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Tutorial Summary 
 
In the recent years, multiple types of high-throughput functional genomic data have become 
available that facilitate rapid functional annotation and pathway modeling in the sequenced 
genomes. Gene expression microarrays are the most commonly available source of such data.  
However, genomic data sacrifice specificity for scale compared to traditional experimental 
methods, yielding large quantities of relatively lower quality measurements.  This problem 
has generated much interest in bioinformatics in the past two years, as sophisticated 
computational methods are necessary for accurate functional interpretation of these large-
scale datasets. This tutorial will present an overview of recently developed methods for 
integrated analysis of functional genomic data and outline current challenges in the field. The 
focus will be on the development and use of such methods for gene function prediction, 
understanding of protein regulation, and modeling of biological networks.  
 
 
Tutorial Outline 

• Goals of data integration 
• Overview of available experimental data 
• Evaluation of data/method accuracy 
• Overview of computational methodology 
• Data representation for integration 
• Application of data integration 

 
This tutorial will be of interest to computational researchers interested in contributing to the 
field of data integration and analysis of heterogeneous data and to biologists with some 
computational background who are interested in using the methods on their experimental data 
and understanding their properties and limitations. 
 
 
Tutorial level 
Introductory to intermediate.  This tutorial will serve as a thorough introduction to data 
integration in functional genomics, but some advanced issues will also be introduced. 
 
Prior knowledge required 
This tutorial will be self-contained and assume no prior background in the field of data 
integration or biological data analysis.  No specific computational or biological background 
will be assumed, and the audience may include computer scientists, statisticians, 
bioinformaticians, and computationally savvy biologists.  The audience should be familiar 
with basic biological concepts (e.g. regulation, transcription, etc) and basic computation 
(probability).   
 
All concepts will be introduced on an intuitive level, so a biologist or a computer scientist 
will be comfortable with the material.  Building on this introductory material, state-of-the-art 
methods for data integration will be introduced with special emphasis on assumptions, 
limitations, and strengths of each method.  Finally, open problems in the field will be 
discussed. 
 
 



 

3 

Introduction 
The availability of complete genomic sequences of several eukaryotic organisms, including 
the human genome (1-6), has brought molecular biology into a new era of systematic 
functional understanding of cellular processes.  The sequences themselves provide a wealth 
of information, but functional annotation is a necessary step toward comprehensive 
description of genetic systems of cellular controls (7-9).  High-throughput functional 
technologies, such as genomic (10, 11) and soon proteomic microarrays (12-16), allow one to 
rapidly assess general functions and interactions of proteins in the cell.  In addition to gene 
expression microarrays (17), other high-throughput experimental methods are generating 
increasing amounts of data.  In yeast Saccharomyces cerevisiae, the most well-studied 
eukaryotic organism that is commonly used in computational and experimental genomic 
studies, these datasets include protein-protein interaction studies (affinity precipitation (18), 
two-hybrid techniques (19)), synthetic rescue (20) and lethality (20, 21) experiments, and 
microarray analysis (10, 11).  This increase in functional data is also reflected in the rise of 
multiple functional databases, especially for yeast, including: the Biomolecular Interaction 
Network Database (22), the Database of Interacting Proteins (23), the Molecular Interactions 
Database (24), the General Repository for Interaction Datasets (25●), the MIPS 
Comprehensive Yeast Genome Database (26), and the model organism database for yeast—
Saccharomyces Genome Database (SGD) (27●).  While classical genetic and cell biology 
techniques continue to play an important role in the detailed understanding of cellular 
mechanisms, the combination of rapid generation and analysis of functional genomics data 
with targeted exploration by traditional methods will facilitate fast and accurate identification 
of causal genes and key pathways affected in cellular regulation, development, and in disease. 
 
Thus, the key goal of these high-throughput data is rapid functional annotation of the 
sequenced genomes and understanding of gene regulation and biological networks.  Even in 
yeast, the most well-studied eukaryote, 1481 of 5788 open reading frames (ORFs) are still 
unnamed, and functional annotation is unknown for 1865 ORFs.  High-throughput functional 
data, especially the large number of microarray datasets, are important for rapid functional 
annotation of these unknown genes, but it is important to recognize that high-throughput 
methods sacrifice specificity for scale in the quality to coverage tradeoff, yielding to many 
false positives in the datasets (8, 28-32). Recent work has highlighted this problem, showing 
that different cDNA microarrays exhibit between 10 and 30 percent variation among 
corresponding microarray elements (33).  For gene function annotation and biological 
network analysis, an increase in accuracy is essential, even if it comes at the cost of some 
sensitivity (30).  This review presents an overview of computational methods that incorporate 
the abundant microarray data with other data sources for increased specificity in gene 
function prediction and in identification of biological networks.  We outline resent progress 
in integrated analysis of heterogeneous data, presenting the methods in a rough order of 
increasing complexity of biological questions – from gene function prediction, to regulation, 
to biological networks.  A general overview of the data integration tasks is presented in 
Figure 1. 
 
Figure 1.  Overview of integrated analysis of genomic data.  Multiple gene expression 
datasets and diverse genomic data can be integrated by computational methods to create an 
integrated picture of functional relationships between genes.  These integrated data can then 
be used to predict biological function or to aid in understanding of protein regulation and 
biological networks modeling.  Alternatively, computational approaches for biological 
networks prediction can analyze diverse genomic data directly, without the intermediate 
integration step.  Upon evaluation by cross-validation or based on a test set of labeled data, 
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best novel predictions should be tested experimentally, and the results of these experiments 
can be used to improve performance of the methods. 
 

