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Outline

It is now becoming clear that proteins interact with each other in a highly
specific and regular manner determining the outcome of most cell processes, such
as replication, transcription, translation, signal transduction and others. Distortion of
normal protein-protein interfaces lead to the development of many known diseases.
Therefore the study of protein-protein interactions is essential for understanding the
mechanisms of biological processes, for elucidating the nature of various human
diseases and can provide the clues to cure and prevent them. Protein-protein
interactions are remarkably diverse making it very difficult to formulate general
principles of formation and to develop reliable methods for prediction. In this review
we attempt to classify and systemize the array of experimental and theoretical data

on the identification and prediction of protein-protein interactions and their networks.
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Introduction
Protein-protein interactions are remarkably diverse making it very difficult to

formulate general principles of formation and to develop reliable methods for
prediction. In this review we attempt to classify and systemize the array of
experimental and theoretical data on the identification and prediction of protein-
protein interactions and their networks.

Protein-protein recognition is determined by structural and physico-chemical
properties of two interacting proteins and their interacting interfaces. It was reported
earlier that the majority of protein complexes have a buried surface area of about
1600+400 A2 (a “standard size” patch) and association does not involve large
conformational changes of interacting proteins (Lo Conte et al. 1999). Large
complexes with interfaces larger than the “standard size”, on the contrary, involve
major conformational changes which are especially important in signal transduction.
Moreover, in the following paper from the same group, the authors showed that large
interfaces involve more than one interaction patch and multipatch interfaces usually
contain two patches of at least “standard size” (Chakrabarti and Janin 2002). The
authors (Bogan and Thorn 1998; Chakrabarti and Janin 2002) proposed a model of a
protein recognition site which consists of a completely buried core and partially
accessible rim. The amino acid composition of cores differs considerably from that of
rims with some common features observed by various methods (Jones and Thornton
1997a; Bogan and Thorn 1998; Chakrabarti and Janin 2002). For example, amino
acids Trp and Tyr (and also Met, Cys and Phe to much less extent) are abundant in
the core, but Ser and Thr, Lys and Glu are particularly disfavored.

Protein-protein interactions can be categorized into different types depending
on their strength (permanent and transient), the location of interacting partners within
one or between two polypeptide chains and the similarity between interacting
subunits (homo- and hetero-oligomers). It has been shown that different interface
types are significantly different in amino acid composition so that it is possible to
predict the type of interaction interface from amino acid composition alone with 63-
100% accuracy (Ofran and Rost 2003). In addition to this, interactions formed by
hydrophobic residues are more frequent in permanent interactions than in transient
ones. Moreover, the same authors showed that disulfide bridges are observed very
often on all types of interfaces, but salt bridges are not commonly found for homo-
oligomers. Interestingly enough, the homo-oligomers have a significant excess of

residue contacts involving identical residues which can be explained by the fact that



non-identical residue contacts would require two beneficial compensatory mutations
to preserve the binding interface between the same chains, rather than just one
mutation in the case of identical residue contacts (Ofran and Rost 2003).

Since proteins interact in a regular manner, there should be a certain degree
of conservation in the interaction patterns between similar proteins and domains.
Some previous studies pointed out that homodimer interface conservation is higher
than expected by chance even for transient complexes (Valdar and Thornton 2001;
Nooren and Thornton 2003), but nevertheless the conservation of protein interfaces
is very weak compared to the rest of a protein (Grishin and Phillips 1994; Caffrey et
al. 2004; Korkin et al. 2005). Poor conservation of interfaces can be the reason for
low prediction accuracy of protein-protein interaction sites (Jones and Thornton
1997b; Panchenko et al. 2004).

A comprehensive analysis of interface conservation has been done on a test
set including all protein domains from the Protein DataBank (PDB) (Aloy et al. 2003).
The authors compared interactions by calculating root-mean-square-deviation
between structure superpositions of two instances of domains on each other. They
showed that if the measure of interaction similarity is plotted against the sequence
identity between domains, the following pattern can be observed. Close homologs
almost always interact the same way, while domains belonging to the same SCOP
(Andreeva et al. 2004) fold but different superfamily categories have different
interaction modes. In another study the authors examined conserved binding modes
in pairs of interacting domains (Shoemaker et al. 2006) and found that interfaces
between different functional subfamilies of the globin family are poorly conserved
while interfaces within the same subfamily are well conserved and thereby can be

used in homology modeling.

Experimental methods to identify protein-protein interactions

Yeast two-hybrid experiments (Y2H)

The yeast two-hybrid system was originally developed by Fields and Song
(Fields and Song 1989) and later was advanced to analyse genome sequence data
(Auerbach et al. 2002; Fields 2005) . It is based on the fact that many eukaryotic
transcription activators (ex: Gal4 eukaryotic transcription factor or bacterial repressor

protein LexA) have at least two distinct domains, one that directs binding to a



promoter DNA sequence (BD) and another that activates transcription (AD). Fields
and Song demonstrated that the DNA-binding domain can not activate transcription
at a promoter unless physically (not necessarily covalently) associated with an
activating domain. A protein of interest is fused to a DNA-binding domain (bait), this
chimeric protein is cloned in an expression plasmid and then is transfected into a
yeast cell. A similar procedure is performed to create a chimeric sequence of another
protein which is fused to AD (prey). If two proteins physically interact, this causes the
activation of the reporter gene in vivo.

One example of a Y2H system is the transcription activation system of the
LacZ gene in yeast. Yeast promoters have TATA box regions and cis-regulatory
elements (upstream activating sequences, UAS). UAS sequences are recognized by
specific transcriptional activators, for example, by proteins GAL4. GAL4 proteins
control in yeast the expression of proteins which participate in galactose metabolism,
in particular, the expression of LacZ gene which codes for the beta-galactosidase.
Target protein sequences are fused with the binding and activation domains of GAL4
proteins. If there is no galactose, GAL80 binds to GAL4 and blocks the transcription.
When galactose is present GAL80 is removed from GAL4 activation domain and
GAL4 can activate the transcription of beta-galactosidase. Expression is detected by
turning cell colonies blue after exposing to 5-bromo-4-chloro-3-indolyl beta-D-
galactoside. To avoid the interference by the natural GAL4 proteins, yeast host cells
used in Y2H carry deletions of the GAL4 and GAL80 genes.

Developments and variations of Y2H system

- Yeast strains are developed to carry several reporter genes (lacZ, HIS3, LEU2 ...)
- Haploid yeast strains are developed with opposite mating type. Baits are
transformed into yeast cells with one mating type, preys are transformed into another
mating type, then the diploid cells are produced by mating these cells containing both
baits and preys.

- One-hybrid system detects interactions between a prey protein and known DNA
sequence (bait).

- RNA yeast three-hybrid system detects interactions between RNA and proteins.
The bait RNA is a hybrid between the target RNA and MS2 RNA that can bind the
MS2 coat protein. MS2 coat protein is fused into LexA BD.



- Protein yeast three-hybrid system detects the formation of complexes between

several proteins.

Disadvantages of the Y2H method

- The interactions can not be tested if a protein under question can initiate
transcription by itself.

- Fusion of a protein into another protein (chimeras) can change the structure of a
test protein and effect its folding.

- Some cDNAs are fractional and do not represent the full length sequence of a
target protein. In some cases a fragment of a protein might interact with another
protein while the whole protein does not.

- Posttranslational modifications (formation of disulfide bridges, phosphorylation,
glycosylation) which can alter interaction interfaces can occur differently in yeast and
other organisms (but yeast is used as a host).

- Since two-hybrid reactions occur in the yeast nucleus, it is difficult to target
extracellular proteins.

- A third protein can bridge the interactions between the bait and the prey.

- Proteins which can in general interact in Y2H experiments, may never interact in a

cell due to different cell localizations or different expression times.

Advantages of Y2H

- This is an in vivo technique, so it is closer to the processes which occur in living
cells of higher eukaryotes, compared to the techniques based on bacterial
expression.

- Transient interactions between proteins can be detected due to the amplification of
a signal by the reporter gene expression, Y2H can predict the affinity of an
interaction.

- Fast and efficient.

Two approaches have been used for genome-wide analysis by Y2H: matrix-based
and library-based:

- matrix approach: a matrix of prey clones is created, each yeast clone expressing
each Y-AD protein in one well of a plate. Then this matrix of prey clones is added to

the matrix of clones expressing a particular X-BD protein. Those diploids where X



and Y interact are selected based on the expression of a reporter gene (ex:
producing blue color for beta-galactosidase).

- library approach: one bait X is screened against an entire library (library can contain
random cDNA fragments or ORFs). Diploid positives are selected based on their
ability to grow on specific substrates, sequences of interacting proteins are
determined by DNA-sequencing. Since protein interactions very often can be
detected by using protein fragments rather than the full-length proteins (if proteins
are misfolded for example), the library-based approach is more sensitive than the
matrix-based approach.

Two major genome-wide analyses of the yeast “interactome” revealed 692 and 841
putative interactions involving about 800 proteins (Uetz et al. 2000; Ito et al. 2001).
The overlap between these two experimental studies was not very large, both
methods shared only 141 interactions which constitutes about 20% of all interaction
data (Ito et al. 2001).

Mass spectroscopy

Mass spectroscopy (MS) used in conjunction with complex purification is a
powerful method to study macromolecular interactions. The principle of the MS
method is to produce ions which then can be detected based on their mass-to-charge
ratio thereby allowing the identification of polypeptide sequences (Causier 2004; Di
Tullio et al. 2005). First, proteins are degraded enzymatically to peptides. The sample
is evaporated into a vacuum, then an electron beam is used to fragment the sample
into a set of pieces and those carrying a net charge are detected and separated
based on their mass-to charge ratio. The detector measures the number of ions with
a given mass-to-charge ratio. The fragmentations occur primarily at peptide bonds
and the mass-to-charge ratios can be measured with an accuracy of less than 1
dalton per charge.

Electrospray ionization MS (ESI-MS) (Whitehouse et al. 1985) has been
developed to produce isolated ions in the gas phase of large biomolecules.
According to this technique protein molecules in an acidic solution are sprayed into a
mass spectrometer under a strong electrical field; the solvent evaporates rapidly in a
vacuum and protein molecules with a net positive charge become ionized in the gas
phase. Integral net charges are assigned to different peaks of spectra. ESI-MS has

proven to be very useful for detecting molecular recognition via noncovalent bonding



and therefore can be applied to analyze protein-protein interactions and large protein
complexes. Another method of ionization called MALDI (Matrix Assisted Laser
Desorption lonization) uses proteins embedded on matrix which is bombarded by the
laser to produce ions (Pieles et al. 1993).

