to

optimal results. The improved Jaccard scores indicate that the selec-

ted mc features have biological significance.

Our four methods differ in computational complexity. SR is the

simplest one, since it relies just on sorting the initial CE values. In an

appendix we compare its complexity with that of the other methods.

The relative values depend on the choice of mc (the size of the

subset).

FS1 chooses features that lie high on the original CE-score, hence

its optimal selected set will have a large intersection with that of SR.

Nonetheless, for small numbers of selected features, the order may

be very important. Thus, in the virus problem, FS1 turns out to be

much more successful than SR. In the Leukemia datasets, where

reasonable results were obtained for larger feature sets, FS1 was not

found to be significantly better than SR. Biologically one may

expect the appearance of features that are degenerate with one

another, i.e. have quite identical behavior on all instances. Such

duplicity can be included by the SR method but excluded by the FS1

one.

Our optimal feature-filtered sets in the two Leukemia problems

turn out to include just few percents of all genes. Thus a CE-analysis

indicates that a small subgroup of all genes is the most relevant one

to the data in question. We have seen that this relevance is borne out

by both Jaccard scores and GO enrichment analysis. The pursuit of

small feature sets is often guided by wishful thinking that the

essence of biological importance can be reduced to a small causal

set. Here we find that the small number obtained in our analysis is an

emerging phenomenon, and may be regarded as a true biological

result.
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APPENDIX

Computational complexity of the four methods

In the following calculations, we will assume that mc < n, which

will give upper bound to the complexity. We will not assume that

m < n.

The computation of all eigenvalues for a dense symmetric matrix

requires O(p3) operations, where p is the size of the matrix

(Anderson, 1999).

We will define the complexity of the initial computation of all

CEs to be O(m�min(n,m)3) 
 K.

� SR: The computational complexity is lowest for the SR method.

There’s only one calculation of all CEs, followed by sorting.

Hence the complexity is O(K + m�logm).

� FS1: Calculation of all CEs followed by (mc �1) repetitive

diagonalization of a growing matrix (from 2 to (mc�1)), leading

to O(K + m�mc
4).

� FS2: Calculation of all CEs followed by (mc �1) repetitive

diagonalization of a decreasing matrix (from m-2 to (m-mc)),

leading to O(m5-(m-mc)
5). Note that here, if n < (m-mc), the

complexity is O(mmcn
3)

� BE: Calculation of all CEs followed by (m-mc-1) repetitive diag-

onalization of a decreasing matrix (from m-2 to (mc-1)), leading

to O(m5-mc
5). Note that here, if n < m, the complexity is reduced

to O((m2-mc
2)n3).

Clearly computational complexity is lowest for the SR method,

since only one calculation of all CEs is needed. BE or FS2 have the

highest complexity, depending on whether m > 2mc or not.
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ABSTRACT

Motivation: We explore the problem of constructing near-perfect

phylogenies on bi-allelic haplotypes, where the deviation from perfect

phylogeny is entirely due to homoplasy events.Wepresent polynomial-

time algorithms for restricted versions of the problem. We show that

these algorithms can be extended to genotype data, in which case the

problem is called the near-perfect phylogeny haplotyping (NPPH)

problem. We present a near-optimal algorithm for the H1-NPPH

problem,which is to determine if a given set of genotypesadmit a phylo-

geny with a single homoplasy event. The time-complexity of our

algorithm for the H1-NPPH problem is O(m2(n + m)), where n is the

number of genotypes andm is the number of SNP sites. This is a signi-

ficant improvement over the earlier O(n4) algorithm.

We also introduce generalized versions of the problem. The H(1, q)-

NPPHproblem is to determine if a given set of genotypes admit a phylo-

genywithqhomoplasyevents, so that all the homoplasy eventsoccur in

a single site. We present an O(mq+1(n + m)) algorithm for the H(1,q)-

NPPH problem.

Results:Wepresent results on simulated data,whichdemonstrate that

theaccuracyofouralgorithmfor theH1-NPPHproblemiscomparable to

that of the existing methods, while being orders of magnitude faster.

Availability: The implementation of our algorithm for the H1-NPPH

problem is available upon request.

Contact: rvijaya@cs.ucf.edu

1 INTRODUCTION

Though the genomic sequence is mostly similar from individual to

individual, each individual differs from others in some locations.

Studying these variations will help in understanding, diagnosis, and

treatment of many genetically inherited diseases. Single Nucleotide

Polymorphisms (SNPs) are the most common genetic variations

observed. SNPs are loci in the human genome where multiple

variants exist at a high enough frequency (>0.05) that the position

can be considered polymorphic within the population. Each indi-

vidual variant in a SNP location is called an allele. It is estimated

[HapMapConsortium, 2003] that there are as many as 10 million

SNPs in the human genome, which translates to a density of one

SNP every three hundred base pairs of DNA. More than 99% of the

SNPs in the human genome are bi-allelic.

The human genome is diploid, meaning that in each cell there are

two copies of each chromosome. Due to the bi-parental nature of

heredity in diploid organisms, one of these copies is derived from

the mother and the other is derived from the father. Each of these

copies is called a haplotype. As we are interested in only the SNP

locations in the genome, a haplotype that covers a region of the

chromosome with m SNPs is generally represented as a binary

vector of length m. The values 0 and 1 represent the two alleles

of each SNP. A genotype gives combined information about the two

haplotypes, and is represented by a length-m vector over the alpha-

bet f0‚1‚2g. In a genotype g, if g[i] is 0 or 1, it implies that the two

haplotypes (h, h0) for g are homozygous in the ith SNP with the

0-allele or the 1-allele, respectively. If g[i] ¼ 2, it implies that the

ith SNP is heterozygous in g. i.e., either h[i] ¼ 0 and h0½i� ¼ 1, or

h[i] ¼ 1 and h0½i� ¼ 0.

With the current technology, the cost associated with empirically

collecting haplotype data is prohibitively expensive. Therefore,

only the un-ordered bi-allelic genotype data is collected through

empirical means. This necessitates computational techniques for

inferring haplotypes from genotypes. Given n genotypes over m
SNP sites, the haplotype inference (HI) problem is to find a pair of

haplotypes for each genotype, so that combining the two haplotypes

results in the genotype. This problem is also referred to as the phase
problem in genotyping. For each genotype, we want to find the most

likely pair of haplotypes that might have combined to form the

genotype. The haplotype inference problem was first introduced

by Clark (1990). Subsequently, multiple formulations were intro-

duced, with different definitions for the optimum solution. Most

formulations are based on parsimony, perfect phylogeny or max-

imum likelihood. A comprehensive survey of the many different

variations of the HI problem is provided by Bonizzoni et al. (2003).

1.1 Perfect phylogeny

Under the coalescent model of evolution, all the individuals in

a population have a common ancestor. Applying the standard infi-

nite sites assumption to the coalescent model leads to the perfect

phylogeny model of evolution, which assumes that each site can

mutate only once. A perfect phylogeny T for n haplotypes over

m SNPs is a tree in which each of the m SNPs labels exactly

one edge in T. Each vertex in T is labeled by a haplotype vector.

Each of the n haplotypes must label some vertex in the tree.

Applying the coalescent model to the Haplotype Inference prob-

lem, Gusfield (2002) introduced a perfect phylogeny formulation�To whom correspondence should be addressed.
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of the problem, called the PPH(Perfect Phylogeny Haplotyping)

problem. The perfect phylogeny formulation requires that all the

haplotypes that resolve the given set of genotypes describe a perfect

phylogeny. The perfect phylogeny model is justified by the block

structure of the human genome and the validity of the infinite sites

assumption.

Gusfield et al. (2002) presented an O(nm2) algorithm for the PPH

problem by reduction to the graph realization problem. Bafna et al.
(2002) presented a direct solution that takes OðnmaðnmÞÞ time.

Recently, three independent O(nm) algorithms (Liu and Zhang,

2004; Ding et al., 2005; Vijaya Satya and Mukherjee, 2005,

2006) have been developed for the PPH problem.

1.2. Imperfect phylogeny

Biological data rarely, if ever, conforms to perfect phylogeny

because of repeated mutations and recombinations. However, the

deviations from perfect phylogeny are expected to be small within

a ‘block’ of the human genome. When the deviations from perfect

phylogeny are small, the phylogenies can be referred to as near-

perfect phylogenies. The term ‘homoplasy event’ is used to refer to

a repeated/back mutation. The problem of constructing near perfect

phylogenies with multiple homoplasy events has been tackled before

(Fernandez-Baca and Lagergren, 2003). The complexity of their

algorithm for constructing near perfect phylogenies on a set of n
haploid taxa is given by Oðnmq2q2r2Þ, where r is maximum number

of alleles in any site, and q is the number of repeated/back mutations.

In this paper, we are only concerned with bi-allelic SNP data, and

hence r ¼ 2. Even in case of bi-allelic data, the above algorithm is

clearly impractical for values of q as small as four. Recently Sridhar

et al. (2005) proposed a more practical algorithm for binary data

with complexity ðqþ pÞOðqÞnmþ Oðnm2Þ where p is the number of

characters that share four gametes with some other character.

In this paper, we deal with restricted versions of the near-perfect

phylogeny problem on both haplotype and genotype data and

present polynomial time algorithms for these problems. Song

et al. (2005) have introduced a restricted version of the near-perfect

phylogeny haplotyping problem that allows a single homoplasy

event. They specifically defined the problem on genotype data

and called the problem the H1-Imperfect Phylogeny Haplotyping

(H1-IPPH) problem. The notation ‘H1’ indicates that there is a

single homoplasy event in the phylogeny. The acronym IPPH

has previously been used (Halperin and Karp, 2004; Kimmel and

Shamir, 2005) to refer to the Incomplete Perfect Phylogeny

Haplotyping problem. Therefore, in this paper, we rename the prob-

lem as the H1- Near-Perfect Phylogeny Haplotyping problem

(H1-NPPH). Song et al. (2005) first identify the column with the

homoplasy event, construct a perfect phylogeny T0 for the remaining

columns, and then convert T0 into an H1-NPP T that includes

the column with the homoplasy event. In converting T0 into T,

the procedure followed by Song et al. (2005) is to remove pairs

of edges from T0 and carry out certain tests on the disconnected

subtrees produced as a result of removing the pair of edges from T0.
The overall complexity of the algorithm is O(n4).

Our fundamental approach is similar to that presented in Song

et al. (2005). However, we observe that removing pairs of vertices

from T0 leads to a faster algorithm than removing pairs of edges

from T0. This observation leads to a faster O(m2(n + m)) algorithm

that can be easily extended to handle multiple homoplasy events.

Based on this observation, we present a generalized framework for

constructing near-perfect phylogenies(NPPs) that involve multiple

homoplasy events, both for haplotype and genotype data. We define

an H(1, q) NPP as a near-perfect phylogeny involving q homoplasy

events in a single site. Similarly, a H(p, q) -NPP is a near perfect

phylogeny in which at most p sites have homoplasy events,

with at most q homoplasy events in each site. Under this notation,

a near-perfect phylogeny with a single homoplasy is denoted as the

H(1, 1)-NPP.

In Section 2.1, we present polynomial-time algorithms for cons-

tructing near-perfect phylogenies for haplotype data. In Section 2.2,

we extend these algorithms to deal with genotype data. Testing an

implementation of our H1-NPPH algorithm on simulated data, we

show that our algorithm is extremely fast while having comparable

accuracy to that of the popular PHASE (Stephens et al., 2001)

program.

2. METHODS AND ALGORITHMS

2.1 Constructing Near-Perfect Phylogenies from

haplotype data

In the following, we present polynomial-time algorithms for restricted

versions of Near-Perfect Phylogeny (NPP) problem. In all the problems

that we describe in this section, the input is an n · m matrix M over the

alphabet {0, 1}, where the columns c1‚c2‚ . . . ‚cm indicate sites and the rows

r1‚r2‚ . . .‚rn indicate samples. Given that the matrix M does not admit

a perfect phylogeny, we want to construct a near-perfect phylogeny for

M that is the closest to a perfect phylogeny. We use the terms ‘column’

and ‘site’ interchangeably in the rest of this paper.

Throughout this paper, we assume that the deviations from perfect phylo-

geny are only due to violations of the infinite sites assumption—i.e, due to

recurrent or back mutations. The algorithms we present construct un-rooted

phylogenies. There is no distinction between a recurrent mutation and a back

mutation in an un-rooted phylogeny.

We define the following terms. An ordered pair of values (a,b), a 2 f0‚1g,
b 2 f0‚1g, is said to be induced by a pair of ordered columns ði‚ jÞ if there is

a row r in M such that M½r‚ i� ¼ a and M½r‚ j� ¼ b. The set of ordered pairs

induced by a pair of columns ði‚ jÞ is denoted by Iði‚ jÞ. According to the well-

established four-gamete test [11], the matrix M does not admit a perfect

phylogeny if jIði‚ jÞj ¼ 4 for any pair of columns ði‚ jÞ. We say that two

columns i and j conflict with each other if jIði‚ jÞj ¼ 4. A conflict graph Gc ¼
ðV‚EÞ is a graph in which each vertex vi 2 V corresponds to a column ci in

M. An edge ðvi‚vjÞ is in E if the sites ci and cj conflict with each other.

The general definition of a phylogeny is that the phylogeny is a tree in

which the leaves represent the input taxa. In this paper, we are constructing

character-based phylogenies, and hence we are only interested in the topo-

logy of the phylogeny. Therefore we use the term phylogeny to refer to an

edge and vertex labeled tree T. Each edge in T is labeled by a site in M, and

indicates a mutation in that site. An example of a phylogeny is shown in

Figure 1. Each vertex in the phylogeny is labeled by a 0-1 vector of length m,

Fig. 1. (a) A haplotype matrix M; (b) A phylogeny T for M.
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and indicates the state of each site at the vertex. For any vertex v, we denote

the vertex label of v as L(v). Since T is a phylogeny for M, for each row r in

M, there must be a vertex v such thatLðvÞ ¼ M½r�. This mapping of a row r to

a vertex v is represented using the notation v(r) ¼ v. Multiple rows in M

might map to the same vertex in T, and some vertices in T might not represent

any row in M. Notice that the phylogeny in Figure 1 is not a perfect phylo-

geny. There are two edges in T labeled with column c1.

Removing a set of vertices Sc from any tree T divides T into a set of

connected (trivial or non-trivial) components denoted by T/Sc
. Note that,

since T is a tree, each connected component Ti 2 T/Sc
will also be a tree. For

any connected component Ti of T, we define RðTiÞ as the set of rows of M
that map to any vertex in Ti. A column c is said to be non-polymorphic in Ti if

the column c has the same state in each row r 2 RðTiÞ. For example, refer to

Figure 2a, which is the same phylogeny as in Figure 1. The three connected

components produced by removing the vertices x and y in Figure 2a are

shown in Figure 2b (in dotted regions). In the matrix M, the row r2 maps to

T1, r3 maps to T2, and the set of rows fr4‚r5gmap to T3. All the columns are

non-polymorphic in T1 and T2. However, columns c5 and c1 are polymorphic
in T3. Columns c2, c3 and c4 are non-polymorphic in T3.

2.1.1 The H1-NPP construction problem In the following, we

describe the conditions under which a given set of haplotypes admit an

H1-NPP. There are efficient algorithms to determine if the matrix M admits

a perfect phylogeny. When M does not admit a perfect phylogeny, the

problem is to construct an H1-NPP for the matrix M, or determine that

M does not admit an H1-NPP. For simplicity, we call the H1-NPP construc-

tion problem as the H1-NPP problem in the rest of the paper.

Let M be a matrix that does not admit a perfect phylogeny, but admits

an H1-NPP. Let cb be the column with the recurrent mutation. Let T be the

H1-NPP for M. By definition, if an edge ðu‚vÞ is labeled by a site i, it implies

that LðuÞ½i� ¼ LðvÞ½i�. Clearly, there will be two edges in T that are labeled

with cb. Let the two edges be ðu‚vÞ and ðw‚xÞ, as shown in Figure 3. We

call the path between the two vertices v and w as the recurrent mutation path,

or RMP. Let S be the set of all sites, i.e., S ¼ fc1‚c2‚ . . .‚cmg. Let SRMP be

the set of sites that label an edge in RMP. Let Se be the set of sites other than

cb that are not in RMP. i.e., Se ¼ S � fSRMP [ fcbgg.

THEOREM 1. Every site c 2 SRMP conflicts with cb, and every site
c 2 Se does not conflict with cb.

PROOF. Let LðuÞ½cb� ¼ a. Clearly, LðvÞ½cb� ¼ �aa ¼ LðwÞ½cb� and

LðxÞ½cb� ¼ a. For any site c 2 SRMP, LðvÞ½c� ¼ LðwÞ½c�. The site c1 con-

necting the vertices y and z in Figure 3 is such a site. Let LðyÞ½c1� ¼ b, which

implies that LðzÞ½c1� ¼ �bb. The phylogeny T can be divided into four subtrees

T1, T2, T3 and T4 with respect to the sites cb and c1, as shown in Figure 3. The

pair of sites ðcb‚c1Þ take the states (a,b), ð�aa‚bÞ, ð�aa‚�bbÞ and ða‚�bbÞ, in subtrees

T1, T2, T3 and T4, respectively. Now, RðT1Þ, RðT2Þ, RðT3Þ and RðT4Þ are all

non-empty. This is because the matrix M will admit a perfect phylogeny if

RðT1Þ or RðT4Þ are empty, and c1 need not be in RMP if RðT2Þ or RðT3Þ are

empty. Therefore, jIðcb‚c1Þj ¼ 4, and hence cb conflicts with c1.

It can similarly be shown that every site c 2 Se will not conflict with cb.

Sites c2, c3 and c4 in Figure 3 are examples of such sites. �
As explained before, T/fu‚ v‚ w‚ xg is the set of connected components gene-

rated by removing vertices u, v, w and x from T. Removing the vertices u, v, w

and x removes both the edges labeled with cb from T. Therefore, no con-

nected component in T/fu‚ v‚ w‚ xg will have an edge labeled with cb. Therefore,

the column cb will be non-polymorphic within any connected component

Ti 2 T/fu‚ v‚ w‚ xg.
We will now state and prove a theorem that gives the necessary and suffi-

cient conditions for a haplotype matrix to admit a H1-NPP. Let M be a matrix

such that M does not admit a perfect phylogeny, but the matrix M0 produced

by removing a column cb from M admits a perfect phylogeny T0. Since the

rows in M correspond one-to-one with rows in M0, the rows in M can be

mapped to vertices in T0. It will be helpful to visualize the matrix M as the

matrix M0 with a single column cb appended as the rightmost column of M.

We state the following theorem:

THEOREM 2. The matrix M admits an H1-NPP iff there are two
vertices x and y in T0 such that the site cb is non-polymorphic in
every connected component in T0/fx;yg.

PROOF. Let T0 /fx‚ yg ¼ fT1‚T2‚ . . . :Tkg, as shown in Figure 4a, where

k ¼ dðxÞ þ dðyÞ � 1, dðxÞ is the degree of x and dðyÞ is the degree of y

in T0. We show that we can construct an H1-NPP T for M by expanding the

vertices x and y into edges labeled with cb. We start with an empty tree T. We

replace x with two new vertices x0, x1, and y with two new vertices y0 and y1,

and add two edges ðx0‚x1Þ and ðy0‚y1Þ, both labeled with cb. The two

vertices x0 and x1 are labeled based on the label of the vertex x in T0

as—Lðx0Þ½i� ¼ Lðx1Þ½i� ¼ LðxÞ½i� for every column i 6¼ cb. This is equival-

ent to taking the matrix M0 and associating the vertex label of x in T0 to both

the vertices x0 and x1. The site cb is now associated with the edge ðx0‚x1Þ as

follows: Lðx0Þ½cb� ¼ 0, and Lðx1Þ½cb� ¼ 1. The vertices y0 and y1 are sim-

ilarly labeled based on the label of the vertex y in T0 in every site other than

cb. In site cb, Lðy0Þ½cb� ¼ 0 and Lðy1Þ½cb� ¼ 1. With reference to Figure 4b,

in each component Ti, 1 � i � j, there will be a vertex vi so that ðx‚viÞ is an

edge in T0. Since Ti is non-polymorphic in cb, we introduce an edge ðx0‚viÞ
or ðx1‚viÞ in T, depending on whetherLðvÞ½cb� ¼ 0, orLðvÞ½cb� ¼ 1, respect-

ively. Similarly, each component from Tjþ2 to Tk are connected to either

y0 or y1 by an edge, as shown in Figure 4b. If Tjþ1 is non-empty, there will

be vertices v1 and v2 in Tjþ1 so that ðx‚v1Þ and ðy‚v2Þ are edges in T0.
If Lðv1Þ½cb� ¼ 0, we can introduce the edges ðx0‚v1Þ and ðy0‚v2Þ in T. If

Lðv1Þ½cb� ¼ 1, we can introduce the edges ðx1‚v1Þ and ðy1‚v2Þ in T. If Tjþ1 is

empty (i.e., if x and y are adjacent in T0), we can arbitrarily introduce either

the edge ðx0‚y0Þ or ðx1‚y1Þ in T. Therefore, all the edges in T0 can be inserted

back into T in addition to the two edges labeled with cb. Every row in M can

be mapped to a vertex in T, and hence T is an H1-NPP for M. This proves that

the existence of the two vertices x and y is a sufficient condition for the

matrix M to admit an H1-NPP.

To prove that the existence of the two vertices x and y is a necessary

condition, assume that a given matrix M admits an H1-NPP T. We prove

that there must be two vertices x and y in T so that T0 /fx‚ yg is non-polymorphic
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Fig. 2. (a) The tree T before removing the vertices x and y; (b) The three

connected components T1, T2 and T3 after removing the vertices x and y.

Fig. 3. Illustration of Theorem 1.
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in cb. Since T is an H1-NPP, there must be exactly two edges labeled with cb in

T. Remove the two edges, by collapsing the edges into vertices. Call these

vertices x and y. Now obtain the set of trees T0 /fx‚ yg. Since cb does not appear as

an edge in any of the trees in T0 /fx‚ yg, cb is non polymorphic in each component

tree. Hence, the existence of the vertices x and y is a necessary condition. �

2.1.2 The H1-NPP construction algorithm Theorem 1 and

Theorem 2 allow us to determine if a given matrix M admits an H1-NPP

and lead to an efficient algorithm to construct a H1-NPP solution for the

given matrix M. The heart of the algorithm consists of determining the

vertices x and y satisfying Theorem 2 and expanding the nodes into

edges labeled with cb. We have already observed the following properties

of the conflict graph Gc:

� The conflict graph Gc for M must have a single non-trivial connected

component and there must be at most one vertex with degree greater

than one in the conflict graph. If there is any vertex with degree greater

than one in Gc, cb must be that column. If the conflict graph is a single

edge connected by two sites, cb must be one of the two sites.

� Let M0 be the matrix produced by removing the column cb from M. All

the sites connected to cb in the conflict graph must form a path P in the

perfect phylogeny T0 for the matrix M0.

� Let e1 and e2 be the two terminal vertices of the path P in T0. The site cb

should be non-polymorphic in each connected component Ti2T0/{e1,e2}.

These properties lead to an algorithm for the construction of an H1-IPP

for M.

Algorithm Steps

(1) Build the conflict graph Gcfor M. If Gc has more than one non-trivial

connected component or if there is more than one vertex in Gc with

degree greater than 1, M does not admit an H1-NPP. Otherwise proceed

to Step 2.

(2) Select the column cb. cb will be the column with degree greater than 1

in Gc. If the connected component in Gc is a single edge, arbitrarilypick

any of the two vertices that form the edge.

(3) Remove the column cb from M, and construct a perfect phylogeny T0

for the resulting matrix.

(4) Construct the set of columns Sc that are adjacent to cb in Gc. If M admits

an H1-NPP, the columns in Sc must define a path P in T0. Obtain the two

terminal ends x and y of this path. If Sc does not define a path in T0,
M does not admit an H1-NPP.

(5) Check if every connected component in T0 /fx‚ yg is non-polymorphic

in cb. If any connected component in T0 /fx‚ yg is polymorphic in cb,

M does not admit a perfect phylogeny.

(6) Expand the vertices x and y into the edges ðx0‚x1Þ and ðy0‚y1Þ, both

labeled with the column cb. Build the phylogeny T as described in the

proof of Theorem 2.

Figure 5 illustrates the algorithm. Figure 5a shows a matrix M with nine sites

and ten rows. The conflict graph Gc for M is shown in Figure 5b. From the

conflict graph, it is clear that removing column c3 will result in a perfect

phylogeny. The perfect phylogeny T0 after removing c3 is shown in

Figure 5c. The site c3 conflicts with sites c5 and c7, Hence the path defined

by the edges labeled with c5 and c7 should be the path between the two muta-

tions in site c3. Hence the vertices x and y in Figure 5c must be replaced by the

edges ðx0‚x1Þ and ðy0‚y1Þ in Figure 5d. In Figure 5c, the edges labeled with c1,

c2, c4 and c5 are incident in x. In Figure 5d, the edges c1 and c2 are incident

onx1 andc4 andc5 are incidentonx0,becauseof thestateofc3 inr5,r6,r4 andr2,

respectively. The row r3 now maps to x0, since M½r3‚c3� ¼ 0. Similarly the

edges out of y in T0 are distributed between the vertices y0 and y1 in T.

Complexity Analysis

Building the conflict graph Gc takes Oðnm2Þ time. Finding the connected

components in G takes OðmÞ time using depth-first search. Constructing the

Fig. 4. (a) The perfect phylogeny T0, showing {T1, . . . , Tk}, the connected components in T0/{x,y}; (b) Constructing T from T0/{x,y}.

Fig. 5. (a) A matrix M (b) Conflict graph for M (c) Perfect phylogeny T0 after removing c3. (d) The H1-NPP T for M.
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perfect phylogeny T0 takes OðnmÞ time, using the opph (Vijaya Satya, 2005,

2006) algorithm. The mapping nðrÞ of each row in M to a vertex in T0 takes

OðnÞ space and OðnmÞ time. Finding the two vertices x and y takes OðnmÞ
time. Building and checking each component in T0 /fx‚ yg for being non-

polymorphic in cb takes OðmÞ time. The overall complexity of the algorithm

is thus entirely dominated by the construction of the conflict graph Gc and

hence is Oðnm2Þ.

2.1.3 Multiple homoplasy events in a single site An extension of

the H1-NPP problem is the case when multiple homoplasy events within the

same site are allowed. This situation occurs quiet frequently with true hap-

lotype data. For example, the site 16519 in human mtDNA is expected to

have mutated multiple times. We call this problem the Hð1‚qÞ-NPP problem.

Formally, the Hð1‚qÞ-NPP problem is to construct a phylogeny for the input

taxa in which a single site has mutated at most qþ 1 times, where q is an

integer greater than 0.

The solution to the Hð1‚qÞ-NPP problem is an obvious extension of the

solution to the H1-NPP problem. As before, the conflict graph Gc for M

must have a single connected component, and there should be a single site

cb with degree greater than 1 within this connected component. We can

build a perfect phylogeny T0 for the matrix M0 obtained by removing the

column cb from M. Now, we need to find if there are qþ 1 (or fewer)

vertices in T0 so that expanding each one of these qþ 1 vertices into an

edge labeled with cb will result in a phylogeny T for M. This can be done

by testing all possible combinations of qþ 1 vertices in T0 to check if

they can lead to an Hð1‚qÞ-NPP solution. A set Q of qþ 1 vertices

admits an Hð1‚qÞ-NPP solution if each component in T0 /Q is non-

polymorphic in cb. For any set of vertices Q, this can be tested in

OðmÞ time. We repeat this procedure for values of q starting from 1

to a given maximum value k for q. There are exactly m vertices in

T0, and there are ðmqþ1Þ ffi mqþ1 ways in which qþ 1 vertices can be

selected from the m vertices. Therefore, in theory, the complexity of

the algorithm is Oðnm2 þ mqþ2Þ for a given q.