 
 
Gene function prediction 
Currently, gene expression microarray datasets are the most commonly available functional 
genomic data due to their relatively low cost and easily accessible technology.  At the time of 
publication, NCBI’s Gene Expression Omnibus database (17) already contained over 650 
gene expression datasets, sixty of which are yeast and 203 are human datasets, and other 
databases provide additional gene expression data.  These data can be used to identify groups 
of coexpressed genes, and such groups, through the principle of “guilt by association”, can 
facilitate function prediction for unknown proteins and identification of regulatory elements.  
However, while gene coexpression data are an excellent tool for hypothesis generation, 
microarray data alone often lack the degree of specificity needed to make accurate biological 
conclusions. For such purposes, an increase in accuracy is needed, even if it comes at the cost 
of some sensitivity. This improvement in specificity can be achieved through incorporation of 
other data sources in an integrated analysis of gene expression data.  These additional data 
sources include other high-throughput functional data (e.g. protein-protein interactions, 
genetic interaction data, localization information), DNA and protein sequence data, published 
literature, and phylogenetic information. 
 
Improving microarray analysis with other genomic data 
Bioinformatics methods for effective integration of high-throughput heterogeneous data can 
provide the improvement in specificity necessary for accurate gene function annotation and 
network analysis based on high throughput data (8, 9, 34, 35).  While the exact amount of 
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overlap and correlation among functional datasets is unclear (32, 36-38), data integration has 
been shown to increase the accuracy of gene function prediction compared to a single high-
throughput method (31, 34, 39-43).  Specifically, studies demonstrated that using more than 
one type of functional data for predictions increased accuracy (31) and that integrating more 
heterogeneous information increases the number of protein-protein interactions correctly 
identified (42), leading to better prediction of function for unknown proteins.  This potential 
of data integration recently led to development of several computational methods for 
integrated analysis of microarray data with other data sources. 
 
A simple scheme for increasing accuracy in function prediction based on heterogeneous data 
is to consider the intersection of interaction maps for different high-throughput datasets (44).  
While this scheme reduces the false positives, it has the drawback that the lowest-sensitivity 
dataset will limit sensitivity of the entire analysis.  As published large-scale interaction 
studies are not comprehensive even in model organisms, this strict sensitivity limitation is too 
restrictive for large-scale and general function prediction.  Several other groups suggested 
approaches that provide increased sensitivity of function prediction from the intersection 
scheme above.  In the first study of this type, Marcotte et al. predicted a number of potential 
protein functions for S. cerevisiae based on a heuristic combination of different types of data 
(34, 39).  In another early study, Schwikowski et al. assigned putative protein function based 
on the number of interactions an unknown protein has with proteins from different functional 
categories (40).  These studies demonstrated the potential of integrated data analysis, but they 
combine the information from different sources in a heuristic fashion, where confidence 
levels for protein-protein links are defined on a case-by-case basis.  This approach is 
successful in these studies and served as a clear proof of concept, but it may be hard to 
generalize to new datasets, data types, or other organisms because each approach is 
developed with specific data and application goal in mind and therefore lacks a general 
scheme or representation.   
 
A more general method was developed by Clare et al., who introduced a rule-based method 
in which heuristics are learned based on heterogeneous data sources and known functional 
predictions (45).  These heuristics are then applied to genes with unknown function to predict 
function.  This study uses a modified C4.5 decision tree algorithm, and includes sequence, 
phenotype, expression, and predicted secondary structure data.  In a different approach, 
Karaoz et al. combined interactions and expression data by creating a weighted graph of 
protein-protein interactions with the weight between two genes derived from coexpression 
values of these genes in one gene expression dataset (46).  They then used a variant of 
discrete-state Hopfield network to assign function for unknown proteins, based on known 
annotations in the Gene Ontology (47).   
 
Probabilistic integration of heterogeneous data 
Recently, several computational methods have been suggested that combine datasets in a 
confidence-dependent manner.  The advantage of such statistical approaches is that they 
enable general data integration and can easily adapt to new data sources.  In addition, because 
these methods are probabilistic, their outputs can be filtered by the confidence or probability 
cutoff to a desired level of spensitivity and specificity (estimated based on the cross-
validation trials or a test data set). 
 
In a general methodology based on Support Vector Machines, Lanckriet et al. has combined 
interactions, expression, and sequence data by representing each input as a separate kernel.  
The weighted optimized combination of these kernels was then used to recognize membrane 
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and ribosomal proteins (48●) as well as other general classes of proteins (49).  This method is 
general and can also readily provide information, encoded in the kernel weights, on the extent 
to which each data source contributes to the final prediction.  One disadvantage of such 
discriminative approaches is that a separate classifier is generally built for each functional 
category, thereby making it possible to only predict general functional categories (e.g. 
metabolism) because of lack of training data for more specific functions.  Methodologies that 
first perform general data integration, creating a general graph of functional relationships, and 
then predict function based on such graph, can alleviate this problem (Figure 1).  For 
example, Troyanskaya et al. used a Bayesian network-based method for general  integrated 
analysis of functional genomic data  (35●).  They then predicted function for each unknown 
gene based on significant over-representation of known proteins of particular function in the 
unknown gene’s neighborhood in the graph.  In an alternative approach, Zhang et al. 
predicted co-complexed protein pairs with probabilistic decision trees based on expression 
and proteomics data (50). 
 
Including prior knowledge through biological literature 
In addition to high-throughput experimental methods, traditional experimental techniques 
have generated volumes of biological knowledge in the past decades.  Results of such 
experiments are often substantially more accurate than large-scale functional genomic data, 
and many of their conclusions have been verified by multiple techniques.  This knowledge is 
encoded in the wealth of biological literature, which, if properly analyzed, may provide the 
strongest aid yet for the analysis of high-throughput data.  For example, Raychaudhuri et al. 
use biomedical abstracts to resolve boundaries of hierarchical clusters of gene expression 
patterns and to recognize clusters that are most functionally coherent (51●).  Unfortunately, 
current work in this area focuses on analysis of keywords or article abstracts, largely because 
full-text literature mining is restricted by the lack of availability of full-text articles 
copyrighted to biomedical journals. 
 