Different algorithms have been developed to analyze a large number of
peptide spectra to identify proteins by their sequence. Cross-correlation methods, for
example, (Pevzner et al. 2000) find correlations between theoretical and
experimental spectra while others using de novo algorithms infer peptide sequences
from theoretical interpretation of the MS spectra (Taylor and Johnson 1997). Another
group of algorithms for MS interpretation calculate the statistical significance of a
match between the mass-to-charge ratios of experimentally produced peptides and
the theoretical peptides produced by in silico digestion of a protein sequence library
(Yates et al. 1995; Geer et al. 2004).

MS is a powerful method to decipher protein-protein interactions, but it has
been shown that the limiting step in complex characterization is not in protein
identification, but rather in protein complex purification. In this connection a tandem

affinity purification method (TAP) has been developed.

TAP method of complex purification

A TAP tag consists of two IgG binding domains of Staphylococcus protein A
and a calmodulin binding peptide, separated by the tobacco etch virus protease
cleavage site (Rigaut et al. 1999). A target protein ORF is fused with the DNA
sequences encoding TAP tag. The tagged ORFs are expressed in yeast cells and
form native complexes with other proteins in a cell. At the first step of the TAP
purification, protein A binds tightly to an IgG matrix and after washing out the
contaminants protease cleaves the link between protein A and IgG matrix. The eluate
of this first step is then incubated with calmodulin-coated beads in the presence of
Ca. After washing, the target protein complex is released and the components of
each complex are found by polyacrylamide gel electrophoresis. Protein bands are
excised and corresponding proteins are cleaved by proteases. The resulting
fragments are analyzed by MS and identified by bioinformatics methods.

In yeast several large-scale studies of protein complexes have been
performed using TAP/MS methods (Gavin et al. 2002; Ho et al. 2002; Krogan et al.
2006). Gavin et al, for example, identified 1440 interacting proteins from 232



multiprotein complexes, and proposed new cellular roles for 344 proteins (Gavin et
al. 2002). Ho et al identified 1578 interacting proteins (Ho et al. 2002). A more recent
analysis showed that 7123 protein-protein interactions identified with high confidence
can be clustered into 547 protein complexes, with about half of them absent from
MIPS (Krogan et al. 2006). Comparative analysis of human and yeast complexes
showed that orthologous proteins interact with complexes enriched by orthologs;
essential gene products are more likely to interact with essential rather than

nonessential proteins (Gavin et al. 2002).

Comparison between Y2H and TAP/MS

- Both methods generate a lot of false positives, both methods miss a lot of known
interactions (false negatives).
- Y2H produces binary interactions, does not provide information about protein
complexes, but can detect transient interactions.

- MS can detect large stable complexes and networks of interactions.

Correlation between gene expression and protein interactions

Since the function of a protein complex depends on the functionality of all
subunits, the independent expression of each gene/subunit would not be efficient.
Therefore, there should exist a relationship between gene expression levels of
subunits in a complex. The large-scale study of whole-genome expression data in the
context of protein-protein interactions has been performed (Jansen et al. 2002). The
authors analyzed protein complexes from the MIPS catalog (Guldener et al. 2006)
while expression profiles were taken from two different sources: cell cycle
experiments and the Rosetta yeast compendium (Hughes et al. 2000). Cell cycle
data comprised expression profiles obtained from synchronized cells in two cell
cycles while Rosetta data contained expression ratios for the overall yeast genome
for 300 stationary cell states.

The relationship between gene expressions was calculated as the difference
between absolute expression levels as: D=|E;- E|/(E;+ E)), where E; and E; are

“wm “m

mMRNA expression levels of protein subunits “/" and “/”. This quantity is calculated for
all proteins in a complex and then the distribution of “D”is compared to the
distribution of “D”for random gene/protein pairs. Another way to calculate the

correlation between the expression profiles is to refer to their relative expression
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levels rather than the absolute ones. In these cases the measure of similarity is
chosen as a Pearson correlation coefficient between the two expression profiles.
The coexpression method was tested on specific complexes: ribosome,
proteasome, RNA Polymerase Il Holoenzyme and replication complex. It was found
that the subunits from the same complex with the most obvious coexpression come
from permanent complexes such as ribosome and proteosome. Some transient
complexes can be subdivided into smaller permanent complexes, which show strong
correlation with gene expression. It was also shown that for genome-wide Y2H data,

there is only a weak correlation with the gene expression.

Verification of protein-protein interactions

Several methods have been proposed for verification of protein-protein
interaction data (Deane et al. 2002; Sprinzak et al. 2003; Bader et al. 2004). Some of
them are described here.

1. Expression profile reliability method (EPR) is based on the observation that
interacting proteins are coexpressed. The distance between expression profiles of

two proteins, A and B, can be calculated as:

,iB = Z (Iog(eiA /elif )~ |Og(eiB /erif )’

Here each term in the sum is the log ratio of expression levels of a protein under
condition “”. Then the distributions of d? for non-interacting (o,) and interacting
proteins (p;) are compared (reliable interactions taken from DIP-YEAST). Based on
these two distributions one can define a parameter a which would characterize the
accuracy of a given data set (for example Y2H data), or correspond to the fraction of

false positives:

Pop(dre) = pi(dse) + (1-a) - p,(dye)

The parameter a can be obtained by fitting the expression protein interaction data
distribution Pe,(d?).
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2. Paralogous verification method (PVM) is based on the observation that if two
proteins interact, their paralogs would most likely interact, it calculates the number of
interactions between two families of paralogous proteins. This method identifies
~40% of true interactions at 1% error rate. Using PVM and EPR methods about 50%

of DIP interactions can be considered reliable.

3. Protein localization method. True positives are defined as interacting proteins
which are localized in the same cellular compartment and/or interacting proteins that
are annotated to have a common cellular role (Sprinzak et al. 2003). The accuracy
strongly depends on the method with up to 50% of true positives detected in Y2H
experiments and up to 100% true positives detected in immunological experiments
(coimmunoprecipitation is a method of detecting interacting proteins by removing

them from solution after adding a specific antibody).

Comparing protein-protein interaction data is difficult as various techniques
and methods have different goals, the data are obtained under different conditions
and for different organisms. For example, none of the methods cover more than 60%
of proteins in the yeast genome (von Mering et al. 2002). The low coverage can be
explained by different factors:

- proteins form transient complexes in a cell which are difficult to identify;

- proteins behave differently in different parts of the cell, genome-scale cellular
location assays provide data on the protein location;

- if two proteins separately interact on the same face of a third protein, the three
proteins must not interact at the same time.

- Ancient, evolutionary conserved proteins have much better coverage than the

proteins restricted to a certain organism.

Protein and domain interaction databases
Protein interaction databases

Database of Interacting Proteins (DIP)
DIP contains experimentally-determined protein-protein interactions and

includes a core subset of interactions which have passed a quality assessment

(Salwinski et al. 2004). Interaction data are obtained from literature; Protein
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Databank (PDB); and high-throughput methods like Y2H, protein microarrays, and
TAP / MS analysis of protein complexes. Several methods are employed to assess
the quality of interaction data and are offered as a service for query interactions. DIP
has links to a couple of related databases including LiveDIP, which records
information about the state of a biological interaction, such as covalently modified,
conformational or cellular location states (Duan et al. 2002). Another database
related to DIP is Prolinks which brings together four methods of linking proteins:
phylogenetic profiles, Rosetta Stone, gene neighbors and gene clusters (Bowers et
al. 2004). The database includes a Proteome Navigator tool to browse the linkages
and view accompanying data. DIP and related databases can be accessed at

http://dip.doe-mbi.ucla.edu.

Biomolecular Interaction Network Database (BIND)
BIND includes high-throughput experimental datasets and protein complexes

from PDB (Bader and Hogue 2000; Alfarano et al. 2005). It contains a large variety
of experimental interaction data curated by an in-house team of curators. A
generalized data specification was developed to handle not only various types of
protein-protein interaction data, but also protein-small molecule interactions and
protein-nucleic acid interactions. An Interaction Viewer is provided to browse the
interaction space. BIND uses a grammar of unique icons to distinguish functional
types of interactions in displays. Web access (with user registration) is at

http://www.bind.ca.

Munich MPact/MIPS database
MPact is a resource to access MIPS, which contains a manually curated

yeast protein-protein interaction dataset (Guldener et al. 2006). This set of 4,300
different interactions from 1,500 proteins has been collected by curators from the
literature. The resource also includes high-throughput results for yeast, but keeps
this data separate. Web-based analysis and visualization tools are available at

http://mips.qgsf.de/services/ppi.

Domain interaction databases

InterDom database
InterDom collects evidence for predicting protein domain interactions from a

number of sources (Ng et al. 2003b). These sources include PDB, literature, protein
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interactions stored in DIP and BIND as well as instances of domain fusion. The
reliability of domain interactions is scored depending on the number/type of
experimental evidence for each interaction. Web access can be found at

http://interdom.lit.org.sg.

PIBASE database
PIBASE is a database of domain interactions from the protein structure data

(Davis and Sali 2005). It uses SCOP and CATH domain definitions to find putative
domain-domain interactions. Structural comparisons of interfaces are made for the
same domain pair within one structure to remove redundancy. The database
combines physicochemical properties of protein binding sites and has a link to
MODBASE (Pieper et al. 2006) containing modeled three-dimensional structures
which allows one to model putative interacting domain interfaces. Web access is at

http://alto.compbio.ucsf.edu/pibase.

3did database
3did allows one to explore the details of domain interactions from protein

structure data (Stein et al. 2005). For a particular domain an overview is given of all
domain interactions, showing whether each occurs inter-chain, intra-chain, or both. A
more detailed view is shown for a particular structure with lines connecting domains
in different chains. Tables for a given domain list structures and domain information.
In some cases dot plots of structural comparisons show the variance of the
interactions between pairs of families. GO-based functional annotations and yeast
interactions are also present in the database.

InterPreTS is a web-based service to predict domain interactions based on sequence
homology of query proteins to a database of interacting domains (DBID) associated
with the 3did database (Aloy and Russell 2003). Web access for 3did and
InterPreTS can be found at http://3did.embl.de.