In practice, however, the algorithm can be implemented to run much

faster. The following observations reduce the search space significantly:

� If two rows r1 and r2 in M with M½r1‚cb� ¼ 0 and M½r2‚cb� ¼ 1 both

map to the same vertex z in T0, then we call the vertex z as a

polymorphic vertex with respect to cb. For obvious reasons, all poly-

morphic vertices in T0 must be expanded into edges labeled with cb

in any Hð1‚qÞ-NPP for M. Let Vp be the set of polymorphic vertices

in T0 with respect to cb.

� Let Sc be the set of sites in Gc that are adjacent to cb. Each one of the qþ 1

vertices selected for expansion must be incident on an edge labeled with a

site in Sc. Therefore, theqþ 1 verticeshave to be selectedout of l vertices,

where l � m is the number of distinct vertices in T0 that are incident on a

edge labeled with a site in Sc. In general, if the degree of cb in Gc is d, l will

be less than or equal to 2d. Let Va be the set of vertices in T0 that are

incident on an edge in Sc.

� Let Tc be the subtree(or forrest) in T0 formed exclusively by the sites in Sc.

All the leaves of Tc must always be selected for expansion into edges

labeled with cb. Let Vl be the leaves of Tc in T0.

Let mc ¼ jVaj, and let mg ¼ jVp [ Vlj. The actual number of sets Q that

need to be searched is given by ðmc�mg

qþ1�mg
Þ. Hence, for any matrix M, q will be

greater than or equal to mg � 1.

2.1.4. Allowing homoplasy events in multiple sites Extending the

problem even further, we define the Hðp‚qÞ-NPP problem. An Hðp‚qÞ-NPP

is a phylogeny in which at most p sites have homoplasy events, with at most q

homoplasy events in each site. The conflict graph in this case will have

multiple connected components and/or multiple vertices with degree greater

than 1.

Let Gc0 be the graph obtained by removing all degree-0 vertices from Gc.

If the matrix M is to admit an Hðp‚qÞ-NPP, Gc must have a vertex cover with

size less than or equal to p. If such a vertex cover C is found, removing the

vertices in C from GC0 will result in a graph with no non-trivial connected

components. We will be able to construct a perfect phylogeny T0 for the

vertices in S � C. Once T0 is constructed, adding any site in C to T0 is an

Hð1‚qÞ-NPP problem.

A necessary (but not sufficient) condition for the existence of an Hðp‚qÞ
solution is that for each site i 2 C, the set of sites fS � Cg [ fig must have

a Hð1‚qÞ solution. However, adding multiple sites in C to T0 is a more

difficult problem. Even if each of the p sites in C can be added to T0 to

form Hð1‚qÞ-NPPs, it does not necessarily imply that the matrix M has an

Hðp‚qÞ-NPP solution. For example, refer to Figure 6. The conflict graph

for matrix M in Figure 6a is shown in Figure 6b. The tree T0 after removing

c10 and c11 is shown in Figure 6c. A Hð1‚2Þ-NPP can be constructed by

adding either c10 or c11 to T0, but there is no Hð2‚2Þ-NPP that includes both

c10 and c11.

Therefore, to solve the Hðp‚qÞ-NPP problem, we need to determine if

there is a way to combine the p individual Hð1‚qÞ-NPP solutions into

a Hðp‚qÞ-NPP solution. For each site i in C, let Qi be the set of vertices

in T0 which have to be expanded into edges labeled with site i in order to add

the site i to T0 to form an Hð1‚qÞ-NPP. For each vertex x in T0, let

Px ¼ fijx 2 Qig.

DEFINITION. A site i 2 C is fully specified at a vertex x 2 T0 with

respect to an Hð1‚qÞ solution consisting of the vertices Qi if any one

of the following conditions are satisfied:

(1) At least one row in M maps to the vertex x.

(2) The vertex x is in a connected component Tx 2 T0 /Qi
, and at least one

row in M maps to a vertex in Tx.

Let x and y be two vertices that are adjacent to each other in T0. We define

that the two vertices x and y are pair-wise independent with respect to a set of

Hð1‚qÞ solutions for the sites in C if all of the following conditions are

satisfied:

(1) Every site i 2 Px is fully specified with respect to Qi at the vertex y

(2) Every site j 2 Py is fully specified with respect to Qj at the vertex x.

(3) jPx \ Pyj ¼ 0.

A vertex x in T0 is defined to be isolated ( w.r.to the given set of Hð1‚qÞ
solutions) if x is pair-wise independent with all the vertices adjacent to it.

Fig. 6. (a) Matrix M; (b) The conflict graph for the matrix M; (c) The tree T0 after removing c10 and c11.
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Each vertex x in T 0 must be replaced by a phylogeny T x over the sites in

Px. The phylogeny T x should be a phylogeny where the taxa include the

following:

� The states of the sites in Px in each row (if any) of M that map to the

vertex x.

� For each site y adjacent to x, the state of the sites in Px at the vertex y.

For example, the vertex x in Figure 6 should be replaced by a phylogeny

Tx over the sites fc10‚c11g, where the taxa are f00‚01‚10‚11g.
When the vertex x is isolated, it can be trivially shown that the following

conditions hold true:

(1) All the node labels that must label some node in the phylogeny Tx are

known.

(2) For any vertex y adjacent to x, there will be a vertex u inT x and a vertex

v in T y such that LðuÞ ¼ LðvÞ. Therefore, the edge ðx‚yÞ in T 0 can be

replaced by the edge ðu‚vÞ in a phylogeny that includes all the vertices

in C, and edge ðu‚vÞ will not require any more mutations than the

edge ðx‚yÞ.

When any vertex x in T 0 is not isolated, and/or if T x is not a perfect

phylogeny, the Hðp‚qÞ-NPP problem is quiet complicated. The phylogenies

T x and T y that replace adjacent vertices will be interdependent, and repla-

cing the edge ðx‚yÞwith an edge between some node in T x and some node in

T y might incur additional cost. For example, refer to Figure 7. Let x and y
two vertices adjacent to each other with jPx \ Pyj ¼ 3. Let i, j and k be the

sites that are common in Px and Py, and let T x be the phylogeny shown in

Figure 7a and T y be the phylogeny shown in Figure 7b. As there are no

common vertices in T x and T y, connecting a vertex in T x to a vertex in T y

requires at least one additional mutation in the sites i, j or k.

We leave the unrestricted Hðp‚qÞ-NPP problem as an open problem.

However, when the following conditions are satisfied, there is a simple

solution to the Hðp‚qÞ-NPP problem:

� Each vertex in T 0 is isolated with respect to the given set of Hð1‚qÞ
solutions.

� For each vertex x inT 0, the phylogenyT x that must replace the vertex x is

a perfect phylogeny.

When the above two conditions are satisfied, each vertex x can be simply

replaced by the perfect phylogeny Tx. As x is isolated, each edge incident on

the vertex x in T 0 can be replaced by an edge incident on some vertex in T x,

without incurring any additional cost.

Complexity

Finding all vertex covers in Gc with size at most p takes exponential time

with respect to p. Assuming the size of Gc is OðmÞ, finding all such vertex

covers takes Oðmpþ1Þ time. For each vertex cover, we need to construct the

initial perfect phylogeny T0, and find a Hð1‚qÞ-NPP solution for each site in

C. If the set of Hð1‚qÞ-NPP solutions satisfy the conditions described above,

replacing each vertex in T0 by a perfect phylogeny takes OðnpÞ time. Hence

the over all complexity of the restricted version of the problem is Oðnm2 þ

mpþ1 þ hpmqþ2Þ time, where h is the number of distinct vertex covers of Gc

with size less than or equal to p.

Special scenarios

A special situation arises when each non-trivial connected component in Gc

has at most one site with degree greater than 1. In that case, p will be equal to

the number of non-trivial connected components in Gc. The set C is fixed.

This reduces the problem to p completely independent Hð1‚qÞ-NPP prob-

lems that can be solved in Oðnm2 þ pmqþ2Þ time. In general, each connected

component in Gc that is either a single edge or involves a single vertex with

degree greater than 1 will reduce the effective value of p by 1.

2.2 Near-Perfect Phylogeny Haplotyping

In case of the NPPH problem, the input is a set of genotypes. The aim in

general is to construct a set of haplotypes that are the most likely explanation

for the given set of genotypes. Parsimony is widely accepted as the most

accurate criterion to reconstruct the phylogeny. Therefore, the aim is to

obtain, out of all possible explanations for the given genotypes, the set of

haplotypes that admit a phylogeny with the least number of recurrent

mutations.

2.2.1 The H1-NPPH problem We formally state the H1-NPPH prob-

lem as follows. We are given an n · m genotype matrix A over the alphabet

f0‚1‚2g. Each row in A represents a genotype. As before, the columns

represent SNP sites. The aim is to construct a 2n · m haplotype matrix

M such that:

(1) Each row r in A is a result of combining the rows r and r0 in M

(2) The matrix M admits an H1-NPP.

The solution to the H1-NPPH problem is very similar to that for the

H1-NPP problem, except that it might not be possible to fully construct

the conflict graph for a genotype matrix. In a genotype matrix A, an ordered

pair of values (a,b), a 2 f0‚1g, b 2 f0‚1g is in Iði‚ jÞ for a pair of columns

ði‚ jÞ if

(1) There is a row r in A such that A½r‚ i� ¼ a and A½r‚ j� ¼ b,or

(2) A½r‚ i� ¼ a and A½r‚ j� ¼ 2, or

(3) A½r‚ i� ¼ 2 and A½r‚ j� ¼ b.

If two columns i and j are ‘2’ in some genotype, the states of i and j in the

two haplotypes for the genotype could be either fð0‚0Þ‚ð1‚1Þg or

fð0‚1Þ‚ð1‚0Þg. Therefore, we might not be able to completely specify

Iði‚ jÞ. Iði‚ jÞ can be completely specified only in two situations: when

jIði‚ jÞj ¼ 4 because of rows in A in which either the column i or the column

j is not ‘2’, or when there are no rows in A in which both i and j are ‘2’.

Hence, though we might be able to construct some edges in the conflict graph

in Gc, we might not be able to construct all the edges in Gc. Therefore, we

need other ways to find the column cb that has a recurrent mutation. One

obvious procedure for finding cb is to remove each column from A, and check

if the rest of the matrix admits a perfect phylogeny. If we can find such

a column cb, then there might be a H1-NPPH solution for A. This is the

procedure used in Song et al. (2005) to find the column cb. We adopt the

same procedure to find cb. Then, we propose our new algorithm to construct

H1-NPPH solution.

Once the column cb is found, we can build the perfect phylogeny T0 for the

matrix A0 obtained by removing cb from A. In general, the matrix A0 might

have multiple perfect phylogenies. Chung and Gusfield (2002) have empir-

ically shown that the likelihood for the phylogeny being unique increases

quickly with the number of genotypes. In the following, we assume that A0

has a unique perfect phylogeny T0. If A0 admits multiple perfect phylogenies,

the following procedure has to be repeated for each such perfect phylogeny.

Using the phylogeny T0, we construct the haplotype matrix M0 for A0. We

denote the rows of A0 by r1‚r2‚ . . .‚rn and the corresponding pairs of rows in

M0 as r1‚r01‚r2‚r02‚ ::‚rn‚r0n. The matrix M should now be built by adding

Fig. 7. An example of phylogenies (a) Tx and (b) Ty that must replace two

adjacent vertices x and y when x and y are not independent. The node labels of

each node over three sites i, j and k are shown.
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the column cb to M0. We can also assign values to some rows in column cb of

the matrix M. In a row ri of A, if A½ri‚cb� is either 0 or 1, then both the

haplotypes for this row will also be either 0 or 1, respectively, in column cb.

We can then set M½ri‚cb� ¼ M½r0 i‚cb� ¼ A½ri‚cb�. When A½ri‚cb� ¼ 2, we

know that M½ri‚cb� ¼ M½r0 i‚cb�, but we can not determine which one of

them must be 0 for M to admit an H1-NPP. We call such a pair of rows

ðri‚r0 iÞ in M as an ambiguous pair. Thus the problem of determining whether

A admits an H1-NPP solution reduces to determining whether there is an

assignment of values to each such ambiguous pair so that matrix M admits an

H1-NPP.

Each row in M0(and hence in M) can be mapped to a vertex in T0. As in the

H1-NPP case, we represent this mapping using the notation nðriÞ ¼ v, where

ri is a row in M, and v is a vertex in T0. For any vertex v in T0, zero or more

rows in M can map to vertex v.

The underlying idea of our algorithm is based on Theorem 1. We need to

identify two vertices x and y, if they exist, such that each connected com-

ponent in T0 /fx‚ yg is non-polymorphic with respect to cb. We will show how

to use this property to actually obtain an assignment of values to each

ambiguous pair of rows in M. We arbitrarily choose two vertices x and y
in T0 and construct a graph Ga ¼ ðV‚EÞ, where the vertices in V correspond

one-to-one to connected components in T0 /fx‚ yg. For each ambiguous pair

ðri‚r0 iÞ in M, we know that M½ri‚cb� ¼ M½r0 i‚cb�. Therefore, if nðriÞ is in

a component Ti, and nðr0 iÞ is in Tj, we add the edge ðvi‚vjÞ to E. As each

connected component Ti has to be non-polymorphic in cb, if any un-

ambiguous row rj maps to a vertex in Ti, we assign the value M½rj‚cb� to

the vertex vi. Since the value of M½rj‚cb� is either 0 or 1, we can imagine

these two values to represent two ‘colors’. Thus, if the chosen pair of vertices

fx‚yg leads to a valid assignment of values to the ambiguous pairs of rows,

each connected component in Ga should be two-colorable with the coloring

scheme of vertices in Ga as described. Intuitively, a valid two coloring

is possible only if the following is true: Let R0 be the set of rows in M

such that M½r‚cb� ¼ 0 and similarly let R1 be the set of rows in M such

that M½r‚cb� ¼ 1. Then each component Ga has a valid two coloring if and

only if for each Ti 2 T0 /fx‚ yg, RðTiÞ is a subset of either R0 or R1.

If Ga is two colorable given the current coloring of the vertices, each

un-colored vertex in Ga can be assigned a color (value) of 0 or 1. When

a vertex vi is assigned a value a 2 f0‚1g, we can assign M½r‚cb� ¼ a for

every row r such that nðrÞ is in Ti and M½r‚cb� is un-assigned. After every

unknown entry in column cb of M is filled like this, each connected

component Ti 2 T0 /fx‚ yg will be non-polymorphic in cb, and hence T0 can

be converted into an H1-NPP T for M.

Figure 8 shows each step of the procedure. A matrix A is shown in 8a. The

perfect phylogeny after removing column c3 from A is shown in Figure 8b.

The matrices M0 and M, constructed through T0 are shown in Figure 8d.

The components in T0 /fx‚ yg are shown in Figure 8c. Since the rows r1 and r01
in M form an ambiguous pair, components T1 and T3 in Ga are connected.

Similarly, components T2 and T4 will be connected due to the ambiguous

pair ðr2‚r02Þ, and components T3 and T5 are connected due to ambiguous pair

ðr5‚r05Þ. These edges are shown using dashed lines in Figure 8c. Though the

rows r4 and r04 also form an ambiguous pair, no edge is added to Ga since

one of them (r04) maps to the vertex y. Since y will be expanded into two

vertices y0 and y1, r04 can map to any of the two vertices y0 and y1, and hence

the pair of rows ðr4‚r04Þ does not impose any restriction on the coloring of the

vertices in Ga. Components T1, T2, T4, T5 and T6 can similarly be assigned

a color of 1 because of the rows r7, r07, r03, r06 and r6, respectively. The

connected component T3 can not directly be assigned any color, since no

unambiguous row maps to it. It can be seen that Ga is two-colorable, and the

only possible coloring is to assign color 0 to T3. The final H1-NPP T is shown

in Figure 8e.

The fundamental problem now is how to find the two sites x and y in T0. In

case of the H1-NPP problem in Section 2.1, the conflict graph Gc could be

constructed, RMP could be deduced from Gc, and the two vertices x and y

could be directly selected as the terminal ends of RMP. In case of the H1-

NPPH problem, since we can not construct the conflict graph completely

(unless in very obvious special scenarios), we must exhaustively search for

the vertices by checking each pair of vertices in T0. Since there are exactly m
vertices in T0, there will Oðm2Þ pairs of vertices that we need to check.

For each pair of vertices, the graph Ga can be constructed in Oðnþ mÞ
time, allowing parallel edges. Since there are at most OðnÞ edges in Ga (at

most one for each row in A), the connected components in Ga can be

identified in Oðnþ mÞ time using depth-first search. Two-coloring of Ga

can be obtained in Oðnþ mÞ time using breadth-first search. Hence, the

overall complexity of the algorithm is Oðm2ðnþ mÞÞ.
It might seem that the Oðn4Þ algorithm of [Song et al. (2005) might

perform better if m > n. However, m can never be greater than OðnÞ without

having duplicate columns in M. This is because even if each of the 2n

haplotypes are distinct, there can be no more than 4n � 4 edges in the

tree. With only one homoplasy event, each column except cb has to label

a distinct edge, and hence there can be at most 4n � 3 distinct columns in the

matrix M. If the matrix M has more than 4n � 3 distinct columns, it will not

admit an H1-NPP.

On the other hand, n can be as high as Oðm2Þ. Hence, our algorithm

has better time-complexity than the previous Oðn4Þ algorithm for any value

of n and m.

2.2.2 Making use of the conflict graph The conflict graph provides

useful information that can be utilized to speed up the above algorithm. Even

though it might not be possible to build the conflict graph completely, we can

Fig. 8. (a) Matrix A; (b) The tree T0 (c) Components in T0/{x,y} overlaid with the edges in Ga; (d) Matrices M0 and M; (e) The H1-NPP T for the matrix M.
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make use of what is available of the conflict graph in order to reduce the

Oðm2Þ search space of the pairs of vertices.

Inferring the recurrent mutation path

From the discussion in Section 2.1, it is clear that the set Sc of sites adjacent

to cb in the conflict graph must all lie in a path in T0. Let Sc ¼ fc1‚c2‚c3g,
and let all three of them lie in a path in T0, as shown in Figure 9. If the matrix

A admits an H1-NPP, the path between the two vertices x and y that are

selected to be expanded must clearly include all the sites in Sc. Therefore,

one of them (say, x) has to be in T1 and the other (say, y) has to be in T2, as

shown in Figure 9. Therefore, the conflict graph can be effectively used to

reduce the pairs ðx‚yÞ that need to be checked. The following is another

interesting result:

LEMMA 1. The sites in Sc must form a contiguous path in T0 if the
matrix A admits an H1-NPP.

i.e, the sites c1, c2 and c3 must form a contiguous path, instead of a broken

path as depicted in Figure 9. We do not provide a formal proof for Lemma 1

as we do not directly use it in this paper.

Using the ambiguous pairs more effectively

For any ambiguous pair of rows ðr‚r0Þ in M, the path between the vertices

nðrÞ and nðr0Þ must include an edge (in general, an odd number of edges)

labeled with cb. This means that any pair of vertices x and y in T0 that are

a possible solution must be such that nðrÞ and nðr0Þ are not in the same

connected component Ti 2 T0 /fx‚ yg. The following lemma states this property

formally:

LEMMA 2. For any two vertices x and y in T0 that can be expanded
to form a H1-NPPH solution for matrix A, the path between the
vertices nðrÞ and nðr0Þ for every ambiguous pair ðr; r0Þ must include
the vertex x or y or both.

PROOF. Let there be an ambiguous pair ðr‚r0Þ in M so that the path in T0

between the two vertices nðrÞ and nðr0Þ does not include both x and y. This

means that the vertices nðrÞ and nðr0Þ are in the same connected component

Ti 2 T0 /fx‚ yg. Since M½r‚cb� ¼ M½r0‚cb�, this implies that Ti is polymorphic

with respect to cb. Hence, there must be an edge within Ti labeled with cb in

addition to the two edges labeled with cb inserted at the vertices x and y.

Hence the two vertices x and y can not lead to an H1-NPPH solution for the

matrix A. Therefore, for any pair of vertices x and y in T0 that can be

expanded into an H1-NPPH solution for matrix A, the path between the

vertices nðrÞ and nðr0Þ for every ambiguous pair ðr‚r0Þ must include the

vertex x or y or both. �

Lemma 2 can be used to avoid checking some vertex pairs. Let R be the set

of rows in A such that A½r‚cb� ¼ 2 for every r 2 R. Let Rx � R be the set

of rows in A such that, for every r 2 Rx, the path between the vertices nðrÞ
and nðr0Þ in T0 includes the vertex x in T0. Similarly, let Ry be the

corresponding set of rows for the vertex y in T0. The pair of vertices x
and y can not be a solution unless R ¼ Rx [ Ry.

2.2.3 The H(1, q)-NPPH problem The solution for the Hð1‚qÞ-
NPPH problem is a simple extension to the solution for the H1-NPPH

problem. All the discussion above applies to Hð1‚qÞ-NPPH problem,

with the only difference being that instead of finding a pair of vertices x

and y, we need to find a set of qþ 1 vertices Q so that T 0 can be converted

into an Hð1‚qÞ-NPP T by expanding each one of qþ 1 vertices in Q into an

edge labeled with cb.

In case of the Hð1‚qÞ-NPP problem, we could use Gc to narrow down the

possible sets of vertices forQ. We can not do the same thing here, since Gc is

not complete. Therefore, we need to try all-possible sets of vertices of size

qþ 1. There are ðmqþ1Þ such possible sets of vertices. For each set, testing if

the set of vertices form a solution is identical to the procedure for the

H1-NPPH problem—we build the graph Ga in which each vertex represents

a connected component in T0 /Q. As before, two vertices vi and vj have an edge

between them if there is an ambiguous pair ðr‚r0Þ in M so that the vertex

nðrÞ is in vi and the vertex nðr0Þ is in vj. We need to test if the graph Ga is

two-colorable. As in the case of the Hð1‚qÞ-NPP problem, This algorithm

can be implemented to run in Oðnm2 þ mqþ1ðnþ mÞÞ time.

2.2.4 The H(p, q)-NPPH problem Like the Hðp‚qÞ-NPP problem,

the Hðp‚qÞ-NPPH problem can be viewed as a set of Hð1‚qÞ-NPPH prob-

lems. We first need to find a set of p columns C so that the matrix A0 obtained

by removing the columns in C from A has a perfect phylogeny T0. Once T0 is
constructed, we can solve for each of the sites in C as an Hð1‚qÞ-NPPH

problem. The haplotype matrix M can be constructed for a given set of

Hð1‚qÞ-NPP solutions, and the Hðp‚qÞ-NPPH problem on the matrix A

will be equivalent to the Hðp‚qÞ-NPP problem on the matrix M.

However, if any site i 2 C has multiple Hð1‚qÞ-NPP solutions, there will

be multiple such matrices M, and the matrix A will admit an Hðp‚qÞ-NPP if

c1 c3 

u u' v' v

T'
c2 

T1 T2 

Fig. 9. Any solution must involve a vertex from T1 and a vertex from T2.

Table 1. Comparison of our H1-NPPH method with PHASE for different datasets. The running times are on Pentium 3.2 GHz PC

Test case Our H-1 NPPH algorithm PHASE

Std. error % of mis-phased 2’s Run-time std. error % of mis-phased 2’s Run-time

50 · 50 0.0116 0.157% 0.01s 0.0138 0.269% 109s

100· 50 0.0054 0.064% 0.016s 0.0046 0.065% 268s

50 · 100 0.011 0.105% 0.031s 0.0156 0.214% 497s

100· 100 0.0048 0.046% 0.047s 0.011 0.136% 874s

Table 2. Properties of the data sets generated

test case #of datasets (out

of 100) that admit

a perfect phylogeny

#of datasets admitting H-1

NPPH solutions (with a

unique PPH solution for A0)

50· 50 16 84 (49)

100· 50 10 90 (54)

50· 100 3 97 (55)

100· 100 8 92 (42)

Constructing near-perfect phylogenies with multiple homoplasy events

e521



any one of those matrices admit a Hð1‚qÞNPP. The time complexity of the

algorithm will be similar to that of the Hðp‚qÞ-NPP algorithm.

3. RESULTS

We have implemented our algorithm for the H1-NPPH problem in

C++. In this section, we compare the performance of our algorithm

to that of PHASE (Stephens et al., 2001) using simulated data.

To generate the simulated data, we follow the same procedure as

in Song et al. (2005). We first generate homoplasy-free haplotype

matrices with minimum allele frequency (MAF) � 2% using the

program MS (Hudson, 2002). In each matrix, we introduce a homo-

plasy column by randomly selecting two vertices in the perfect

phylogeny for the dataset and expanding the two vertices into

edges labeled with the newly introduced column. We ensure that

the newly introduced column has a MAF � 2% by selecting two

non-adjacent vertices for expansion. Finally, we construct the geno-

type matrix by pairing consecutive rows in the haplotype matrix.

The results are summarized in Tables 1 and 2. We provide two

measures of accuracy. The first measure, the standard error, is the

ratio of the genotypes that are incorrectly inferred to the total

number of genotypes in the data set. The second measure is simply

the percentage of mis-phased 2s. We used 100 datasets for each

problem size. The run-times and error-rates shown are averages for

the hundred datasets.

4 DISCUSSION

The algorithms and problem formulations we introduced here are

applicable in a wide a variety of problems encountered in genome

variation studies and population genetics. With the help of simu-

lated data, we demonstrated that the algorithms are applicable and

practical in case of the haplotype inference problem. We believe

that these algorithms will also be practical for phylogenetic recon-

struction problems in general. Specifically, the algorithms will be

extremely useful for inferring phylogenies for haploid genomes,

like mtDNA and the human Y-chromosome.
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ABSTRACT

Motivation: Finding the potential functional significance of SNPs is

a major bottleneck in understanding genome-wide SNP scanning

results, as the related functional data are distributed across many

different databases. The SNP Function Portal is designed to be a

clearing house for all public domain SNP functional annotation data,

as well as in-house functional annotations derived from different data

sources. It currently contains SNP functional annotations in six major

categories including genomic elements, transcription regulation,

protein function, pathway, disease and population genetics. Besides

extensive SNP functional annotations, the SNP Function Portal

includesapowerful searchengine thatacceptsdifferent typesofgenetic

markersas inputand identifiesall genetically relatedSNPsbasedon the

HapMap Phase II data as well as the relationship of different markers

to known genes. As a result, our system allows users to identify the

potential biological impact of genetic markers and complex relation-

shipsamonggeneticmarkersandgenes,and it greatly facilitatesknowl-

edge discovery in genome-wide SNP scanning experiments.

Availability: http://brainarray.mbni.med.umich.edu/Brainarray/

Database/SearchSNP/snpfunc.aspx

Contact: mengf@umich.edu

1 INTRODUCTION

A Single Nucleotide Polymorphism (SNP) is a DNA sequence

variation at a single nucleotide level. It is estimated that SNPs

occur once per 100�300 bases in the human genome. The dramatic

increase in genotyping efficiency in the last couple of years has

made large-scale high density genome-wide SNP association anal-

ysis practical for many research groups. It can be expected that

these genome-wide SNP association studies will identify many

SNP alleles related to various complex disorders. Identifying the

causative relationships between many disease predisposing alleles

and the corresponding disorders will be a major challenge.

Understanding the potential biological implications of SNP alle-

les will be more difficult than understanding influences of dynamics

at gene expression or protein levels. This is because proteins are

direct players in various molecular, cellular or higher level patho-

physiological processes. In addition, though mRNAs per se do not

directly participate in these processes under most circumstances, the

regulation of mRNA expression has proven to be a critical mecha-

nism in biological function regulation. Consequently, as a working

hypothesis, mRNA and protein variants can often be treated as

indicators of functional changes in the corresponding genes.

Genotype data, on the other hand, have much more complex

and indirect relationships with genes and proteins. In the simplest

scenario, a SNP allele may cause a key amino acid residue change

in a critical protein functional domain and then alter protein function.

Unfortunately, in many situations we do not fully understand the

function or impact of a SNP allele. Even if a SNP allele causes an

amino acid residue alteration in a protein, this substitution does

not necessarily lead to biologically significant consequences. In

fact, most SNPs are not even in the coding sequences of genes.