In addition to original literature, increasing sources of human-curated databases of structured 
biological knowledge are available.  Probably of most influential is the Gene Ontology – an 
acyclic directed graph of biological terms divided into three parts: biological process, cellular 
location, and molecular function (47).  Gene Ontology terms are being used to annotate genes 
in different organisms, and these annotations often serve as the “gold standard” or training 
data for microarray analysis and gene function prediction methods (52).  In addition to gene 
function, multiple databases aim to encode knowledge about metabolic and regulatory pathways 
in different organisms, for example the MetaCyc and KEGG pathway databases (53, 54).  These 
are also very valuable resources for training and evaluation of computational analysis methods.  
Hanisch et al., for example, used biological networks as an integrated part of their clustering 
algorithm – with a single distance metric derived from both metabolic networks (from the KEGG 
database) and gene expression data (55●). 
 
Using microarrays to decipher gene regulation 
Gene expression data provide insight not only into gene function, but also into regulatory 
processes in the cell.  In fact, very early in microarray analysis several groups designed 
methods for identification of potential transcription factor binding sites in the upstream 
sequences of coexpressed genes, for example (56-59).  The general approach is to cluster 
gene expression patterns and then identify motifs or motif combinations common to each 
cluster.  Bussemaker et al. developed a method that does not require clustering and can 
identify statistically significant motifs based on a single genome-wide set of expression 
values (58).   
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However, motif discovery methods cannot on their own identify which transcription factor 
binds each particular motif, and therefore stop short from identifying regulatory modules 
(sets of coexpressed genes regulated by sets of transcription factors).  The recently developed 
chromatin immunoprecipitation microarray (ChIP) technology can connect specific 
transcription factors to a large number of binding sites.  This technique can identify direct 
binding of a specific protein complex to DNA on whole-genome scale and thus is 
complementary to gene expression microarrays.  Integrated analysis of ChIP and gene 
expression microarrays can identify coregulated groups of genes, their regulators, and the 
corresponding transcription factor binding sites with higher accuracy than analysis of either 
data type alone.  An iterative approach suggested by Bar-Joseph et al., for example, improves 
clustering of gene expression microarray data by using ChIP microarray data to identify 
combinations of regulators (60).  Another method developed by Kato et al. identifies over-
represented motif combinations found upstream from strongly co-expressed genes, and 
associates these motifs with transcription factors (61).  Segal et al. used a Bayesian 
framework for identifying modules based on known regulatory proteins and gene expression 
data (62●●).  All of these methods, by identifying groups of coexpressed and coregulated 
genes and determining their regulators, identify small components of regulatory circuits of 
the cell. 
 
Integrated analysis of biological networks 
Possibly some of the most interesting questions of present-day computational functional 
genomics arise in the area of biological networks prediction, where the goal is to decipher all 
patterns of regulation in the cell.  Creating network models involves, explicitly or implicitly, 
solving every one of the above-described problems: gene function prediction, understanding 
of protein-protein interactions, and identification of regulatory relationships.  Although 
multiple studies have attempted to estimate gene networks from microarray data alone, gene 
expression is usually not sufficient for accurate network modeling because of its limited 
scope (only transcriptional regulation is represented in gene expression microarray datasets, 
and they cover a limited number of conditions) and its high noise levels.  Integrated analysis 
of multiple types of high-throughput data is essential for effective prediction of accurate 
biological networks.   
 
Increasing number of studies on modeling biological networks based on integrated data are 
being published.  Hartemink et al. reduced noise in regulatory network models by using 
localization data to influence the prior of their Bayesian network model, in which gene 
expression influenced the model likelihood (63).  However, such model would still miss non-
transcriptional regulation that is often due to physical interactions between proteins.  To 
address this issue, several groups used protein-protein interactions data in addition to gene 
expression datasets in constructing probabilistic network models (64).  Tanay et al. also 
included growth phenotype and transcription factor binding data, in addition to gene 
expression and protein-protein interactions (65●●).  They used a biclustering technique to 
identify statistically significant modules based on the diverse data sets, then constructed 
biological networks based on transcription factor binding profiles and their correspondence to 
modules. 
  
Open problems in data integration 
This review outlined how integrated analysis of microarray data with other genomic data 
sources can increase prediction accuracy and provide a coherent view of functional 
information derived from diverse data types.  Integrated methods can be based on formal 
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probabilistic reasoning and can generate predictions based on heterogeneous data sources, 
and some are generalizable to new data sources as they become available.  Although several 
promising probabilistic methods for integrated analysis have been developed, the problem of 
general data integration for both gene function prediction and pathway modeling is still not 
fully solved.  No truly general and robust method that can be routinely applied to noisy, 
heterogeneous data has yet been developed.  Additionally, the majority of methods have been 
demonstrated only in baker’s yeast, as multi-cellular organisms present a host of additional 
challenges for data integration. 
 
One very promising direction in functional analysis of microarray data is integration of data 
from multiple organisms.  Recently, several groups have started using co-expression 
information from homologous genes in several species to increase specificity of functional 
relationships identified from gene expression experiments (e.g. 66, 67).  Such comparative 
genomics techniques, on their own or combined data integration methods described in this 
review, will undoubtedly contribute to functional annotation and modeling of biological 
networks. 
 
It is also important to note that computational methods are always limited by the coverage 
and quality of experimental data they use.  Public availability of high-quality high-throughput 
datasets is therefore essential for rapid functional annotation.  Further experimental validation 
of computational predictions by traditional laboratory techniques is ideal for validation and 
for improvement of the computational methodology.  Such validation can be accomplished 
through collaborations with biological researchers and through open publication of 
predictions in the form easily accessible to biologists. 
 