Conserved Binding Mode (CBM) database
The Conserved Binding Mode (CBM) database is a collection of domain-

domain interactions from the structure data grouped by geometry into conserved
interaction modes for each pair of domain families across all PDB structures
(Shoemaker et al. 2006). Structural superpositions are used to infer CBMs from
different members of interacting domain families docking in the same way. Such
domain interactions with recurring structural themes have greater significance to be

biologically relevant, unlike spurious crystal packing interactions. CBMs highlight the
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commonalities and variation of a domain pair’s interactions from all structural
examples. Types of interacting domain pairs range from 1,000 (conserved) to 2,000
(all). Currently the CBM database is available by ftp download from the NCBI ftp site:
ftp://ftp.ncbi.nim.nih.gov/pub/cbm.

iPfam database
iPfam displays the interactions of Pfam domains from the PDB (Finn et al.

2005). The system is integrated into the Pfam website and allows for interactive
browsing of all Pflam-Pfam domain interactions detected on PDB structures at the
family and individual structure levels. Web access is at

http://www.sanger.ac.uk/Software/Pfam/iPfam.

Domain Interaction Map (DIMA) database
DIMA is a domain interaction map derived from phylogenetic profiling Pfam

domains (Pagel et al. 2006). Instead of looking at entire protein sequences, the
algorithm compares the occurrences of domains across genomes and associates
them for interaction with similar patterns of conservation. The method works well for
domains with moderate information content which have distinct phylogenetic profiles.

Web access is at http://mips.gsf.de/genre/proj/dima/index.html.

Methods of prediction of protein-protein interactions

Phylogenetic profile method

Pioneered by the work by (Pellegrini et al. 1999) the phylogenetic profile
method is based on the hypothesis that functionally linked and possibly interacting
proteins have orthologs in the same subset of fully sequenced organisms. Indeed, for
many pathways and complexes all components should be present simultaneously in
order to perform its function. A phylogenetic profile is constructed for each protein,
using a vector of N elements, where N is the number of genomes. The
presence/absence of a given protein in a given genome is indicated as “1” or “0” at
each position of a profile. Proteins or their profiles are then clustered using bit-
distance and those proteins from the same cluster are considered functionally related
or interacting. One drawback of this method is that it is computationally expensive
and ubiquitous proteins present in all genomes (profiles will have all “1”s) have very
small distances between profiles which would result in a large number of false

positives. The same is true for proteins which are specific to a given genome (the
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profiles will have all but one “0”s). Function of genes and genetic map can be also
identified by phylogenetic profiling of nonessential gene deletions. The method of
synthetic lethality, for example, describes the genetic interaction when two non-lethal
mutations results in lethality when combined at the same time (Bender and Pringle
1991; Brown et al. 2006; Ooi et al. 2006).

The idea of phylogenetic profiles can be applied to protein domains instead of
entire proteins. In this case a profile is constructed for each domain (PFAM, SMART)
and the presence/absence of this domain in different genomes is recorded (Pagel et
al. 2004). This results in a domain interaction map (DIMA). This method can avoid
computationally expensive all versus all sequence searches and can give information
about domain-domain interactions. The method utilizes entropy filtering; and profiles
with low information content are excluded. Performance is assessed by comparing
the profile distance distribution for protein pairs known to interact to the distance
distribution of random protein pairs. Limitation of DIMA is that domain databases are
not complete and no predictions can be made for almost half of proteins. Another
problem includes the presence of specialized domains which are found only in a few
genomes. Major drawbacks of all phylogenetic profile approaches are that they can
not make reliable predictions for low information profiles and that they rely on

homology detection between distant organisms.

Rosetta Stone approach

The Rosetta Stone approach infers protein interactions from protein
sequences in different genomes (Marcotte et al. 1999). It is based on the observation
that some pairs of interacting domains have homologs which are fused into one
protein chain, a so called Rosetta Stone protein. In E.coli, for example, this method
found 6809 potentially interacting pairs of non-homologous proteins, both proteins
from each pair had significant sequence similarity to a single protein from some other
genome. Analysis of pairs found by this approach revealed that for more than half of
them both members of a pair are functionally related and therefore this method can
be used for inferring functional similarity. Comparison with the experimental data on
protein-protein interactions from DIP database showed that about 6.4% of all

experimental interactions can be linked by Rosetta Stone sequences.
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Gene neighbor and gene cluster methods

Bacterial genes with closely related functions are often transcribed as a single
unit — an operon. Different methods try to predict operon structures based on
intergenic distances (Ermolaeva et al. 2001; Bowers et al. 2004). A systematic
comparison of bacterial and archaeal genomes reveals some conservation of gene-
order and operon structure (Dandekar et al. 1998; Overbeek et al. 1999; Galperin
and Koonin 2000; Bowers et al. 2004). Gene pairs from conserved gene clusters
appear to encode proteins which physically interact in a cell. It has been shown that
gene order between the prokaryotic and archaeal species is conserved if the
sequence identity shared by orthologs in two genomes is higher than 50%.
Conservation of gene order can also be used to predict gene function by inferring its

function from the functions of neighboring genes.

Co-evolution of interacting proteins and correlated mutations methods

Interacting protein or domain pairs very often coevolve and in these cases the
phylogenetic trees of interacting partners show some degree of similarity. The
similarity between phylogenetic trees can be quantified by calculating the correlation
coefficient between the distance matrices used to construct the trees (Goh et al.
2000; Pazos and Valencia 2001). For example, the active site of phosphoglycerate
kinase is formed by two domains and therefore the working enzyme required these
two domains to coevolve. In other words, any changes in one domain which would
lead to the loss of activity should be compensated by the correlated changes in
another domain. To quantify co-evolution, first, the pairwise evolutionary distances
between all members of each family of interacting proteins are calculated. For
example, Xj is a pairwise distance between sequences s; and s; from a family of one
potentially interacting partner and Yj; is the distance between sequences h; and h; of
another interacting protein family, where sequences s; and h;are taken from the same
species. Next, the correlation coefficient is calculated between two matrices X and
Y; and its large values indicate the coevolution between two proteins.

In order to compare phylogenetic trees one needs to know the corresponding
branches of the two trees, but such information is not always available. Several
computational methods have been developed to identify specific interaction partners
between two interacting families (Gertz et al. 2003; Ramani and Marcotte 2003; Jothi

et al. 2005). This is especially useful when both families contain paralogs with
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different binding specificities. According to these methods, given a pair of proteins
known to interact, their similarity matrices are aligned using simulated annealing
algorithm to minimize the root mean square difference between the elements of two
matrices. Then interactions are predicted between proteins corresponding to the
aligned columns of two matrices. It has been shown that the prediction accuracy
strongly depends on the phylogenetic tree complexity (measures how close is the
tree to the radial one): as the tree complexity increases, the accuracy increases
(Ramani and Marcotte 2003). A more formal measure of tree complexity was
introduced in another paper (Jothi et al. 2005)

Gertz et al (Gertz et al. 2003) implemented similar Monte Carlo schemes to
align two matrices with the preliminary clustering of proteins within the matrices.
Protein clustering using the UPGMA method allowed to compare matrices with
different dimensions and helped find biologically relevant one-to-many
correspondence between proteins from two families. It should be mentioned, that all
previously described methods can not perform the search successfully if the size of
families is large (more than 30 proteins in a family as noted by Ramani and
Marcotte). One way to reduce the search space is to use the information encoded in
the phylogenetic tree (Jothi et al. 2005). In this case local minima can be avoided by
swapping the whole isomorphic subtrees in a single move instead of a single column
in the course of the Monte Carlo algorithm.

The similarity between two phylogenetic trees is influenced by the speciation
process and therefore there is a certain “background” similarity between trees of any
proteins, no matter if they interact or not. The following methods have been
introduced to account for this background similarity (Pazos et al. 2005; Sato et al.
2005). According to the first method (Pazos et al. 2005) multiple alignments of
orthologous sequences are constructed for all proteins under interest. At the next
step the phylogenetic trees are made from the multiple sequence alignments and the
evolutionary distances between the proteins in the alignment are calculated by
summing up the branch lengths separating each pair of sequences. The
“background” tree is constructed from the 16S rRNA sequences and is considered to
be a canonical tree of life. The distance matrices used in the study are obtained by
subtracting the normalized ans rescaled rRNA based distances from the distances
obtained for the original phylogenetic trees. Finally, the corrected distance matrices
of two proteins are compared by calculating correlation coefficients or interaction

scores. It has been shown that the method finds half of real interacting proteins at
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6.4% false positive rate which is a higher accuracy than with the 16.5% false positive
rate obtained using methods which compare phylogenetic trees without taking into
account explicit evolutionary distances and “background” canonical tree (Goh et al.
2000; Pazos and Valencia 2001).

Classification methods

Different classification methods have been proposed for the prediction of
protein interactions (Jansen et al. 2003; Chen and Liu 2005; Qi et al. 2005). These
methods use different biological data sources including direct experimental data and
indirect data (for example protein coexpression data) on protein interactions to train a
classifier to distinguish between positive examples of truly interacting protein pairs
from the negative examples of non-interacting pairs. Each protein or protein
sequence is encoded as a feature vector where features may represent different
information sources on protein-protein interactions such as gene coexpression of two
proteins, domain-domain interactions and evidence coming from various
experimental methods. As a result of a comparison of different classifiers, it has been
shown that Random Forest classifiers outperform other methods with the Support
Vector Machine being in second place (Qi et al. 2006). Moreover, by examining
different feature combinations the same authors found that the importance of
features in correct classification depends on the type of prediction problem. Namely,
if it is a prediction of physically interacting proteins, co-complex interactions or
pathway co-membership, gene expression was one of the most important features
for all prediction tasks.

One of the Random Decision Forest methods introduced recently builds
decision trees based on the domain composition of interacting and non-interacting
proteins, explores all possible combinations of interacting domains and predicts at
the end if a given pair of proteins interact (Chen and Liu 2005). Each protein pair is
represented as a vector of length N, where N is the number of different domain types
(features), where each feature can have values 2, 1 or 0 depending if this domain is
found in both proteins, in one of them or not found in the protein pair. Given a training
set of interacting protein pairs taken from the experimental data, the method
constructs a decision tree (or many trees) which defines the best splitting feature at
each node from a randomly selected feature subspace. The best feature is selected

based on the measure of “goodness of fit” which estimates how well this feature can
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discriminate between two classes of interacting and non-interacting pairs. The
method stops growing the tree as soon as all pairs at a given node are well

separated into two classes providing a classification for an unknown protein pair.