They may influence biological processes in many conceivable

ways: reduce transcription factor binding affinity to the promoter

region, alter a microRNA binding site, change mRNA stability,

modify the RNA splicing pattern, destroy an internal ribosomal

binding site, etc. Given the complexity of the way that a SNP allele

may influence the function of a protein, it is highly desirable to have a

comprehensive database where researchers can easily access the

most up-to-date SNP functional annotations.

Although there are several efforts on the functional annotation

of SNPs, the coverage of existing commercial or public domain

efforts is far from complete. So far these groups are each focusing

on a narrow set of annotations, such as protein domain change,

splicing, location of SNP in relationship to known genes, etc.

(Bao & Cui, 2005; Kang et al., 2005; Kasprzyk et al., 2004; Maglott

et al., 2005; Reumers et al., 2005). Also it is often hard for the

existing software to accommodate new or user created SNP func-

tional annotations. As a result, the task of finding the potential

functional consequences for a SNP allele associated with a given

disease requires the exploration of many different data sources.

Given the fact that a typical researcher is not likely to be fully

knowledgeable about all major SNP annotations created by different

research groups, it can be expected that most research groups may

not thoroughly explore the functional consequences of the SNPs

identified from genome-wide association studies. This is evident

from existing publications, as most papers focus on SNPs that affect

the coding, promoter, or splicing regions. Very few authors discuss

other potential functional consequences such as mRNA stability�To whom correspondence should be addressed.
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and internal ribosomal binding site affinity that may be affected by

variants. Such a limited focus, caused by the lack of appropriate

tools or resources for understanding the full implications of SNP

alleles, significantly hinders generation of testable hypothesis based

on genome-wide association analysis results.

In addition, neighboring SNPs usually show different degree

of linkage disequilibrium (LD). Consequently, although a SNP

allele itself does not cause any functional difference, a tightly linked

nearby allele may be the causative allele. With existing tools, a

researcher has to go through the HapMap data set to find the LD

region for a given population and then go to the dbSNP to find

all SNPs in the same region before he/she is able to identify the

potential functional impact of a SNP derived from a genome-wide

association study. Such a process is very time consuming, so a

highly automated procedure is of great assistance.

Furthermore, besides functional annotations at the molecular

level (i.e., gene/mRNA/protein), it would be very helpful if an

annotation system could associate SNPs with genes related to

higher level cellular and pathophysiological processes, since

most complex disorders have heterogeneous molecular etiology

involving the combined effect of multiple molecular entities.

Merely focusing on individual genes does not provide a big picture

of all SNPs that may participate in the same cellular or patho-

physiological process. In order to understand how heterogeneous

molecular factors may lead to similar pathological phenotypes, it is

necessary to have higher level functional annotation. This annota-

tion should include pathway, gene ontology and disease associa-

tion based on various criteria, for groups of SNPs that may have

diverse molecular function implications but may collectively influ-

ence a common biological process.

Lastly, researchers need to have multiple ways to access the

annotation data for different purposes. Of course, the majority of

users would like to perform SNP function searches through a

friendly web interface and explore various types of functional

annotations based on the LD data derived from the HapMap

project. However, some researchers may need to download specific

annotations not available at other databases (e.g., SNPs overlapping

with internal ribosomal entry sites or SNP groups based on KEGG

pathways) for integration with their local databases or local

algorithms that can take advantage of SNP function information.

Even if the same annotation is available from other resources, it

will be convenient to have a single source for curated links to

various data download sites. Some advanced users may want to

incorporate such SNP functional annotation capabilities in the

web functions they are building. Consequently, it will also be

helpful to establish web services based on WSDL/SOAP standards

to enable programmatic access, providing the possibility of

building complex web applications using functional annotation

data developed by different groups.

The main goal of this work is to build a comprehensive SNP

function portal to facilitate the understanding of functional

implications of SNP alleles identified in genome-wide association

studies. We integrate annotation from different databases and

generate functional annotations based on various existing sequence

and structure analysis algorithms. We also provide annotation of

SNPs related to high level biological functions. We integrate a

powerful SNP search function that utilizes the LD data from

the HapMap project in the SNP function search process. The portal

accepts generic markers including SNPs, genes, microsatellite

markers and cytogenetic bands as input. To meet the requirements

of different users, we currently provide a web service for iden-

tifying all genetically related SNPs, as well as batch annota-

tion data download in multiple formats (text, Excel spreadsheet,

etc.). The SNP Function Portal greatly increases researcher’s

efficiency at SNP function exploration and it will be continuously

improved by adding more features and functional annotations.

2 SYSTEM AND METHODS

The SNP Function Portal currently has three main modules: 1) a powerful

SNP search function that maps input genetic markers to all physically or

genetically related SNPs satisfying user’s criteria, based on the HapMap II

and dbSNP data 2) a SNP function data integration pipeline that obtains

updated annotation data from external sources and generates annotations

using existing sequence and structure analysis programs, and 3) a web

interface that receives user input, generates a summary report and provides

flexible browsing, filtering, sorting and downloading capabilities. The rela-

tional SNP database is built on Oracle 10g, with data downloaded and parsed

from various sources as well as generated by our internal algorithms. The

web function was implemented with the mix of .Net, ASP, JSP and Perl, and

is hosted on a Windows 2003 Sever.

2.1 SNP search function

We believe a comprehensive SNP search capability is a necessity for any

SNP functional annotation database. Based on our own experience,

researchers may start a SNP function query for any type of genetic

marker: SNP IDs, STS/microsatellite marker IDs, cytoband/genomic region

or even gene/protein identifiers.

For example, researchers frequently want to identify potential function-

ally important SNPs using differentially expressed gene lists derived from

gene expression analysis or disease-related candidate genes identified in

literature. As a result, it will be highly desirable to use gene ID as input

and to provide users the ability to define SNPs related to a gene based on

criteria such as their distance from the gene, whether they share the same LD

region with a gene, or locate in the gene promoter.

Furthermore, there is a large body of literature describing the linkage

or association of STS/microsatellite markers and cytobands to various dis-

eases. To the best of our knowledge, none of the existing web functions

provides direct mapping of these genetic markers to SNPs based on their

genomic locations and existing LD data, and such association may be

extremely time-consuming to perform manually.

Thus, we developed a convenient SNP search function that will generate a

complete list of SNPs based on genetic marker input and SNP filtering

criteria provided by users. This is achieved through the integration of the

data from the dbSNP, UniSTS, NCBI ideogram, Entrez Gene, NCBI human

genome assembly and HapMap II project. In order to enable haplotype-based

SNP filtering, we pre-calculated haplotype blocks in the four HapMap sam-

ple populations using two different methods. We will update haplotype

calculations upon each new HapMap release or NCBI genome assembly

release. The rest of the data used in the SNP search function are updated

monthly to maintain their concurrence with the related data sources.

2.2.1 SNP functional annotation categories As mentioned previously,

although there are a number of public and commercial efforts to provide

functional annotations for SNPs, none of them has the desired coverage, and

it is not easy to add new annotation to their solutions. In order to provide a

comprehensive overview of SNP functional annotations to meet the require-

ments from different researchers, we collect SNP functional annotations

from various sources and organize them into six major categories as

shown in Table 1. These categories form a core framework to encapsulate

existing and new annotations in our database. The overview of general data

sources, organization and flows is described in Figure 1.
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2.2.2 Data processing and integration pipeline We have currently pro-

cessed the majority of SNP functional annotation data listed in Table 1.

Besides parsing and integrating SNP annotation data from various sources,

we add custom annotation using various sequence analysis methods. The

following descriptions focus on procedures used for these custom annota-

tions as well as some special annotation types.

Transcription factor binding site. The vast majority of SNPs occur in

noncoding sequences of the genome. Their influences on phenotype may

be through biological mechanisms such as transcription factor binding,

alternative splicing, etc. To help researchers dissect the impacts of SNP

alleles on transcriptional control of gene expression, we analyzed the

nucleotide sequences containing SNP alleles and tried to identify the tran-

scriptional factor binding sites they may affect. For each SNP, a pair of

sequences containing either the major or minor allele (together with

their shared 5’ 24 nucleotides and 3’ 24 nucleotides) is derived from the

dbSNP. Then, each pair of these major allele/minor alleles containing

sequences related to a given SNP is analyzed for potential transcription

factor binding site matches through sequence alignment, as shown in

Figure 2. We create an entry in our annotation database if the two alleles

from the same SNP have different match scores with a potential transcription

factor binding site.

In the current version, we utilize two programs provided with the

TRANSFAC Pro database, MatchTM (Kel et al., 2003) and PatchTM, to

identify potential transcription factor binding sites in SNP sequences.

MatchTM uses a library of mononucleotide weight matrices in TRANSFAC

to find transcription factor binding sites in our SNP sequence constructs,

while PatchTM does so by pattern searching of transcription factor binding

sites and the consensus sequences of weight matrices in the TRANSFAC

database. For MatchTM, we choose the parameters to minimize the sum of

both false positive and false negative rates. With PatchTM, we search against

all transcription factor binding sites in the TRANSFAC site table and all

Table 1. Functional Annotations for the SNP Function Portal

Genome Level Conserved Genomic Region

Repetitive Sequence

Transcript Level CpG Island

DNase 1 Hypersensitive Site

Histone Acetylation Site

Known Transcription Factor Binding Site

Predicted Transcription Factor Binding Site

RNA Polymerase Binding Region

Splicing donar/acceptor sites

Intronic and Exonic Splice Enhancer/Silencer

Branch Site Recognition Sequence

MicroRNA Transcript

MicroRNA Binding Site

RNA Stability

Protein Level Internal Ribosomal Entry Site

Known Or Potential Modification Site,

Including Phosphorylation, Sulfation,

Methylation, Acetylation, Palmitylation,

Myristoylation, Glycosylation, etc

Key Residues Influence

Protein Domain Structure

Protein Location Motif: Signal Peptide,

Nuclear Localization Signal

Conserved Protein Domain

Activity/Binding Center Of Protein

Protein-Protein Interaction Interface

Pathway/Ontology Level Gene Ontology

KEGG Pathway

BioCarta Pathway

Molecular Interaction Network

Disease Level OMIM annotation

Literature description

Association Statistics

Linkage Statistics

SNP-SNP Interaction Statistics

Expression Profile

Population

Genetics Level

Linkage Disequilibrium Scores

Haplotype

Ancestral Allele

Tajima’s D

Fst Value

Heterozygosity

Allele Frequency

Map Weight

In the left column, six major classes of annotation are shown. Specific annotations are

itemized in the right.

Data
Aggregation &

Integration

UniSTSdbSNP UCSCEnsembl - - -

Matching

Parsing

Data Mining

Statistics

TransfacOntology InterPro PubMed - - -

Marker Input

Population
Genetics

Disease

Pathway

Protein

Transcript

Genome

AnnotationsSNP Identification

Fig. 1. SNP portal data sources, organization and flows.

Transfac

Sequence

Database

Sequence Alignment

A

C
5' 3'

A5' 3' C5' 3'

Fig. 2. Analysis of SNP alleles against transcription factor binding sites.
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consensus sequences from the TRANSFAC matrix table, and the output

cut-off score is set at 70 for balanced accuracy and sensitivity. The com-

bination of these two methods allows researchers to examine all transcrip-

tion factor binding sites in the TRANSFAC database. However, since the

professional version of the TRANSFAC database requires a license, only the

transcription factor binding site IDs and their match scores are initially

visible to public users.

Protein domain structure. Nonsynonymous SNPs, whose alleles encode

different amino acid residues, are most interesting to researchers since

they may offer a simple explanation of the biological consequence of

different SNP alleles at the protein function level. However, many nonsyn-

onymous SNPs may not cause protein function changes because the corre-

sponding residues may not be in functionally important regions. To help

researchers to quickly identify potential causal relationships between non-

synonymous SNP alleles and protein structure changes, we analyze the

protein sequence variations caused by the nonsynonymous SNPs against

currently known protein domains. Similar to the transcription factor binding

site analysis, we first derive a pair of complete protein sequences for each

nonsynonymous SNP: one for the major and the other for the minor SNP

allele. In the current version, we simply treat all the SNP-caused amino acid

residue changes individually, without considering the underlying genetic

linkage structure. As a result, we generate multiple protein sequence

pairs for proteins having several nonsynonymous SNPs, with each sequence

pair containing only one amino acid residue alteration. Next, using the

InterProScan (integrated protein domain scanning tool from EBI), we

scan those sequence constructs against all the protein domains in InterPro

databases, including protein domain/motif data such as ProDom and

PRINTS, to identify protein domain matches and the domain match scores.

If there is a score difference between two alleles of the same SNP for any

matched protein domain, the related SNP will be highlighted in our output

and all the corresponding scores will be displayed for researchers’ further

review. Out of 51,807 nonsynonymous SNPs we identified in 17,488 ref-

erence protein sequences, 1,083 SNPs caused protein domain changes based

on InterProScan results.

Biological functional categories: Rather than focusing only on the SNP

functional consequence at the single molecule level, we also map SNPs to

genes, Gene Ontology, Cytoband, KEGG pathway, BioCarta and GenMAPP

in order to facilitate the understanding of the impact of SNPs in higher

level biological functions. We first map the SNPs to Entrez genes according

to their genomic locations, and then the Entrez genes are mapped to different

functional categories. Consequently, SNPs are associated with biological

function categories in popular gene function annotation databases. In

order to help users to identify significantly over-represented function category

matches, our system performs an on-the-fly Fisher’s Exact Test for each

matched function category based on the user provided input SNP list.

Disease association: Free text literature databases such as Medline and

OMIM contain extensive information on the relationship between genetic

markers and diseases, although most existing genetic study literature focuses

on cytoband, microsatellite markers and genes. Since these genetic markers

can be easily mapped to nearby SNPs in our system, the large body of free

text literature on genetic analysis of diseases provides a rich resource of

information for understanding the potential functional significance of SNPs.

To effectively utilize the related information in free text literature, we build a

free text literature processing pipeline for extracting information on genetic

markers and their relationships to diseases, using natural language

processing techniques. More than one thousand diseases in OMIM are linked

to genetic studies described in the Medline. The corresponding genetic

markers and literature links are stored in our database. The related details

will be described in a separate manuscript, but interested users may

want to try the MarkerInfoFinder (http://brainarray.mbni.med.umich.edu/

Brainarray/DataMining/MarkerInfoFinder/default.asp), which is the main

product of our genetic marker literature mining project. It enables the search

of the Medline database using various genetic marker names directly.

Links to external sources. We integrate downloadable raw data directly

related to, or useful for, SNP functional annotation from major public

domain databases. However, there are also useful web databases that

currently support web-based inquiries only, with no raw data downloadable.

For the user’s convenience, we provide direct web links to data in these

external databases through reference SNP IDs. Researchers can easily navi-

gate to these external web databases for SNP annotations not in our database

for additional details. For example, for each SNP, we include direct web

links to the dbSNP and the LS-SNP (predictions of protein functional

changes due to SNP) from University of California San Francisco (Karchin

et al., 2005). We continue to add data to support our integrated annotation

database. If there are public or custom SNP annotation data that researchers

would like to include in our web database, we would either directly integrate

the data into our database or provide corresponding web links based on

reference SNP IDs.

HapMap data calculation: The identification of blocks of SNPs in the same

LD region is critical for the understanding of the functional significance of

candidate alleles. We integrate the HapMap Phase II data to support function

exploration of all genetically related SNPs based on different LD scores such

as r2, D’ and LOD score. In addition, we calculate the haplotype blocks with

two methods, Confidence Intervals (Gabriel et al., 2002), and Four Gamete

Rule (Wang et al., 2002), using the HaploView package (Barrett et al.,

2005). The calculation of haplotype blocks is performed on all four popu-

lations currently in the HapMap project: European, Chinese, Japanese and

African. As a result, researchers can easily find all SNPs genetically related

to their input list (e.g., SNP, STS, gene) in these four populations.

2.3 Web functions

Web Interface: Our portal supports searches of functionally related SNPs at

one stop. With our search engine, researchers can freely scan the related

genomic and genetic regions of their targeted SNPs. Even if some

researchers do not have targeted SNP lists, they can search for SNP IDs

in genomic regions, genes, functional categories, and pathways of interests

through our Search SNP web function (not shown). In addition, our SNP

portal supports UniSTS IDs as input. We will automatically match the

genetic markers to the closest SNPs and conduct the additional genomic

and genetic scanning based on user-defined criteria. Figure 3 shows the

search interface for the SNP Function Portal.

In the initial search interface, users need to provide a list of either SNP or

UniSTS IDs. They can also find SNPs that they might be interested in

through our Search SNP function, which will fill SNPs list input box

automatically based on users’ criteria. Researchers can indicate the size

of neighboring genomic regions for the SNP list they desire. Our search

engine will automatically search and identify all the SNPs located in those

genomic regions. One may also select gene neighbor to include SNPs in the

context of the genes and their promoter regions for the SNPs in their input

list. Our search engine will first search for all the Entrez genes that the

input SNPs belong to, and then include all the SNPs in the genes as well as

their 5’ upstream regions users select.

Furthermore, our search function will search and include all the SNPs

within user-defined linkage disequilibrium regions through different linkage

disequilibrium scores or haplotype blocks. Taking all the SNPs in the related

genomic/gene neighbors as a pool, our search engine will identify all SNPs

satisfying the user-defined linkage disequilibrium criteria. Finally, the SNPs

identified through all the above-mentioned processes will be returned to

users in the result page, along with their annotations currently available

in our database. The searching process is demonstrated in Figure 4. Samples

of annotations are demonstrated in Figure 5 and Figure 6.

2.4 Additional annotation data access methods

While we expect most users to use the SNP Function Portal web interface

to explore the functional significance of their chosen genetic markers, we

also provide different ways to download data to meet large-scale custom
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analysis requirements or integrate our SNP search function in other web

applications.

Direct download for external sources For all the data we processed

and integrated in our database, we provide direct downloads of raw data if

researchers want to analyze or further process them in- house. Data can also

be downloaded as Microsoft Excel spreadsheets or text files.

Web Service: Since we believe our SNP search function utilizing

the HapMap II data as well as genomic location of gene and other

genetic markers is unique and very powerful, we also establish a web

service at http://brainarray.mbni.med.umich.edu/snpservice/service.asmx,

for researchers who only want to retrieve the list of related SNPs through

our search engine without any annotation attached. The web service will take

the same user defined parameters as those in the web query interface in

Figure 3. The description of parameter calls is available at http://brainarray.

mbni.med.umich.edu/snpservice/SNP_service_desc.htm, and the WSDL

description of the web service can be retrieved at http://brainarray.mbni.

med.umich.edu/snpservice/service.asmx?WSDL. We will also evaluate

options to add new capabilities to the web service and make it compliant

to common biological exchange protocol, such as BioMOBY.

3 EXAMPLES

Our SNP Function Portal can be a very convenient tool for

researchers to identify and evaluate possible SNP targets for geno-

typing studies. Complementary to full annotations at the single SNP

level provided by the dbSNP and Ensembl, our portal takes a list of

SNPs or genetic markers for a comprehensive annotation view

together with a SNP LD score filter.

For example, resistin is a peptide hormone produced by

adipocytes that may provide a mechanistic link between insulin

resistance and obesity (Steppan et al., 2001). To investigate the

functions of SNPs in the resistin gene, a group of researchers con-

ducted a literature search to identify previously associated SNPs

(Conneely et al., 2004). The process could be very time consuming

and the information found in the literature may also need to be

compared with the most recent SNP annotations. Our portal pro-

vides a convenient solution to this kind of cherry picking task. With

our Search SNP tool, the gene name ‘‘resistin’’ identified 21 SNPs

using gene-based searching approach. Furthermore, our search tool

in SNP Function Portal identified additional 6 SNPs in the same

linkage disequilibrium region with D’ score greater than 0.9, which

are about 30kbp upstream of resistin. As a result, researchers can

Fig. 3. SNP portal search interface.

Fig. 4. Data flow of searching related SNPs.

Fig. 5. Transcription Factor Binding Site Annotation. Figure 5 shows the

output of transcription factor binding site annotation for a group in the resistin

gene. When navigating to the Transcript Level, the user can click the TRANS-

FAC binding site or matrix next to a SNP ID, and view the potential matches

for transcription factor binding sites for the SNP flanking sequences. The

transcription factor binding sites shown above are for rs1862513, which was

identified in the promoter region of the resistin gene (Banerjee & Lazar,

2003). The SNP variation of rs1862513 is shown to cause different matching

scores to the binding site of transcription factor c-Myc (Transfac Matrix ID

V$TFIII_Q6).
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quickly get an overview of all SNPs that may be related to the

resistin gene in our system.

In addition, our custom annotations on transcription factor bind-

ing sites, protein domain changes and pathway matches can provide

researchers additional insights that are not readily available in the

current public SNP databases. For example, in our analysis,

rs2076489 occurring in the coding region of GABA B receptor

may cause domain changes of the 14-element fingerprint, which

is the signature of type 2 GABA receptors. Furthermore, our match-

ing of SNP to transcription factor binding matrix suggests that

rs2251 may cause changes in binding sites of transcription factor

Pit-1 or hypoxia induced factor.

Without doubt, the output is limited by available annotations, and

most SNPs cannot be associated with any functional annotation

right now. We will continue updating our annotation database to

ensure that the SNP Function Portal always contains the most exten-

sive set of annotations available.

4 DISCUSSION

In summary, the SNP Function Portal is a one-stop solution for

exploring the potential functional implications of different types

of genetic markers through a powerful HapMap II-based search

function. Although we certainly need to add more SNP functional

annotation data sets, it is already the most powerful SNP annotation

web function in the public domain.

In the next phase of development, we plan to consider the use of

haplotypes in protein domain analysis. The current version is based

on the effect of individual SNPs, as the current HapMap data avail-

able at that time did not include enough coding region nonsynony-

mous SNPs for generating meaningful haplotype-based protein

domain analysis data for most of the proteins.

Analyzing the effect of a SNP on gene transcription is a major

challenge. Although the TRANSFAC database is the most complete

database for transcription factor binding sites, it is far from com-

plete and de novo transcription factor binding site identification

methods developed in recent years should be helpful (Thompson

et al., 2003). In addition, even if a SNP is found to change a

transcription factor binding site significantly, it is still hard to pre-

dict its effect on transcription of the corresponding gene. This is

because there is still no accurate model to predict the effect

of each transcription factor binding site modification. It can be

expected that the accumulation of genotyping data, together with

gene expression data from the same samples should provide more

reliable data on the influence of SNPs on gene transcription.

Natural language processing approaches for extracting

genetic marker-disease relationships in free text databases can

also be used to identify relationships between genetic markers

and other molecular, cellular and organism-level processes. Such

literature derived information will be complementary to the largely

sequence-based SNP functional annotation since it is not limited

to the molecule/sequence containing the SNP itself but may focus

on inter molecular or higher level functions.

We want to point out that the SNP Function Portal is designed

for effective SNP function exploration rather than for SNP function

prediction. Nonetheless, by incorporating functional annotation

data from various data sources and analysis methods, it will become

an important tool for understanding genotyping data derived

from genome-wide scanning and promote the generation of testable

hypotheses. We are committed to updating the SNP Function Portal on

monthly basis to keep up with the rapid development in this field.
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ABSTRACT

Motivation: The classification of proteins expressed by an organism

is an important step in understanding the molecular biology of that

organism. Traditionally, this classification has been performed by

human experts. Human knowledge can recognise the functional

properties that are sufficient to place an individual gene product into

a particular protein family group. Automation of this task usually fails

to meet the ‘gold standard’ of the human annotator because of the

difficult recognition stage. The growing number of genomes, the

rapid changes in knowledge and the central role of classification in

the annotation process, however, motivates the need to automate

this process.

Results: We capture human understanding of how to recognise

members of the protein phosphatases family by domain architecture

as an ontology. By describing protein instances in terms of the domains

they contain, it is possible to use description logic reasoners and our

ontology to assign those proteins to a protein family class.

We have tested our system on classifying the protein phosphatases

of the human and Aspergillus fumigatus genomes and found that

our knowledge-based, automatic classification matches, and some-

times surpasses, that of the human annotators. We have made the

classification process fast and reproducible and, where appropriate

knowledge is available, the method can potentially be generalised for

use with any protein family.

Availability:All components described in this paper are freely available.

OWL ontology http://www.bioinf.man.ac.uk/phosphabase

myGrid http://www.mygrid.org.uk

Instance Store http://instancestore.man.ac.uk

Contact: KWolstencroft@cs.man.ac.uk

INTRODUCTION

Classification of proteins is a central process in understanding the

molecular biology of an organism. Sequencing is a first step in

revealing the molecular machinery of a cell, but the sequences

need to be characterised and classified, at DNA and protein levels,

before biologists can start more thorough investigations. Tech-

niques involved in sequencing, especially the high throughput

sequencing of whole genomes, have improved dramatically in

recent years. Consequently, classification and analysis of data is

now the rate-limiting step. This paper describes the addition of an

ontology that captures human understanding of recognizing types of

protein to the process of automatic classification. By combining this

knowledge with existing tools for detecting sequence features we

are able to provide a thorough, systematic analysis of a protein

family in different genomes, illustrating the utility of such a method

in comparative genomics. This methodology does not use any new

bioinformatics techniques or algorithms for detecting sequence

features. Instead, it augments existing tools by providing a novel

method for interpreting the results of these techniques and algo-

rithms to perform automatic protein classification.

Approaches to analysing the large data sets produced in genome

sequencing projects have ranged from the ‘gold-standard’ of human

expert annotation to the simple automation of tools such as BLAST

(Altschul et al., 1997) and Interpro (Mulder et al., 2005). Expert

analysis enables protein classification to be driven by community

knowledge and can add rich, accurate information to data, but it is a

time-consuming process and many academic institutions cannot

support large teams of bioinformaticians required for such activit-

ies. Automated classification methods tend to be quicker, but the

level of detail is often reduced, only classifying proteins into broad

categories.

Many proteins are assemblies of sequence motifs and domains

Each domain or motif might have a separate function within the

protein, such as catalysis or regulation, but it is the overall

composition that gives each protein its specific function. Recogni-

tion of domain and motif composition is a powerful bioinformatics

technique which can be employed in the classification of proteins.

There are many tools dedicated to discovering these protein fea-

tures, including functional domains. For example, PROSITE (Hulo

et al., 2005), SMART (Letunic et al., 2004), and Pfam (Bateman

et al., 2004) all detect various sequence features. These tools each

employ different methods of analysis, for example, PROSITE uses

simple pattern-matching to single motifs, whereas Pfam uses hidden

markov models (HMMs).

The tool InterproScan encapsulates these, and many other func-

tional domain resources, enabling the use of all from one query

submission. In this paper we will refer to protein domains and

motifs as p-domains (for protein domains), and we define p-domains

as functional units of a protein that have been identified using

sequence analysis tools within the InterPro collective.

InterproScan is an efficient automation of p-domain analysis, but

while it reports the presence of p-domains, it does not report to

which family or subfamily a protein belongs. Bioinformaticians are

required to interpret this data in order to classify the protein. In

certain cases, the presence of a p-domain is diagnostic for mem-

bership of a particular protein family; for example, the protein

tyrosine kinase catalytic domain is diagnostic of the tyrosine
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kinases. However, classification at a fine-grained level, classifying

proteins into subfamilies, is not usually possible without further

analysis and interpretation over a collection of revealed sequence

features. For automated classification methods, this need for extra

human intervention limits performance.

Ontologies provide a technology for capturing and using this

human understanding of a domain within computer applications

(Stevens et al., 2003). In biology, the use of ontologies to capture

human knowledge of a particular research area and annotate data

is becoming well established. For example, the Gene Ontology

describes all gene products common to eukaryotic genomes,

promoting common understanding across the community and the

MGED ontology provides standardised descriptions of microarray

experiments (The Gene Ontology Consortium 2004, Stevens et al.,
2003). Less well established in the community is the use of rea-

soning over formal ontologies and their instances, enabling data

interpretation. In this study, we present a new method which makes

use of this ontological reasoning and illustrates the advantages of

such an approach. Our method combines the advantages of human

expert analysis and the use of community knowledge with the

benefits of increased speed in automated annotation methods. We

use a protein family-specific ontology, defined in the OWL

language (Dean et al., 2004), to capture community knowledge

of a protein family together with p-domain analyses, using Inter-

proScan, to automate the characterisation of each protein in that

family.