Development of accurate data integration methods for functional genomics relies on labeled 
data for training and validation, for example genes with known functions or known biological 
pathways.  Such data, generated by traditional biological methods, is often scarce and for the 
most part represented in biological literature in the free-text format that cannot be readily 
used for automatic training or validation.  One very effective solution to this problem is 
human curation, employed by several databases (e.g. 27).  However, curation is costly and 
thus currently limited.  Therefore, accurate computational analysis of biomedical literature to 
extract biological relationships that can be used as “gold standard” data is an area of great 
importance that presents many natural language processing challenges. 
  
Conclusion 
Key challenges in present-day molecular biology are the functional annotation of unknown 
genes within sequenced genomes and determining protein interactions and regulation in 
biological networks.  Traditional experimental methods are too slow and labor-intensive to 
accomplish these tasks on the genomic scale in the near future.  Therefore we must rely on 
high-throughput techniques along with computational analysis to direct more traditional 
experimentation.  In the past, computational techniques in functional genomics have focused 
primarily on gene expression microarray data.  But integrated analysis techniques for diverse 
biological data have emerged as more large-scale functional data have become available.  
Future development of more accurate integrative methodologies and their expansion to multi-
cellular organisms complemented by further development of high-throughput experimental 
technologies will be critical for complete functional annotation of model organisms and 
human genomes. 
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Outline of this tutorial

• Goals of data integration
• Overview of available experimental data
• Evaluation of data/method accuracy
• Overview of computational methodology
• Data representation for integration
• Application of data integration

59

Goals & challenges of data 
integration

• Explosion of genomic data, but no equivalent 
explosion of biological information

• Why?
– Data are noisy
– Datasets are incomplete
– Data are heterogeneous 

• Effective data integration can lead to better 
biological predictions and faster growth of 
biological information

60

Experimental data
• Coexpression
• Genetic association
• Physical association
• Protein arrays
• Localization
• Sequence
• Structure
• Literature
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Coexpression

• Coexpressed genes (microarrays)
• Chromatin IP on microarrays (ChIP

on chip)

62

Coexpression - Microarrays

Known DNA sequences

Glass slide

Isolate mRNA

Cells of Interest

Reference sample

0.25

0.73

0.14

0.12

0.01

ge
ne

s 0.25 0.01 0.30 0.70

0.73 0.89 0.92 0.67

0.14 0.15 0.60 0.23

0.12 0.12 0.07 0.02

0.01 0.05 0.14 0.12

experiments

ge
ne

s

Resulting data
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Co-regulated genes are 
co-expressed

Expression profiles of 
53 genes in S. 
cerevisiae genome 
that contain the exact 
match to an MCB 
box in their 
promoters (profiles 
normalized by mean 
& variance).

Cliften et al. Science 301 2003 64

Identifying TF factor binding 
sites directly – “ChIP on Chip”

• Array-based method for identification of 
binding sites of known TFs

• Each array corresponds to one TF
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Protein - TF

DNA 
Incubation with 
antibodies against TF 

Hybridization to intragenic array 

Precipitation 

ChIP on chip
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Genetic interactions

• Synthetic lethality
• Synthetic interaction

67

Synthetic lethality
• When gene A is deleted and B is still present, the cell 

is viable
• When gene B is deleted and A is still present, the cell 

is viable
• When both genes A and B are deleted, is the cell 

viable or not? If the cell is viable, then the genes are 
not functionally linked. If the cell is inviable, then the 
genes ARE functionally linked.

A-B+ A+B- A-B-

Alive Alive Dead!

Synthetic 
lethality

68

Synthetic interaction
• When gene A is deleted and B is still present, the cell is wild-type
• When gene B is deleted and A is still present, the cell is wild-type
• When both genes A and B are deleted, does this induce a non-wild-type 

phenotype?  If yes (e.g. slow growth), then genes A and B have synthetic 
relationship.

• Note: if A-B- grows like wild-type, there still may be a different phenotype 
under which A and B have synthetic relationship =>
– Negative results here don’t mean much in general, but mean something 

specific to phenotypes!

A-B+ A+B- A-B-

Wild-type 
growth

Wild-type 
growth

Slow growth

Synthetic 
interaction
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Physical interactions
• Yeast two hybrid
• Co-IP precipitation
• FRET 
• Protein arrays (can also test 

molecular function directly)

70

Yeast two hybrid

a) DNA-binding and 
activation domains 
(circles) are fused to 
proteins X and Y.  The 
interaction of X and Y 
leads to reporter gene 
expression (arrow).

71

Co-IP

72

FRET

FRET (Fluorescence 
Resonance Energy 
Transfer): 

photophysical effect where 
energy that is absorbed by 
one fluorescent molecule 
(donor) is transferred non-
radioactively to a second 
fluorescent molecule 
(acceptor)

Note: doesn’t have to be a 
true physical 
interaction, but has to 
be close
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Protein arrays

74

Other genomic data

• Protein localization
• Sequence-based data
• Structure-based data 
• Biomedical literature
• Public databases

75

Localization data
• Proteins are tagged and their localization studied
• Protein that are co-localized may be more likely to have functional 

relationships
• Not all co-localizations are created equal:

– Co-localization to the cytoplasm means very little
– Co-localization to the nucleolus means more

• Localization may change depending on experimental conditions

GFP-tagged protein 
localized to the bud

76

Sequence data
• TF binding site 

predictions
• Homologues data 
• Motifs (e.g. mito

signal peptide 
targeting protein to 
mitochondria)

TATA sequence logo courtesy of the Schneider lab (NIH)

Mitochondrial signaling 
sequence
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Structure data

• Structural motifs
• Predicted functional binding sites (based 

on structure)
• Structural similarity to known proteins with 

specific function

78

Biomedical Literature

• NLP-based prediction of relationships
– Name co-occurrence in abstracts
– Detecting specific types of relationships (e.g. 

geneA activates geneB)
• Curated literature

– Ontologies (Gene Ontology, KEGG, MIPS)
– Independent curation efforts by interaction 

databases

79

Public databases
• Interactions data is often available through 

public databases
• Some databases are dataset-specific (e.g. 