Predicting domain interactions from protein interactions

By far the most coverage of experimental data describing protein interaction
networks comes from high-throughput experiments giving us the identity of protein
pairs detected to interact. Unfortunately, these experiments reveal no structural
details about the interaction interfaces and the formation of protein complexes. To
deal with these limitations several approaches have been developed to predict
domain-domain interactions given a set of experimental protein-protein interactions.
The following section gives an overview of the approaches. Most methods begin with
protein sequence searches of domains defined by Pfam, SCOP, CDD or other
domain databases (Marchler-Bauer et al. 2002; Andreeva et al. 2004; Finn et al.
2006). The methods are trained on protein-protein interactions, typically high-
throughput results from yeast or multi-genome data. Predicted domain-domain
interactions are evaluated using structural data or by higher quality interaction sets
such as MIPS (Guldener et al. 2006). Accounting for domains in proteins can also
help in predicting protein interactions. For example it was shown that domain
interactions in one organism can be successfully used to predict domain and protein
interactions in another organism (Wojcik and Schachter 2001). Treating a protein as
a collection of domains allows one to assign different probability values for different
protein interactions depending on domain frequency and allows one to use such
domain networks with weighted edges to predict protein interactions (Gomez and
Rzhetsky 2002).

Association method

The association method was one of the first methods which looked for the
characteristic sequence-signatures in a pair of interacting proteins (Sprinzak and
Margalit 2001). Correlated sequence-signatures that are found together more often
than expected by chance can be used as markers to indicate/predict a new type of
protein-protein interaction. The authors used three sets of yeast protein-protein
interaction data (including MIPS and DIP) to compute log-odds scores and to find
correlated sequence-signatures. Sequence-signatures were defined using InterPro

(we refer to them as “domains”). The log-odds score was computed as: logx(Py/PiP)),
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where Pj is the observed frequency of domains i and j occurring in one protein pair;
P;and P; are the background frequencies of domains / and j in the data. The average
mutual information content calculated per domain was pretty high (2.48 bits)
indicating a significant correlation between interacting proteins and predicted domain
pairs. Domain-domain interactions were defined as those having positive log-odds
scores (greater than 2) and having several instances of occurrence of a given

domain pair in the database (more than 5 counts).

Maximum likelihood estimation method (MLE)
The association method proposed earlier considered each pair of interacting

domains separately, ignoring other domains in a given pair of interacting proteins.
Moreover, the association method did not incorporate the experimental errors of Y2H
data into the scoring scheme. To account for this a new Maximum Likelihood
Estimation method (MLE) has been developed (Deng et al. 2002) . According to this
method domain-domain interactions are considered to be independent and proteins
interact using at least one pair of domains. The likelihood function is a function of
parameters 6=(An,, f,, f,), where A, is the probability that domains m and n interact,
f, is the false positive rate and f, is the false negative rate derived from the
experimental Y2H data (which are fixed to 2.85E-4 and 0.64 respectively). It is
difficult to maximize the likelihood function directly because of the large number of
parameters (large number of different types of interacting domains). To solve this
problem the iterative Expectation Maximization algorithm is used which finds
estimates of unknown parameters 6 using the complete data (the observed data
together with the missing data). This procedure has two steps, expectation and
maximization. The first step involves finding the expectation of the complete dataset,
given the observed dataset and a set of parameters, 6. In the second step the
maximum likelihood estimation of the parameters 6 is obtained. Step one starts with
initial parameter values and the two recursive steps are iterated until convergence.
The method has been analyzed in several indirect ways. First the accuracy of
the method is assessed by predicting protein-protein interactions from the inferred
domain-domain interactions and is compared with the experimental Y2H protein
interaction data. Using two sets of Y2H data and excluding training data, the authors
achieved accuracy with 42.5% specificity and 77.6% sensitivity. When the protein
interaction predictions were compared with data derived from the MIPS database, the
accuracy was reported to be nearly 100 times better than the accuracy of random

predictions. The limitation, however, was that at this level of significance only 0.68%
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of the MIPS interactions were predicted correctly, which is very low and might not be
useful in practice. The predictions were also compared to pairwise correlation
coefficients of gene expression profiles and it was found that the best predictions had

higher correlation coefficients than random protein pairs.

Domain pair exclusion analysis (DPEA)

The DPEA method extends the previously described MLE method and can
detect specific domain interactions which are hard to detect using MLE (Riley et al.
2005). MLE and other methods emphasize non-specific promiscuous domain
interactions which are detected as those having large 6 values. On the contrary,
specific, rare interactions between certain members of two domain families would be
neglected as they would have low values of 6. The DPEA method accounts for this
by estimating an E score which is computed as a ratio of the probability that proteins
m and n interact given that two domains i/ and j interact, and the probability that
proteins m and n interact given that domains i and j do not interact. The Expectation
Maximization procedure, similar to the one described in the previous section, is used
to compute E-scores. The major difference between the two implementations of the
EM algorithm is that in DPEA an additional step is performed when all instances of
interacting domains i and j are excluded by fixing the interaction probability between
domains i and j to zero and by allowing the competing domains to maximize 6;. The
change in the likelihood (pointing to the confidence that domains j and j interact) is
evaluated and expressed as an E-score.

A high E-score value shows the high propensity of two domains to interact
while a low value indicates that competing domains from the same protein pair are
more likely to be responsible for this interaction. Therefore, specific domain-domain
interactions can be found by screening for low 8 values and high E-scores. This
model incorporates the protein interaction data from many organisms as present in
DIP but does not account for false positives and negatives in the experimental data.
The E-score is compared to a log-odds score and 6 in terms of correct
ranking/predicting physically interacting domains (PFAM-A) in PDB. It was shown
that the E-score finds 71 times more true positive domain-domain interactions
compared to the random assignments in 100 top predictions. When non-modular
domains are excluded, E-scores considerably outperform other scores in predicting

structurally interacting domains.
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Calculating P-values to predict domain interactions

Another method has proposed a statistical framework to calculate p-values of
domain pairs being responsible for protein-protein interactions (Nye et al. 2005). The
authors test the null hypothesis that the presence of a particular domain pair in a
protein pair has no effect on whether two proteins interact. To test this hypothesis a
statistic is calculated for each domain pair which takes into account experimental
error (fraction of false positives estimated for each experimental dataset) and
incompleteness of the dataset (fraction of false negatives). The reference distribution
is simulated by shuffling domains in proteins so that the network of protein
interactions remains fixed. P-values show the reliability of domain-domain
interactions given that two proteins interact and the domain pair with the lowest p-
value is most likely to interact compared to other domain pairs within the interacting
proteins. In this approach domains are defined using SCOP superfamily categories
and the p-value simulation is performed on the three sets of yeast interaction data.
Predictions are tested with domain interactions obtained from the Protein Quaternary
Structure (PQS) database, which uses symmetry operations to make PDB protein
assemblies more biologically meaningful.

The method has been compared to the Sprinzak association method, to the
Deng MLE method and to random domain prediction. The results reveal that the
method does better than the others when there are many domains found on a protein
pair. Interestingly enough, for the majority of test cases, however, the random
domain prediction outperforms all other methods, pointing to the low accuracy of all
prediction methods of domain-domain interactions. The major limitations of these
methods are:

- domains are assumed to interact independently, although their interactions can
depend on other domains in a protein pair;

- if a protein contains several domains of the same type, the scoring schemes
can not distinguish between their contacts;

- the gaps between domain assignments can contain another interacting
domains and ignoring these gaps can lead to false positive and false negative
predictions;

- many proteins can not be assigned any domains;

- methods are based on the assumption that the interacting domains make only
one contact which is not true for many multidomain complexes;

- protein interaction data are not complete.
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Integrative method

This method used by the web service Interdom combines the contribution of
three different sources of data to rank the domain interaction predictions (Ng et al.
2003a). Domain interactions supported by different sources are more reliable and as
a consequence should have a higher score compared to the domain interactions
supported by one data source. An additive scoring scheme was used which
integrated scores from three different data sources. The first score was calculated for
domain-domain interactions derived from protein-protein interactions as defined by
the DIP database. In this case a scoring scheme was based on odd-ratios and was
calculated as a ratio of the observed weighted frequency of domain pairs and the
background frequency of domain pair occurrence by chance. The second score was
derived from protein complexes (Cellzome yeast protein complexes and PDB
complexes) using a similar scoring scheme. The third source of data represented
domain fusion events as found by searching SWISS-PROT for a pair of domains
which are fused in one organism and are on separate chains in another organism. A
probabilistic score could not be calculated in this case so a constant is assigned to
the instances of fused domains.

The method was evaluated by looking at the number of protein-protein
interactions matching predicted domain interactions in a 20-fold cross validation. It
was found that the major improvement in the prediction was made when two sources
were used (compared to the case when only protein interaction data were used),
namely, the fraction of correctly predicted true positives increased from 39% to 58%,

while the error rate did not change considerably (8% to 12%).

Homology modeling
Experimental techniques for protein structure determination have improved to

the point that for single proteins, structures are solved quickly and decent coverage
of major genomes can be expected in the near future (Aloy et al. 2005). Structure
prediction can typically be handled by finding a homologous template to a query in
the structure database and making a query model based on this template. The next
challenge for protein structure prediction is the prediction of protein-protein
interactions and making high-quality models of protein complexes with the ultimate
goal of creating representative coverage of all genome protein-protein interactions. It

has been estimated that roughly 2,000 out of 10,000 interaction types are known so
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far from high-throughput methods (Aloy and Russell 2004). Unfortunately, there are
a limited number of protein-protein complexes present in PDB and solving the
structures of large complexes meets difficult technical challenges not readily
overcome in general (Russell et al. 2004). The most likely path to protein interface
characterization of large complexes would therefore involve multiple experimental
methods together with homology modeling and docking of structural subunits.

To build a protein complex model, one can start with a set of protein
interaction data from high-throughput identification methods such as yeast two-hybrid
or affinity purification screens. Protein pairs tagged to interact are searched for
homologous domains and evaluated for likely domain-domain interactions. For these
proteins or more specifically for the predicted interacting domains, homology
searches are made against structure data. In rare cases entire structural complexes
of homologous proteins may be found, but sometimes only interacting domain dimers
or, more often, single domains can be identified. At the next step, the pieces should
be put together while avoiding steric hindrance and maximizing complementarity
between interacting domains. In this case the docking potentials can be used to
score different orientations between two interacting domains. The success of docking
strongly depends on the similarity between the target protein and homologous
proteins as well as on the presence of homologous multidomain complexes in the

structure database.