In this paper, we use the protein phosphatase family as a case

study. The method we have developed enables the analysis of all

protein phosphatases in a genome. To demonstrate its use, we

present the analysis of the protein phosphatases of the human

and Aspergillus fumigatus genomes. We find that in classifying

proteins, our system can perform at least as well as a human phos-

phatase expert. In addition, the systematic and thorough analysis

of all protein phosphatases revealed several interesting putative

p-domain architectures that were not included in the human expert

classifications. We conclude with a discussion of these results and

their implication for automatic analysis of genomes.

The protein phosphatase family

Protein phosphatases and protein kinases control phosphorylation

events in the cell, which regulate many different aspects of cell life

and cell interactions with the environment. Recent reviews on the

protein phosphatase family (Alonso et al., 2004, Cohen, 1997,

Andersen et al., 2004) focus on either tyrosine phosphatases or

serine/threonine phosphatases. There have been extensive studies

into the characterisation of each in the human genome. Although

each type of phosphatase performs the same chemical reaction in the

cell, the removal of a phosphate group, there are distinct differences

in their biological roles and catalytic specificity (Barford, 1996).

Most serine/threonine proteins are multi subunit complexes, com-

bining a catalytic subunit with regulatory and targeting subunits.

The final combination of subunits produces the resulting number of

each serine/threonine phosphatase in a given organism. For exam-

ple, the protein phosphatase 1 catalytic subunit binds to different

regulatory subunits. Approximately 100 of these regulatory subunits

have been identified to date (Bollen, 2001), providing differences in

substrate specificity, subcellular localisation and enzymatic activity.

The tyrosine phosphatase family presents a less complicated

picture. Instead of protein complexes, they are single polypeptides

with different subtypes providing differences in specificity or sub-

cellular and/or tissue location. However, the necessity for fine-

grained classification is increased with the subtlety of the differ-

ences between closely related proteins performing different

functions. Figure 1 shows the differences in p-domain architecture

of the receptor tyrosine phosphatase subfamily of proteins.

The recent implication of phosphatases in human diseases, such

as diabetes, cancer and neurodegenerative conditions (Schonthal,

2001, Zhang, 2001 and Tian & Wang, 2002), makes the protein

phosphatase family an interesting target for medical and pharma-

ceutical research and the size of the family means that classification

at a detailed level is vital for understanding the biological role of

individual proteins and for comparative genomic studies.

Phosphatase ontology

An ontology attempts to describe what exists in the world; an

ontology of protein phosphatases describes what protein phos-

phatases exist. In computer science, an ontology creates a model

of what a community understands about its domain as a highly

interconnected hierarch of concepts and relationships. By agreeing

upon an ontology and the terms within it, a community can create a

shared understanding of their domain of study. Committing to such

an ontology and its definitions can be used in several ways. One of

the most common uses is as a reference; to remove semantic het-

erogeneity in a community in querying and integration. This has

been demonstrated most prominently by the Gene Ontology (Go

consortium, 2004), where some 20 databases now use the same

terminology to describe the major attributes of functionality of

gene products. The GO based descriptions of data have utility

not only in retrieval across many resources, but also for analysis

of data in, for instance, microarray experiments.

As well as being used as a community knowledge reference,

OWL-based ontologies can also be used to perform reasoning. In

this work, we utilise the structure and reasoning capabilities of

OWL to produce a formal representation of the protein phosphatase

Fig. 1. The differences in domain architecture of the receptor tyrosine

phosphatase subfamily. Red ¼ phosphatase catalytic domain. Blue bar ¼
transmembrane region, green¼ immunoglobulin domain, blue circle¼ fibro-

nectin domain, purple ¼ MAM domain, yellow ¼ carbonic anhydrase

domain, orange ¼ adhesion recognition site, black ¼ glycosylation and

white ¼ cadherin-like domain.
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family classification (derived from the protein phosphatase research

community). We then use this classification in order to assign any

given individual protein to a particular type of phosphatase based

entirely on how the ontology defines a type of phosphatase.

In computer science, an ontology consists of representations of

the things in the world, often called classes, frames, types or sets,

and the relationships between them, often called properties, slots or

roles. An OWL ontology contains classes and instances and binary

relationships between those instances. Classes represent sets of

instances in the world being modeled. In an OWL ontology,

when an instance of one class holds a relationship to another,

each instance in that class must hold that relationship. So, OWL

describes universals. OWL allows precise descriptions of the suc-

cessors of these relationships. For example, in a class Phosphatase,

we describe that all instances hold a relationship ‘has domain’,

which has a successor Phosphatase Catalytic Domain. We can

say that there must be at least one successor (existential) or that

only an instance from Phosphatase Catalytic Domain can act as

successors (universal). Any relationships held by a class are inher-

ited by all subclasses; the relationships held by instances of a class

can only be added to or the successors specialized in their own

inheritance trees. As can be seen from Figure 1, this interpretation

of world suits the situation found with protein phosphatases. Each

member of the family contains a phosphatase catalytic domain.

Each sub-type simply adds more or different p-domains. This

makes it highly amenable to modeling in OWL.

By describing universals an OWL ontology says that all the

instances in a class must hold a particular relationship with a

particular successor. This is a necessary relationship. Additionally,

OWL can say that these relationships can be both necessary and

sufficient. This means that when an instance holds such a combina-

tion of relationships, then that is sufficient to recognize that instance

as being a member of that class. In our example, a protein having

a protein phosphatase catalytic domain is sufficient to place it into

the protein phosphatase class. In this way, OWL ontologies can

contain definitions of classes in terms of the relationships instances

of those classes hold.

The strict and precise semantics of the OWL language mean that

it is amenable to automatic reasoning. OWL itself is based upon a

decidable fragment of first order logic (Baader, et al., 2003), which

means it can be submitted to a reasoner. Such a reasoner can

determine whether the set of axioms describing the ontology are

satisfiable in any world. This practically means that it will report any

logical inconsistencies in the ontology. It will also infer the hier-

archy of classes implied by the descriptions given in the ontology

and thus aid in the creation of a robust classification of types or

classes in the ontology.

A protein phosphatase ontology expressed in OWL can capture

the necessary and sufficient properties for membership in each

protein phosphatase subfamily. For example, in our ontology

descriptions of classes, an R5 phosphatase is a type of classical

receptor tyrosine phosphatase. As a tyrosine phosphatase, it con-

tains at least one phosphatase catalytic p-domain and as a receptor

tyrosine phosphatase, it contains a transmembrane region. From

figure 1, it can be seen that this is true for all receptor tyrosine

phosphatases. Additionally, the R5 type actually contains two

catalytic p-domains and a fibronectin p-domain, placing it into

further subclasses. The presence of the distal carbonic anhydrase

domain is unique to the R5 type of tyrosine phosphatase. Any

protein instance exhibiting all of the above sequence features

would be assigned as an instance of the R5 receptor tyrosine

phosphatase class.

Figure 2 shows an OWLViz representation of the protein

phosphatase p-domain ontology.

By describing protein phosphatases in terms of the p-domains

they contain, the phosphatase ontology captures what a human

Fig. 2. An OWLViz representation of part of the protein phosphatase ontology.
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biologist must recognise in an individual protein in order to place it

within a type of protein phosphatase. The ontology itself represents

a classification of phosphatases. OWL ontologies, however, not

only represent a classification, but can also perform the act of

classifying. OWL can not only represent class descriptions, but

also do the same for individuals. Given a classification of types

or classes, a reasoner can take individuals represented in OWL using

the same terms as the ontology and classify them against that ontol-

ogy. This is how we use the ontology in this protein classification

methodology.

The protein phosphatase ontology described in this work only

describes the sequence features of proteins, but it was derived from

a wider protein family ontology capturing, for example, knowledge

about substrates, products, inhibitors and disease associations. This

family ontology was built as part of a management system for a

protein phosphatase database (Wolstencroft et al., 2005). By auto-

matically assigning family and subfamily classifications to new

proteins using this domain ontology and reasoning, we hope to

infer new knowledge for uncharacterised proteins in the database.

MATERIALS AND METHODS

The bioinformatics analyses necessary for classification of a protein

sequence as a protein phosphatase can be divided into the following stages:

(1) Extract the protein phosphatase gene products from the genome in a

pre-screening step, without extracting any non-phosphatase proteins

(2) Perform an InterproScan on each protein phosphatase to determine its

p-domain composition.

(3) Use the pattern of p-domain composition to identify to which class of

phosphatases each protein belongs.

Step three in this analysis usually requires human analysis, but in our

method, this is supported computationally by the use of the protein phos-

phatase ontology. Steps 1 and 2 are already well catered for with bioinfor-

matics tools such as InterPro. As noted in the introduction, it is the stage of

using the information provided by such tools that usually requires human

intervention. Our ontology, however, captures definitions of what sequence

features need to be present in an individual protein for it to be recognized as a

particular type of protein phosphatase. The essence of our methodology is

to use this ontology within an application to recognize the consequences of

p-domain detection by InterPro for membership in a particular class of

protein phosphatases.

The ontology describes classes of phosphatases, but not individual

proteins. In order to reason over the descriptions of individual proteins,

as described in the previous section, we use a related technology, the

Instance Store (Horrocks et al., 2004).

The Instance Store combines a Description Logic reasoner with a rela-

tional database. The reasoner in this case performs the task of classification;

that is, from the OWL instance descriptions given, it determines the appro-

priate ontology class for an instance description. The relational database

provides the stability, scalability and persistence necessary for this work.

The Instance Store itself provides a relatively simple programmatic inter-

face, allowing assertion of descriptions and queries against the set of

instances. It uses highly optimized algorithms to denormalise datasets as

they are asserted and later determine whether the information in the database

is sufficient to answer queries, or whether reasoning is required.

The automated classification system we have developed combines

elements from the myGrid service-orientated architecture described previ-

ously (Stevens et al., 2004) with description logic reasoning (Baader et al.,

2003) to extract and classify the protein phosphatase gene products from an

organism. The system uses the OWL protein phosphatase ontology; the

Figure 3. The ontology classification system architecture.
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Instance Store and a reasoner to classify the individual proteins. Figure 3

shows the architecture of the system. The use of myGrid services allows

large data sets to be passed through many stages of analyses without the need

for human intervention and without the need for the installation and main-

tenance of local databases and bioinformatics tools (Oinn et al., 2004).

The data sets

The study focuses on the human and the Aspergillus fumigatus protein

phosphatases. The human phosphatases had already been identified and

extensively described in previous studies (Alonso et al., 2004, Mustelin

et al., 2005), but in Aspergillus, the protein phosphatases required identi-

fication and extraction from the genome.

Previous classification of human phosphatases by biological experts pro-

vides a substantial test-set for the ontology. If the ontology classifies the

proteins as well as the human experts have, studies on new, unknown genomes

can be undertaken with greater confidence. The Aspergillus fumigatus genome

offers a unique insight into the comparison between the automated method and

the manual. The A. fumigatus genome has been sequenced and annotation is

currently underway by a team of human experts (Mabey et al., 2004).

Pre-screening The proteome datasets were pre-screened to isolate phos-

phatase proteins from the rest of the organism’s proteins. This was achieved

by screening for diagnostic phosphatase p-domains. These are: a) the protein

tyrosine phosphatase active site motif H-C-X(5)-R (Andersen et al., 2005) b)

the protein serine/threonine phosphatase motif [LIVMN]-[KR]-G-N-H-E

and c) the protein phosphatase C signature motif [LIVMFY]-[LIVMFYA]-

[GSAC]-[LIVM]-[FYC]-D-G-H-[GAV]. The EMBOSS program patmatdb

(Rice et al., 2000) was used for this initial screening process.

This pre-screening process is not strictly necessary. Performing an

InterProScan on each and every protein would enable the isolation of phos-

phatase proteins, but this step is time-consuming. One InterproScan can take

up to ten minutes to perform, whereas, patmatdb can screen the whole dataset

in less than a minute, reducing the overall experiment time.

InterPro

Proteins identified in the pre-screen were individually searched against

Interpro using InterproScan as a web service implementation provided by

the EBI. Results were gathered in XML, which was then parsed into a tab

delimited format containing the Interpro accession number(s) and the

numbers of times p-domains occurred.

Translation into OWL

The translation into OWL instance descriptions is largely a syntactic

transformation from the previous step, although it requires implicit knowl-

edge of the ontology. In this case, the use of naming conventions within the

ontology made this transformation simple. Once translated, all descriptions

of protein instances were loaded into the Instance Store. We then system-

atically asked the instance store which proteins belonged to which class of

phosphatase. The end result of this processing was a report on the numbers

and types of protein phosphatases in a genome.

RESULTS

In order to demonstrate the performance of the ontology driven

classification system, the proteins identified and classified in

previous human phosphatase reviews (Alonso et al., 2004,

Cohen, 1997, and Andersen et al., 2004) were used to compare

the ontology classification to that derived by human experts.

Table 1 shows the number of proteins in each of the higher level

protein phosphatase subfamily classes in the human classification

and in the automated classification.

The comparison between the classifications clearly demonstrates

that the performance of the automated ontology classification

system is equal to that of the human annotated original. The ontol-

ogy class definitions were sufficient to identify the differences

between protein subfamilies and demonstrate the usability of the

system on uncharacterised genomes.

Table 1 illustrates protein numbers in phosphatase subfamilies.

However, many subfamilies contain several different subtypes. For

example, there are eight subtypes of receptor tyrosine phosphatases

and seven subtypes of myotubularins.

An interesting result from the analysis was that, using the ontol-

ogy, we were able to identify additional functional domains in two

dual specificity phosphatases, presenting the opportunity to refine

the classification of the subfamily into further subtypes.

Alonso et al. (2004), describe the ‘atypical’ dual specificity phos-

phatases as being divided into seven subtypes. The largest of these

have the same p-domain architecture; they contain tyrosine phos-

phatase and dual specificity catalytic p-domains alone. However,

several proteins have additional functional domains that have been

shown to confer functional specificity (Wang et al., 2001). Classi-

fying the proteins using the ontology highlighted more of these

‘extra’ p-domains.

The protein DUS12 contains a zinc finger domain (IPR007087).

This protein has been characterised not only in the human genome

(Marco et al., 1999), but in many other species (Kumar et al., 2004).

Table 1. A comparison of the numbers of proteins assigned to subfamilies of

protein phosphatases by expert annotation and by the automated ontology

classification. The numbers of protein instances in the serine/threonine sub-

families looks much smaller than the PTPs. This is because the PTPs are

single subunit proteins, whereas the serine/threonine PPPs are predominantly

multi-subunit proteins. The instances presented are the catalytic subunits

alone. Modeling the regulatory subunits in a similar manner was out of

the scope of this project, but would be an interesting extension.

Phosphatase classification Human

expert

classification

Ontology

classification

Tyrosine Phosphatases

A Class I Cys-based PTPs 93 93

Classical PTPs 36 36

Receptor type 19 19

Non-receptor type 17 17

VH1-like (DSPs) 57 57

MKP 11 11

Myotubularins 14 14

‘atyipical’ DSPs 17 17

B Class II Cys-based PTPs

Low molecular weight PTPs

1 1

C Class III Cys-based PTPs

CDC25 3 3

D Asp-based PTPs

EyA 4 4

Serine/threonine Phospahtases

PPP

Classical

Novel 10 10

PPP5 1 1

PPP7 1 1

PPM 5 5

PP2C
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In the classification presented by Alonso et al., (2004) the protein

is present, but is miss-annotated as containing a FYVE domain.

FYVE domains are different types of zinc finger domains which

occur in the myotubularin proteins MTMR3 and MTMR4. Earlier

reviews of the tyrosine phosphatase family, however, do include the

zinc finger domain in the protein (Bhaduri & Sowdhamini, 2003).

These results illustrate an inconsistency in the accepted protein

phosphatase community knowledge and highlight a possible

disadvantage of human expert annotation, namely human error

leading to omission.

The dual specificity phosphatase 10 protein (DUSP10) contains

a disintegrin domain. The UniProt record reflects this, but the

domain does not appear in any phosphatase characterisation/

classification studies. The domain architecture of DUSP10 is con-

served in other species (data not shown), which suggests a specific

function for the domain, but current experimental evidence does not

explain what this might be.

Aspergillus fumigatus

The success of the ontology system in classifying the known

human phosphatases enables the classification of phosphatases

from incomplete or unannotated genomes. The A.fumigatus genome

has been partially annotated. It has been sequenced, and is being

annotated by human experts. Therefore, the protein data currently

consists of both predicted and known proteins. The predicted pro-

teins may contain descriptions based upon automated similarity

searches, producing entries termed ‘hypothetical’ or ‘putative’,

but their annotation is limited.

Using the ontology system to classify the phosphatases allows

a comparison between the proteins already annotated and those

with partial annotation from similarity searching. Table 2

summarises the classes of A.fumigatus protein phosphatases iden-

tified by the ontology system.

The table illustrates important differences between the phos-

phatases of the two test organisms. The protein serine/threonine

phosphatase composition remains relatively unchanged, but there

are radical differences between the tyrosine and dual specificity

subfamilies. Firstly, the number of proteins in A.fumigatus is greatly

reduced. Where the human genome contains 16 myotubularin pro-

teins and 11 MAP kinase phosphatase proteins, A.fumigatus con-

tains only one of each. The number of ‘classical’ protein tyrosine

phosphatases is also reduced. There are no incidences of receptor

tyrosine phosphatases and only three non-receptor tyrosine phos-

phatases. These results may initially seem surprising, but the com-

plexity of the two organisms is radically different. Requirements for

tissue specificity, for example, are reduced in A.fumigatus, and some

tyrosine phosphatases have been shown to exhibit tissue-specific

expression (Chagnon et al., 2004). There is also the issue of the

pathways that the ‘missing’ phosphatases are involved in. Some

phosphorylation pathways would be expected to be conserved,

but it should also be expected that specific mammalian and fungal

pathways would require different phosphatase components.

The ontology classification uncovered a protein phosphatase with

a novel domain architecture. Protein Afu5g09360 is a calcineurin

protein (PP2B) which contains an extra homeobox domain. The

homeobox domain binds to DNA using a helix-turn-helix structural

motif. It is found in a variety of DNA-binding proteins, many of

which are transcription factors.

PP2B is well conserved throughout evolution. Performing

BLAST analyses on Afu5g09360 and InterproScans of the

proteins exhibiting the most similarity (data not shown) revealed

that the homeobox domain in PP2B was present in other aspergillus

species and closely related fungi, but was not present in any other

taxa. The conservation strongly suggests a specific function for this

extra domain. Previous studies have identified a divergence in the

mechanisms of action of calcineurin in pathogenic fungi (Kraus &

Table 2. A.fumigatus protein phosphatases classified by the automated

ontology system

Phosphatase classification Number

of proteins

Protein

identifiers

Tyrosine Phosphatases

A Class I Cys-based PTPs

Classical PTPs

Non-receptor type 3 Afu3g10970

Afu4g07000

Afu6g06650

Receptor type 0

VH1-like (DSPs)

MKP 1 Afu4g04710

Myotubularins 1 Afu1g05640

‘atypical’ DSPs 6 Afu2g11990

Afu2g02760

Afu3g12250

Afu5g11690

Afu4g07080

Afu1g03540

B Class II Cys-based PTPs

Low molecular weight PTPs 0

C Class III Cys-based PTPs

CDC25 0

D Asp-based PTPs

EyA 0

Serine/threonine Phospahtases

PPP

Classical 9 Afu2g03950

Afu5g12010

Afu5g11370

Afu5g09360

Afu5g08620

Afu5g06700

Afu1g04950

Afu6g10830

Afu6g11470

Novel

PPP5 1 Afu5g06700

PPP7

PPM Afu1g15800

PP2C 5 Afu1g09280

Afu2g03890

Afu5g13340

Afu5g13740
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Heitman, 2003) and have also demonstrated that this is critical

for virulence. Other studies on one function of calcineurin in

Arabidopsis, ion homeostasis, (Shin et al., 2004) have revealed a

homeobox protein, Athb-12, is also involved. This study raises the

possibility of a similar regulatory role for the homeobox domain in

the A.fumigatus protein, but confirmatory experimental evidence

will have to be obtained.

The ontology system vs. A.fumigatus genome

automated annotation pipeline

Many of the protein phosphatases identified in the ontology

classification system had not been classified and curated manually

by the A.fumigatus genome group, but had simply been annotated

using the results of automated annotation methods (Allen et al.,
2004). In many cases, the automated annotation approach under-

performed when compared to the ontology system. The ontology

classification placed proteins into more specific classes than the

automated approach adopted by the A.fumigatus genome group.

For example, the ontology classified the protein Afu1g05640 as

a myotubularin, a specific subclass of the dual-specificity phos-

phatases, which is a lipid phosphatase. The annotation from the

A.fumigatus sequencing consortium simply stated that it was a pro-

tein phosphatase. In one case, the A.fumigatus annotation appeared

to provide a more detailed classification than the ontology. The

protein Afu2g11990 was annotated as a Pten phosphatase, whereas

the ontology simply classified it as a dual specificity phosphatase

(the parent class of Pten). However, on closer inspection, the protein

did not contain p-domains indicative of Pten proteins (Alonso et al.,
2004). A sequence similarity search revealed partial similarity to the

Pten protein from Dictyostelium discoideum, but this was in the

region of the dual specificity phosphatase domain, so there does not

appear to be sufficient evidence to place this protein in the Pten

phosphatase class.

Table 3 shows the comparative classifications of protein

phosphatases in the ontology system and in the automated

A.fumigatus annotation pipeline.

DISCUSSION

Post-genomic bioinformatics presents new problems for the bioin-

formatician. The scale of data production has increased dramatically

while the pace of data analysis and annotation has not kept pace.

Often, compromises on the quality of annotation have to be made in

order to interpret large data sets quickly. We have tried to avoid

making such a compromise by designing a system that will allow

rapid, automated classification to the fine-grained, subfamily level.

This study demonstrates the advantages of combining community

knowledge, in the form of an ontology, with automated annotation

methods.

Standard automated methods of annotation provide evidence for

similarity to other known proteins, or provide lists of functional

domains within a protein, but they do not allow the interpretation

of this information. The strength of human expert annotation is in

Table 3. A comparison of the differences in classification between the annotations assigned to phosphatases by the A.fumigatus sequencing project and

by the ontology

A.fumigatus annotation Ontology classification

Afu1g03540 Hypothetical protein Dual specificity phosphatase

Afu1g05640 Protein phosphatase Myotubularin

Afu5g11690 Related to protein tyrosine phosphatase PPS1 Dual specificity phosphatase

Afu4g07080 Putative dual specificity phosphatase Dual specificity phosphatase

Afu4g07000 Tyrosine phosphatase Tyrosine phosphatase

Afu4g04710 Putative tyrosine phosphatase MAP Kinase Phosphatase (MKP)

Afu6g06650 Conserved hypothetical protein Tyrosine phosphatase

Afu2g11990 Pten-3-phosphoinisitide phosphatase Dual specificity phosphatase

Afu3g12250 Putative protein tyrosine phosphatase Dual specificity phosphatase

Afu2g02760 Putative protein tyrosine phosphatase Dual specificity phosphatase

Afu3g10970 Protein tyrosine phosphatase Protein tyrosine phosphatase

Afu1g04950 serine/threonine protein phosphatase 1 Classical serine/threonine phosphatase

Afu1g09280 protein phosphatase 2C, putative Protein phosphatase 2C

Afu1g15800 protein phosphatase 2C, putative Protein phosphatase 2C

Afu2g03890 Protein phosphatase 2C, putative Protein phosphatase 2C

Afu2g03950 serine/threonine protein phosphatase, putative Classical serine/threonine phosphatase

Afu5g06700 serine/threonine protein phosphatase PPT1 Protein phosphatase 5

Afu5g08620 Ser/Thr protein phosphatase family Classical serine/threonine phosphatase

Afu6g11470 TOR signalling pathway phosphatase, putative Classical serine/threonine phosphatase

Afu6g10830 protein phosphatase 2a Classical serine/threonine phosphatase

Afu5g13340 protein phosphatase 2C, putative Protein phosphatase 2C

Afu5g12010 serine/threonine phosphatase Classical serine/threonine phosphatase

Afu5g11370 Ser/Thr protein phosphatase Classical serine/threonine phosphatase

Afu5g09360 calcineurin A Classical serine/threonine phosphatase—

with unique homeobox domain

Afu5g13740 phosphatase 2C, putative Protein phosphatase 2C
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this interpretation step. In our novel approach, we were able to

replace this interpretation step with further automation. Using

the technologies of formal description logics and ontological

reasoning, we could capture and utilise community knowledge

for data analysis.

By using InterproScan to perform the domain composition

analyses, we are able to benefit from the combined advantages

of all of the different domain/motif searching techniques developed

by the protein domain databases that contribute to Interpro. Our

method does not replace the need to use these domain identification

tools, nor does it introduce a novel detection method; it simply

provides a mechanism for automatically interpreting the results

of these searches.

The ontology system classified the human protein phosphatases

with equal competence to human experts, enabling confidence to

be placed in similar studies of the proteins of uncharacterised

genomes. It was also discovered that the ontology system was

efficient at uncovering novel, unexpected functional domains and

therefore uncovering interesting new targets for future research.

The computational use of human knowledge in our methodology

allows a systematic, thorough approach to the classification of

proteins in a genome. It is possible for a human bioinformatician

to perform the same task, but human annotators often have a par-

ticular question in mind when searching and consequently may

overlook outliers that do not match this pre-formed template. In

addition, this system avoids human frailties of slips, omissions and

boredom.

The ontology definitions were constructed from what was

known to be present. If a domain was found in a protein that did

not appear in the ontology, there was a notable inconsistency in the

Instance Store, enabling easy identification. In the human study, two

of these unexpected domains were identified. The zinc finger

domain in the dual specificity phosphatase C protein has been

well characterised, first in Plasmodium falciparum, and later in

other organisms. It is omitted from the most recent phosphatase

classification (Alonso et al., 2004), but is included in previous

works (Bhaduri & Sowdhamini, 2003), which highlights inconsis-

tencies and discrepancies within the phosphatase community

knowledge base.

The disintegrin domain identified in DUSP10 provides a

more interesting and open biological question. It is a distinct func-

tional domain and is conserved in the DUSP10 protein from other

species (data not shown). This conservation suggests a specific

role for this domain, but, to date, there is no experimental evidence.

In vivo studies on the protein have identified a role in the innate

and adaptive immune response and it has also been found to

block the enzymatic activity of the MAP Kinases, p38, JNK and

SAPK.

The results from A.fumigatus also produced interesting biological

questions. The homeobox domain identified in protein Afu5g09360

appears to be conserved across Aspergillus species and closely

related fungi, but does not appear in any other taxa. This could

perhaps suggest a fungal-specific pathway for the phosphatase. A

broader question arising from the A.fumigatus study is a compara-

tive genomics question. A comparative study of other fungal species

and species from other taxa, could greatly increase our understand-

ing of the evolution of protein phosphorylation, and the ontology

system developed in this study provides a unique opportunity to

gather the data for such a study.

Work with the ontology system can also be expanded to

other protein families. Protein phosphatases provided a good use-

case and proof of concept for our method, but the method is not

confined to one family of proteins. Work is underway to construct a

similar ontology for the ABC transporters and potassium channel

proteins and eventually we would like to do the same for the protein

kinase domain, allowing the extraction and classification of the

phosphorylome from new genomes.

The development of such ontologies is limited by our knowledge

of the features that determine particular functionality in a protein

and the availability of tools to detect all those features. We have

observed, for instance, that some classifications are based upon

tissue specificity of a protein that is based upon regulation of

sequence identical proteins by other genetic features. Detecting

such information lies outside the tools currently used in our meth-

odology. In other cases, the ordering of sequence features is impor-

tant for recognizing protein family type. Such ordering is not usually

possible in OWL, but an ontology design pattern now exists for

expressing lists and we expect to employ this pattern in the near

future. Nevertheless, the possibilities and limitations of our

approach remain to be fully explored.