O’Shea’s lab co-localization DB)
• Some are general collections of data

– Of some types: GRID, KEGG…
– For one organism: SGD, FlyBase…

80

Interaction coverage - yeast

• Interaction coverage is uneven 
• Different biological processes can be 

better represented by different data types
• Some high-throughput studies actually 

focus on specific processes
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Evaluation of accuracy
• Gene Ontology
• MIPS – Munich Information center for 

Protein Sequences
• KEGG - Kyoto Encyclopedia of 

Genes and Genomes

82

Evaluation – the basics
• Any experimental or computational method needs to be 

evaluated
• Evaluation requires a reasonable number of answers
• Evaluation method depends on what question was asked
• Most current data integration efforts focus on one of the 

following questions: 
– prediction of interactions between proteins 
– prediction of gene function
– prediction of pathways

83

“Gold” Standards
• Expert-curated assignments of genes 

to functional groups, complexes, or 
pathways

• Gene Ontology
• KEGG - Kyoto Encyclopedia of Genes 

and Genomes
• MIPS – Munich Information center for 

Protein Sequences
• Far from “Gold”, more like Pewter…

84

Gene Ontology
• A loosely hierarchical (a DAG) organization of biological concepts
• Actually, three ontologies: 

– Biological process
– Molecular function
– Cellular component

• Pros:
– Relative well annotated for many organisms
– Provides varying levels of specificity
– DAG structure gives a sense of relationships between nodes

• Cons:
– Annotation coverage varies by process and organism
– DAG structure makes it challenging to decide which nodes to 

use (biological process node is too general, for example)
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Gene Ontology

• Three hierarchies: 
– Molecular function
– Biological process
– Cellular component

• Curated annotation

Biological process

Cell growth and/or 
maintenance

Metabolism Cell organization 
and biogenesis

Nucleobase, 
nucleoside, 

nucleotide and 
nucleic acid 
metabolism

Protein 
metabolism

DNA 
metabolism

Establishment 
and/or maintenance 

of chromatin 
architecture

DNA 
packaging

Nuclear organization 
and biogenesis

Chromosome 
organization and 

biogenesis

Protein 
modification

Cell cycle

Mitotic cell 
cycle

Mitotic cell 
cycle

Transcription
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Biological process

Cell growth and/or 
maintenance

Metabolism Cell organization 
and biogenesis

Nucleobase, 
nucleoside, 

nucleotide and 
nucleic acid 
metabolism

Protein 
metabolism

DNA 
metabolism

Establishment 
and/or maintenance 

of chromatin 
architecture

DNA 
packaging

Nuclear organization 
and biogenesis

Chromosome 
organization and 

biogenesis

Protein 
modification

Cell cycle

Mitotic cell 
cycle

Mitotic cell 
cycle

Transcription

Evaluation 
method

Predicted Predicted 
Gene PairsGene Pairs

Based on TPs and FPs, calculate 
precision and recall, and draw ROC 
curves
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MIPS
• Loosely hierarchical (hierarchy not as deep as GO)
• In between KEGG and GO in terms of both specificity 

and coverage
• Pros:

– Hierarchical
– Hierarchy less deep, makes somewhat easier to choose 

appropriate nodes for evaluation

• Cons:
– Annotation can be not as complete as GO (e.g. for yeast)

88

KEGG
• Pathway-based…sort of
• Very specific coverage of metabolism, some regulatory 

pathways, and some other functional groups
• Pros: specificity
• Cons: 

– specificity (proteins that most biologists would consider related 
can belong to different pathways in KEGG)

– Low coverage
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Important evaluation “footnotes”

• None of the “gold” standards is guaranteed to be 
fully correct, thus some TPs may not be right

• None of the “gold” standards is complete, so 
many of the FPs may be novel discoveries

• Gold standards don’t fully agree with each other 
– careful to not fit the standard to the data

• However, comparative evaluation is 
reasonable, and the numbers are likely to be 
close (though too conservative)

90

Computational Methodology: 
an overview
• Machine learning methods

– Training and evaluation
– Bayes nets
– Decision trees
– Support Vector Machines

• Heuristic methods

Some graphs courtesy of Rob Schapire

91

Machine learning methods

• Automatically learn to make accurate 
predictions based on past observations

• Most methods require both positive and 
negative training data

• Generative vs. discriminative methods

92

Why Use Machine Learning? 
Advantages:
• Often much more accurate than human-crafted rules (since data driven)
• Humans often incapable of expressing what they know (e.g., rules of 

English, or how to recognize letters), but can easily classify examples
• Don’t need a human expert or programmer
• Flexible — can apply to any learning task
• Cheap —can use in applications requiring many classifiers (e.g., one per 

function, one per data type, ...)

Disadvantages
• need a lot of labeled data 

– Biology doesn’t have much labeled data
– Very few negatives 

• error prone— usually impossible to get perfect accuracy
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Training and testing 
machine learning methods

• Separate training and test sets
• Crossvalidation
• Boosting

• Important to avoid overfitting (e.g. fitting points with a 
polynomial)

94

Bayesian networks

• Graphical probabilistic models
• Can represent prior knowledge/belief
• Can be learnt from data or constructed by experts 

in the field 
• Reasoning based on the Bayes rule
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The sprinkler Bayes net
Bayes nets are graphical 
probabilistic models

Conditional probability 
tables contain the priors

BN picture from Murphy, K.  “A Brief Introduction to 
Graphical Models and Bayesian Networks”
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The sprinkler Bayes net
Prior probability that it is 
cloudy

Conditional probability that 
it rains when it’s cloudy

Probability that grass is wet 
when the sprinkler is off and 
it rains
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Inference
Observe: grass is wet
Two possible causes: either it is raining, or the sprinkler 

is on. Which is more likely? Use Bayes' rule to 
compute the posterior probability of each explanation.   

is a normalizing constant (probability (likelihood) of the 
data). 