Automated complex modeling methods

There are several automated methods available for modeling of protein-protein
interactions between proteins X and Y.
- Interprets first matches Pfam domains to target sequences and constructs
complexes from structures matching the same type of Pfam domains (Aloy and
Russell 2002). The method uses empirical pair potentials from 3did to score
putative interactions. It has been shown that the method yields good results for
most classes of complexes, but poor predictions for peptidase/inhibitors.
- Multiprospector first threads sequences X and Y separately against a structure
database of dimers to find single chains matching target protein sequences (Lu et
al. 2003; Grimm et al. 2006). For those template structures which form a complex
between X and Y, the method performs additional threading cycle for both
proteins X and Y together by fixing the alignment of X to its single chain template

and finding an optimal alignment of Y to its template in a complex and vice versa.
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The fitness of target sequences into a protein complex is estimated using the
conventional threading potential together with a separate score for the interfaces
which is derived from the structural dimer database. This method was applied to
the yeast genome and predicted 7,321 interactions from 304 complexes. The
method was ranked third among large-scale methods of protein interaction
prediction, and it has been found it did not bias towards abundant proteins while

giving atomic detail of interaction surfaces.

CAPRI docking contest

The contest to critically assess protein interaction predictions (CAPRI) was
designed in the spirit of CASP, the protein structure prediction contest, to make blind
predictions before a crystal structure of the complex is released. In the CAPRI
rounds, predictors build atomic models of complexes given structures of the unbound
proteins. In some cases when two proteins bind, their conformations do not change
and the prediction accuracy of the complex is very high as was shown in one of the
CAPRI experiments (Mendez et al. 2005). However, the backbone of the bound form
can significantly deviate from the unbound form and in this case it is difficult to make
a correct prediction. For example, for homodimer docking of the PTS regulation
domain from LicT (Wodak and Mendez 2004) the conformational changes upon
binding two domains were as large as 12A RMSD per domain.

The CAPRI experiment demonstrated that docking methods have a number
of limitations (Wodak and Mendez 2004) which can also restrict the homology
modeling methods described earlier:

- proteins can undergo significant conformational changes upon binding;
- docking potentials are not accurate enough;
- specific and non-specific types of protein interactions are not adequately

distinguished between each other;

Designed interfaces

It should be mentioned that one area of research related to the prediction of
protein interfaces is that of computational interface design. By modifying protein
sequences, such as with point mutations and linkers, and subsequently expressing

them researchers are able to explore a range of biological activity not found in
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nature. For homology modeling of protein interfaces, additional information becomes
available for refining potentials and for acceptable domain combinations.

One review of the research (Kortemme and Baker 2004) describes a range of
examples from the alteration of oligomeric state in helical bundles (Harbury et al.
1998), to the creation of chimeric proteins through the linking of domains from
different functional pathways (Howard et al. 2003). Design methods have increased
the specificity of promiscuous domains (Shifman and Mayo 2002), have created
novel interactions (Reina et al. 2002), and have automated the process (Havranek
and Harbury 2003).

Properties of protein interaction networks

Scale-free behavior of protein interaction networks

For the past five years the scale-free behavior of complex networks has
attracted a lot of attention. Many empirical studies indeed showed that the structure
of metabolic and protein interaction networks can not be explained by the classical
random network model (Barabasi and Albert 1999; Jeong et al. 2000; Wolf et al.
2002). According to the latter, the nodes are connected randomly, leading to the
homogeneous network where most nodes have the same number of edges. The
degree distribution or connectivity of such a network follows a Poisson distribution
and the probability of finding a highly connected node decays exponentially. On the
contrary, scale-free networks are highly heterogeneous with a few highly connected
nodes (hubs) and a large number of poorly connected nodes. This structure can be
explained by the preferential attachment of new vertices to the highly connected
node in the network’s expansion (Barabasi and Albert 1999). The degree distribution
of these networks follows a power-law: P(k)~e™ reflecting their self-similarity under
scale transformation. Other important properties of the scale-free networks include:
small diameter (calculated as an average number of edges in the shortest path
connecting two nodes), high tolerance to errors and high susceptibility to attacks.
Random errors and removal of random nodes do not affect the diameter of a scale-
free network, this property is very important for maintaining the integrity of biological
networks upon external changes or errors. On the other hand, if the few, highly

connected hubs are removed from the network, the network diameter increases
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sharply which leads to the disruption of the network disintegrating it into many
isolated clusters.

Indeed, mutagenesis experiments proved that yeast can tolerate
mutations/deletions of a large number of proteins from its proteome (Winzeler et al.
1999; Jeong et al. 2001). This in turn implies that less connected proteins should be
less essential for a cell compared to highly connected proteins. To answer this
question, the yeast protein interaction network has been investigated and shown that
proteins characterized by high connectivity are three times more likely to be essential
than proteins with few connections (Jeong et al. 2001). Many models have been
proposed describing the mechanisms reproducing scale-free protein interaction
networks (Qian et al. 2001; Rzhetsky and Gomez 2001; Middendorf et al. 2005;
Deeds et al. 2006). For example, according to the duplication-mutation-
complementation model (DMC), gene duplication is followed by mutations and
diversification, but gene functional complementarity is conserved (if one copy of a
gene becomes dysfunctional, another copy can carry its function) (Middendorf et al.
2005). Another model emphasizes the role of desolvation in forming the protein-
protein interaction interfaces and predicts the correlation between the number of
interactions which a protein makes and the fraction of hydrophobic residues on its
surface (Deeds et al. 2006).

Conservation and alignment of protein interaction networks

The fast development of experimental techniques for protein-protein
interactions has enabled the construction and systematic analysis of interaction
networks or maps of interacting proteins. Interaction maps obtained for one species
can be used to predict interaction networks in other species, to predict function of
unknown proteins and to get insight into the evolution of protein interaction patterns.
The interaction map analyses and comparisons are based on the
assumption/observation that many interactions are conserved among species and
form so called “interologs” (Walhout et al. 2000). Sequence-based searches for
conserved “interologs” were able to identify 16%-31% of true “interologs” (tested
using two-hybrid system) even between remotely related species such as yeast and
worm (Matthews et al. 2001). Analysis of gene-coexpression networks revealed
22,163 gene pairs coexpressed in humans, flies, worms and yeast (Stuart et al.

2003). The conservation of co-expression patterns among diverse organisms
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suggests that these gene pairs correspond to the functionally related genes
responsible for core biological processes. Moreover, a multiple-species network has
been constructed by identifying pairs of genes with correlated expression in different
organisms. It was shown that a multiple-species network performs better than a
single-species network in linking together functionally related genes.

To measure the evolutionary distance at the level of network connectivity, a
new algorithm of aligning two networks has been developed, called PATHBLAST
(Kelley et al. 2003). The method searches for high-scoring pathway alignments
between two networks, where proteins are paired based on their sequence similarity.
Pathway alignments can allow gaps occurring when one path passes over a protein
in another path and can accommodate misalignments occurring between two aligned
proteins with low sequence similarity. The network alignment between worm, fly and
yeast detected 71 network regions that were conserved between all three species
(Sharan et al. 2005). Among these, 94% of the clusters contained at least 50% of
proteins sharing the same annotation. Single network analysis of yeast resulted in
much lower accuracy of 83%.

Instead of aligning two protein networks, the network topologies also can be
compared by calculating the difference between the number of connections of
identical proteins from two networks (Hoffmann and Valencia 2003). In this case the
correlation coefficients between the protein connectivities of two networks is
estimated which in turn quantifies the agreement between the networks obtained by
different methods. Although the method can perform only pairwise comparisons, it is
not restricted to only conserved interactions but rather can encompass all proteins
covered by both methods. Applying this approach to networks obtained by different
experimental and in silico methods showed that there exists statistically significant
correlations between different experimental and theoretical methods, while the gene

neighborhood method correlates with both experimental and in silico methods.
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Protein-protein interactions:
structure and systems approaches
to analyze diverse genomic data

Anna R. Panchenko
Benjamin A. Shoemaker
NCBI / NIH

Example: interaction of guanine-
nucleotide binding domain with different
effectors.

-
PIIIK
Adapted from Vetter & Wittinghofer, Science 2001
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Importance of protein-protein
interactions.

Many cellular processes are regulated
by multiprotein complexes.

A comparison of sequence
Distortions of protein interactions can (GenBank) and protein-protein

cause diseases. interaction data (DIP database)

Protein function can be predicted by
knowing functions of interacting 7
partners (“guilt by association”). § =

Adapted from S. Fields, FEBS, 2005
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Common properties of protein-
protein interactions.

Majority of protein complexes have a buried H rim
surface area of about 1600+400 A2 (“standard f' .\ <
size” patch).
Complexes of “standard size” do not involve core
large conformational changes of interacting
proteins while large complexes do.

Top molecule
Protein recognition site consists of completely .".r.r.r...
buried core and a partially accessible rim. :# ‘C@QQ}'}:

% ‘eeee 9

SAAA A
Trp and Tyr are abundant in the core, but Ser )
and Thr, Lys and Glu are particularly disfavored. Bottom molecule
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Different types of protein-protein
interactions.

« Permanent and transient depending on their strength.

« External are between different chains; internal are within the same
chain.

* Homo- and hetero-oligomers depending on the similarity between
interacting subunits.

« Different interface types differ in amino acid composition; can predict
interface type from amino acid composition with 63-100% accuracy
(Ofran and Rost 2003).
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Experimental methods for identifying
protein-protein interactions.
* Yeast two hybrid
Mass spectroscopy

» TAP purification

» Gene expression

: )_/'MF.‘) 2006‘

Forialeza, dr lul
August & o
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Conservation of protein-protein
interactions.

« Conservation of protein interfaces is weak
compared to the rest of a protein = low
accuracy of prediction of protein-protein
interaction sites.

» Conservation of domain-domain
interactions: at SCOP Family level (red)
interactions are conserved, at Fold level
(blue) are not conserved.

iIRMSD

% Sequence |dentity

Adapted from Aloy et al, J. Mol. Biol., 2003
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Yeast two-hybrid experiments.

¥

» Many transcription factors have two 2
domains; one that binds to a promoter |
DNA sequence (BD) and another that | mtpuma | 20 (»uw--m J
activates transcription (AD). w i

* DNA-binding domain can not activate !

!
transcription at a promoter unless @& v
. . V'\/ §

physically (not necessarily covalently)
associated with an activating domain

(Fields and Song,1989) .
N : —
M Ezrm

UAS

Adapted from B. Causier, Mass Speciroscopy Reviews, 2004
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Gal4/LacZ Y2H system

« Target proteins are fused with binding
and activation domains of GAL4 protein
which activate LacZ gene.

« If there is no galactose, GAL80 binds
to GAL4 and blocks the transcription.