By combining ontology reasoning with the myGrid service

layer, we have produced an automated annotation system that

can perform genome-wide surveys and protein classification

equal to the ‘gold standard’ of human expert annotation. We believe

that this work could also have wider implications within bioinfor-

matics. Currently, the use of ontological technology has been

largely restricted to enhancing browsing and querying over existing

data. In this paper, we have described the application of the

computationally amenable semantics of an OWL ontology to the

enhancement of community-developed knowledge. By encoding

pre-existing community knowledge in this way, we have gained

the advantage of automation and the ability to systematically

analyse large volumes of biological data. In this case, this has

resulted in the uncovering of interesting biological observations

that will lead to further experimental investigation.

While in this paper we have focused on proteins, this method is

applicable to any area of biology where properties defining class

membership can be derived from automated analysis tools. For

these reasons, we believe that this style of automatic classification

could have a great impact in bioinformatics analyses.
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ABSTRACT

Background: Recently, a conceptually new approach for analyzing

gene networks, the Functional InfluenceNetwork (FIN) was presented.

The FIN approach uses the measured performance of a given cellular

function under different multi-perturbations, to identify the main

functional pathways and interactions underlying its processing. Here

we present and study an iterative, extended version of FIN, the

Functional Influence Network Extractor (FINE), which is specifically

geared towards the accurate analysis of sparse cellular systems. We

employ it to study a conceptually fundamental question of practical

importance—how well should we know the system studied (such that

we can predict its performance) so that we can understand its workings

(i.e., chart its underlying functional network)?

Results and Conclusions: The performance of FINE is studied in

both simulated and biological sparse systems. It successfully obtains

an accurate and compact description of the underlying functional

network even with limited data, and outperforms FIN. We show that

prior estimates of a system’s functional complexity are instrumental in

determining how much predictive knowledge is required to accurately

chart its underlying functional network.

Availability: The FINE software is available for download at http://

www.cns.tau.ac.il/resc.html

Contact: niryosef@post.tau.ac.il

INTRODUCTION

Which elements within a system are important for its performance?

How do these elements influence the system’s performance, and to

what extent? Are there inter-element interactions which signifi-

cantly affect the system’s performance? These fundamental ques-

tions typically arise when attempting to analyze a system in order to

understand its workings. Specifically, within the context of genetic

networks, the success of genome sequencing projects and high

throughput gene expression studies has allowed biologists to

identify almost all genes responsible for producing the biological

complexity of several organisms. The next important task is to

quantify their importance to various cellular functions (Carpenter

et al., 2004) and understand their functional regulatory interactions

(Barabasi et al., 2004) and the ‘logic circuitry’ (Davidson et al.,
2002).

To causally deduce the roles played by genes in determining a

cellular function, or more generally the role of elements in any

system, perturbation studies are necessary and have been tradition-

ally employed. In perturbation studies, phenotypic variation is

traced after deletion or mutation of different genes. Nevertheless,

the vast majority of these studies have employed single pertur-

bations, which often result in little phenotypic effect, due to the

existence of duplicates, alternative pathways and functional overlap

(Gu et al., 2003). Hence, multiple concomitant perturbations should

be employed in order to identify the causal contributions of the

different genes to the system’s functioning (Kaufman et al.,
2005). Such studies have been quite scarce up until now, comprised

of either large-scale studies of double knockouts (Tong et al., 2004),

or small-scale studies spanning a broader span of multiple-

knockouts (Yuh et al., 2001; Kaufman et al., 2004). However,

the growing awareness that multi-perturbation studies are essential

for deciphering the workings of complex genetic networks, along

with the recent development of new experimental methods such as

RNA interference (RNAi) (Hammond et al., 2001) and transposon

mutagenesis, will soon lead to the accumulation of large amounts of

multi-perturbation genetic data.

The goal of the algorithm at the basis of this paper is to reveal the

main functional pathways and functional interactions uncovered by

multiple knockout experiments in a genetic network. Obviously,

there have been many studies which have developed methods to

uncover the network of interactions between genes, mostly based on

microarray data. Such studies typically address microarray data

analysis by inferring regulatory networks using Boolean networks

(Ideker et al., 2000), Bayesian networks (Pe’er et al., 2001) and

other approaches (Ideker et al., 2001; Tegner et al., 2003). Unlike

these approaches, our goal is to obtain causal functional descrip-

tions, by analyzing data gathered in studies where a specific cellular

function is probed using a variety of multiple knockout experiments.

The functional interactions and pathways we aim to reveal do not

necessarily imply any physical or direct biochemical interactions,

and rather represent functional modules. Keinan et al. (2004) and

Kaufman et al. (2005) have previously presented two complemen-

tary methods to address this challenge, and applied them to the

analysis of genetic and neuronal multi-perturbation data. The latter

presented the Functional Influence Network (FIN) algorithm, aim-

ing to produce a Compact Functional Network (CFN) which

describes in a compact and accurate manner how the genes, acting

together in functional pathways, determine a certain cellular func-

tion or phenotypic behavior. In this study we expand the basic FIN

approach in three fundamental ways:

(1) First, we develop a new algorithm—the Functional Influence

Network Extractor (FINE), motivated by the empirical obser-

vation that many biological networks are functionally sparse
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(e.g. Thieffry et al., (1998); Jeong et al., (2000)), i.e. have a

compact functional backbone.

(2) Second, we perform an extensive study of the workings

of FINE. To this end, a comprehensive set of measures was

developed to evaluate the performance of the algorithm, on a

large number of simulated networks. We then applied FINE

to the analysis of the cis-regulatory system of the sea urchin

endo16 gene (Yuh et al., 2001).

(3) Thethirdcontributionthat thispapermakes isconceptual: since

obviously one cannot expect to obtain all possible multi-

knockout experiments, a question arises: How many experi-

ments will be needed to successfully identify the CFN which

accurately describes the functioning of the system? Utilizing

FINE, we address this question and study how its accuracy

depends on the complexity of the system in hand.

METHODS

Algorithm Background: the FIN Approach

Experimental data obtained in multi-perturbation studies can give rise to two

different kinds of knowledge: (i) Predictive knowledge—where given a new,

unseen state of the system in hand (a new multi-knockout configuration) one

can predict its functioning level, and (ii) Descriptive knowledge—where one

attempts to reconstruct the functional backbone of the system, i.e. describe

how the system’s components actually interact to perform the function in

question. It is the latter kind of knowledge which is the goal of FIN. To this

end, it is composed of two parts: (i) Constructing a functional model, which

describes how the elements in the system (genes) interact to determine the

studied phenotypic behavior, and (ii) Simplifying the resulting functional

model (which tends to be very large and unintelligible) and producing a

compact, yet accurate, functional description of the system in hand, the CFN.

Constructing a Functional Model from Multi-Perturbation
Data Let the investigated system be defined by a pair (N, F).

N ¼ {1, . . . , n} is the set of all elements in the system, where each element

can be in one of two states, either intact(1) or perturbed(0). F : {0, 1}n! R,

the performance function, associates to every set S � N a number describing

the performance level of the system when the set of elements S is intact,

S ¼ {x 2 N | state(x) ¼ 1}. For example, in genetic multi-knockout experi-

ments, N denotes the set of all genes, and for each S � N, F(S) denotes the

quantitative phenotype measured in the knockout experiment in which all

the genes in S are intact and the rest are knocked-out. A fundamental result

from Game Theory shows that F(S) can be uniquely decomposed into the

sum
P

T�S aðTÞ (Grabisch et al., 2000), where the coefficients a(T), denoted

dividends, describe the marginal contribution of each subset T of the set

of intact elements S to the studied performance function F. The dividends

are calculated based on the performance levels measured in the different

multi-knockout experiments, according to

aðSÞ ¼
X
T�S

ð�1ÞjTj�jSjFðTÞ‚ 8S � N‚ ð1Þ

(where jSj and jTj denote the cardinality of the sets S and T respectively).

In the context of a data set of multi-knockout experiments with their

associated measures performance levels, the dividend computation begins

from the dividend of the null group, a(;) ¼ F(;) (the performance measured

when all the elements are knocked out), and each iteration of Eq.(1) com-

putes the dividend (marginal contribution) of the subsequent supersets. That

is, in the second iteration the performance of the single elements minus the

performance of the null group is computed, resulting in the marginal con-

tribution of each single element. The third iteration computes the perfor-

mance of the elements-pairs minus the performance of single elements plus

the null group performance, resulting in the marginal contribution of each of

the elements-pair, and so forth. Based on the dividends, the performance

function F can be represented as a multi-linear polynomial:

Fð~xxÞ ¼
X
S�N

aðSÞ ·
Y
i2S

xi ð2Þ

where the vector~xx 2 f0‚1gn
describes the (intact/knocked-out) states of the

elements in the system. Each term in the polynomial, denoted as summand,

describes a distinct functional pathway since its elements must all be intact to

influence the value of F. Obviously if the function is elementary, that is, if

there are no dependencies between the elements, it could be fully approxi-

mated by a summation over the individual contributing elements (based on n

single-knockout experiments). However, in the context of biological sys-

tems, such a description is likely to be insufficient and even misleading since

such systems are usually complex and involve higher-order interactions.

Constructing the Compact Functional Network (CFN) In the

practical analysis of genetic biological data, the full functional

description of Eq.(2), is typically very large and unintelligible, containing

many ‘uninteresting’ pathways with very small (but non-zero) influence

(dividend). To address this problem, Kaufman et al. (2005) introduced

the concept of the CFN, a compact representation which approximates

the full functional description. The CFN is in itself a multi-linear poly-

nomial which preserves only the most important summands of the full

representation.

Figure 1 shows a schematic example of a CFN construction; the full set

of all 2n (n ¼ 4) possible multi-knockout experiments is given in box A.

This set yields a unique performance function F, describing the phenotypic

behavior of the system (box B). The resulting CFN approximating the full

functional description is shown in box C. With this compact CFN repres-

entation, the approximated performance function f can be visualized in a

relatively simple graph (box D). This graph, referred to as the functional

diagram, provides both predictive knowledge, acting as an oracle for the

system’s behavior at any given state, and descriptive knowledge—explicitly

describing the functional structure of the system. Each node in the graph

corresponds to a set of (possibly only one) elements and is said to be intact if,

and only if, all of its corresponding elements are intact. Additional nodes are

the basal activity node BA which corresponds to the empty set and the output

node f. Each simple path which ends at the output node defines a functional

pathway (a summand in the CFN) whose elements are those listed on the

nodes along the path. The dividend of each such functional pathway is the

weight on its first edge. For example, the dividend of the functional pathway

(c-d-b-f) is the weight on the edge between nodes 7 and 6. Given a knockout

experiment, the expected performance level of the CFN can be calculated by

summing up the dividends of all the intact functional pathways, that is, sum

up the weights on the edges between intact nodes which form a connected

component with the output node (for an illustrative example, see legend of

figure 1). Note that the existence of an edge between two nodes in the

functional diagram does not necessarily imply that they are connected by

any physical interaction. Instead, it denotes that there exists a summand in

the CFN which contains both these elements, that is, they both participate in

a joint functional pathway.

Evidently, the construction of the CFN requires the performance values

over all possible multi-knockout experiments; producing such data is an

unrealistic demand in most cases. In order to construct a CFN given partial

multi-knockout data, the FIN algorithm (Kaufman et al., 2005) predicts the

performance levels of the missing knockout experiments (using any desired

prediction method) and computes the functional model (Eq.(2)) based on

these predicted values. It then applies a pruning procedure to remove sum-

mands from the functional model, aiming to sustain only the most important

ones, while maintaining a pre-defined level of accuracy (comparing the

pruned model to the original functional model)1. The pruning process is

1Throughout the paper, when measuring the accuracy between two continu-

ous vectors p and q, we report the percentage of the variance of p explained

by q, this is, 100ð1 � ðkp � qk2Þ=ðkp � p�k2ÞÞ where p� is the mean of p.
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composed of selecting statistically significant summands, and then elimi-

nating those remaining summands which have a low dividend magnitude.

The output is the pruned polynomial, composed of the remaining summands.

The FINE Algorithm

Motivation While designed to construct a CFN as accurately as possible,

the FIN algorithm still quite frequently produced lengthy and cumbersome

descriptions when supplied with biological experimental data. The FINE

algorithm was developed to overcome these pitfalls of the FIN for sparse

biological systems. Such systems are characterized by an actual small num-

ber of important functional pathways in relation to the set of all pathways

made possible by different groupings of their elements. Hence, the end goal

CFN describing the working of these systems should be small as well. Based

on the FIN as a building block, and taking the assumption that the system

in hand is sparse, FINE performs an iterative process of pruning and

re-approximation of the functional model and produces increasingly more

compact and accurate CFN models.

Formal Description of the FINE Algorithm Given a system of n

elements, the input of FINE is a set of q multi-knockout experiments

with their corresponding experimental performance values (usually, q �
2n). FINE is composed of a preprocessing phase of prediction, followed by

an iterative process of CFN construction. It identifies the set of important

summands and outputs an accurate CFN.

Preprocessing—Constructing the Full Data Predictor. We train a

predictor on the accessible, incomplete data set to predict the performance

levels of the missing experiments and compute the ensuing dividends of all

the 2n summands (Eq.(2)). This process is done using bootstrapping by

randomly resampling with replacement from the available data. Any desired

predictor can be used in this process, producing a pair (D, PER) as output.

D is a 2n · B matrix, where Di,j is the estimated dividend of the ith summand

according to the jth bootstrap repetition (B is the number of bootstrap

repetitions), and PER 2 R2n

, is the predicted performance levels in all

possible knockout experiments (taken as the mean prediction over all B

bootstrap repetitions). We refer to the accuracy of this preprocessing

prediction as the prediction accuracy.

Iterative Construction of the CFN. This is an iterative process in which

the set of summands included in the CFN (i.e. with a non zero coeffi-

cient\dividend) is gradually pruned and narrowed down. The input and

output of each iteration are pairs of the form (D, PER), as defined above.

On each iteration, the number of non-zero rows in D is monotonically

reduced.

Each iteration step is comprised of two phases:

(1) Summands selection phase—For each summand, we use the corre-

sponding row in D to calculate two indices: (i) The significance level of

its dividend (based on a t-test where the null hypothesis is that the

dividend magnitude is zero), and (ii) The expected magnitude of its

dividend (taking the mean value). The most important summands are

then chosen based on these indices, using forward selection and back-

ward elimination procedures. These procedures are controlled by two

pre-determined target levels of accuracy, level1> level2
2. Starting from

an empty summand set (an empty CFN), we gradually add summands

to the CFN, doing so by the order of their dividends’ significance, until

we reach a desired accuracy of level1. Next, we apply backwards

elimination on the resulting set of significant CFN summands, now

eliminating summands by the order of their dividends’ magnitude

(starting from the small ones) until the lower limit of accuracy,

level2, is reached.

(2) Dividends recomputation phase—Let m denote the cardinality of the

set of important summands as of the preceding summands selection

phase. We fit each of the m chosen summands a new dividend coeffi-

cient according to the following model: Q ·~dd ¼~yy, where Q is a binary

q · m matrix describing the partial set of biological knockout

experiments in hand, defined as: Qj,i ¼ 1 iff Ti � Sj, where Ti is the

set of elements included in the ith important summand, and Sj is the

subset of genes intact in the jth experiment.~yy is the given q· 1 vector of

observed performance levels. The coefficients vector~dd is therefore the

new estimated dividends vector. Clearly, the number of free variables

in this model decreases in each iteration since the set of important

summands is monotonically reduced. When the matrix Q does not have

a full rank, there is obviously no unique solution. The particular basic

solution chosen is determined using the QR factorization with column

pivoting (Businger et al., 1965). An over determined equation set is

typically reached after a small number of iteration steps (on our simu-

lations, the majority of cases did not require more than 5 iteration steps

to reach an over determined equation set). Repeating the calculation of

d~using bootstrapping results in a new set of dividends, D, from which

PER is calculated and both serve as the input to the next iteration.

The iterative process continues until the following stopping criteria is

satisfied: either the given model cannot be pruned (i.e., the output of an

iteration is equal to its input) or that a user defined upper bound on the

number of iterations is reached. (the upper bound of 10 iterations, used in our

simulations, was reached in approximately 1% of the experiments).

The algorithm returns the output of the last prediction phase: a predicted

set of all 2n knockout experiments (PER) and a multi-linear polynomial

whose coefficients (most of them zero) are taken as the mean values over

the rows of D. This is a CFN representation of the given performance

Fig. 1. A simple schematic CFN construction of a 4 element system. Box A

provides the analyzed data set of the 16 (24) possible combinations of multi-

knockout experiments and their corresponding performance measures. Box B

shows the performance function F derived by a dividend analysis of the multi-

knockout data set. For example, the dividend value of the subset {a, b} is

calculated as: Performance({a, b})�Performance({a})�Performance({b})+
Performance(;) ¼ 1.03 � 0.66 � 0.56 + 0.15 ¼ � 0.04. Box C presents the

resulting CFN. Finally, box D depicts its network visualization. Each of the

round-shaped nodes (numbered 3� 7) corresponds to a set of elements. Node

2 corresponds to the empty set, describing the system’s basal activity. Node 1

is the output node. Given a knockout experiment where (for example) only a, c
and d are intact then the intact functional pathways are (a-f) and ([c, d]-a-f),

and the value of f is 0.51� 0.19 + 0.15¼ 0.47, the sum of dividends of intact

pathways and the basal activity.

2The accuracy level is computed between the prediction based on the chosen

dividends and the prediction given by the previous iteration.
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function in which all remaining summands (those with non zero dividend

coefficients) are important per our definition and whom cannot be further

eliminated.

To visualize the output of FINE, we have developed an automated module

for the construction of functional diagrams, based on a series of factorization

steps applied on the CFN polynomial. Due to space limitations details are not

provided, however, this module is available as a part of the FINE software

package.

RESULTS

Measures for Evaluating FINE

We present a set of measures, testing to what extent does FINE

achieve its objectives. These measures evaluate the accuracy of the

CFN obtained using partial knockout data to that obtained with full

data. We define: Ground truth performance—the vector of all 2n

knockout experiments’ performance levels, as given by the pre-

dicted performance function. Ground truth CFN (GTCFN)—the

CFN obtained by applying FINE to the full data set of ground
truth performance values. The CFN performance is a vector of

all 2n performance levels computed from a given CFN over all

possible knockout experiments. Based on these definitions we pre-

sent the following measures to quantify CFN accuracy:

� Operational accuracy—the ability to produce accurate predic-

tions of the system’s behavior at any given state, measured by the

match between the ground truth performance and the perfor-

mance values predicted by the CFN.

� Dividend accuracy—the accuracy of the weights assigned to

each functional pathway, measured by the match between all 2n

dividends (some are zero) of the CFN and the GTCFN.

� Descriptive accuracy—the ability to detect the most important

pathways. Since the GTCFN, by construction, contains only the

most important summands of the original target function (such

that the pre-defined level of accuracy is satisfied) it can be used as

a ‘‘gold standard’’ for measuring the descriptive accuracy. We

therefore compare the CFN summands to the GTCFN summands

through the following measures:

� Specificity—the total magnitude of CFN dividends whose

corresponding summands appear in the GTCFN, divided by

the total magnitude of all CFN dividends.

� Sensitivity—the total magnitude of GTCFN dividends whose

corresponding summands are included in the CFN, divided by

the total magnitude of all the GTCFN dividends.

� Jaccard coefficient—the number of CFN summands which

appear in the GTCFN (tp), divided by the combined number

of GTCFN summands (t) and the CFN summands which

do not appear in the GTCFN ( fp). This score reflects the

‘conjunction over union’ between the CFN summands and

GTCFN summands, (tp/(t + fp)).

� Top summands detection rate—the success rate in identifying

the three most important summands in a given performance

function, where each summand is ranked proportionally to the

number of multi-knockout experiments on which it affects. In a

system of n elements, the rank of a summand with s elements

and a dividend value of d is set to jdj · 2n�s.

Combined, these measures provide a comprehensive evaluation

of the performance of FINE. Overall, FINE should give an accurate

approximation of the actual function investigated, (operational
accuracy), in which the important subsets of elements are expressed

(descriptive accuracy) with the accurate weights assigned to them

(dividend accuracy). Note that the operational accuracy is different

from the prediction accuracy as the former relates to the preliminary

prediction and the latter, to the output of FINE.

FINE Analysis of Simulated Data:

Descriptive Vs. Predictive Accuracy

First, a comparison of FINE with FIN in the analysis of sparse

systems is in hand. Figure 2 illustrates the continuous improvement

in both descriptive accuracy and dividends accuracy throughout the

iterative process of FINE, measured in our simulation experiments.

Evidently, the more sparse the system is, the more significant is the

improvement along the iterative process. These results clearly dem-

onstrate the superiority of FINE over the FIN algorithm in sparse

systems (as the FIN is equivalent to FINE with a single iteration).

Our main focus is to utilize FINE to attend the following funda-

mental questions: having obtained multi-knockout performance

data of some cellular function, how well can we expect to under-

stand and describe it’s processing? In terms of this paper, how is the

descriptive accuracy of a CFN produced by FINE dependent on the

prediction accuracy of the data that has been collected? Further-

more, how and to what extent is this relation dependent on the

architecture of the underlying network, i.e. the studied performance

function? In biological systems, these underlying networks are

currently mostly unknown. Therefore, the dependence of the

operational and descriptive accuracy on the prediction accuracy

is important, since prediction accuracy is the only measure one

may have in hand. To study these questions in depth, we perform

a comprehensive set of experiments using simulated multi-knockout

performance data.

The Simulation Experiments We generate a set of random perfor-

mance functions, each inducing a different functional backbone

network architecture. These functions are multi-linear polynomials3,

parameterized by (n, m, c): having n elements, with m summands

(functional pathways), each summand containing no more than c
elements (the length of the pathways is bounded by c). We study a

wide range of functions, varying form simple (n ¼ 8, m ¼ 2, c ¼ 2)

to more complex (n ¼ 8, m ¼ 16, c ¼ 8). For each parameter set

(n, m, c) we consider 10 random performance functions, each induc-

ing a different network architecture. The coefficients of each poly-

nomial are selected randomly from a uniform distribution (on the

interval [6, 10]) and arbitrarily assigned with a ± sign. The input

data to FINE is a set of ‘knockout experiments’ obtained by con-

sidering different intact subsets out of the n elements and calculating

their corresponding performance levels. For each of the random

performance functions, we performed a set of FINE analyses

using a span of partial input data sets, ranging from 10 to 256

samples (out of 28 ¼ 256) yielding a wide range of prediction

accuracies. In the current implementation we used k-nearest neigh-

bors (KNN) as the ‘default’ prediction method (used in the prepro-

cessing stage) with the parameter k set to 3. The target levels of

accuracy, level1 and level2, were set to 98% and 95% respectively.

3Our choice of multi-linear polynomials as target models stemmed from the

fact that performance levels of any multi-knockout data set can be uniquely

described in such canonical form.
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The Simulation Results Figure 3 demonstrates the simulation

results. The different performance measures are plotted against

the prediction accuracy of the sample sets. Evidently, all the per-

formance measures increase with the prediction accuracy. Notably,

in the more complex functions, the descriptive accuracy measures

rise to high levels only at fairly high prediction accuracy levels.

This implies that when the assumed size and complexity of the

biological system studied is considerable, one must seek to gather

ample data ensuring high levels of prediction accuracy, otherwise an

accurate descriptive identification of the system is unlikely (at least

with FINE). Interestingly, in all the performance functions tested,

regardless of their complexity, the operational accuracy of FINE

is higher than the prediction accuracy of the initial prediction

method. This fact implies that FINE, in addition to reconstructing

the functional backbone, also acts as a smart predictor, which uti-

lizes the assumption that the system in hand is functionally sparse to

yield improved predictions of the behavior of the system in

unknown states. Another interesting perspective on FINE’s perfor-

mance is given by the top summands detection rate measure;

evidently, when the prediction accuracy rises above 75%, the top

summands detection rate is higher than 80% even in the more

complex cases (m ¼ 16, c ¼ 6). Compared with the performance

of the FIN algorithm throughout our simulation experiments,

FINE achieves better results in 96.4% of the cases, both in terms

of descriptive accuracy (measured by the Jaccard coefficient) and

dividends accuracy.

Figure 4 presents the prediction accuracy required for obtaining

a desired level of descriptive accuracy, as a function of the

complexity of the performance function. The results show a clear

monotonic dependency of the required prediction accuracy on both

the number and length of summands of the target functions. In

biological applications, once a set of experiments has been per-

formed, the prediction accuracy can be evaluated. Thereafter, by

assuming the number and lengths of pathways taking place in the

function studied, an estimate of the achievable CFN descriptive

accuracy can be obtained. However, some caution is warranted

since different predictors yield CFNs with different descriptive

accuracies subject to the same initial prediction accuracy. Yet,

the relative ordering between predictors is conserved across a

span of prediction accuracy levels (data not shown).

FINE Analysis of the Endo16 Cis-regulatory System

To study the workings of FINE with biological data, we focus on the

computational logic model constructed for the cis-regulatory system

of the endo16 gene of the sea urchin, Strongylocentrotus purpuratus
presented by Yuh et al. (2001). This cis-regulatory system was

studied thoroughly in a series of studies (e.g. Yuh et al., (1996),

1998, 2001)). Combining the knowledge assembled by these studies

allowed the formulation of a computational model (Yuh et al., 2001)

which describes in detail how the activity of the endo16 gene is

determined by it’s cis-regulatory elements (transcription factor (TF)

binding sites).

The main elements of the endo16 cis-regulatory system can be

divided into three distinct groups. The two main groups, referred to

as module A and B, correspond to two sets of TF binding sites, lying

on two adjacent regions of the cis-regulatory apparatus. The ele-

ments in the third group correspond to whole clusters of binding

sites (modules) lying upstream of modules A and B. Yuh et al.
(2001) show how the elements in these groups interact to determine

the expression level of the endo16 gene throughout embryogenesis.

Early in development, the endo16 gene participates in the speci-
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Fig. 2. Convergence and improvement in accuracy across FINE selection

and recomputation iterations. The figure depicts the improvement of the

Jaccard coefficient and the dividends accuracy (y-axis) across the algorithm’s

iterations (x-axis) until convergence. Data presented for a set of performance

functions with three different parameter sets (detailed on the inset of the

figure), where each parameter set defines a different level of sparseness

(see next section). The continuous improvement in the Jaccard coefficient

and dividend accuracy implies that we continuously eliminate more false

positive (fp) summands than true positive (tp) ones (Jaccard coefficient ¼
tp/(t + fp)) and that the dividend coefficients assigned to these summands are
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the first iteration, or equivalently, the result of the FIN algorithm.
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fication events that define the endomesoderm. This function is

mainly dependent on module A. Later on, it serves as a gut-specific

differentiation gene. This function is mainly dependent on

module B. However, it still requires module A, whose main role

at that point is to act as a mediator between module B and the basal

transcription apparatus. In parallel, the upstream modules (referred

to as modules F, E, D and C) mediated by a certain binding site

in module A, were shown to serve as a repression subsystem

whose role is to force spatial constraints over the activity of the

endo16.

The computational model of Yuh et al. explains this spatial and

temporal dependent activity as a direct result of the intactness of

the elements in the three groups and of the concentration levels of

the TFs which bind in them. Specifically, there are three TFs con-

sidered as kinetic drivers, in the sense that their activity profiles

provide continuous, time-varying input to the system, whereas the

rest of the TFs are perceived in only two discrete states—active or

inactive.

