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Short Abstract: MultiGO is a tool to automatically identify biologically relevant gene sets
from hierarchically clustered gene trees (http://ekhidna.biocenter.helsinki.fi/poxo/multigo).
Since the entire tree is analyzed, all gene clusters sharing a common biological function, as
defined by GO, are reported. The tool also identifies a cluster set representing the
experimental key functions.

Long Abstract:

Typical expression data analysis encompasses the pre-processing of the data and the use of
statistical tests to detect genes with altered expression (1). Genes with similar expression
profiles can then be clustered together, to present the data in a more comprehensible form,
using different clustering algorithms (1). Hierarchical algorithms classify genes into nested
clusters and the result resembles phylogenetic classification (1). In this approach, e.g. in
agglomerative algorithms, single expression profiles are joined to form groups, which are
further joined until the process has been carried to completion, forming a single hierarchical
expression tree (1-2). Partitional data clustering algorithms, e.g. k-means clustering,
separate distinctly expressed genes into a predetermined number of clusters (1, 3). Despite
the different clustering approaches, their final aim is to create gene sets that could be used
as indicators of the status of the cellular functions (1-2). However this is not always achieved.
The generated clusters can be biologically irrelevant and can contain genes involved in
incoherent functions. For example, improper parameter settings may result in spurious
clusters. Thus, it is essential to evaluate the clusters.

A reasonable approach to evaluate co-expressed gene clusters is to explore the gene
functions of the genes in the cluster and to calculate the statistical significance of the found
functions (4-9). Gene functions can be explored using text mining tools for biological and
medical literature (7-9). Another approach to explore gene functions is to use controlled
vocabularies, such as Gene Ontology (GO) (10). The difference between these two is that in
the first, numerous alternative wordings may describe the same function, whereas in the
latter this is eliminated. After associating gene functions with clusters, the statistical
significance of these associated functions can be calculated, e.g. using basic statistical
methods that compare the frequency of the term within a set of query genes against the



frequency of the term in the transcriptome of the organism. There are numerous tools, which
can perform both the exploration of the gene functions and the statistical calculus with
respect to GO-terms (11-13). These tools enable the rapid creation of overviews of the
stimulated functions and therefore they have facilitated the interpretation of expression data.
However, since existing tools have mainly been designed to analyze single gene lists, they
unnecessarily complicate the analysis of large expression data sets. For example, tools
designed to analyze single gene lists ignore the fact that the analyzed genes can as well be
a part of a data set containing several other clusters. The systematic evaluation of all
clusters can also be labour-intensive using these tools, which complicates the listing of all
significant GO-term of the data set. For example, finding the affected key functions from
expression data set can be difficult, although there might be a preliminary hypothesis about
them. There are some tools that estimate the optimal set of clusters using the gene function
information (5-6). Although these tools enumerate all clusters in the analysis, they still suffer
from the same deficiency and do not report all significant GO-terms to the user.

To address the above problems, we developed a web-enabled tool, MultiGO. Our tool
analyzes every gene cluster, assigns a representative function to each of them and then
reports to the user all clusters that have an enrichment of genes involved in coherent
functions, with respect to the GO classification. Since every cluster is analyzed, the tool
identifies all significant GO-terms of the entire data set. The systematic analysis can also be
used to discover aspects and functions that would have been otherwise missed. For
example, MultiGO can highlight similar functions that are located in distinct branches of the
hierarchically clustered expression tree, e.g. two clusters that are expressed differently but
are involved in the same function. The tool also estimates the best vertical cutting point of
the hierarchically clustered expression trees using Fisher's combined p-value test (14). This
cutting point yields an illustrative set of clusters, which corresponds to the key stimulated
functions of the experiment. Selecting fewer clusters of larger size would decrease the
functional coherence of the clusters whereas selecting a larger number of smaller size
clusters would separate functionally related genes from each others.

We illustrate the utility of the tool by analyzing a gene expression data set from Arabidopsis
thaliana under abiotic stress conditions.
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