* When galactose is present GAL4 can
activate the transcription of beta-
galactosidase.

153

Development and variations of Y2H
system.

Developing yeast strains that
carry several reporter genes.

Developing of haploid yeast
strains of opposite mating type.
Diploid cells are produced by
mating containing both baits and
preys.

One-hybrid system detects
interactions between a prey
protein and a known DNA
sequence (bait).

Adapted from B. Causier, Mass Spectroscopy Reviews, 2004
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Development and variations of Y2H
system.

* RNA yeast three-hybrid system
detects interactions between N c
RNAs and proteins.

ﬂ,-:-;: . G0
—— e o 9
+ Protein yeast three-hybrid .
system detects the formation of . P
complexes between several S
proteins. o, - IS ]
(11} = B O ;
i - =

Adapted from B. Causier, Mass Spectroscopy Reviews, 2004
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A
» Matrix approach: a matrix of prey clones
is added to the matrix of bait clones.
Diploids where X and Y interact are
selected based on the expression of a
reporter gene.

« Library approach: one bait X is screened
against an entire library. Positives are
selected based on their ability to grow
on specific substrates.

Uetz et al 2000, Ito et al 2001:

692-840 interactions detected using
library-based approach in yeast

Adapted from B. Causier, Mass Spectroscopy Reviews, 2004
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Disadvantages of Y2H.

« The interactions can not be tested if a target protein can initiate
transcription.

» Fusion of a protein into another domain (chimeras) can change the
structure of a target protein.

« Protein interactions and posttranslational modifications can be
different in yeast and other organisms.

« ltis difficult to target extracellular proteins.

» Some cDNAs are fractional and do not represent the full length
sequence of a target protein.

* Proteins which can in general interact in two-hybrid experiments,
can never interact in a cell.
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Advantages of Y2H.

This is in vivo technique, good approximation of processes which
occur in a living cells of higher eukaryotes.

Transient interactions between proteins can be determined due to
the amplification of a signal by the reporter gene expression, can
predict the affinity of an interaction.

Fast and efficient.

Mass spectroscopy.

1. lonization (Ex: Electrospray ionization)

the solvent evaporates rapidly in a vacuum and protein
molecules with a net positive charge become ionized;

» Detection and recording of sample ions

integral net charges are assigned to different peaks of
spectra;

* Analysis of MS spectra, protein identification
search sequence database with mass fingerprint,
find correlations between theoretical and experimental

159
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lonization.

- Electrospray ionization, John — b ..
Fenn, 2002) _—<eta
The solvent evaporates rapidly in a |
vacuum and protein molecules with
a net positive charge become

ionized;

- Matrix Assisted Laser Fﬁr‘- =__.1 o
Desorption, K. Tanaka, 2002) A | )
The laser ionizes protein molecules S .\.?\

embedded on the matrix Y :

From www.nobelprize.org
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Detection.
» Peptide fragments are separated based on mass-to-
charge ratios;
» Accuracy of 0.01% of the total molecular mass of the
sample i.e. within a 4 Daltons;

i

o ' - A 1T

e

SO S,
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Differences and similarities
between Y2H and MS.

» Both methods generate a lot of false positives, only
~50% interactions are biologically significant. Both miss
a lot of known interactions.

* Y2H produces binary interactions, lack of information
about protein complexes, but can detect transient
interactions.

* MS can detect large stable complexes and networks of
interactions.

Tandem affinity purification method (TAP).

+ Target protein ORF is fused with the DNA sequences
encoding TAP tag;

+ tagged ORFs are expressed in yeast cells and form
native complexes;

» the complexes are purified by TAP method;
» components of each complex are found by gel
electrophoresis, MS and bioinformatics methods.
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TAP tag consists of two
IgG binding domains of
Staphylococcus protein A
and calmodulin binding
peptide;

O. Puig et al, Methods, 2001
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Correlation between gene expression
and protein interactions.

» There should exist a relationship between gene
expression levels of subunits in a complex. = protein-
protein interactions can be deduced from coexpression
data.

» Methods are tested on specific protein complexes:
ribosome, proteasome, RNA Polymerase Il Holoenzyme
and replication complexes.
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Correlation between gene expression
and protein interactions.

Jansen, Greenbaum & Gerstein, Genome Research, 2002

» Expression profiles were taken from two different sources: cell cycle
experiments and expression ratios for overall yeast genome for 300
stationary cell states.

« Difference between absolute expression levels can be calculated as

=|Ei_Ej|
(B +E;)

where Ei and Ej are mRNA expression levels of subunits “” and “/".

Results of gene coexpression analysis.

Jansen, Greenbaum & Gerstein,

Genome Research, 2002

.13

Subunits from the same complex

E
show coexpression, expression E wwe ™z O =1
correlation is strong for permanent g au| Lo 4 3
complexes. 2 . ® B o oo

] e @8 oo

§ 0z " O s | [oPemanent
Transient complexes subdivided into g | **_O2 g .« O il
smaller permanent complexes show § oo . oo "I | oRangom
strong correlation with gene T T s ™
expression. 02 + — y

0.2 oo a2 a4 s 13 10

Average correlation cell cycle

For genome-wide Y2H data, there is
only a weak correlation with the gene
expression.
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Verification of experimental protein-
protein interactions.

* Protein localization method.

» Expresion profile reliability method.

« Paralogous verification method.
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Protein localization method.

Sprinzak, Sattath, Margalit, J Mol Biol, 2003

A—A3: Y2H

B: physical methods
C: genetics

E: immunological

i -
i .
P .

True positives:

- Proteins which are localized in the s:
cellular compartment

- Proteins with a common cellular role

Experimental mathod category
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Expression profile reliability method.
Deane et al, Molecular & Cellular Proteomics, 2002
EPR method is based on observation that interacting proteins
are coexpressed. The distance between expression profiles of
two proteins:
d/ZxB = Z (IOg(eiA /elif )— IOg(eiB /erBef ))2
i
Parameter a characterizes the accuracy of given data, or
correspond to the fraction of false positives.
pldie) =a-p(dig) +(1-a) p,(dze)
WAL/ MP 20061
~ 171

gl Frieiera. Braxid
August 4-10, 2008

Expression profile reliability method.

Patative protcin interaction network

170

PVM metho
observation
interact, thei

d is based on
hat if two proteins
paralogs would

interact. Calculates the number i@ mm Y
of interactions between two .
families of paralogous proteins.

Seore = 2
Pl and P2 da imeract

Deane, C. M. (2002) Mol. Cell. Proteomics 1: 349-356

172

43



Comparing large scale data of protein-
protein interactions.

C. Von Mering et al, Nature, 2002:

» All methods except for Y2H and synthetic lethality technique are
biased toward abundant proteins.

* PPI are biased toward certain cellular localizations.

« Evolutionary conserved proteins have much better coverage than
the proteins restricted to a certain organism.

L

: )fMF_‘wooO |
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Functional organization of yeast
proteome: network of protein complexes.

A. Gavin et al, Nature, 2002

» orthologous proteins interact
with complexes enriched by
orthologs;

* essential gene products are
more likely to interact with
essential rather than nonessential g
proteins

\/MP2006]
.MMF_‘)QOOO

Farta 175
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Functional organization of yeast proteome.

Gawvin et al, Nature, 2002 T i v .

+ 589 protein assemblies,

* 232 multiprotein
complexes,

* new cellular roles for 344
proteins.

\/MP2006]
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Interaction databases

» Protein-protein interactions from experiment
(some pass quality assessment).
— DIP (LiveDIP, ProLinks), BIND, MIPS

* Domain-domain interactions inferred from crystal
structure data.

— 3did, Pibase, CBM, iPfam

\/MP2006]
_)iMF_‘)zooO

Fartal azil 1S
August 1006
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DIP database

+ Documents protein- Organisms | # proteins | # interactions
protein interactions from .
experiment Fruit fly 7052 20,988
— Y2H, protein microarrays, H. pylori 710 1425
TAP/MS, PDB
Human 916 1407
» 55,733 interactions E. coli 1831 7408
between 19,053 proteins | C- elegans | 2638 4030
from 110 organisms. Yeast 4921 18,225
Others 985 401
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DIP database

Browse Menu

Search Menu o P S

Duan et al., Mol Cell Proteomics, 2002 —— -

=

« Assess quality i
— Via proteins: PVM, EPR 3
— Via domains: DPV e e &

- Search by BLASTor - =——

— Interaction Map

identifiers / text e

e ] | o Tt | VLo |

Details % &:7
Protein State Protein State Live Interaction
Page Transition Page Fage
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DIP database

Duan et al., Mol Cell Proteomics, 2002
» Assess quality
— Via proteins: PVM, EPR
— Via domains: DPV
» Search by BLAST or
identifiers / text

* Map expression data
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LiveDIP
A Physical Interactions
QR @@= =3 * —....
Duan et al., Mol Cell Proteomics, 2002 , Blological nteractions : -
« Distinguish biological Q-9 (O .3
@ ) '@ I
state B
— Covalently modified ©
— Conformational '

— Cellular location
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Prolinks database

» Gene neighbors
Rosetta Stone
Phylogenetic profiles
» Gene clusters

\/MP2006]
.MMF_‘)QOOO

Farta 181
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» 204,468 total
interactions

* Includes small
molecules, NAs,
genes, complexes, o

photons =

L/ MP 2000)
ész?ooo

Farta
Augu

BIND database

+ Contains experimental
interaction data

» 83,517 protein-protein
interactions

» Developed specification

to handle diverse data

L/ MP 2000)
~.)il*'lF_‘mnoo

Fartal
Auguit

 [nteraction Viewer

» Unique icons of
functional classes

L/ MP 2000)
~.)il*'lF_‘mnoo

Fartal
Auguit

BIND
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MPact/MIPS database

protein interactions
+ Curated set: A ——
— 4,300 PPI =
— 1,500 proteins =
« High-throughput ~ %evep ==
available

Web tools

* Yeast protein- e
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InterDom database

« 30,037 predicted R ——— =
domain interactions 2 :
from PPls
— Domain fusions RFe == F
— Protein interactions =
— Complexes
— Literature

» Score interactions

Pibase database

» Protein structures from PDB and PQS
* Domains defined with SCOP and CATH

- All inter-domain and inter-chain distances within 6.05 A
are considered interacting domains

» From interacting domain pairs, create list of interfaces
with buried solvent accessible area > 300 A?
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PIBASE

* Query by PDB, g e —
domain, interface e

* 1,946 interacting
SCOP domains
* 2,387 unique = .
interaction types o e e e
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PIBASE PIBASE/ModBase