In this study we aim to characterize the endo16 regulation via

FINE. We focus on a single, central, time point of 60 hours after

fertilization, which is after the switch between module A and B

took place (Yuh et al., 2005). The perturbation data is obtained

by considering the effect of mutating or functionally knocking out

different sets of binding sites. Our first task is to construct the

full functional model and the Ground Truth CFN of the endo16
system and use the resulting functional diagram to draw conclusions

about the functional structure of the system. We then show how our

observations match those given by Yuh et al. (2001) Our second

task is to show how well can FINE reconstruct the GTCFN with

limited training data. Finally, we compare the performance of FINE

to that of the FIN algorithm.

We consider nine input variables, eight of them represent single

binding sites—Otx, P and CG1 sites of module A, CY, CB1, CB2, UI

and R sites of module B and a single variable F denoting the spatial

repression subsystem, composed of the Z site of module A and the

upstream modules F, E, D and C (Yuh et al., 1996, 1998). Each

binding site variable can be assigned either with a value of ‘1’ indi-

cating that it is present and is occupied by its respective TF, or with a

value of ‘0’, indicating that it has been mutated or that its respective

TF was inactivated or eliminated. The variable F is assigned with a

value of ‘1’ if and only if the repression system is inactive.

In order to accurately compute the dividend decomposition of

the system, we need to obtain the activity levels of the endo16 in

response to all 29 perturbation configurations (Eq.(1)). We estimate

the values of the basal promoter activity and of the concentration

levels of the kinetic drivers (which bind at the UI, CB2 and

Otx sites) at the time point of 60 hours after fertilization, reflecting

their relative magnitudes in accordance with Yuh et al. (2005)

(UI ¼ 1, Otx ¼ 0.2, CB2 ¼ 0.3, Basal Activity ¼ 0.2).

These values were then used to query the computational model

for the corresponding activity levels. This provides the perturbation

data needed for obtaining the full FIN functional model, via Eq.(2).

In terms of our parameterization, the parameters of this functional

model are (n ¼ 9, m ¼ 7, c ¼ 7). We then apply FINE to obtain the

GTCFN—a compact representation of the functional backbone of

the endo16 cis-regulatory system. Two out of the seven summands

were pruned during the GTCFN construction.

Figure 5 presents the functional diagram, obtained from the full

functional model. Nodes 3 to 9 corresponds to different subsets

of cis-regulatory elements. Node 2 correspond to the basal activity

and node 1 is the output node. Each weighted edge corresponds to

a dividend value. Dashed edges have zero weight and serve as

Boolean and operators. The diagram shows a clear distinction

between module A (nodes 3-4, squares), B (nodes 6-8, hexagons)

and the hybrid subsystems (nodes 5, 9 ovals). The functional

diagram of the GTCFN is, naturally, a subgraph of the full model’s

diagram, and can be obtained by excluding nodes 7 and 9 (indicated

by a gray filling).

The functional diagram, based on the automated visualization

module, clearly outlines the functional structure of the system

and allows us to draw various insights regarding the different logical

subsystems (or functional pathways) involved in determining the

expression of the endo16. We point out a few such observations:

(i) Node 5 acts as a bottle neck for the output of nodes 6-9. It

depends on the sites P, CG1 and CB2. If one of these three elements

is assigned with a value of zero, then the output of the system will

depend solely on node 4 (the Otx site of module A). This subsystem

is recognized by Yuh et al. as the linkage subsystem, which connects

the output of module B into module A. (ii) The Otx site participates

in two counteracting functional pathways, starting at nodes 9 and 4;

If the pathway including nodes (9-6-5-3-1) is intact then the Otx site

has no influence on the system, since its positive contribution via

pathway (4-3-1) is totally repressed. This subsystem is recognized

by Yuh et al. as the BA intermodule input switch, which represses

the output of module A (via the Otx site) and leaves it solely as a

mediator for the output of module B. (iii) The input elements in

node 8 play only a single role in the system, which is to increase the

output of node 6 by two fold. Yuh et al. term this as the synergism
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Fig. 4. Performance of FINE on an ensemble of performance functions.

For each performance function studied we note the input prediction accuracy

needed to achieve a desired descriptive accuracy—a combination of speci-

ficity above 55% and sensitivity above 75% (the y-axis). The figure depicts

the dependency of the descriptive accuracy as a function of prediction

accuracy over a range of different values of m, that is, over different number

of summands in the performance function. Each line corresponds to a

different value of c, that is, to a different maximum permitted length of

summands in the performance function. For example, for a performance

function with the parameters of (m ¼ 6, c ¼ 4), the prediction accuracy

needed to achieve the descriptive accuracy criteria stated above is 70%.

Observe, that the required prediction accuracy shows a monotonic increase

both with c and m.
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subsystem, which, mediated by the CY and CB1, steps up the output

of UI. (iv) Taking a wider perspective, we see that module A is

directly connected to the output node (assuming that the repression

subsystem is inactive) whereas module B requires the intactness of

module A in order to have an effect. On the other hand, the quan-

titative influence of module A alone (via node 4) is of low magni-

tude, compared to that of module B. This is in agreement with the

fact that the role of module A at the time point we selected is mainly

to serve as a mediator for the output of module B, whereas its own

output is of less importance. Evidently, each of these observations,

based on the functional diagram has an equivalence in the logical

analysis of Yuh et al. This fact illustrates the utility of the FIN

approach (and the FINE algorithm) as a tool for representation and

analysis of biological systems.

The two summands which were pruned during the GTCFN

construction correspond to the functional pathways connecting

nodes 7 and 9 to the output node. The biological phenomena

which correspond to these summands are both related to the R

site: (i) The slight increase in the CB2 output which occurs once

the R site is mutated (node 7). (ii) The BA intermodule input switch

(node 9). Both these subsystems were recognized to have a marginal

influence on the expression of the endo16 at the time point exam-

ined (Yuh et al., 2001), and indeed, removing the two summands

from the functional model reduces the operational accuracy by a

mere 3.74%.

To study the relation between prediction accuracy and descript-

ive accuracy in the endo16 system, we apply an assay similar to

the one described in the simulated data section: We apply the

FINE algorithm to a set of random samples of different sizes

drawn out of the set of all 29 perturbation configurations.

Figure 6 displays the performance of FINE as a function of the

prediction accuracy yielded by the various data sets, in a manner

analogous to that of Figure 3. Evidently, the results are quantita-

tively similar to the results on the simulated data (testifying that the

simulated networks behave in a similar manner, CFN-wise, to the

biological model).

The three most important summands in the GTCFN, according to

the ranking scheme defined for the top summands detection

rate measure, correspond to the pathways connecting the output

node to nodes 2, 5 and 6 (pathways (BA � f), ([P, CG1, CB2]� f

� f), (UI � [P, CG1, CB2] � f � f)). Indeed, the corresponding

subgraph (induced by nodes 1, 2, 3, 5 and 6) includes the most

influencing subsystems—the UI and CB2 sites where the two domi-

nant kinetic drivers at the selected time point bind at, the linkage
subsystem, which connects the output of module B into module A,

and the basal activity which naturally effects the expression of the

gene in all possible perturbation configurations and is therefore con-

sidered important as well. Interestingly, FINE identifies this sub-

graph, even when the prediction accuracy is poor. For example, with

prediction accuracy of 60%, the top summands detection rate is 80%.

Comparing the performance of FINE to that of the FIN algorithm

shows a clear superiority of the former. FINE achieves higher rates

of both descriptive accuracy and dividends accuracy in 94.3% of

our simulation experiments, producing significantly more compact

and accurate models (data not shown).

CONCLUSIONS

This paper addresses a new challenge within the context of gene

network analysis. In contrast to prevalent approaches, which aim to

reveal the network of interactions between genes, our goal is to

identify the underlying functional network. In this network descrip-

tion, the genes’ states determine a quantitative phenotype of the

network, and its architecture visualizes and explains how the studied

function is actually carried out. To this end, we rigorously study the

capabilities of FINE, a new, iterative algorithm based on the FIN

algorithm presented in Kaufman et al. (2005). It is designed to

handle sparse networks and leverages this assumption to achieve

improved results. It is shown to successfully analyze simulated

complex networks utilizing multi-knockout data, obtaining a simple

and compact description of the underlying functional network. This

compact representation delineates the important gene sets (path-

ways) and their functional influence. Our results demonstrate that

in small-scale systems (of the scale of multi-knockouts currently

Fig. 5. Functional diagram of the computational model of the endo16 cis-

regulatory system.
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studied in biology), FINE successfully identifies the main subsets

of genes with a low rate of false positives, obtaining a high success

rate in identifying the top 3 important pathways in a system. Similar

results are achieved in the biological example of the endo16 regu-

lation where FINE successfully extracts in an automatic manner the

main known biological modules of the cis-regulatory network. The

success rate in identifying the top three main functional modules in

this system is above 80%, even with a predictive accuracy of 60%.

Evidently, FINE outperforms the FIN when applied to sparse

systems; this occurred in 96.4% of the simulated experiments we

have conducted. However, in cases where the network architecture

transpires such that two pathways completely cancel out the

functional effect of each other in an almost precise manner, FIN

might outperform FINE (such cases occurred in approximately 3%

of our simulations). In addition, if the underlying system is not

sparse and is composed of many functionally interacting pathways,

FINE may lead to an erroneous, grossly over-pruned network, while

FIN is likely to lead to a significantly more accurate description.

Applying the FINE visualization module in the analysis of the

biological example, demonstrates the correspondence between

insights that can be gained via the functional diagram and the

pertaining biological knowledge of the endo16 regulation, summa-

rized in its Boolean logic description.

The second main theme addressed in this study is the question of

how many experiments are needed to successfully identify the CFN.

Our results show that the descriptive and operational accuracy of the

CFN are dependent on the prediction accuracy of the experimental

set in hand. However, the complexity of the underlying network

further modulates the required prediction accuracy in a significant

manner. On a more quantitative level, the simulated data results

provide the biologist with general ballpark numbers as to what

levels of prediction accuracy he must achieve to obtain a desired

level of descriptive accuracy. To this end, however, the biologist

must have some a-priori gross estimation of the complexity/

architecture of the system in hand.

FINE is not limited to small-scale systems, and is potentially

scalable to much larger networks, under some constraints; We

are now developing and studying a k-bounded variant of the

FINE algorithm, in which we assume that, even if the system is

large, only a bounded set of k elements significantly influences the

investigated function (and different tasks in the system may be

realized by different, possibly overlapping bounded sets). Other

directions for future work include applying the FINE to multiple

functions concomitantly—in such cases one can identify and clas-

sify functions according to their functional backbones or extract

common features within the obtained functional backbone. Impor-

tantly, if the multiple functions under investigation are assumed to

share similar functional modules the construction of the CFN can

benefit from a higher degree of accuracy by validating the impor-

tance of the chosen dividends across the different functions.

Since FINE is model independent, it is potentially applicable to a

wide variety of systems. The only requirement is that the function

performed by the system can be measured under different discrete

states of its elements e.g. perturbed, silenced, inactive, enhanced,

over-expressed and so on. Notably, the ‘elements’ perturbed need

not necessarily be single elements and can be sub-modules of a

system. For example, in the sea urchin model, we can relate to the

endo16 CFN as a single node in a more comprehensive develop-

mental network, leading to a hierarchical functional view of the

system. It is likely that the most immediate and rewarding current

application of FINE is in the analysis of multi-perturbation studies

in genetics, in view of the rapid recent advances in gene silencing

with RNAi. The FINE algorithm offers a viable way for the accurate

identification of the main functional pathways in biological systems.
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ABSTRACT

Images (e.g., figures) are important experimental results that are typi-

cally reported in bioscience full-text articles. Biologists need to access

images to validate research facts and to formulate or to test novel

research hypotheses. On the other hand, biologists live in an age of

information explosion. As thousands of biomedical articles are pub-

lished every day, systems that help biologists efficiently access images

in literature would greatly facilitate biomedical research. We hypothe-

size that much of image content reported in a full-text article can be

summarized by the sentences in the abstract of the article. In our study,

more than one hundred biologists had tested this hypothesis and more

than 40 biologists had evaluated a novel user-interface BioEx that

allows biologists to access images directly from abstract sentences.

Our results show that 87.8% biologists were in favor of BioEx over

two other baseline user-interfaces. We further developed systems

that explored hierarchical clustering algorithms to automatically identify

abstract sentences that summarize the images. One of the systems

achieves a precision of 100% that corresponds to a recall of 4.6%.

Contact: hong.yu@dbmi.columbia.edu

1 INTRODUCTION

The rapid growth of electronic publications in bioscience has made it

necessary to create information systems that allow biologists to

navigate and search efficiently among them. PubMed is an informa-

tion retrieval system that returns a list of documents in response

to users’ queries. Arrowsmith helps biologists uncover biologically

significant relations between two previously disparate fields of

inquiry (Smalheiser and Swanson 1998). BioText is an information

retrieval system that allows biologists to refine the retrieved

MEDLINE articles and to categorize the retrieved articles based

on the MeSH terms that were assigned to the articles (Hearst

2003). GeneWays is an information extraction and visualization

system that extracts from literature molecular interactions related

to pathways (Rzhetsky et al. 2004). iHOP is an online service that

identifies sentences that relate two genes (Hoffmann and Valencia

2005). BioMedQA is a question answering system that provides short

text in response to questions posed by biomedical researchers and

physicians (Yu et al. 2006). See the review article (Jensen et al. 2006)

for other information systems. Additionally, there are numerous

annotated databases, e.g., SWISSPORT, OMIM (Hamosh et al.
2005), and BIND (Alfarano et al. 2005), that provide different levels

of annotated literature information about genes and molecular

interactions.

Most of the information systems, however, target text information

only and ignore other important data such as images. Images (e.g.,

figures) are usually the ‘‘evidence’’ of biological experiments. An

image is worth a thousand words. Biologists need to access image

data to validate research facts and to formulate or to test novel

research hypotheses. For example, a biologist may want to see the

image (Figure 1) that supports the fact that ‘‘a stem cell can generate

sebaceous glands.’’ Additionally, full-text articles are frequently

long and typically incorporate multiple images. For example, we

have found an average of 5.2 images per biological article in the

journal Proceedings of the National Academy of Sciences (PNAS).

Biologists need to spend significant amount of time to read the full-

text articles in order to access specific images.

In order to facilitate biologists’ access to images, certain online

journal publishers (e.g., Science direct) introduce a service called

SummaryPlus (as shown in Figure 2) which lists images and their

captions that appear in the full-text article. Such presentation has the

promise of improvement over the traditional single-document-per-

article format that has dominated bioscience publications since the

first scientific article appeared in 1665 (Gross 2002).

We hypothesize that we can further enhance the SummaryPlus

user-interface design. For example, the current SummaryPlus user-

interface does not show any connections between images; this is

contradictory to the fact that images reported in a full-text article are

not disjointed. On the contrary, images are related to each other and

typically, as a whole, leads to the conclusion of the full-text paper.

Additionally, the associated text other than an image caption is

frequently useful to illustrate the image content.

By working with hundreds of biologists, we conclude that much of

the image data that appear in a full-text article can be summarized by

the sentences in the abstract of the full-text article. Because biolo-

gists must read the abstract in order to understand a full-text article;

linking abstract sentences to images will be the most effectively and

convenient way for biologists to access images. This study reports

our design and evaluation of BioEx (as shown in Figure 4), a user-

interface that links abstract sentences to images. We further explored

natural language processing approaches, in particular, hierarchical

clustering to automatically link abstract sentences to images.

2 DO ABSTRACT SENTENCES CORRESPOND
TO IMAGES?

We hypothesize that images reported in a full-text article can be

summarized by sentences in the abstract. To test this hypothesis, we

randomly selected a total of 329 biological articles that are recently

published in four journals Cell (104), EMBO (72), Journal of

Biological Chemistry (92), and Proceedings of the National Acad-

emy of Sciences (PNAS) (61). For each article, we emailed the

corresponding author and invited him or her to identify abstract

sentences that summarize image content in that article. In order to�To whom correspondence should be addressed.
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eliminate the errors that may be introduced by sentence boundary

ambiguity, we manually split abstract sentences and sent the

sentences as the email attachments.

A total of 119 biologists from 19 countries participated volun-

tarily the annotation to identify abstract sentences that summarize

figures or tables in their publications, this resulted in a total of 114

annotated articles (39 Cells, 29 EMBO, 30 Journal of Biological

Chemistry, and 16 PNAS), a collection that is 34.7% of the total

articles we requested. The responding biologists included the cor-

responding authors to whom we had sent emails, as well as the

first authors of the articles to whom the corresponding authors had

forwarded our emails. None of the biologists were compensated.

This collection of 114 full-text articles incorporates 742 figures,

75 tables, and 826 abstract sentences. The average number of figure

or table per document is 7.2±1.7 and the average number of sen-

tences per abstract is 7.2±2.0. Our data show that 87.9% figures and

85.3% tables correspond to abstract sentences and 66.5% abstract

sentences correspond to images; those statistics have empirically

validated our hypothesis that image content can be summarized

by abstract sentences. Since an abstract is a summary of a full-

text article, our results also empirically validate that images are

important content in full-text articles.

Note that the total number of tables is a small fraction (10.1%) of

the total number of figures. Furthermore, out of the four journals,

only EMBO includes Table as images. The total number of table

images in our data collection is 15, which represents only 2% of the

total image files. We have therefore focus only on the 742 figure

images in this study.

We identified three types of links between abstract sentences and

images. One-to-one is defined as an abstract sentence that is linked

to only one image and the image is only linked to the abstract

sentence. One-to-many is defined as an abstract sentence that is

linked to two or more images. Many-to-one is defined as an

image that is linked to two or more abstract sentences. Table 1

shows the numbers of the three categories in our 114 annotated

full-text articles.

After manually examining the annotated articles, we found that

we could approximately group full-text articles into four link pat-

terns (examples are shown in Figure 3) based on the positions

in which abstract sentences or images orderly appear in the abstract

or the full-text articles. In Figure 3A, the abstract sentences are

aligned with images in the order they appear in the full-text articles.

Figure 3B shows that abstract sentences do not correspond to images

in the order they appear in the full-text articles. Figure 3C shows

that images are linked to only a few abstract sentences. Figure 3D

shows that some images are aligned with images in the order they

appear in the full-text articles and some do not. We speculate that

the link patterns may be useful as additional features for inference

authorship. Previously, word frequency has been explored for this

task (Mosteller and Wallace 1963). On the other hand, the irregular

alignment has made the task of automatically mapping abstract

sentences to images more challenging, which will be discussed

in Section 4.

3 BIOEX USER-INTERFACE DESIGNS AND
EVALUATION

We have shown in Section 2 that biologists have judged that 87.9%

images in the total of 114 full-text publications can be summarized

by abstract sentences. We hypothesize that accessing images by

abstract sentences is an improvement over the SummaryPlus

Table 1. The numbers of links between abstract sentences to images

Type Number of Links

1:1 151

1:2 145

1:3 53

1:4 26

1:5 9

1:6 4

1:7 1

2:1 173

3:1 36

4:1 14

5:1 2

1:1: An abstract sentence is linked to only one image and the image is only linked to the

abstract sentence.

1:N: An abstract sentence is linked to N images, N > 1.

N:1: N abstract sentences are linked to one image, N > 1.

Fig. 1. Sebaceous glands genereted by the transplanted progeny of a single

multipotent stem cell isolated from a rat whisker follicle. The picture appears

in the cover page of PNAS 102(41): 14477–14936.

Fig. 2. The summaryPlus user interface.
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user-interface because the former will overcome the disadvantages

of disjoint image content and may be the most efficient way to

access images.

In order to evaluate whether biologists would prefer to accessing

images from abstract sentence links, we have designed BioEx

(Figure 4) and two other baseline user-interfaces (Figure 5). All

three user-interfaces can be accessed at http://dmbi.columbia.edu/

~yuh9001/BioEx.html. BioEx is built upon the PubMed user-

interface except that images can be accessed by the abstract sen-

tences. We have chosen the PubMed user-interface design because

it has more than 70 million hits a month and represents the most

familiar user-interface to biologists. Other information systems

have also adapted the PubMed user-interface for similar reasons

(Smalheiser and Swanson 1998; Hearst 2003). The two other

baseline user-interfaces (as shown in Figure 5) were the original

PubMed user-interface (Figure 5A) and a modified version of the

SummaryPlus user-interface (Figure 5B), in which the images are

listed as the disjointed thumbnails, rather than the links by abstract

sentences.

We asked the 119 biologists who had linked sentences to images

in their publications to assign a label to each of the three user-

interfaces to be ‘‘My favorite’’, ‘‘My second favorite’’, or ‘‘My

least favorite’’1. We designed the evaluation so that a user-

interface’s label is independent of the choices of the other two

user-interfaces. A total of 41 or 34.5% of the biologists whom

we requested completed the evaluation. Table 2 shows their choices.

Table 2 shows that 36 or 87.8% of the total 41 biologists judged

Fig. 5. Baseline user interfaces. (A): The PubMed interface of the article

(PMID¼15851029). (B): SummaryPlus in which images are listed as the

thumbnails at the bottom of the abstract.

Fig. 3. Patterns that abstract sentences are linked to images in full-text

articles. Numerical values in axes show the positions of abstract sentences

or images. For example, ‘‘2’’ indicates the second abstract sentence or the

second image that appear in the full-text article.

Fig. 4. BioEx user-interface (as shown in A) is built upon the PubMed user-

interface. Images are shown as thumbnails at the bottom of a PubMed abstract.

When a mouse (as shown as a hand in A) moves to ‘‘Fig x’’, it shows the

associated abstract sentence(s) that link to the original figure that appears in

the full-text articles. For example, ‘‘Fig 1’’ links to image B. ‘‘Related Text’’

provides links to other associated text besides the image caption. The user-

interface can be accessed from the link at http://dbmi.columbia.edu/

~yuh9001/BioEx.html.

1We assume BioEx is a useful improvement over the PubMed user-interface,

a baseline that has already been favored by biologists.
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that BioEx is ‘‘My favorite’’. One biologist judged all three user-

interfaces to be ‘‘My favorite’’ and 5 other biologists considered

SummaryPlus as ‘‘My favorite’’, two of whom (or 4.9% of the

total 41 biologists) judged BioEx to be ‘‘My least favorite’’. The

SummaryPlus user-interface was the second choice by a majority

of biologists (63.4%).

A total of eighteen biologists not only evaluated the three user-

interfaces, but also provided us with additional text comments.

Of those 18 biologists, 17 of them made positive comments regard-

ing to BioEx and 3 of 17 additionally made suggestions to enhance

the BioEx user-interface design2. Table 3 shows selected original

comments made by the biologist evaluators: two are positive

(C1�C2); C3 is negative; and C4 shows a suggestion to enhance

the BioEx interface design.

4 STRATEGIES FOR LINKING ABSTRACT
SENTENCES TO IMAGES

One way to implement BioEx is to ask the authors of a paper to link

abstract sentences to images. However, currently, PubMed has more

than 15 million citations. It is not feasible to ask the authors to

perform such a large scale of annotation, although it may be feasible

for the publishers to request such a task when a new manuscript is

accepted. In order to implement BioEx, we need to explore statis-

tical and natural language processing approaches to automatically

identify abstract sentences that summarize images.

We may simplify the task of linking abstract sentences to images

as a task of aligning abstract sentences to other associated text

(i.e., captions and other embedded text) that correspond to the

same images. Such simplification is based on two assumptions.

The first is that image content consistently corresponds to its asso-

ciated text in the full-text articles; the correspondence is evidently

supported by the work (Rafkind et al. 2006) that explored both

text features and image features for biomedical literature image

classification.

The second assumption is that there are strong word similarities

between abstract sentences and other associated texts. To validate

this assumption, we plotted the link distribution as a function of

word similarity using the 114 annotated full-text articles. We exam-

ined two similarity measurements; namely, Dice’s coefficiency

(Dice 1945; van Rijsbergen 1979) and the TF*IDF weighted cosine

coefficient (Witten et al. 1999), both of which are commonly used in

tasks including information retrieval and topic detection. Dice score

D(i, j) was calculated by formula (1). The TF*IDF weighted cosine

coefficient score (Salton and Lesk 1968; Witten et al. 1999) sim(i, j)
was calculated by (2) and (3). Wi and Wj are the total number of

words in texts i and j, where i and j are either abstract sentences or

image captions. Wij ¼ Wi \Wj. In (2) and (3), inverse document

frequency (IDF) of a word is calculated from all sentences (N) in the

full-text article.

Dði‚ jÞ ¼ 2Wij

Wi þWj
ð1Þ

idf ðwÞ ¼ log10

N

NðwÞ

� �
ð2Þ

simði‚ jÞ ¼
PWi[Wj

w tf iðwÞ � tf jðwÞ � idf ðwÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPWi[Wj

w tf 2
i ðwÞÞ

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPWi[Wj

w tf 2
j ðwÞÞ

q ð3Þ

Figure 6 shows that both TF*IDF weighted cosine similarity and

Dice score can separate linked pairs from unlinked pairs and the

Fig. 6. The distribution of linked and unlinked abstract sentences or images

as a function of TF*IDF weighted cosine similarity and Dice’s coefficient.

Table 2. Preferences made by 41 biologists who evaluated the three

user-interfaces

Favorite Second Favorite Least Favorite

PubMed 1 11 29

SummaryPlus 6 26 9

BioEx 36 3 2

Table 3. Comments made by biologists who evaluated BioEx and two other

baseline user-interfaces

C1. C (i.e., BioEx) would be useful, because one can easily confirm the

strength/validity of a sentence in the abstract. Sometimes I search abstracts

looking for information on a specific question; this would be helpful to

evaluate the abstracts. B (i.e., SummaryPlus) is not very useful, because

random images are difficult to interpret.

C2. Adding links to the figures significantly facilitates more in depth

skimming of the literature. Case B (i.e., SummaryPlus) is a significant

improvement over case A (i.e., PubMed). Case C (i.e., BioEx) simplifies

accessing the appropriate figures to evaluate the approaches used and is a

useful improvement over case B.

C3. The second (i.e., SummaryPlus) permits accessing figures while

retaining continuity of the abstract and remaining an economical extension

and improvement to the existing PubMed system.

C4. Instead with thumbnails the links could be labeled with Fig.X.

This would be more informative.

2Our initial BioEx user-interface applied thumbnails at the end of abstract

sentences. Three biologists had made suggestions to replace the thumbnails

with ‘‘Fig X’’. Our current BioEx therefore is implemented based on such

recommendations.
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TF*IDF weighted cosine similarity shows an advance over the

Dice’s score for separating the two. The results empirically validate

our assumption that there are word similarities between abstract

sentences to their corresponding image captions.

We may explore different models to map abstract sentences to

images. For example, linking abstract sentences to image captions

and other associated text can be treated as a task of sentence align-

ment in machine translation. However, we consider that the former

is a more challenging task than the latter. In machine translation,

most of the sentences are aligned and typically a majority of

sentences are aligned one to one (i.e., one sentence is translated

to only one sentence in the second language). For example, in (Gale

and Church 1993), 89% sentences belonged to this category. How-

ever, in our data collection, many abstract sentences and images do

not have any corresponding images or sentences and many abstract

sentences and images correspond to two or more images and

abstract sentences (details in Table 1).

Furthermore, techniques that were successful in machine

translation might not apply to our task of linking abstract sentences

to images. For example, sentence length (i.e., a long sentence must

be translated to a long sentence in another language) was found

to be powerful in sentence alignment. However, we do not find

direct correspondence between the length of an abstract sentence

and the length of the corresponding image caption. Additionally, in

machine translation, most of the sentences were aligned in the order

they appear. However, orderly alignment does not apply to many

cases in our data collection (examples shown in Figure 3B–D).

We therefore explored a model that applies hierarchical cluster-

ing algorithms to cluster abstract sentences and images based on

word similarities which has shown in Figure 6 to be able to separate

linked abstract image pairs from unlinked ones. In our application, if

abstract sentences belong to the same cluster that includes images,

the abstract sentences summarize the image content. The clustering

model holds advantages over other models in that the clustering

methods flexibly allow ‘‘one-to-many’’ and ‘‘many-to-one’’ map-

ping. Furthermore, we will show later (Section 5.3) that it is a

relatively a simple task to incorporate positional information.

