
Poster C-34
Parallelizing Computationally 
Intensive Bootstrap Phylogenetic 
Analyses

Authors:
Ricardo Gonzalez-Mendez (Department of Radiological Sciences, University of Puerto Rico
School of Medicine)
Hugh B. Nicholas (NRBSC, Pittsburgh Supercomputing Center)
Alexander J. Ropelewski (NRBSC, Pittsburgh Supercomputing Center)

Short Abstract: Computationally intensive programs in PHYLIP have been parallelized
using MPI, enabling large-scale phylogenetic studies that rely on bootstrapping to be
performed in a moderate amount of time. The methodology used to paralyze PHYLIP
programs and the performance of the PHYLIP protein distance method on several parallel
architectures is discussed. 

Long Abstract:
Computationally intensive programs in the PHYLIP package have been parallelized using
MPI, enabling large-scale phylogenetic studies that rely on bootstrapping to be performed in
a moderate amount of time. This paper discusses the methodology used to paralyze the
PHYLIP programs and reports the performance of the PHYLIP protein distance method on
several unique parallel architectures.

In order to determine the reliability of a phylogeny and to make inferences about the
evolutionary history derived from the tree the main methods are percent support for tree
nodes using resampling methods, i.e. bootstrap percentages. These resampling procedures
use substantial computer resources and require significant turn around time even for the
more modest traditional datasets found in molecular phylogenetics. Parallel versions of the
software used to carry out the resampling calculations become a critical need. 

We have modified the PHYLIP package, a set of integrated programs that allows the
construction of evolutionary trees from sets of homologous sequences. It includes distance
matrix methods, parsimony methods, maximum-likelihood methods to search for phylogenetic
trees using both heuristic and exact algorithms. It also allows for resampling techniques that
include several types of bootstrapping, jackknifing, and permutation of characters. It also
allows for consensus trees to be reconstructed from the resampled data analyses by use of
strict consensus or several variants of the more usual majority rule consensus.

IMPLIMENTATION

We wanted to create a parallel implementation that:
• Required minimal changes to the PHYLIP source code, but still allowed a substantial
speedup in the processing of large bootstrapped datasets.
• Made use of the MPI message-passing library which would enable the parallel
implementation to work on a wide variety of computer architectures including Clusters, and
both shared and distributed memory multiprocessors.



• Used a methodology could be transferred to other computationally intensive routines in the
PHYLIP Package 

To keep the code consistent with the serial version, we developed data primitives in MPI to
distribute parameters and input file data to the processors. While the program is running,
each node accesses its own input file and writes the data to its own output file. Prior to
termination the output files are collected into a single output file. The general parallelism is
as follows:
Distribute Stdin file to all processors
Distribute Input file to all processor
For (i = 1; i<number_of_datasets/number of processors; i++) {
Read unique dataset from local input file into global variables
Perform parsimony, distance, or maximum likelihood calculation
Write results to local output file}
Collect results from processors into single file
PERFORMANCE:

The PROTDIST code in the PHYLIP package was benchmarked using a 1000 replication
dataset from a 32 species alignment 242 residues long on several different parallel
architectures at the Pittsburgh Supercomputing Center. The first platform, Jonas is an SMP
machine consisting of 64 1.15 Ghz EV7 processors with 256 Gbytes of shared memory with 6
Tbytes of local disk space. The second platform,. Lemieux, comprises 750 Compaq
Alphaserver ES45 nodes. Each computational node contains four 1-GHz Alpha EV6.8CB
processors with 4 Gbytes of memory. A Quadrics interconnection network connects the
nodes. The timings and scaling for the dataset on these machines are shown in the table
below. 

Processors Jonas Elapsed Lemieux Elapsed Jonas Scaling Lemieux Scaling
1 (serial) 3505 4084 1 100% 1 100%
2 1768 2058 1.98 99% 1.98 99%
4 891 1035 3.93 98% 3.95 99%
8 453 535 7.74 97% 7.63 95%
16 234 292 14.98 94% 13.99 87%
32 140 177 25.04 78% 23.07 72%
64 n/a 137 n/a n/a 29.81 46%

The parallel performance scales well to a moderate number of processors. There are two
factors that appear to affect the scaling of the code. The first factor is the problem size. The
second factor is the disk IO performance of the system. Problem size affects scaling in three
ways. First, the number of replicates selected directly affects scaling as the dataset size
represents the total amount of work to be distributed among the processors. Second,
datasets of sequences that are relatively long will have more work and require more time to
compute than sequences that are relatively short. The third scaling factor is the number of
sequences in the dataset. Larger sets of sequences will require relatively more
computational time than smaller datasets. We have carried out a bootstrap calculation using
5,000 replicates in a data set of proteins that included 89 proteins and an alignment of 350
columns (including gaps), a run that took over 245 minutes using 16 AMD Opteron
processors. The code will not scale well when processors are issuing more IO requests than



the IO system can handle. This effect was noted on both Jonas and Lemieux. On the 16
processor Jonas run it took approximately 15 elapsed seconds to read in and distribute the
data to the node processors and to collect the output or about 6% of the total elapsed time.
On the 32 processor Jonas run IO took approximately 28 seconds or about 20% of the total
elapsed time. On Lemieux, the 16 processor run took 43 seconds or 15% of the total elapsed
time, the 32 processor run took 48 seconds or 27% of the total elapsed time, and the 64
processor run took 73 seconds or approximately 52% of the total elapsed time for the IO
processes. 
In the future the use of computational grids and or agent-based implementations will likely be
pursued. These may improve our ability to maximize use of computational resources or
approach even larger problems or data sets. We are also interested in exploring the use of
parallel versions of existing programs and combine those with our parallel resampling
computations to gain further improvements in the use ML and Bayesian MCMC methods to
study molecular evolution.