- _ R Y S— -
« Redundancy removed ~~ it T * Protein structure R
within a structure """"‘ ot models “ﬂ ..... Database of Comparaive Protein Siructure Models

* Predict interfaces
with Pibase

* Properties listed

3did database 3did

« Pfam domain-domain )09 ] * Liststructures -

interactions e ettt 0 « Visualize SR
 Protein structure data — = interfaces
+ 3,304 unique — - * View interface

interaction types - S overlap _.
* 2,247 interacting \ ,,,, o distribution :

domains - & == * GO annotation T
» Display linkages and oy

chain locations _

o
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* Show domain
linkages on a given !
structure
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Protein-protein interactions available
from structure data;: NCBI CBM database

* CBM - database of interacting structural domains exhibiting
Conserved Binding Modes

i 16Ys
S

« To retrieve interactions:
— Record interactions

— Use VAST structural alignments to
compare binding surfaces

— Study recurring domain-domain
interactions

* Currently available via FTP

Shoemaker et al., Protein Sci, 2006.
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InterPReTS

Aloy & Russell, Bioinformatics, 2003 _

vt Bt

 Structure prediction of e ——

interfaces

. Uses 3did @ i

Align sequences

Hignment
" | Test interaction |

30 intertace Imeraction score

Empirical potentals

194

» Interacting domain pair — if at least 5

» Structure-structure alignments

» Clustering of interface similarity,

* Clusters with more than 2 entries

Definition of CBM

residue-residue contacts between
domainﬁ (contacts — distance of less
than 8 A)

between all proteins corresponding to
a given pair of interacting domains

those with >50% equivalently aligned
positions are clustered together

define conserved binding mode.

. JGY3-1ESH

196
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Number of interacting pairs and binding
modes

« 833 conserved interaction types g
» 1,798 total domain interaction types £ o
« Up to 24 CBMs per interaction type 8

b4 B 2 oW Mm M oW W M 4

CBM | Structures | Species Blncing rdes
1 [ Jawed vertobrates + Classify complicated domain
2 112 Jawed vertebrates airs by CBMs
3 17 Clam,earthworm P y
4 |4 lamprey * Globin example:
5 4 V.stercoraria — 630 pairs
6 2 Rice,soybeans .
— 2 CBMs account for majority
7 2 human
E_12 Lemerey Shoemaker et al., Protein Sci, 2006.
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CBMs distinguish biologically relevant
interactions

» Non-biological interactions (e.g. crystal packing) are not
conserved among different structures.

* Interaction networks more clear

f20 = CoMtue pastives
b

150 —

S

g

© m

@ 30 @ 50
Interface cortacts

=1}

Shoemaker et al., Protein Sci, 2006.

iIPfam database

* View Pfam
interactions on PDB
structures

* View individual
structures and
sequence plots

i
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d

" Fartaleza, Brazi
August §-10, 200

198
DIMA database
. Phylogenetic o =
profiles of Pfam _
domain pairs AN
» Uses structural info °
from iPfam
« Works well for
moderate . ———— -
information content B EEme —
WA//MP>2000%
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Phylogenetic profile method.

Pellegrini et al, PNAS 1999

Functionally linked and
probably interacting
proteins should have ) [ e,
orthologs in the same [P | C————
subset of fully L 1
sequenced organisms R

201

Gene neighborhood method.

Gene pairs from conserved gene
clusters appear to encode proteins
which are functionally related and
possibly interact.

Gene order between the
prokaryotic and archaeal species is
conserved if sequence identity
shared by orthologs in two
genomes > 50%.

Adapted from Bowers et al, Genome Biology, 2004

Conservation of gene order can be
used to predict gene function.

: )_/‘MF.‘) 2006‘

203

Fortaleza, Bra
August §-10, 1008

Rosetta Stone approach.

Marcotte et al, Science, 1999

» Some pairs of interacting domains have
homologs which are fused into one
protein chain — “Rosetta Stone” protein.

Yoot I
E, ¢all gyrasd B e
E. coll gymae A e

Human succing Coltransiorase S

* In E.coli method found 6809 pairs of = fojrmmcoamemns ==

non-homologous proteins, both proteins B ot O . ———— |
e ———

from each pair could be mapped toa & —

single protein from some other genome. = His2 —

E. ool histiding blosyrihesis HIS2 AT
E. coll Ntising Liistyrihi HIS1H ~EEE—

Hurhan §-1-pyrrling-5-camaxyliti Snihalise - R
phat reductase )

E. ool gilamate-E-inase ——— ]

Gene cluster method.

+ Bacterial genes of related function are often transcribed
simultaneously — operon.

+ Identification of operons is based on intergenic
distances.

:lAHB|C
A A A

(P=0.015) (P=0.003) (P=0.43)

Adapted from Bowers et al, Genome Biology, 2004

: )_/‘MF.‘) 2006‘

Fortaleza, Bra
August §-10, 1008
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Coevolution of interacting

proteins/domains — “mirrortree” methods.

Goh et al. 2000; Pazos and Valencia 2001

» Interacting proteins very often co-evolve and their phylogenetic trees
show some similarity.

« The similarity between phylogenetic trees can be quantified by
correlation coefficient between distance matrices used to construct

Adapted from Goh et al, J.Mol.Biol.,2000
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Predicting interacting partners from two
interacting protein families.

Problem:
given interacting protein families A {ay, ...,an} and
B {b1,...,bm}:

- Find corresponding proteins ai and bi that interact.

- Predict interaction specificity of interaction, ex: families
containing paralogs.

- Predict one-to-many correspondence between
interacting partners.

206

Methods of predicting interacting partners.

Ramani & Marcotte, J. Mol. Biol., 2003, Protein ® Protein
Gertz et al, Bioinformatics, 2003 PRY cae TR
e I
] Datwean '
i v =
Proteins are clustered allowing to \-!‘!-'J e B
find one-to-many correspondence g X st
between proteins. i . l._
Similarity matrices are aligned using N -.;, """" A ®
simulated annealing, optimizing the B
root mean square 2 i Ry
difference/correlation coefficient
between elements of two matrices. HoN l i
gwm-mm. ":'.':—“ ﬂ'-’-fﬂh'.ll .
* Interactions are predicted between : -!‘!"J L JZ‘."‘
proteins corresponding to the aligned g .
columns of two matrices. —
® e

heading squivalent colsmes of the fwo matices
A, B b, ..

Adapted from Ramani & Marcotte, J. Mol. Biol., 2003 207

Problems of matrix permutations methods:

* N! — permutations (N — number of proteins
in a family) — search space is big!

* maximal agreement between similarity
matrices does not mean correct pairing of
proteins on phylogenetic tree.

208
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Methods of predicting interacting partners.

MORPH method, Jothi et al,
Bioinformatics, 2005

* To reduce the search space — by
swapping whole isomorphic subtrees in
a single move instead of a single column
- avoid local minima.

*» Uses information encoded in the
phylogenetic trees themselves.

209

Tree of life assists in prediction of
protein-protein interactions.

Pazos et al, J. Mol. Biol., 2005
Sato et al, Bioinformatics, 2005

| |
» There exists certain “background” % [EEE [%
similarity between trees of any
proteins, no matter if they interact or } _ | 1

not.

* The “background” tree is constructed
from 16S rRNA sequences.

Uutpia secusnce
s—

Phyiogenate
[

J il

LE

i
1
i
g
it

prediction

* rRNA-based distances are

i 1
subtracted from distances for the E TN E

3
§
]

3

111

{‘
it

original phylogenetic tree.

Performance of “mirrortree” methods.

Pazos et al, J. Mol. Biol. 2005

by
» Test set of 512 physically |
interacting proteins from E. coli .
* “tol-mirrortree” method (blue) finds
half of real interacting proteins at gt

o

6.4% false positive rate compared to
16.5% false positives rate with
“mirrortree” method (black).

1-Specificity
TNATN+FP)

Adapted from Pazos et al, J. Mol.Biol., 2005
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e

Adapted from Pazos et al, J. Mol.Biol., 2005
210

Classification methods: Random
Decision Forest.

» Training set: interacting protein
pairs + non-interacting pair;

(] [ | [ ]
» Each pair — vector of feat
(domain types) of dimension N. ERE

- {1,02,1,0}

* Values of vector:
0, if protein pair does not contain
feature;
1, if at least one protein in a pair
contains feature;
2, if two proteins contain the
feature.

: )_/‘MF.‘) 20061

212

Fortaleza, Bra
August §-10, 1008
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Classification methods: Random
Decision Forest.

* Choose feature randomly
(D20), get values of all
pairs in a given position
corresponding to this [ on | o0 || ow |
feature;

* Divide all pairs in three ‘
groups: those which both

have this feature, only one‘
protein has feature, no
feature.

213

Classification methods: Random
Decision Forest.

* Repeat splitting at next
node and stop when node
impurity is small.

+ To classify a new protein

pair — traverse along the ‘
tree

Node impurity = # interacting
proteins / # non-interacting proteins

214

Predicting domain interactions from
protein interactions

» Association method

* Maximum likelihood estimation method
* Domain Pair Exclusion Analysis

+ Random decision forests

Calculating P-values

* Integrative method

215

Predicting domain interactions from
protein interactions

» Protein sequence search of Pfam, SCOP or
CDD domains

» Train on high-throughput experimental data

Evaluate with structures or MIPS

+ Assign probabilities to protein interactions for

216
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Association method

Sprinzak & Margalit, J Mol Biol, 2001 e
* Record domains DO
HT._._ .

+ List interacting protein s ma weo

pairs + v

- v

» Tabulate domain pairs
from protein pairs

+ Compute log-odds
values

LAl B K

217

Association method

Sprinzak & Margalit, J Mol Biol, 2001 e

* 2,286 domain pairs DO
HT._._ .