5 APPLYING HIERARCHICAL CLUSTERING
ALGORITHM FORAUTOMATICALLY LINKING
ABSTRACT SENTENCES WITH IMAGES

Hierarchical clustering algorithms are well-established algorithms

that are widely used in many other research areas including bio-

logical sequence alignment (Corpet 1988), gene expression analyses

(Herrero et al. 2001), and topic detection (Lee et al. 2006). The

algorithm starts with a set of text (i.e., abstract sentences or image

captions). Each sentence or image caption represents a document

that needs to be clustered. The algorithm identifies pair-wise docu-

ment similarity and then merges the two documents with the highest

similarity into one cluster. It then re-evaluates pairs of documents/

clusters; two clusters can be merged if the average similarity across

all pairs of documents within the two clusters exceeds a predefined

threshold. In presence of multiple clusters that can be merged at

any time, the pair of clusters with the highest similarity is always

preferred. See (Lee et al. 2006) for a detailed description and evalu-

ation of the algorithm. We calculated pairwise document similarity

based on the TF*IDF weighted cosine similarity. We had previously

shown that the TF*IDF method shows advance over the Dice

method (Figure 6). We explored different word features, weights,

positional information, and clustering strategies.

5.1 Word features

We have explored bag-of-words and n-grams as features for the

clustering tasks. Additionally, we have explored different feature

combinations that include features in caption, other associated text,

neighboring text, synonyms, or combined.

(1) Caption An image caption usually incorporates multiple sen-

tences or phrases. The heading usually provides an abstraction

of the entire image content and the first sentence of each sub-

heading provides a summary of each sub-experiment. We have

explored the combinations of the heading and the first sen-

tences of the subheading. Specifically, we explored 1) all

words in the caption, 2) heading plus the first sentence of

each sub-experiment in the image caption, and 3) the first

sentence of each sub-experiment.

(2) Other Associated Text The image caption is not the only

content that describes the experiment. There is other associated

text in the full-text document that may provide additional

discriminating features for clustering. We have identified

this ‘‘other associated text’’ by surface cues: we extract para-

graphs incorporating ‘‘Figure X’’ from the full-text article,

then merge these paragraphs with the corresponding image

captions and subject the merged text to the clustering proce-

dure. Our approach stems from the fact that biologists fre-

quently devote an entire paragraph or more to describing

the results of one experiment.

(3) Neighbouring Text Abstract sentences are coherent and the

neighbouring sentences (the preceding and the following sen-

tences) may be content-related. Furthermore, we found that

135 out of the total 746 images or 18% images in our data

collection correspond to consecutive abstract sentences. For

example, Figure 3 shows that the two abstract sentences

‘‘a purified Rae1 complex stabilizes microtubules in egg

extracts in a RanGTP/importin beta-regulated manner’’

and

‘‘interestingly, Rae1 exists in a large ribonucleoprotein com-

plex, which requires RNA for its activity to control micro-

tubule dynamics in vitro’’

point to the same image ‘‘Fig 6’’. We therefore explored

‘‘neighbouring text’’ as additional features: we merged the

features of the neighbouring abstract sentences, namely, the

previous and the following sentences, with the abstract sen-

tence to be examined and applied the merged features to

identify images that are associated with the abstract sentence.

(4) Synonym Expansion Abstract sentences and image captions

do not always use the exact same words. Synonym expansion

might enhance the clustering performance. We applied the

large biomedical knowledge resource the Unified Medical

Language System (UMLS) (Humphreys et al. 1998) to expand

synonyms. The UMLS incorporates more than one million

biomedical concepts with synonyms. We applied a simple
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string matching to capture the terms and to map terms to the

UMLS concepts and synonyms.

5.2 Word weight

For document clustering, we applied the TF*IDF weighted cosine

similarity, which was shown in the previous section 4 to have a

better discrimination than the Dice’s score. We treat each sentence

or image caption as a ‘‘document’’ and the features are bag-of-

words. We explored three different methods to obtain the TF*IDF

value for each word feature:

(1) IDF(abstract+caption): the IDF values were calculated from

the pool of abstract sentences and image captions;

(2) IDF(full-text): the IDF values were calculated from all

sentences in the full-text article;

(3) IDF(abstract)::IDF(caption): we obtained two sets of IDF

values. For words that appear in abstracts, the IDF values

were calculated from the abstract sentences; for words that

appear in image captions, the IDF values were calculated

from the image captions.

5.3 Position

Although we show that in many of the annotated full-text articles,

the abstract sentences do not correspond to images in the order they

appear in the full-text articles (examples shown in Figure 3B�D),

we found that the chance that two abstract sentences or images link

to an image or an abstract sentence decreases when the distance

between two abstract sentences or images increases. For example,

two consecutive abstract sentences have a higher probability to link

to one image than two abstract sentences that are far apart. Such

‘‘positional distance’’ also applies to images: two consecutive

images have a higher chance to link to the same abstract sentence

than two images that are separated by many other images. To

integrate such positional information into our existing hierarchical

clustering algorithms, we modified the TF*IDF weighted cosine

similarity with positional distance. Assuming that we consider an

abstract sentence or an image caption as a document, the TF*IDF

weighted cosine similarity for a pair of document i and j is sim(i,j),
we integrated the positional distance, and the final similarity

SIM(i,j) is:

SIMði‚ jÞ ¼ simði‚ jÞ � 1 � abs
Pi

Ti
� Pj

Tj

� �� �
ð4Þ

(1) If i and j are both abstract sentences, Ti¼Tj¼total number of
abstract sentences; and Pi and Pj represents the positions of

sentences i and j in the abstract.

(2) If i and j are both image captions, Ti¼Tj¼total number of

images that appear in a full-text article; and Pi and Pj represents

the positions of images i and j in the full-text article.

(3) If i and j are an abstract sentence and an image caption, respec-

tively, Ti¼total number of abstract sentences and Tj¼total

number of images that appear in a full-text article; and Pi

and Pj represent the positions of abstract sentence i and

image j.

5.4 Clustering strategy

Although there are a great deal of word similarities between abstract

sentences and their corresponding image captions, there are also

significant differences between the two texts. In general, image

captions tend to be long and incorporate content-lean experimental

details. For example, the image caption (Fig 1) in Figure 3 is

‘‘(A) Schematic of the assay used to identify Rae1.

Sequential affinity chromatography steps were used to deplete

metaphase-arrested CSF Xenopus egg extracts: first, a RanGTP

matrix was used to remove RanGTP binding proteins including

importin b (DRanBP Extract), freeing cargoes that caused

spontaneous microtubule aster formation. . . .’’,

which is in contrast to its succinct abstract sentence:

‘‘Here, we have used an activity-based assay in Xenopus egg

extracts to purify the mRNA export protein Rae1 as a spindle

assembly factor regulated by this pathway’’.

To best capture the differences between abstract sentences and

image captions, we explored three clustering strategies; namely,

per-image, per-abstract sentence, and mix.

(1) Per-image clusters each image caption with all abstract sen-

tences. The image is assigned to (an) abstract sentence(s) if

they belong to the same cluster. This method values features

in abstract sentences more than image captions because the

decision that an image belongs to (a) sentence(s) depends

upon the features from all abstract sentences and the examined

image caption. The features from other image captions will

not play a role for the clustering.

(2) Per-abstract-sentence takes each abstract sentence and clus-

ters it with all image captions that appear in a full-text article.

Images are assigned to the sentence if they belong to the same

cluster. This method values features in image captions higher

than the features in abstract sentences because the decision

that an abstract sentence belongs to image(s) depends upon the

features from the image captions and the examined abstract

sentence. The features from other abstract sentences will not

play a role for the clustering.

(3) Mix clusters all image captions with all abstract sentences.

This method treats features in abstract sentences and image

captions equally.

In addition, because the clusters generated by the hierarchical

clustering algorithms are typically mutually exclusive, Mix will

never achieve 100% accuracy for detecting the following links:

If grouping into two clusters (abstract_sent_1, image_1) and

(abstract_sent_2, image_2), Mix will miss the link between

abstract_sent_2 and image_1; if grouping into two clusters

(abstract_sent_1, image1, abstract_sent_2) and (image_2), Mix

will miss the link between abstract_sent_2 and image 2; if grouping

into two clusters (abstract_sent_2, image 1, image 2) and

(abstract_sent_1), Mix will miss the link between abstract_sent_1

and image_1. Finally, if grouping into one cluster, Mix will create

H.Yu and M.Lee

e552



one false positive and if grouping into four clusters, Mix will

generate three false negatives.

6 DATA AND EVALUATION METRICS

The 114 bioscience articles we described previously (Section 2)

were used to evaluate the mapping between abstract sentences

and images. We report recall and precision as the evaluation metrics

for linking sentences to images. Recall is the total number of

correctly predicted links divided by the total number of annotated

links. Precision is the total number of correctly predicted links

divided by the total number of predicted links.

7 RESULTS AND DISCUSSION

Figures 7–13 show the results in which we explored different com-

binations of features and algorithms. The default parameters for

all these experiments were ‘‘per image’’, ‘‘without UMLS syn-

onyms’’, ‘‘bag-of-words’’, and "IDF(abstract_caption), ‘‘without

neighboring sentences’’ and ‘‘without position’’.

Figure 7 shows the results in which we explored image captions,

the combined heading with the first sentence from each sub-

experiment, and the first sentence from each sub-experiment.

The results show that incorporating all image captions as features

leads to a slightly better performance over the other features.

Figure 8 shows that the clustering performance increases when

features include other associated text. The results directly support

our assumptions that other associated text represents images content

and that there are lexical similarities between abstract sentence

and other associated text that correspond to an image. Because

the feature spaces have been expanded, the overall recall and

precision have increased. On the other hand, the high-end precision

has dropped from 100% to 80%. This can be explained by the fact

that although other associated text may incorporate useful word

features that do not appear in captions, they may also include

words that never appear in the corresponding abstract sentences,

and those words introduce ‘‘noise’’ at the clustering. Additionally,

we currently implemented a simple approach for identifying

other associated text: we identified the entire paragraph as the

‘‘other associated text’’ if the paragraph contains the surface cue

‘‘Figure X’’. The approach will introduce significant ‘‘noise’’

Fig. 8.
Fig. 10.

Fig. 7.
Fig. 9.

Accessing bioscience images from abstract sentences

e553



because frequently, a paragraph may describe more than one

experiment.

Figure 9 shows that ‘‘without neighboring sentences’’ greatly

outperformed ‘‘with neighboring’’. Recall that neighboring

sentences are adjacent sentences (or proceeding and following

sentences) of the examined sentence. The results conclude that

the ‘‘useful’’ information introduced by the neighboring sentences

is overshadowed by the ‘‘noise’’. The results are not entirely sur-

prising. Although 18% images in our data collection correspond

to consecutive abstract sentences, we found that a majority of

images do not. Specifically, 424 (57.1%) images correspond to

single abstract sentences, 91 (12.3%) images correspond to non-

consecutive abstract sentences, and 92 (12.4%) images do not link

to any of abstract sentences.

Figure 10 shows that synonym expansion has a disappointing

performance. The results may contribute to several factors, includ-

ing how robust was the mapping between a string to the UMLS

concepts and the problems of homonyms. We will describe in the

next section (Section 8 Future Work) how we will explore different

approaches to enhance synonymous term identification.

Our results also show little performance differences between

unigram and n-grams (data not shown). The results are not surpris-

ing because of the problem of data sparseness. Many other natural

language processing systems have found little gain of n-gram in

either topic detection (Lee et al. 2006) or document and sentence

classification (Yu and Hatzivassiloglou 2003).

Figure 11 shows the performance of three different methods for

calculating the IDF values. The results show that the ‘‘global’’

IDFs, or the IDFs obtained from the full-text article, has a much

lower performance than ‘‘local’’ IDFs, or IDFs calculated from the

abstract sentences and image captions. The results suggest that

abstract sentences and image captions alone are more accurate

than the whole full-text article for estimating the importance of

features in our task of linking abstract sentences to image captions.

In addition, IDFs that were separately calculated from the abstract

sentences and image captions performs slightly better than the com-

bined IDFs. The results suggest that the distributions of features are

different between abstract sentences and image captions.

Recall that we have explored three strategies for linking abstract

sentences to images; namely, Per-image that takes each image

caption and clusters it with abstract sentences, Per-abstract-

sentence that takes each abstract sentence and clusters it with

image captions, and Mix that clusters all image captions with

all abstract sentences. As we have predicted, Figure 12 shows

that both Per-image and Per-abstract-sentence out-performs

Mix. Furthermore, Per-image significantly out-performs Per-

abstract-sentence. The results suggest that features in abstract

sentences are more useful than features in caption for the task of

clustering.

Figure 13 shows that combining word features with position

has significantly enhanced the performance. When the recall is

33%, the precision of combining TF*IDF with positional informa-

tion increases to 72% from the original 38%, which corresponds to a

34% absolute increase. The results strongly indicate the importance

of positional information. When the precision is 100%, the recall

is 4.6%. We believe that a high precision is the key to success for

this application. Many previous successful and applicable natural

language processing systems have also achieved high precisions

(e.g., (Friedman et al. 2001)). However, the low recall will render

Fig. 13.

Fig. 11.

Fig. 12.
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our current system’s application for the real application. We have

implemented BioEx (with a recall of 33% and a precision of 72%)

that can be accessed at http://dbmi.columbia.edu/~yuh9001/BioEx.

html, from which a user can query 17,000 downloaded full-text

Proceedings of the National Academy of Sciences (PNAS) full-

text articles.

Recall that our evaluation data consists of three types of mapping

between abstract sentences and images. They are one to one, one
to many and many to one. Previous dynamic programming

methods in machine translation had showed significant decreases

in performance when a sentence was aligned to multiple sentences

(Gale and Church 1993). We therefore examined the performance

of our algorithms for each type. Since we could not measure the

precision for this task because we miss the false positives for each

type, we compared the recall for different type (results shown in

Table 4). We chose the system with the overall f-score¼44.4%

(F-score¼2*recall*precision/(recall+precision)). Our results, in

contrast, do not show significant differences in recall among

three types of mapping. Our results may support the robustness

and advantages of the hierarchical clustering methods over the

dynamic programming method for this application.

8 FUTURE WORK

Our current evaluation data were annotated by biologists who are

the authors of their publications. We have observed inconsistency

in annotation. For example, by manually examining 114 annotated

full-text articles, we found that many biologists assigned images

to conclusions and speculations, while others did not. For example,

the last sentence in the abstract (pmid¼15933717) is:

‘‘Taken together, our observations suggest that PIASy is a critical

regulator of mitotic SUMO-2 conjugation for Topoisomerase-II

and other chromosomal substrates, and that its activity may have

particular relevance for centromeric functions required for

proper chromosome segregation.’’

which was assigned to all five images that appeared in the full-text

article. On the other hand, in two other articles (Figure 3A and D),

the authors did not assign any images to their corresponding con-

clusions and speculations. We believe that such inconsistency

may be fixed in the future if with a carefully designed annotation

instruction. Additionally, future work one may need to measure the

inter-rater reliability for linking abstract sentences to images; this

requires that one article must be annotated by two or more people.

One way is to ask the co-authors to annotate their articles inde-

pendently and then measure the agreement among them.

We believe that there are rooms to enhance the performance

for linking abstract sentences to images. In this study, we applied

word-level similarity to measure the link between abstract sentences

to images. However, exact word matching may not be the best

solution in this application. One may need to capture synonymous

terms. For example, if we could capture the abbreviation ‘‘NMR’’

and map it to the corresponding full form ‘‘nuclear magnetic reso-

nance’’, the clustering algorithm would be able to link the two texts

‘‘Here we report nuclear magnetic resonance and X-ray protein

structures of the N-terminal substrate recognition domain of

FimD (FimDN) before and after binding of a chaperoné C subunit

complex’’ (an abstract sentence)

and

‘‘NMR studies on FimD N. . .’’ (an image caption; pmid¼
15920478).

One may explore the work of (Aronson 2001) that applied the large

biomedical knowledge resource the Unified Medical Language

System (UMLS) for synonym identification and the work of

(Yu et al. 2002) that explored rule-based approach for capturing

abbreviations and full forms from literature.

Additionally, it may also be important to capture semantic

similar terms. For example, if we link ‘‘Death’’ to ‘‘toxicity,’’

we could recover the link between the following two statements:

‘‘Acute and chronic exposure to kainate caused extensive oligo-

dendrocyte death in culture’’ (an abstract sentence) and

‘‘Kainate toxicity in oligodendrocytes derived from P7 rat optic

nerves’’ (an image caption; pmid¼ 9238063).

Currently, our system missed the links. For identifying semant-

ically related terms, one may explore the work of (Lin 1998a; Lin

1998b; Yu and Agichtein 2003). Although we explored hierarchical

clustering methods in this study and had shown the advantages of

these methods. Future work one may explore dynamic programming

that has been successful for many other tasks including sequence

alignment (Lawrence et al. 1993), gene or protein name recognition

(Krauthammer et al. 2000), paraphrasing (Barzilay and Lee 2003),

and sentence alignment (Chen 1993). The current algorithm does

not consider the ‘‘ordering effect’’, which is that the position order

of image pairs (i.e., one image appears ahead of the other image)

reflects the position order of abstract sentences or the abstract sen-

tence(s) appear with the same order of corresponding images.

Although such alignment does not apply to every full-text article,

we found that out of the total of 1649 image pairs in our 114

annotated full-text articles, 1207 or 73.6% image pairs appear

with the same order of their corresponding sentences. Dynamic

programming methods had shown to be powerful for detecting

such alignment.

9 CONCLUSION

As described in this paper, we have designed and evaluated a novel

user-interface BioEx that allows biologists to directly access images

Table 4. The recall values for different types of links.

Type Recall

1:1 32.5%

1:2 49.3%

1:3 36.5%

1:4 30.8%

1:5 24.4%

1:6 29.2%

1:7 57.1%

2:1 44.2%

3:1 39.8%

4:1 35.7%

5:1 50.0%
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by abstract sentences. Current, more than 40 biologists evaluated

the BioEx user-interface and 87.8% of them were in favor of BioEx

over two other baseline systems. Additionally, we have also

explored natural language processing approaches, specifically,

the hierarchical clustering algorithms, to automatically link abstract

sentences to images. We have explored different features and algo-

rithms. One of the best systems shows a performance of 100%

precision with 4.6% recall. We believe a high precision is a key

to success for this application, although BioEx may not be appli-

cable to real use at the current stage. We have implemented BioEx

(with a recall of 33% and a precision of 72%) that can be accessed

from the link at http://dbmi.columbia.edu/~yuh9001/BioEx.html,

from which biologists can query 17,000 downloaded Proceedings

of the National Academy of Sciences (PNAS) full-text articles.
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ABSTRACT

Motivation: Recent studies have uncovered an ‘‘RNA world’’, in which

non coding RNA (ncRNA) sequences play a central role in the regula-

tion of gene expression. Computational studies on ncRNA have been

directed toward developing detection methods for ncRNAs. State-of-

the-art methods for the problem, like covariance models, suffer from

high computational cost, underscoring the need for efficient filtering

approaches that can identify promising sequence segments and

speedup the detection process.

Results: In this paper we make several contributions toward this

goal. First, we formalize the concept of a filter and provide figures of

merit that allow comparison between filters.Second,wedesignefficient

sequence based filters that dominate the current state-of-the-art

HMM filters. Third, we provide a new formulation of the covariance

model that allows speeding up RNA alignment. We demonstrate the

power of our approach on both synthetic data and real bacterial

genomes. We then apply our algorithm to the detection of novel

riboswitch elements from the whole bacterial and archaeal genomes.

Our results point to a number of novel riboswitch candidates, and

include genomes that were not previously known to contain

riboswitches.

Availability: The program is available upon request from the authors.

Contact: shzhang@cs.ucsd.edu

1 INTRODUCTION

A database filter is a computational procedure that takes a database

as input, and outputs a subset of the database. The goal is to ensure

that the object being searched for remains in the database after

filtering, the filtered database is significantly smaller, and the fil-

tering operation is very fast. Filters have played a central role in

bioinformatics. BLAST is the prototypical example, with a keyword

match filter greatly improving the search for remote homologs.

Indeed, improving the filters for sequence similarity search remains

an intensively researched area, with many recent publications.

Filtering is also being applied in other bioinformatics domains,

including structural genomics (Leibowitz et al., 1999), proteomics

(mass-spectrometry) (Frank et al., 2005; Tanner et al., 2005), and

non coding RNA (ncRNA) (Weinberg and Ruzzo, 2004a,b; Zhang

et al., 2005). Here, we revisit the notion of filtering, focusing on

applications to detecting ncRNAs.

ncRNAs are genomic sequences that are transcribed, but

not translated, and function as RNA molecules. Recent discoveries

of many novel families and sub-families of ncRNA have

underscored their importance, and hint at an RNA world, where

coding and non-coding genes play equally important roles (Eddy,

2001; Storz, 2002; Vitreschak et al., 2004). The signal for ncRNA

is considerably weaker than that for protein coding genes and

de novo approaches that look for secondary structure or transcrip-

tional initializing signal do not work well (Rivas and Eddy, 2000).

Therefore, comparative approaches are more popular with two

major directions. One way is to look at compensatory mutations (or

consensus folds) in pre-aligned orthologous regions (Rivas and

Eddy, 2001; Washietl et al., 2005; Pedersen et al., 2006). However,

the success of this method relies on a good ‘‘structural’’ alignment

which is difficult to get (Bafna et al., 2006). The other comparative

approach to discovering novel homologs of a query ncRNA is also

increasing in importance, much like BLAST is often used to identify

novel homologs of coding genes. While viable, this approach poses

a technical challenge since the known algorithms for aligning

ncRNA are at least an order of magnitude slower than sequence

alignment (Klein and Eddy, 2003; Zhang et al., 2005), and even

slower when other secondary structures (such as pseudoknots) are

allowed (Dost et al., 2006). Indeed, using a search based on a

covariance model (CM) (Durbin et al., 1998), it would take 54

hours to query two bacterial genomes: E. coli K12 and Staphylo-
coccus aureus MW2 (7.5 Mb) for a sub-family such as the

FMN riboswitch (145 bp). This makes the filtering problem both

easier and harder. On the one hand, the alignment is so expensive

(cubic time), that even a computationally intensive filter (quadratic

time) could be useful. At the same time, since the alignment is so

expensive, the filtering itself must be very efficient in removing a

large portion of the database while retaining the true hits. For

example, a filter that removes 50% of the database is still not

sufficient to make CM searches tractable for large genomic

sequences.

Algorithms that align ncRNA are expensive because they score

for both sequence and structure conservation, and the latter task is

computationally intensive. Filtering for RNA was systematically

explored by Weinberg and Ruzzo (2004a, b) who used a pigeonhole

argument to show that it is enough to scan for sequence similarity,�To whom correspondence should be adderessed.
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expressed by a hidden Markov model, leaving the more expensive

structural alignment for the filtered sequence. Henceforth, we refer

to their filter as HMM-filter. Subsequently, they, and independently,

some of us also used partial structure conservation for the filtering

(Weinberg and Ruzzo, 2004b; Zhang et al., 2005). Even after apply-

ing these filters, the problem remains computationally expensive,

and it is worthwhile to ask if one can do better.

Here, we make several contributions in this regard. First, we

formalize the concept of a filter and provide figures of merit that

allow comparison between filters. Second, we design novel filters

and show that they dominate the HMM filters of Weinberg and

Ruzzo (2004a) (we defer a formal definition of the notion of notion

of dominance to Section 2). In practice, this leads to 1-2 orders of

magnitude decrease in search time. However, our main point is

not that we can build better filters, but that it is relatively easy

to do so. Indeed, the filters we design are very simple conceptually,

indicating perhaps that we have only scratched the surface on this

problem. The main contribution of this paper is a principled

approach to combining filters that have different performance

characteristics to achieve dominance (Section 3).

We also revisit the issue of alignment by aligning an RNA-profile

to a filtered substring. We emphasize that there is a strong

(practically, 1-1) correspondence with CMs in both the alignment

algorithm, and the observed results. Indeed, the advantage of the

CMs is that their parameters can be trained using the same form-

alization. However, our reformulation helps us take advantage of

simple tricks like banding and others which help speed up the

alignment without appreciable loss in accuracy (Section 4). Similar

extensions would require a departure from the formalism of stoch-

astic context free grammars that support CMs. This also has an

impact on filtering. Unlike previous approaches, we do not tie

the accuracy of our filtering procedure to the accuracy of an existing

alignment procedure. Thus, it is relatively easy to use our filtering

procedure in conjunction with other different alignment algorithms.

For example, in recent work, we used the filtering to search genomes

for pseudoknotted RNA (Dost et al., 2006).

Within ncRNA, we focus our attention on Riboswitches.

Riboswitches are ncRNA elements that often occur in the 5’ Untrans-

lated Region (UTR) regions of genes (Mandal et al., 2004; Nahvi

et al., 2003; Rodionov et al., 2003a; Sudarsan et al., 2003; Vitreschak

et al., 2003, 2004). The riboswitches have a mode of action that one

normally associates with proteins: they directly sense the levels of

specific metabolites with a structurally conserved aptamer domain to

regulate expression of downstream genes. Riboswitches respond to a

wide range of metabolites including coenzymes, purines, amino acids

and some others. Most riboswitches are predicted to be within UTRs

of mRNAs that encode biosynthetic enzymes or metabolite and metal

transporters. Novel members are continuously being discovered. The

Rfam database (Griffiths-Jones et al., 2005), version 7.0, has mem-

bers from 12 sub-families of riboswitches. Due to their widespread

and exclusive occurrence in bacteria, they are attractive anti-

microbial targets. Our results point to a number of novel candidates

for each of these sub-families, and include genomes that were not

previously known to contain riboswitches.

2 FORMALIZING NCRNA FILTERS

Covariance Models (CMs) are probabilistic context-free grammar

models that describe both structure and sequence information of an

RNA family (Durbin et al., 1998; Eddy, 2002). The score of an RNA

sequence t against a CM model M is roughly the sum of two

components: its sequence similarity to the modeled family,

measured using a position specific scoring matrix (PSSM) of

nucleotides, and its structural similarity, measured against the

distribution of nucleotide pairs in aligned positions. Formally,

SðM‚ tÞ � SeqScoreðM‚ tÞ + StructScoreðM‚ tÞ

where SEQSCRCORE is the score of the PSSM part of M against t.
For ungapped alignments, this would simply be the sum over all

columns

SeqScoreðM‚ tÞ ¼
X

j

SeqScoreðMj‚ tjÞ:

If gaps are allowed, we must compute an alignment that optimizes

S[M, t]. The SEQSCORE computation is an order of magnitude

faster than an optimum STRUCTSCORE computation. Weinberg

and Ruzzo (2004a) use this as the basis of their sequence based

HMM filter1. For a given threshold T forM, they compute a thresh-

old Tps as

Tps ¼ min fSeqScoreðM‚ tÞ : SðM‚ tÞ � Tg:

This choice of Tps ensures that each ‘true homolog’ (S(M, t) � T)

will pass the filter. Moreover, much of the database will be rejected

by this filter, and will not undergo the more expensive CM

alignment.

In order to improve upon this filter, we start with formalizing

the definitions of a filter and its quality. A filter F takes a sequence as

input and outputs sub-sequences. We assume the operating parame-

ters (such as a threshold) as part of the filter definition. To make the

notion of performance independent of the database, we measure it

on a suitably defined random database sequence D, with a set of true

sequences A embedded in D. The performance of the filter is

measured with the following:

(1) Running Time: The running time TF( jD j , n) is a function

of query length n, and database length jD j .
(2) Efficiency: Let OF(D) be the output of filter F. Define effi-

ciency as eF ¼ jOFðDÞ j
jD j . The lower the better.

(3) Accuracy: Let AF denote the subset of true sequences that are

accepted by the filter. Then accuracy is defined as AF ¼ jAF j
jA j .

The higher the better.

Filter F1 dominates F2 if it is faster, more accurate, and more

efficient than F2. Often, filters perform well in one or two but

not all of these aspects. In many cases, they can be combined

for further improvement. The two obvious ways to combine

filters are:

� Union F1+F2: in which OF1þF2
ðDÞ ¼ OF1

ðDÞ [ OF2
ðDÞ. Union

helps if both F1 and F2 are fast and efficient, but not accurate.