=> it is more likely that the grass is wet because it is 
raining: the likelihood ratio is 0.7079/0.4298 = 1.647. 98

Learning Bayesian networks

• Two learning problems: structure + CPTs

Due either to missing data 
or to hidden nodes

99

Decision trees

• Learn “rules” to 
recursively divide 
data into 
subgroups

Loc to nucleus

stress resp overex Co-IP with Ribo prots

YES NO

DNA damage

YES

Ribosomal Loc to Golgi

YES NO
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Loc to nucleus

stress resp overex Co-IP with Ribo prots

YES NO

DNA damage

YES

Ribosomal Loc to Golgi

YES NO

Decision trees

• Choose rule to split on
• Divide data into disjoint subsets using splitting 

rule
• Repeat recursively for each subset
• Stop when leaves are <almost> pure
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Splitting rules
• Best rules lead to greatest increase in purity
• Purity can be measured by 

– Decrease in entropy: 
– Gini index
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−

ppindexGini
ppppEntropy

examplesnegativeoffracp
examplespositiveoffracp

 
lnln
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Overfitting?
• trees must be big enough to fit training data (so that “true” patterns are 

fully captured)
• BUT: trees that are too big may overfit (capture noise or spurious 

patterns in the data)
• Significant problem: can’t tell best tree size from training error
• Usually grow the tree to  maximize training accuracy,           

then prune back

103

Decision tree conclusions

• best known:
– C4.5 (Quinlan)
– CART (Breiman, Friedman, Olshen & Stone)

• Pros:
– very fast to train and evaluate
– relatively easy to interpret

• Cons:
– accuracy often not state-of-the-art

104

Support Vector Machines
• given linearly separable linearly 

separable data
• margin margin = distance to 

separating hyperplane
• choose hyperplane that 

maximizes minimum margin
intuitively:

• want to separate +’s from −’s 
as much as possible

• margin = measure of 
confidence 

• So SVMs maximize the margin
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What if data is not linearly 
separable?

• map into higher dimensional space in which data 
becomes linearly separable

• Can be done efficiently using kernels
• Pros:

– fast algorithms now available
– state-of-the-art accuracy
– power and flexibility from kernels
– theoretical justification

• Cons:
– Not so simple to program
– Discriminative methods require to learn a classifier for each 

question (e.g. each functional group)

106

Heuristic methods
• Rule-based methods (e.g. predict interaction 

whenever more than 2 data types call it)
• Can be quite accurate and useful
• Can be hard to create good rules/heuristics
• Hard to generalize to new data types etc
• Heuristics can be combined with probabilistic 

evaluation to lead to effective methods
• Need extensive evaluation for accuracy and 

generality (same for ml methods)

107

Data representation for 
integration
• Pair-wise 

representation
• Vector-based

108

Data representation challenge

• Genomic data are heterogeneous
• To integrate data, it must be represented 

in a coherent way
• A closely related challenge is database 

integration (won’t be discussed here)
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Pair-wise representation for 
gene groupings

Gene AGene A
Gene BGene B
Gene CGene C

Cluster 1Cluster 1

Gene AGene A
Gene DGene D

Method 2Method 2

11Gene 
D

111Gene 
C

111Gene 
B

1111Gene 
A

Gene 
D

Gene 
C

Gene 
B

Gene 
A

Matrix doesn’t have to binary – e.g. each value could be 0…1
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Vector-based representation for 
gene groupings

Gene AGene A
Gene BGene B
Gene CGene C

Cluster 1Cluster 1

Gene BGene B
Gene DGene D

Method 2Method 2

020.4-1.3Gene 
D

1-10.60.2Gene 
C

10.234Gene 
B

1-2.30.70.1Gene 
A

Gene 
A

Exp 3Exp 2Exp 1

111

Data representation challenges
• Any data representation currently causes data 

loss
• Effective data representation can depend on the 

integration task (pathway vs. function prediction)
• Need to be careful of data representation – if 

critical part of data is not propagated through the 
process, even a great data integration method 
may not be effective (esp. important for 
continuous data e.g. microarrays)

112

Applications of data integration 
(and some examples)

• Function prediction
– Based on single data type
– Based on integrated data

• Prediction of regulatory modules
• Regulatory networks prediction
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Function prediction based on 
one type of data

114

The Rosetta Stone method

Top sequence = 
fused domain that’s 
homologous to two 
separate seqs from 
another species

Eisenberg et al. Nature 405 p. 823

115

g
neighbors

Eisenberg et al. Nature 405 p. 823 116Eisenberg et al. Nature 405 p. 823

Phylogenetic profiles method

Proteins are considered 
functionally linked if they 
share phylogenetic profiles 
(presence and absence in 
genomes).  Proteins do not 
have the be homologous by 
sequence.  
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Annotation assignment based 
on co-expression clusters

If enrichment for genes of a 
specific biological process, 
can claim unknowns are also 
involved in that process.