* 1,141 pairs > 2 bits s ®a weo

* 40 pairs with > 2 bits & M M

count of 5

* No experimental error jramencse
alalol [ [T 177
wlz(1|0] | | | |
wizalfol T 111
ofsizlalol I ||
mfzlzfalale] | |
@ 1112000
w212 0l0fol10

Association method

Sprinzak & Margalit, J Mol Biol, 2001

* Log-odds value: log,(P;/PP)

* P, is the frequency of domain i in the data

» Average mutual information content per
domain pretty high (2.48 bits) — significant
correlation between interacting proteins
and predicted domain pairs

219

218

Random decision forests

Chen and Liu, Bioinformatics, 2005

* Discussed earlier as protein interaction
prediction method

* 3,000 domain pairs predicted
* No experimental error
* Doesn’t assume independency

« Accounts for non-interactions

— Riley et al. note that this makes it harder to find
specific paralogous interactions

220
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Expectation Maximization

Deng et al., Genome Res, 2002

1. Use initial parameters to get Z,
expectation of complete dataset

2. Get maximum likelihood estimator of
parameter set, O.

3. lterate until convergence

221

Expectation Maximization

Deng et al., Genome Res, 2002

- f,=0.64,f,=285E-4

* 43% specificity, 78% sensitivity

» MIPS best predicitors 100x > random
» But, only 0.68% predicted

222

Domain Pair Exclusion Analysis

Extend MLE method to detect specific, rare interactions

(a)

Riley et al., Genome Biol, 2005.
1. S;frequencies

2. MLE of ©; starting
with S;

3. Recalculate ©; with
interaction probability
jj fixed to zero. Get E;
from difference.

223

Promiscuous domains

Riley et al., Genome Biol, 2005.
+ High E-score: high . Y
propensity to interact : ‘e
* Low E-score: competing
domains more likely .. -
responsible for interaction =" B
+ Screen for low 6 and high § -
E to find specific domain-
domain interactions

PaV L bt

224
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Domain Pair Exclusion Analysis

g ) JrT— £l
bl i.l
3 3

1= . il

Riley et al., Genome Biol, 2005.
» E discriminates 100 top predictions 71x random

* © and S are ineffectual particularly with modular
domains

225

Calculating P-values to predict
domain interactions

e T
Sscaroomsrs

Nye et al., Bioinformatics, 2005. R

+ SCOP superfamilies ll/_'/.,:‘" -

» P-values for domain N
pairs e ]

« Shuffle dorr}ains cl>ln t l/::":“? e
sequences for nu o Al
hygothesis E mi:w - .—___|__

+ Domain architectures R
considered - _l.

Calculating P-values to predict
domain interactions

Nye et al., Bioinformatics, 2005.
- f,=5.7E%,f,=0.1 ;
+ Contrast to Deng E
{
!

[ Rantom

B

(0.64, 2.85E%)

+ Predicts better at
higher number of
interacting partners

« Random wins in =
largest group

227
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Integrative method

Ng et al., Bioinformatics, 2003
» Add scores from three sources:
— DIP — odds ratio score
— Protein complexes — odds ratio score
— Domain fusions — simple constant
» 20-fold cross validation
— Major change from DIP to DIP + complexes
— TPs: 39% to 58%, FPs: 8% to 12%

228
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Limitations of domain interaction
prediction methods

+ Assume domain pairs interact independently

* Repeated domains not scored to distinguish
contacts

* Missing domain assignments give false
negatives and positives

* Many proteins have no assignments

* Assume domain pairs, though may require
higher order assemblies

229

Homology modeling of protein
interactions

Comparison to modeling single proteins
General procedure

Automated methods

CAPRI docking contest

Designed interfaces

Homology modeling of single proteins
« Structures solved quickly with current techniques
* Decent coverage of major genomes expected
 Structure prediction:

— Find homologous template to query
— Make query model based on template

231

230

Homology modeling of protein
interactions

Elucidate interaction networks: Roughly 2,000 out of
10,000 interaction types known

Limited protein-protein complexes in PDB

Large complex structure determination has technical
challenges not readily overcome in general

Likely path involves multiple experimental methods with
homology modeling and docking of structural subunits

232

58



Support for modeling protein interactions

Conservation of protein interfaces is weak
compared to the rest of a protein = low
accuracy of prediction of protein-protein
interaction sites.

Conservation of domain-domain
interactions: at SCOP Family level (red)
interactions are conserved, at Fold level
(blue) are not conserved.

iIRMSD

% Sequence |dentity

Adapted from Aloy et al, J. Mol. Biol., 2003
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Support for modeling protein interactions
Shoemaker et al., Protein Sci, 2006.

Globin example:

* Interfaces between different
functional subfamilies poorly
conserved

+ Within the same subfamily well
conserved

» Supports homology modeling of
interaction interfaces

234

General procedure for homology
modeling

 Start with high-throughput (Y2H, TAP/MS) protein
interaction data

» Search proteins for homologous domains
+ Evaluate likelihood of domain-domain interactions

» Search for homologous structures to query
proteins/protein domains

235

General procedure for homology
modeling

* Homologous structures might be
— Complete complexes (rare)
— Interacting domain dimers (sometimes)
— Single domains (most often)

» Put together structural pieces avoiding steric hindrance
and maximize domain complementarity

» Docking potentials score orientations of two interacting
domains

* Success depends strongly on similarity and
completeness of homologous structures

236
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Example: Modeling of yeast complexes

P. Aloy et al, Science, 2004

* Use data from:

— Multiple experimental
methods

— Homology to structure
* Model interactions

within and between

complexes

N MBS0
_MME)QOOO.

Fart il 237
Augu LI

InterPReTS

Aloy & Russell, Bioinformatics, 2003

« Search for Pfam domains ... .-_ -
on target sequences

» Construct complexes
matching the same Pfam

Align sequences

types -
.
» Score putative interactions g L .
Wlth emplrlcal pa"- \; 7 Test interaction ’
potentials Sws Interaction score

* Good results except for
peptidase / inhibitor class

239

Example: Modeling of yeast complexes

Exosome RMA pol 1

P. Aloy et al, Science, 2004 I

» Found 42 (out of 102)
“nearly complete” models

* 12 partial models of
interacting subunits

» Structures fit onto
electron microscopy
grids (A,C,D)

» Complexes assembled
from multiple smaller
complexes (F)

MRS e A
~.)il*'lFiwoof’)

Fart
Aug

Multiprospector

Grimm et al., Proteins, 2006.
+ Separately thread

SINGLE-CHAIN

MOWOMER LIBRARY ~ THREADING  MULTIMER LIBRARY
MODELS

sequences X and Y
against protein dimer

database

* For X/Y matches to the
same dlmer, assess FEFINED MULTIPLE- f—

fitness by rethreading
with an interface score
derived from the dimer
database

_'—G

240
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Multiprospector

Grimm et al., Proteins, 2006.

* On yeast genome, 7,321
interactions were
predicted from 304
complexes

* Ranked 3 amongst
large-scale prediction
methods

— No bias towards abundant
proteins

— Provides atomic detail of
interaction surfaces

241

Limitations from CAPRI contest affecting
homology modeling

* Proteins can undergo significant conformation
changes upon binding

» Docking potentials require more accuracy

» Specific and non-specific protein interactions are
not adequately distinguished

243

CAPRI contest

Mendez et al., Proteins, 2005.

 Build atomic models of
complexes given
structures of the unbound &
proteins

* Bound/unbound differ by
up to 12A )|

+ “Acceptable” to “highly
accurate” predictions )
made

242

Interface design

Kortemme & Baker, Curr Opin

Chem Biol, 2005 . e

| s i

* Computationally alter X7 = :
interface to modify "‘
function —

» Create useful
complexes

-Orel
nginesred chimars of
e aned -Gl

bound 83 & Rovel chimarc
DA target sequence.

« Better understand I e
prediction

244
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Interface design

Kortemme & Baker, Curr Opin
Chem Biol, 2005

i :..‘!': ';_; 3
* Alter oligomeric state ,"_"‘E’ﬁ" ::;’325 it
in helical bundle \(

* Increase specificity of —
promiscuous domains

* Novel interactions

» Automated the
process

245

Basic notions of networks.

Network (graph) — a set of vertices connected via
edges.

The degree of a vertex — the total number of
connections of a vertex.

Random networks — networks with a disordered
arrangement of edges.

246

Characteristics of networks: degree
distribution.

P(k,N) — degree distribution, k - degree of the vertex,
N - number of vertices

K=2

If vertices are statistically independent and connections are random, the
degree distribution completely determines the statistical properties of a
network.

247

Different network models: Barabasi-
Alberts.

Barabasi & Albert, Science, 1999
Model of preferential attachment.
* Ateach step, a new vertex is added to the graph

» The new vertex is attached to one of old vertices with probability

proportional to the degree of that old vertex.
In(P(k))

Degree distribution — power law distribution.

P(k) oc k™7

In(k)
248
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Power Law distribution

p (k) -~ k i Multiplying k by a constant, does not
change the shape of the distribution —
scale free distribution.

p(ak) = (ak) " =a " p(k)

iy Ll
P\ “ .i’,] .
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Difference between scale-free and
random networks.

fxnm'emlul.’?_ ,_'g_\ .
/o A
/1% 7\
PTT7 )%
Random networks are f% ; \r"__
homogeneous, most nodes 5% 2o
have the same number of [ M . =1
links. r‘*
Scale-free networks have a g : L] é
*

few highly connected
verteces. ‘," 4 3

log k

Adapted from Jeong et al, Nature, 2000

Multiple-species gene co-expression
networks.

Stuart et al, Science, 2003

» Multiple-species network has been constructed by
identifying pairs of genes with the correlated gene
expression in different organisms.

» Multiple-species network performs better than single-
specles network in linking together functionally related
genes.

251
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Multiple-species gene co-expression
networks.
Stuart et al, Science, 2003

True positives — links from the same KEGG functional category;

accuracy - % links connecting two members of the same category;
coverage - % metagenes connected to at least one metagene in the
category.
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Aligning protein interaction networks.

PATHBLAST (Kelley et al. , PNAS, 2003, ° °
Sharan et al, PNAS, 2005).

» The method searches for high-scoring pathway
alignments between two networks, where
proteins are paired based on their sequence
similarity.

253

Aligning protein interaction networks.

PATHBLAST (Kelley et al. , PNAS, 2003,
Sharan et al, PNAS, 2005).

* The network alignment between worm, yeast
and fly detected 71 network regions that were
conserved between all three species.

b Protein systhesis and cell rescus =110
1 e s
2 @ s
£ ey s
1 &9 oy
5 Fe Tal | Twl
6 b i sl
7 S =

Comparing networks by their
connectivities. " o

- J )
J F
9T oy
Hoffmann & Valencia, TRENDS in genetics, 2003 < Q K
« Correlation coefficient between protein o i :I: by
connectivities of two networks quantifies the bRt
agreement between the networks. evev@ieev
rr@vTeoTe

@resvvrae
« Significant correlations between different e cseeve

experimental and theoretical methods:

gene neighborhood method (GN) correlates
with both experimental and in silico methods.

WA/ MP20006)

gl Frieiera. Braxid
August 4-10, 2008
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