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Short Abstract: We present ARTS, a novel method for accurate recognition of transcription
start sites in several species. Large scale training of a complex model is enabled by rapid
kernel computations with suffix tries. In carefully designed experiments, we show that ARTS
considerably outperforms recently published methods (for instance McPromotor and FirstEF).

Long Abstract:
Introduction

One of the most important features of genomic DNA are the protein-coding genes. While it is
of great value to identify those genes and the encoded proteins, it is also crucial to
understand how their transcription is regulated. To this end one has to identify the
corresponding promoters and the contained transcription factor binding sites. TSS finders
can be used to locate potential promoters. They may also be used in combination with other
signal and content detectors to resolve entire gene structures. Neither massive mRNA
sequencing nor comparative genomics will be able to solve these tasks completely in the
near future.

Model and Methods

As most other TSS finders, ARTS combines several features, thereby utilizing prior
knowledge about the structure of TSS’s and their surroundings. We put particular emphasis
on proximal features.

* The TSS is only determined up to a small number of base pairs. Additionally, nearby
binding sites may also not be positionally fixed. In order to model the actual TSS site, we
thus need to identify rather loosely localized sequence features. The recently proposed WD
kernel (Weighted Degree kernel with shifts) allows for limited positional flexibility and is thus
well suited for this task.

* Upstream of the TSS lies the promoter. It contains transcription factor binding sites, the
ordering of which can differ quite drastically among promoters. This region is also often
CpG-rich. Thus, we use the so-called spectrum kernel on a few hundred bps upstream of the
TSS. The spectrum kernel is typically used to recognize regions in which certain k-mers are
over- or under-represented.

* Downstream of the TSS follows the 5 UTR, and further downstream introns and coding
regions. Since these sequences may significantly differ in oligo-nucleotide composition from
intergenic or other regions, we use a second spectrum kernel for the downstream region.



* The 3D structure of the DNA near the TSS must allow the transcription factors to bind to the
promoter region and the transcription to be started. To implement this insight, we apply two
linear kernels to the sequence of twisting angles and stacking energies as estimated from
dinucleotides.

The combined kernel used for TSS recognition is simply the sum of all sub-kernels, which is
equivalent to appending the feature vectors in feature space.

Our model is complex in that it consists of several sophisticated kernels applied to rather
long stretches of DNA. Furthermore, we have to train it on as many examples as possible (up
to several hundred thousands), in order to attain a high prediction accuracy. Even with highly
optimized general purpose SVM packages like LibSVM or SVM, training and tuning our
model is intractable already for a tenth of the examples. The main reason is that the kernel
computation, in particular of the WD kernel, is rather expensive, and that sufficient kernel
caching is thwarted by the large number of support vectors. However, fast training is possible
without kernel caching if the SVM output for any training point can be computed rapidly. For
the kernels used in our TSS predictor, this can be implemented using suffix tries.

Experiments and Evaluation

For the human genome, we determine 8508 TSS positions based on the database DBTSS.
To generate positive training data, we extract windows of size [-1000,+1000] around the
TSS. Itis rather unsafe to sample negative points randomly from the genome, since there are
further yet unknown TSS hidden in it. Instead we extract negative points (again, windows of
size [-1000,+1000]) from the interior of each gene: we draw 10 negatives at random from
locations between 100bp downstream of the TSS and the end of the gene. We use 60% of
these data for training a TSS classifier and 20% for validating it.

The validation accuracy is used as criterion for model selection: a total of 17 parameters
(ranges and orders of the five kernels, and the SVM parameter “C”) have to be selected from
respective finite sets. Since a full grid search is intractable, we carry out a local search
heuristic based on axis-parallel searches. The chosen model yields 94% area under the
ROC. Several computational investigations show that this good performance results largely
from the WD kernel. We also show that the spectrum kernel mainly models the CpG island.
In a carefully designed experimental study, we compare our TSS finder on the human
genome to state-of-the-art methods from the literature, namely McPromoter, Eponine, and
FirstEF. A proper evaluation setting has to take into account that the TSS position is only
determined up to a couple of bps (maybe around 20). We do so by looking at the genome at
a smaller resolution, e.g. partitioned into chunks of length 50. Two neighboring chunks may
both be considered positive, if a TSS is known to be close to their border. Chunks
downstream of a TSS, but still inside the gene, served as known negatives. We derived our
test set from genes new to version 5 of DBTSS, which were used neither for training ARTS
nor for the other methods. For given false positive rates within a reasonable range, we
consistently achieve considerably higher true positive rates. For instance, ARTS finds about
24% true positives at a false positive rate of 1/1000, where the other methods find less than
half (10.5%).

We train ARTS for several other model organisms, including mouse and fruit fly. For all of
them, we achieve similar accuracies, thus empowering an improved genome annotation. We
provide our datasets as well as the predictions for free usage. Further, we even provide the
library of machine learning tools which forms the basis of ARTS. More details are found at



http://mww.fml.mpg.de/raetsch/projects/arts.