P(x or more of n genes 
being annotated to a 
particular term)

Num of permutations of x of n genes 
having the annotation

Prob of x out of n annotations assigned to 
the same GO term by chance 
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Data integration for gene function 
prediction

119

“Guilt by association” principle

• If gene a acts similar to genes {b, c, d} in a 
set of experiment

• And  genes {b, c, d} all function in 
biological process P

• Then by “guilt by association” gene a also 
functions in biological process P

120

“Guilt by association in 
microarrays”

Data and figure credit of Michael Whitfield

P(x or more of n genes being 
annotated to a particular term)
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Proof-of-Principle of data integration: 
intersection-based integration

• Early methods looked for intersection or union of multiple 
data types

• For example, Marcotte et al. 1999
– First paper proposing a data integration
– A heuristic-based method for finding intrsection
– Allows to identify potential functions for a number of proteins
– But: 

• doesn’t take into account relative accuracy/coverage of 
methods

• Intersection dramatically decreases coverage
• Hard to generalize to new data in an effective way

122

General integration

• Probabilistic methods
– Bayesian
– Graph algorithms-based

• Decision tree methods
• Support vector machines 
• Methods based on biomedical literature

– Curated data – Gene Ontology
– NLP of biomedical literature

123

Bayesian methods
• Several Bayesian methods proposed

– Troyanskaya et. al 2003
– Gerstein et. al 2003
– Etc…

• Pros:
– Probabilistic
– Easy to tell which experimental sources contribute more to predicitons
– General data integration
– Don’t have to train a classifier for each functional group => even small 

functional groups can often be classified correctly
• Cons:

– Not a discriminative approach, so may loose power
• Also an example of setting up the problem and evaluation for gene function 

prediction
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MAGIC Bayesian network

126

Biological process

Cell growth and/or 
maintenance

Metabolism Cell organization 
and biogenesis

Nucleobase, 
nucleoside, 

nucleotide and 
nucleic acid 
metabolism

Protein 
metabolism

DNA 
metabolism

Establishment 
and/or maintenance 

of chromatin 
architecture

DNA 
packaging

Nuclear organization 
and biogenesis

Chromosome 
organization and 

biogenesis

Protein 
modification

Cell cycle

Mitotic cell 
cycle

Mitotic cell 
cycle

Transcription

Evaluation 
method

pairs of num total
GOterm same  toannotated geneB &geneA  s.t. pairs numTPproportion =

pairs of num total
GOterm same  the toannotatednot  geneB&geneA s.t. pairs numFPproportion =

Predicted Predicted 
Gene PairsGene Pairs
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UbiquitinUbiquitin--dependent dependent 
protein catabolismprotein catabolism

10 genes in cluster:10 genes in cluster:
9 ubiquitin9 ubiquitin--dependent dependent 

protein catabolismprotein catabolism
1 nucleotide1 nucleotide--excision excision 

repairrepair
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Vacuolar Vacuolar 
acidification acidification 
clustercluster
9 genes in cluster:9 genes in cluster:
7 vacuolar acidification7 vacuolar acidification
2 phosphate transport2 phosphate transport
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Protein Protein 
biosynthesis biosynthesis 
clustercluster
•• 49 protein biosynthesis49 protein biosynthesis
•• 9 other functions9 other functions
•• 10 unknown 10 unknown function function 

predictionprediction
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Decision-tree-based methods

• Clare and King 2003
– Heuristics learned based on diverse data and 

known functional annotations
– Uses a modified C4.5 decision tree algorithm

• Zhang et al 2004
– Predicted co-complexed protein pairs using 

probabilistic decision trees
– Uses expression and proteomic data

132

SVM-based methods

• Lanckriet et al 2004
• combined interactions, expression and sequence data by 

representing each input as a separate kernel
• Weighted optimised combination of these kernels used to 

recognize membrane and ribosomal proteins
• Pros:

– General
– can tell the extent to which each data source contributes to final 

prediction (encoded in the kernel weights)
• Cons:

– separate classifier is built for each functional category => only 
possible to predict general functional categories (eg metabolism) 
because of lack of training data for more specific functions.
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Other approaches

• Many other approaches, for example:
• Karaoz et al. 2004

– Combined interactions and expression data 
by creating a weighted protein-protein 
interactions graph

– Weight(gA, gB) ~ coexp (gA, gB)
– Function for unknown genes assigned based 

on a variant of discrete-state Hopfield network
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Data integration to study 
gene regulation

• Regulation and how it works
• Identifying motifs based on GE 

and sequence data
• Predicting regulatory modules 

(a case study)
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Opportunities for 
gene regulation

• Opening of DNA 
duplex

• Transcription
• mRNA stability
• Translation
• Protein stability
• Protein modification
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Transcriptional regulation
• Thought to be the most used 
• Does not waste intermediate products (mRNA, 

protein, etc)
• But transcriptional regulation is slow, and thus 

may not be used in cases when fast, transient 
regulation is necessarily

Open Reading Frame
ATG

RNA polymerase

Transcription Factor
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Co-regulated genes
are co-expressed

Expression profiles of 
53 genes in S. 
cerevisiae genome 
that contain the exact 
match to an MCB 
box in their 
promoters (profiles 
normalized by mean 
& variance).

