
Poster H-69
On the Quality of Motifs for Protein 
Phosphorylation Site Prediction

Authors:
Yasser EL-Manzalawy ( Artificial Intelligence Laboratory, Department of Computer Science,
Iowa State University)
Cornelia Caragea ( Artificial Intelligence Laboratory, Department of Computer Science, Iowa
State University)
Drena Dobbs (Department of Genetics, Development and Cell Biology, Bioinformatics and
Computational Biology Gradu)
Vasant Honavar (Artificial Intelligence Laboratory, Department of Computer Science,
Bioinformatics and Computationa)

Short Abstract: Motif-based bioinformatics tools allow users to set threshold values for
specific motifs, even though users may not know how these values affect performance. We
propose statistical measures for assessing "motif quality" and the relationship between
p-values and true positive rate, using phosphorylation site prediction as a test case. 

Long Abstract:
Protein phosphorylation is an important post-translational modification that can dramatic alter
the biological activity of proteins. Several computational methods for predicting
phosphorylation sites for specific protein kinases have been proposed, including motif-based
approaches that rely on Position Specific Scoring Matrices (PSSMs) and Hidden Markov
Models (HMMs). A PSSM or HMM motif is constructed from an ungapped multiple-sequence
alignment that is expected to carry some signal. This motif can be used to score new
sequences and the higher the score, the more likely that the new sequence carries the same
signal modeled by the motif. In general, each motif has a predetermined threshold score that
maximizes the prediction accuracy of the motif on a validation set. However, many
motif-based tools allow users to set a different threshold score or to specify a certain false
positive rate, p-value, for the motif. For instance, Scansite [1] and KinasePhos [2], two
popular tools (that use PSSMs and HMMs respectively) to predict kinase-specific
phosphorylation sites, provide several options to modify the threshold score for motifs. A
major problem with this approach is that for a chosen p-value, or false positive rate, the user
has no way of knowing what the corresponding true positive rate is because the reported
performance of the motif corresponds to that obtained using predetermined threshold scores.
Against this background, we explore statistical measures for assessing the quality of a motif
and the relation between p-values and the true positive rate. These statistical measures are
the Receiver Operating Characteristic (ROC) curve and the area under ROC (AUC) which
are widely used by machine learning researchers to report the performance of their
classifiers. 

Because Scansite and KinasePhos motifs are not publicly available to users (except through
the online servers that generate predictions based on the motifs), and both methods do not
return scores for negative predictions, it is not straightforward to compare the ROC curves for
their motifs. Hence, we explored an alternative approach to compare the two methods. We



considered only kinase families with more than 50 reported phoshporylation sites in
Phospho.ELM [3]; thus, six kinase families, CDK, CK2, MAPK, PKA, PKB, and PKC, were
considered in our experiments. For each family, we extracted positive examples using
15-residue amino acid sequence window centered at known phosphorylated Ser/Thr sites
and negative examples using the same window centered at Ser/Thr residues that are not
annotated as phosphorylation sites in the same proteins. We created a dataset for each
family consisting of positive examples for that family and randomly selected negative
examples equal to the number of positive examples in that family. We used ProfileWeight [4]
to build PSSM motifs and HMMER [5] to build HMM motifs using only the positive examples
for each family. We computed the ROC curve and AUC obtained by the 5-fold cross
validation: The data set for each kinase family is randomly partitioned into 5 parts of equal
size such that the ratio of the positive and negative examples in each part is the same. On
each cross validation experiment, we used positive instances in four of the five subsets for
building PSSM and HMM motifs and the remaining subset for evaluating the motifs. The
reported performance is based on averages across the five cross validation runs. It should
be noted that our HMM motifs are different from KinasePhos motifs since KinasePhos uses a
window of 9 amino acids and usually builds more than one motif per kinase family by
clustering the sequences of large families and building a motif from each cluster.

Our results show that HMM motifs are superior on PSSM motifs for predicting protein
phosphorylation sites for the CK2, PKA, and PKC protein kinase families. For the CDK
family, both PSSM and HMM motifs have nearly the same AUC, but the HMM has a better
true positive rate for p-values ranging from 0% to 6%. In the case of PKB and MAPK, PSSM
motifs perform better than HMM motifs. In all cases, visualizing the ROC curve of the motif
can assist users in selecting a proper threshold and in interpreting the resulting predictions.
Furthermore, the reported quality of the motif based on an evaluation procedure such as the
one outlined here can help users in choosing the better performing motif-based prediction
tool for a given task.
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