� Composition F1·F2: OF1 · F2
ðDÞ ¼ OF2

ðOF1
ðDÞÞ. Composition

helps when the two filters are accurate but not very efficient,

1They use HMMs (not PSSMs) to describe the filter, but that technical

difference does not change the argument.
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and F1 is faster than F2. Note that composition is always

better than intersection, as the running time TF1
ðD‚nÞ þ

TF2
ðOF1
ðDÞ‚nÞ is better than TF2

with identical accuracy.

We will use both of these operations in designing better filters.

The following result shows that it is not essential to be able to

compute efficiency directly in order to prove dominance.

THEOREM 1. Filter F can be dominated if there exists a filter F1

with AF � AF1
and TF1

ðD‚nÞ=TFðD‚nÞ � 1 � eF1
.

PROOF. We simply use the composition F1·F as the filter. Clearly, it

has better accuracy and ismoreefficient. For running time, wenote that

TF1
ðD‚nÞ þ TFðOF1

ðDÞ‚nÞ � TF1
ðD‚nÞ þ eF1

TFðD‚nÞ
� ð1 � eF1

ÞTFðD‚nÞ þ eF1
TFðD‚nÞ

� TFðD‚nÞ:

While self-evident, Theorem 1 is useful because instead of trying

to compute efficiency exactly we can look for a constant � such that

TF1
ðD‚nÞ=ðTFðD‚nÞÞ � �, and eF1

� 1 � �. As an application of the

theorem, we can think of the CM itself as a filter F. F is very accurate

(gets all the true hits) and efficient (random sequences do not score

high), but slow (TF(D, n) ¼ W( jD j n2)) (Klein and Eddy, 2003;

Zhang et al., 2005). On the other hand, the HMM filter F1 is accurate

(AF ¼ AF1
),andanorderofmagnitudefaster(TF1

ðD‚nÞ ¼ Oð jD j nÞ),
but not as efficient. Can the composite filter dominate? Note that

TF1
ðD‚nÞ=ðTFðD‚nÞÞ � 1=n. From Theorem 1, the composite filter

F1·F dominates F if eF1
� ðn � 1Þ=n. As this condition is relatively

easy to achieve, Weinberg and Ruzzo show improvements for most

families (Weinberg and Ruzzo, 2004a). In the following, we will

describe sequence based filters that run in time c jD j , where c is a

small constant. By the previous argument, we only need to show

marginal efficiency ðn � cÞ=n to dominate. Thus, the filters we design

will dominate the HMM filters of Weinberg and Ruzzo (2004a).

3 SEQUENCE FILTERS

Let FP denote a sequence based filter, which computes a gapped

SEQSCORE, and uses a threshold T, chosen so that the accuracy of

FP is identical to the CM. We will define a sequence based filter Fs

that matches the accuracy of FP, but is faster. The idea is based on

an application of the pigeonhole principle, and the fact that text

search using a dictionary of words is fast. For a sequence to score T
against a profile of length L, each column must score T/L on the

average. In fact, every sequence that scores T against the profile

contains an l-mer w that scores Tl/L or better against the profile. FS

proceeds by computing all subsequences that match at least one

keyword in T. We use the following procedure:

(1) Generate a set of keywords K, each of length l (for a fixed

parameter l), by selecting all words that score Tl/L in an

ungapped region of the profile. Label each such keyword w
so that LABEL(w) is the profile position where it occurs.

(2) Search D for exact matches to keywords from K.

(3) For each position i that matches a keyword with label p,

identify D[i � p, . . . , i � p + L] as a candidate sequence.

(4) Merge significantly overlapping candidate sequences.

By the pigeonhole principle, the accuracy of FS is high (AFP
� AFS

).

The filtering can be done in O( jD j ) time through the use of

Aho-Corasick tries, or hashing, so the filter time is an order of

magnitude faster. It remains to evaluate the efficiency of this filter.

For any position i to be selected, either of the keywords in K must

match at a specific position (given by their label) relative to i.
Therefore, assuming a uniform distribution of words along the

sequence, the efficiency of this filter is given by ð jK j
4l Þ. By

Theorem 1 , we only require
jK j
4l < n � 1

n for dominance, and

can often find single keyword filters that suffice. In the following

we improve upon this simple filter by considering multiple

keywords.

3.1 Multiple keyword (chain) filtering

We define an (l, m, d, K)-chain filter as follows: sequence

D[i, . . . , i + L] is accepted by an (l, m, d, K)-chain filter if

m words w1, w2, . . . , wm 2 K, each of length l match at positions

i+ i1, i + i2, . . . , i + im, s.t. for all j, ij� ij�1 + l (i.e., words are ordered

and non-overlapping) and j ij � LABEL(wj) j � d. For ungapped

alignments, d ¼ 0, but otherwise, d must be chosen carefully to

maximize accuracy. We have the following result:

THEOREM 2. Consider an (l, m, d, sK)-chain filter. If sK is the
maximum number of keywords with an identical label in K then the
efficiency on a uniform random database is given by

eFðl‚m‚d‚sKÞ ¼
L � mðl � 1Þ

m

� ��
2dsK

4l

�m

: ð1Þ

PROOF. Consider a random position i in the database D. By

definition,

eFðl‚m‚d‚sKÞ ¼ Pr½D½i‚ . . . ‚ iþ L� is accepted�:

Define a configuration w.r.t. a position i as an m-tuple C(i) ¼
(i1, i2, . . . , im), such that i � i1 � i2 . . . � im � i + L and ij �
ij �1 + l for all j. Then i is accepted by the filter if there exists a

configuration C(i) such that for all ij 2 C, D[ij, . . . , ij + l � 1] ¼ wj

for some wj 2 K with j LABEL(wj)�ij j � d. Thus, the probability for

ij to match up by chance is 2dsK

4l . It follows that the efficiency of the

(l, m, d, K)-chain filter is Cm(2dsK/4l)m, where Cm is the number of

possible configurations. To compute this number, consider a binary

string b with exactly m ones and L � lm zeros. For 1 � j � m, let bj

be the position of the j-th ‘1’ from the left. Define ij ¼ bj + (j � 1)l.
Then each binary string corresponds to a unique m-tuple

(i1, i2, . . . , im), and ij+1 � ij ¼ bj+1 + bj + l � l for all j < m.

The number of configurations is equal to the number of distinct

binary strings, given by Cm ¼
�

L � mðl � 1Þ
m

	
.

Figure 1 shows (as expected) that the efficiency of a chain filter

FC decreases exponentially with increasing m. The slightly faster

than exponential decay is due to the fact that L � ml also decreases

with increasing m. Likewise, higher values of sK decrease the rate

of decay. However, for multiple keywords, selecting the set K of

keywords becomes a challenging problem. The pigeonhole princi-

ple guarantees the existence of m words that score at least mTl/L, but

does not bound the minimum score on any single word. If we were

to choose K to be the set of all keywords, sK could be prohibitively

large. On the other hand, any choice of a lower bound will reduce

Accuracy (AFP
6�AFC

). In practice, there are many reasonable

choices that ensure that the accuracy remains 1 and high efficiency

is maintained. Currently, the features we deploy use empirically

chosen cut-offs for keyword scores. However, there is a principled

Sequence-based filtering method for ncRNA identification

e559



way to get around this obstacle by using an appropriately chosen

union of filters.

3.2 Accuracy of chain filters

To control the accuracy of chain filters we extend their definition

to allow a score threshold S, such that a sequence is accepted by the

filter if in addition to satisfying the above conditions the total score

of the matched keywords exceeds S. Let �¼ Tl/L. We are interested

in computing a chain of words that score m�. We illustrate the

approach using a parameter �0 ¼ u/2 . Any subsequence that is

accepted by the chain-filter must have some k (1 � k � m) words

w1, . . . , wk that each score at least �0. Let wk+1, . . . , wm denote the

remaining words in the chain filter. We have

m� �
Xk

j¼1

scoreðwjÞ +
Xm

j¼k+1

scoreðwjÞ

�
Xk

j¼1

scoreðwjÞ + ðm � kÞ�0:

Thus
Pk

j¼1 scoreðwjÞ � m� � ðm � kÞ�0 ¼ ðm + kÞ�/2.

For all 1 � k� m, define an extended chain filter Fk of k words in

which each word scores at least �/2 , and the chain must score at

least (m + k)�/2. Observe that F1 + . . . + Fm accepts every chain that

scores above m�, implying that AFC
� AF1þ...þFm

. In the next sec-

tion, we show that chain filters can be computed efficiently, in time

that is often o( jD j n). The search time of the union filter grows

linearly with m, and so an efficiency/speed trade-off must be con-

sidered in selecting an appropriate m. Once again, Theorem 1 can be

used to ensure dominance, but we must do it in an empirical setting

as the running time depends upon the score distribution of keywords

in K, which in turn, depends upon the alignment. Our results in

Section 5 show that dominating filters are easy to find.

3.3 Implementing chain filters

We wish to filter substrings that match an extended (l, m, d, K, S)-

chain filter (where S is the score threshold). Our goal is to improve

upon the profile search time of O(L jD j ). As chain filters are based

on matches with l-mers, we can improve the speed by using string

matching techniques. The algorithm is as follows:

(1) Build an Aho-Corasick Trie TK with K (alternatively, if l is

small, construct a hash table for occurrences of l-mers in D).

(2) Initialize a set of active intervals I ¼ f.

(3) Scan D with TK. For each hit of word w 2 K at position i, add

the intervalp¼ [i� LABEL(w)� d, i� LABEL(w) + d] to I . The

score of the interval SC[p] is set to the score of w against the

profile. Also, set the position as POS[p] ¼ i.

(4) For each position j 2 D, let I j ¼ {p j j 2 p} be the subset of

intervals that overlap with j. For most choices of parameters,

j I j j << L. Select position j if there exist m intervals that are

disjoint and have net score better than m. This is done as

follows:

(1) Sort the intervals in I j according to POS[p]. For each p 2
I j, let p1(p) be the largest interval with POS[p] �
POS[p1(p)]> l, and p2(p) be the predecessor of p.

(2) for all intervals p 2 I j SCORE [j, p] ¼ max{SC[p] +
SCORE[j, p1(p)], SCORE[j, p2(p)]}. Output j, if SCORE[j,
p] exceeds the threshold.

The entire computation takes time
P

j j I j j ¼ o(L jD j ). Also, the

computation is done only if the depth of coverage at position j
exceeds a threshold. The depth of coverage can be computed in

linear time. This discussion hides an important problem. Insertions

and deletions make the profile length significantly longer than

any sequence. For example, the average length of cobalamin

riboswitches is 200 , while the profile length is closer to 600 . A

simple way around this is to discard columns with many gap char-

acters, but that entails deciding which columns are dominated by

gaps. Instead, we revise the definition of the LABEL of a position.

Recall that LABEL of a keyword is its position in the profile, and

should match its position in the query sequence. Instead, define the

LABEL as the expected position in the query sequence. Let pi denote

the probability that the i-th position of the profile is not a gap (in

other words, pi ¼ P[i, A] + P[i, C] + P[i, G] + P[i, T]). Then define

labeli ¼
pi if i ¼ 1‚

labeli�1 þ pi otherwise:

(

Each keyword that appears at position i in the profile is assigned

labeli as its label.

4 RNA-PROFILE SCORING AND ALIGNMENT

In this section we describe our algorithm for scoring a sequence

against a structural alignment of an RNA family, where we score for

conservation of both sequence and structure. The algorithm is very

similar to Covariance Model (Durbin et al., 1998; Eddy, 2002).

However, we provide our own implementation to allow for faster

banded scoring. Also, our filter design can be more effectively tied

to the scoring. Formally, we treat the RNA-profile alignment as a

filter, and compose it with the chain filter. Finally, our algorithm

can be extended to include more complex RNA models, such as

pseudoknots, which will be explored in future work.

The structural alignment of an RNA family is a (gapped) multiple

alignment R of its sequences with structure described by a set M of

pairs of positions (i, j), such that for a majority of sequences in the

family, the nucleotides aligning to these positions form base-pairs.
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Fig. 1. A plot of log(eF) versus m, when L¼ 150, l¼ 8 and d¼ 20. Different

lines correspond to different values of sK.
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The alignment of the RNA family against a target sequence t is

described by a 2 · m matrix A, in which row 1 contains column
positions of the profile interspersed with spaces (insertion of aligned

sequence), and row 2 contains the sequence, also interspersed with

spaces (deletion of profile columns). For all columns j, A[1, j] 6¼0 �0
or A[2, j] 6¼0 �0. For r 2 {1, 2}, define rr[j]¼ j� j {l < i s.t. A[r, l]¼0
�0} j . In other words, if A[1, j] 6¼0 �0, it contains the position r1[i] of

R. The score of alignment A is given byX
j

gðA½1‚ j�‚A½2‚ j�Þ þ
X

ðr1 ½i�‚r1½j�Þ2M

dðr1½i�‚r1½j�‚r2½i�‚r2½j�Þ:

The function g scores for sequence similarity, and d scores for

structure conservation. Our goal is to find an alignment that maxi-

mizes this score. While this formulation encodes a linear gap pen-

alty, we note here that alignments of RNA molecules may contain

large gaps, particularly in the loop regions, and we implement affine

penalties for gaps (details omitted).

4.1 Choosing the scoring functions

Consider an alignment of n RNA sequences from a family. Let ni(a)

be the number of sequences with a 2{A, C, G, U,0 �0} in the i-th
column of the multiple alignment. The probability of observing a in

the i-th position can be estimated by

PiðaÞ ¼
Ca + niðaÞP

a0 Ca0 + n

where Ca are pseudo-counts, chosen so that pa ¼ Ca=ðSa0Ca0Þ,
where pa is the probability of occurrence of a in the family.

These probabilities are used to construct a position specific scoring

matrix. Then for all positions i, and al symbols a 2{A, C, G, U,0 �0}

gði‚aÞ ¼
X

a02fA‚ C‚ G‚ T‚�g
Sða0‚aÞ · Pjða0Þ ð2Þ

where S(a0, a) is the score of substituting a0 with a. We use

a nucleotide substitution scoring matrix (Klein and Eddy,

2003). We model insertions and deletions with the gap penalties

g(0�0, a), and g(i,0�0), respectively.

Likewise, to score for structure conservation we look at the

probabilities of specific base-pairs that occur in each pair of posi-

tions. For each (i, j) 2 M, let ni,j(a, b) describe the number of

sequences in the alignment that contain a in position i, and b in

position j. As before,

Pi‚ jða‚bÞ ¼ Ca‚ b þ ni‚ jða‚bÞP
a0‚ b02fA‚ C‚ G‚ U‚ 0�0g Ca0‚ b0 + n

and the score for conserved structure is given by

dði‚ j‚a‚bÞ ¼
X

a0‚ b02fA‚ C‚ G‚ Ug
Pi‚ jða0‚b0Þ · Spða0‚b0‚a‚bÞ

8ði‚ jÞ 2 M‚a‚b 2 fA‚C‚G‚Ug
ð3Þ

where Sp is scoring matrix for substituting (a0, b0) with (a, b), and

rewards both sequence and structure conservation. Note that d is

only defined when (i, j) 2M, and a, b 2 {A, C, G, U}. In other cases,

the structure is obviously not conserved, and the appropriate score is

given by g.

4.2 The alignment procedure

We make the assumption that the base-pairs are non-crossing.

For each base-pair (i, j) 2 M, there is a unique (parent) base-

pair (i0, j0) such that i0 < i < j < j0, and there is no base-pair

(i00, j00) such that i < i00 < i0, or j < j00 < j0. Thus the alignment

can be done by recursing on the nodes of the tree. However, the

tree can have high degree and not all columns of the profile

participate in it. To this end we binarize the tree using the procedure

given in Zhang et al. (2005). Specifically, we add spurious nodes

(base-pairs) to the tree so that every column participates as a tree

node, the degree of any node is at most 3 , and the number of

nodes is O(m), where m is the number of columns in the profile.

Further, a node corresponding to a true base-pair (i, j)2M has at most

one child.

Fig. 2. An algorithm for aligning an RNA profile R with m columns against a database string t of length n. The query consensus structure M has been Binarized to

get M0. Each node v in the tree corresponds to a base-pair (lv, rv) 2 M0.
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Figure 2 describes a dynamic programming algorithm for aligning

a sequence to an RNA profile. The RNA profile is described by a

tree. Each node v in the tree either corresponds to a base-pair (lv, rv)

2M0 of the profile, where M0 is the augmented list of base-pairs. The

alignment of the sequence to the RNA profile is done by recursing on

the tree like structure of RNA. Each node in the binarized tree either

represents a base-pair/unpaired base (and has its own PSSM), or

represents a branching point in a pair of parallel loops. The algo-

rithm maintains the sequence interval being aligned and the current

node in the structure tree.

5 EXPERIMENTAL RESULTS

We implemented the chain filtering and the profile alignment

algorithms as described above. All tests reported herein were per-

formed on a 2.8 GHz Intel PC (genomic searches were done on

1.6GHz AMD Opteron grid). For chain filtering, we chose the

parameters l, m, d and score threshold (affects sK) so as to optimize

efficiency while maintaining optimal accuracy. The chain filtering

was also composed with HMM filtering (from RAVENNA package

(Weinberg and Ruzzo, 2004a)) to further improve the filtering

efficiency. For the alignment of the filtered sequences to an

RNA model we used both our profile alignment tool and the

CMsearch tool from the INFERNAL suite (http://infernal.wustl.

edu) Eddy (2002); Griffiths-Jones et al. (2003). Both the HMM

filters (using expended HMM filters) and CMsearch were applied

in the following with their default parameters or recommended

parameters from the Rfam database website.

We applied these algorithms to search for riboswitch

elements. We chose to focus on riboswitches both due to their

importance and due to their unique properties that make them an

ideal test case: many ncRNA families show strong sequence simi-

larity, which makes sequence based filtering very efficient, and

relatively trivial. In contrast, the riboswitches, with 12 distinct

sub-families (and new sub-families being continuously discovered)

are quite diverse, and relatively difficult to filter. Table 1 summa-

rizes known riboswitches from the Rfam database, version 7.0

(Griffiths-Jones et al., 2003, 2005).

5.1 Filter efficiency and accuracy

To systematically test our filters, we downloaded data on

12 riboswitch sub-families from the Rfam database, version 7.0

(Griffiths-Jones et al., 2003, 2005). These data contain for each

family a ‘seed’ alignment, which is a hand-curated alignment of

known members, and a ‘full’ collection of family sequences, which

contains known and predicted (by CMsearch) members. In the fol-

lowing we refer to a member of the seed alignment as seed
sequence, and to a member of the full collection as family sequence.

Synthetic databases: As a first test of our method we synthesized

several test sequences. For each sub-family, we created a random

genomic sequence of size 1 Mb with G+C content of 0.5, and

randomly planted all the family sequences therein. We tested the

filter’s performance on the composite sequence. Table 2 summa-

rizes the results of the chain filter (CF) in comparison to the HMM

filters and to a combined filter. In addition to the efficiency measure

we also report a second measure efficiency2, which is computed

exclusively on the random sequence. While the actual genomic

sequence will have some true hits as well, it is unlikely to

have more than a few members per Mb, so efficiency2 is a better

approximation to the true efficiency.

Recall from Theorem 1 that high gains in filter speed at the cost

of efficiency is desirable because filter composition can be used

to achieve dominance. Thus, the key statistic in Table 2 is search

time. The sequence based chain filter is much faster (on average,

9 sec/Mb) than the HMM filter (71 sec/Mb). Interestingly, even the

efficiency of CF filter remains very high on the average (0.036)

while maintaining optimal accuracy. The faster speed and the opti-

mal accuracy of the CF filter makes the composite filter (CF·HMM),

which applies CF filter first and HMM filter later on the database,

dominate the HMM filter. In Table 2, CF·HMM further improves

the efficiency significantly (0.029), and it is still much faster (on

average, 14 sec/Mb) than the HMM filter. The filtering is followed

by alignment with RNA-Profile. We also include a direct compari-

son between profile alignment and the CM approach. As can be seen

from Table 3, profile alignment attains very similar accuracies but is

much faster.

Genomic sequences: Next, we tested the performance of our

filter on two genomes with biased G+C content, previously used

by Weinberg and Ruzzo (2004)a: E. coli K12 and Staphylococcus
aureus MW2. We searched for the 12 riboswitch families on

these genomes whose total length is 7.5 Mb. Table 4 presents a

comparison to the HMM filter. As expected, the chain filter is much

faster. On the average, its efficiency is also very high (0.017),

outperforming that of the HMM filter (0.34). Note that all true

hits in these two genomes were recovered by every filtering method

with the corresponding alignment algorithm. Obviously, the com-

posite filter, CF·HMM, still provides the fastest filtering solution.

5.2 Discovering novel riboswitches

We applied our sequence based filters, coupled with profile

alignment, to search all bacterial and archaeal genomes for the

twelve riboswitch families. A total of 254 genomes spanning

818 Mb were searched. Of these, 179 have some ncRNA annota-

tions. Table 5 summarizes the search results. In total we identified

463 novel (putative) riboswitches based on a P-value cutoff

0.04. Interestingly, 413 of these predictions were within 500 bp

upstream of an annotated gene. These predictions include hits to

Table 1. Riboswitch sub-families in the Rfam database (version 7.0)

Rfam Id Name Average length %id #seed #total

RF00050 FMN 145 66 48 136

RF00059 TPP 110 52 237 382

RF00080 yybP-ykoY 128 45 74 127

RF00162 SAM 110 67 71 219

RF00167 Purine 100 56 37 100

RF00168 Lysine 182 49 60 98

RF00174 Cobalamin 204 46 171 249

RF00234 glmS 184 58 14 37

RF00379 ydaO-yuaA 158 54 35 74

RF00380 ykoK 168 60 39 53

RF00442 ykkC-yxkD 106 62 16 21

RF00504 gcvT 101 51 117 163

Average length and ‘‘%identity’’ are based on the information in the Rfam database.

‘#seed’ is the number of sequences in the seed alignment. ‘#total’ is the number of full

family sequences.

S.Zhang et al.

e562



genomes that had previously been annotated for ncRNA in

Rfam. For cobalamin riboswitch (as an example), most of the

predictions are, indeed, in 5’ UTRs of cobalamin-related or

cobalamin-associated genes (Rodionov et al., 2003b; Vitreschak

et al., 2003) (B12 synthesis, cobalt transporters and alternative

cobalamin-independent enzymes). One of the predicted cobalamin

riboswitches has been experimentally tested and confirmed (data not

shown). In the gcvT (glycine-dependent riboswitch) family, we

found 28 novel hits, of which 12 occur as proximal pairs, which

is known a preferred mechanism of action for this family (Mandal

et al., 2004). Detailed information on these discoveries is presented

in supplementary data (http://www.cse.ucsd.edu/~shzhang/paper/

ISMB2006).

6 CONCLUSIONS

We reiterate that the main contribution of this paper is not simply to

provide improved filtering, but to formalize the filtering problem,

and demonstrate that a simple approach based on combining filters

is useful. While our results improve the state-of-the-art and are

likely to be useful in discovering novel ncRNAs, many questions

remain unanswered. Some of the open problems are directly related

to our analysis. First, can we give theoretical bounds on the effi-

ciency vs. speed trade-off for the union filters? This will probably

entail some assumptions on the distribution of keyword scores.

Second, can we design optimal chain filters, which provably domi-

nate all other sequence based filters? Indeed the bulk of the results

presented here are presented on filters that are fast, but not perhaps

as efficient as could be. On the other hand, HMMs are efficient, but

not always fast, which indicates that there is room for more filters in

between. Examples of such filters include subsets of profiles (choose

a subset of contiguous conserved columns, and filter based on

those), or a hierarchy of compositions instead of a single one.

Finally, for the most diverse families, it is likely that sequence

based filters will not be efficient. Fast filters based on structure

considerations have been shown to be effective (Weinberg and

Table 2. Filtering performance of chain filters (CF), HMM filters (HMM), and composite filters (CF·HMM) on synthetic sequences

CF HMM CF·HMM

Family eff. eff2. acc time(m:s) eff. eff2. acc. time(m:s) eff. eff2. time(m:s)

FMN 1.3e-2 0 1 0:10 2.8e-2 0 1 1:10 1.3e-2 0 0:11

TPP 6.3e-2 3.4e-2 1 0:07 1 1 1 0:59 5.8e-2 3.1e-2 0:14

yybP-ykoY 1.5e-1 1.4e-1 1 0:08 1 1 1 1:07 1.4e-1 1.3e-1 0:28

SAM 1.8e-2 2.1e-3 1 0:07 5.9e-2 4.0e-4 1 0:55 1.7e-2 0 0:09

Purine 3.8e-2 3.1e-2 0.99� 0:7 1.1e-2 1.5e-4 1 0:52 7.4e-3 5.9e-5 0:10

Lysine 1.5e-2 3.9e-3 0.99� 0:10 1 1 1 1:34 1.5e-2 3.8e-3 0:13

Cobalamin 6.3e-2 3.4e-2 1 0:13 1 1 1 1:42 6.2e-2 3.3e-2 0:26

glmS 1.3e-2 9.1e-3 1 0:14 7.7e-3 3.0e-4 0.97 1:25 2.4e-3 0 0:17

ydaO-yuaA 1.2e-2 4.9e-3 1 0:08 1.9e-2 1.0e-3 1 1:11 6.9e-3 7.5e-5 0:10

ykoK 1.2e-2 6.0e-3 1 0:10 1.2e-2 1.2e-4 1 1:32 5.9e-3 0 0:12

ykkC-yxkD 1.7e-3 0 1 0:07 2.4e-3 0 1 0:53 1.7e-3 0 0:07

gcvT 3.7e-2 2.5e-2 1 0:07 1.9e-1 1.6e-1 1 0:51 1.6e-2 4.3e-3 0:10

Average 0.036 0.024 1 0:09 0.361 0.347 1 1:11 0.029 0.017 0:14

‘eff.’ is the efficiency on synthetic sequences, ‘eff2.’ is the efficiency on exclusively random sequences, ‘acc.’ is the accuracy on synthetic sequences, and ‘time’ is the running time on

synthetic sequences. (�) Note that these filters only miss one hit.

Table 3. Comparison of RNA profile alignment (PAln) and CMsearch (CM) on synthetic sequences

Family PAln #TP PAln #true PAln retrieval rate CF· PAln time (m:s) CM #TP CM #true CM retrieval rate HMM· CM time (h:m:s)

FMN 136 136 1 1:29 136 136 1 13:24

TPP 373 382 0.98 6:06 382 382 1 7:06:47

yybP-ykoY 119 127 0.94 14:43 127 127 1 4:11:31

SAM 218 219 1 2:23 219 219 1 12:03

Purine 99 99 1 2:17 100 100 1 2:05

Lysine 97 98 0.99 3:16 98 98 1 13:57:59

Cobalamin 242 249 0.97 14:58 248 249 1 27:39:27

glmS 36 37 0.97 2:36 35 37 0.95 6:53

ydaO-yuaA 73 74 0.99 3:15 73 74 0.99 13:16

ykoK 52 53 0.98 1:22 53 53 1 8:39

ykkC-yxkD 21 21 1 0:30 21 21 1 1:56

gcvT 138 163 0.85 3:15 163 163 1 37:48

RNA profile alignment uses p-value cut-off 0:05 to get the top ranking hits (one hit in cobalamin family is marginal), and CMsearch use the same cutoff bits score from Rfam data website.

‘retrieval rate’ is defined as the percentage of true positive (#TP) hits over the possible true hits (#true) after filtering (either chain filtering (CF) or HMM filtering (HMM)).
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Ruzzo, 2004b; Zhang et al., 2005), but have been completely

ignored in the present study. It is an important open problem to

formalize their efficiency and speed, and to study their combination

with sequence based filters. We hope that these and related chal-

lenges will spur the development of filters, and ultimately lead to

better tools for mining biomolecular databases.
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