Cliften et al. Science 301 2003 138

Integration of expression with 
sequence for motif discovery

• Identify sequence motifs or motif 
combinations common to each group of 
co-expressed genes

ACGCGT
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Regulatory motif discovery from 
Gene Expression data

• Identify sets of co-regulated genes from 
microarrays
– Unsupervised analysis - clustering
– Supervised analysis

• Identify common motifs in regulatory regions of 
co-regulated genes
– Combinatorial methods (enumeration with tricks)
– Probabilistic methods (EM, Gibbs Sampling – a 

special case of MCMC)
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Gibbs Sampling
• Given: 

– x1, …, xN sequences
– motif length K,
– background B,

• Find:
– Model M
– Locations a1,…, aN in x1, …, xN

Maximizing log-odds likelihood ratio:
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Gibbs Sampling (2)
• AlignACE: first statistical motif finder
• BioProspector: more recent, faster algorithm with 

higher accuracy
Algorithm (sketch):
1. Initialization:

a. Select random locations in sequences x1, …, xN

b. Compute an initial model M from these locations

2. Sampling Iterations:
a. Remove one sequence xi

b. Recalculate model
c. Pick a new location of motif in xi according to probability 

the location is a motif occurrence
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Gibbs Sampling (3)
Initialization:
• Select random locations a1,…, aN in x1, …, xN

• For these locations, compute M:

∑
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• That is, Mkj is the number of occurrences of 
letter j in motif position k, over the total
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Gibbs Sampling (4)
Predictive Update:

• Select a sequence x = xi

• Remove xi, recompute model:
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where βj are pseudocounts to avoid 0s,
and B = Σj βj

M

Again, Mkj is the proportion of occurrences of letter j in motif position k
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Gibbs Sampling (5)
Sampling:
For every K-long word xj,…,xj+k-1 in x:

Qj = P( word | motif ) = M(1,xj)×…×M(k,xj+k-1)
Pi = P( word | background ) = B(xj)×…×B(xj+k-1)

Let 

Sample a random new position ai according to the probabilities 
A1,…, A|x|-k+1 (new location for the motif)

∑
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0 |x|

Prob

How “overrepresented” 
this word is in motif vs. 
background

Represents weights for sampling 
(words more different from 
background get higher weight)
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Gibbs Sampling (6)
Running Gibbs Sampling:

1. Initialize

2. Run until convergence

3. Repeat 1,2 several times, report common 
motifs
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Advantages / Disadvantages
• Very similar to EM (essentially EM’s stochastic analog)

Advantages:
• Easier to implement
• Less dependent on initial parameters
• Less likely to converge to local minima than EM
• More versatile, easier to enhance with heuristics

Disadvantages:
• More dependent on all sequences to exhibit the motif
• Less systematic search of initial parameter space (doesn’t 

converge to point estimate like EM)
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Regulatory modules

• Regulatory Module – set of genes that are co-regulated by a 
shared regulation program

• Knowing motifs from coexpression doesn’t guarantee where the 
TF actually binds, or what the protein the TF is…

• Can use ChIP data in addition to GE data to identify regulatory 
modules

• Alternatively, can combined known regulators data with GE data 
to identify regulatory modules – e.g. Segal et. al Nat. Genetics 
2003
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Segal et al Nat. Genetics 2003

Assumption –
regulators are 
themselves 
transcriptionally 
regulated

Input: gene 
expression data 
set, list of putative 
regulator genes

Output: partition of 
genes into modules 
and a regulation 
program for each 
module
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Regulation programs
Segal et al Nat. Genetics 2003
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Defining regulation programs
• Regulation program specifies:

– Set of contexts (rules describing behavior of genes in 
modules e.g. upregulation)

– Response of modules in each context
• Contexts organized in regression tree 

– Decision nodes are regulators 
– Each path to a leaf defines a context using texts on the path
– Contexts effectively specify sets of arrays
– Context model: normal distribution over the expression of the 

module’s genes in these arrays (mean, variance stored in 
corresponding leaf)

– Small variance => tight regulation
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Learning Module Networks with EM
• E-step - Given g’s inferred regulation program, find module that 

best predicts g’s behavior
– For each gene g:

• Calculate:

context c of array j is defined as 
• Reassign gene g to the program that gives highest

• M-step - Given partition of genes into modules, learn best regulation 
program (tree) through combinatorial search of trees

– Tree grown from root to leaves, for each regulatory node:
– Choose query that best partitions gene expression into two distinct 

distributions
– Stop when no such split exists

)( cc ,σμN

)|()_|( contextarraygpprogramregulatorygP j
arrays

j∏=

)_|( programregulatorygP
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EM learning details

• Initialize with clusters
• Converges after 23 iterations to the 50 

modules (initial assignments changed for 
49% of genes)
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Predicted Modules
• Regulators (in ovals) are 

connected to modules 
(numbered squares)
– Red line – regulation 

supported in literature, 
dashed line - inferred

• Module groups (boxes) 
share common motifs and 
sometimes common function

• Yellow regulators tested 
experimentally
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Limitations
• Requires a set of putative transcription factors as input and a 

predefined number of modules
• Cannot find regulators whose expression does not change 

sufficiently for detection
• Cannot identify multiple regulators that participate in a 

regulatory even, will only identify one of them
• Can mistakenly identify a gene as regulator because it is highly

predictive of a module either b/c it’s a member of the module or
by chance (gene has to be a member of the putative regulator 
set

• Will not identify regulatory events specific to regulator and its 
target

• Can only handle non-overlapping modules – a gene can belong 
to only one module (other methods address this problem)
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Analysis & modeling of biological 
networks based on diverse data

156

Biological networks – combinations 
of many modules
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Challenges in modeling of 
biological networks

• Scale of the problem: 
– networks are collections of many regulatory modules
– Need more experimental data
– Need more training data

• Biology is compex
– Many different types of interactions
– Cellular compartments may play a role

• May need a step-wise process that integrates 
experimentation
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Perhaps a hybrid 
method?
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Open problems in 
data integration

• No truly general & robust method for data 
integration available

• Data sharing still a challenge
• Integration of data from multiple organisms 

a promising field
• Need more experimental data
• Need better/more gold standards
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Some hopes
• Data should be available in full, with full 

descriptions of experiments
• Computational methods should be available for 

use, and their algorithms clearly explained in 
publications

• Clear and comprehensive evaluations, using at 
least GO, which currently is the most complete 
curated annotation (at least for yeast)
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Thank you! … Questions?

• All complete references provided in the 
handout

• ogt@cs.princeton.edu
• function.princeton.edu/




