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Outline

Bayesian networks provide a neat compact representation for expressing joint probability dis-
tributions and for inference. They are becoming increasingly important in biology for inferring
cellular networks and pathways, biological data integration and genetics. This tutorial intro-
duces the Bayesian approach to inference and learning parameters and structures for Bayesian
networks.

Many applications in computational biology have taken advantage of Bayesian networks
or more generally, probabilistic graphical models. These include: protein modelling, systems
biology; gene expression analysis, inferring cellular networks and pathway modelling; biological
data integration; protein protein interaction and functional annotation; DNA sequence analysis;
genetics and phylogeny linkage analysis.

With this growing use of Bayesian networks and Bayesian methodologies, there has been
a lack of suitable introductory information about Bayesian networks which is accessible to an
audience without significant mathematical and statistical backgrounds.

This tutorial builds on our recent primer (Needham et al., 2006), and is aimed at the multi-
disciplinary ISMB audience, both students and researchers, since it will be based around bi-
ological examples and begin at an introductory level with numerous examples to demonstrate
how to use Bayesian networks. In the second half, the focus will be on the higher level concepts,
rather than becoming involved in the complicated mathematics behind the learning methods.

This will provide the audience with an understanding how and why Bayesian networks work,
and at a time when they are becoming the machine learning method of choice.
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Introduction

Bayesian networks are a useful tool for statistical modelling. They are increasingly popular in
the biological sciences for the tasks of inferring cellular networks (Friedman, 2004), modelling
protein signalling pathways (Sachs et al., 2005), data integration, classification, and genetic
data analysis (Beaumont and Rannala, 2004). Bayesian networks provide a neat compact
representation for expressing joint probability distributions and for inference. The representation
and use of probability theory makes Bayesian networks suitable for learning from incomplete
datasets, expressing causal relationships, combining domain knowledge and data, and avoid
over-fitting a model to training data.

This primer aims to provide an accessible introduction to Bayesian networks for the com-
putational biologist, focusing on the concepts behind methods for learning the parameters and
structure of models. It begins with a simple toy example, and then considers the points made
above. More in-depth tutorials are provided by Heckerman (1998) and Husmeier et al. (2005).

A Bayesian network can be viewed as a collection of probabilistic classification/regression
models, organised by conditional-independence relationships. — Heckerman (1998)

Modelling a simple cell signalling pathway

Consider a simple cell signalling example consisting of an outside stimulant, an extracellular
signal, an inhibitor to the signal, a G protein coupled receptor, a G protein, and the cellular
response. A Bayesian network can be constructed which expresses the relationships between
variables. For example:

e The stimulant may or may not generate a signal.
e The concentration of the signal may effect the level of the inhibitor.

e Whether the signal binds with the receptor is dependent upon both the concentration of
the signal and the level of the inhibitor.

e The G protein should become active if the receptor binds.
e An active G protein initiates a cascade of reactions that causes the cellular response.

Using this information, which variables depend on which other variables can be identified,
and also which variables are conditionally independent. If two variables are independent given
the state of a third variable, then they are said to be conditionally independent. For example,
consider two independent tests for a disease, 71 and T,. The tests are reasonably reliable, and
a strong correlation is seen between T, and Ts. If the result of test T is positive, it becomes
more likely that 7> will also be positive. However, if it is known that the person has/hasn’t
got the disease, then the result of 77 has no effect on the expected value of T5; they become
conditionally independent. The above relationships between the cell signalling variables can be
expressed by the graph structure shown in Figure 1; nodes represent variables, and the directed



edges show the dependencies. (Feedback from the cellular response to the concentration
of the extracellular signal (or inhibitor) would create a cyclic graph which is discussed later).
Consider all the variables to be discrete, and to take the following possible values (and note the
abbreviations introduced).
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Figure 1: Bayesian network of the cell signalling pathway, and example CPTs

ST - Stimulant: present/not present

S| - Signal: high/medium/low

IN - Inhibitor: high/medium/low

RE - Receptor binds: yes/no

GP - G protein: active/not active

CR - Cellular response: yes/no

A model of the relationships between the variables can be built. In this discrete case,
conditional probability tables (CPTs) can be formed to express the probability of the state of
each variable given its parents (those it directly depends upon). For example, if the graph
structure and CPTs of the Bayesian network are taken to be as defined in Figure 1, then the
probability that the signal is high when the stimulant is present, p(SI = high|ST = present) =
0.6 and the probability that the receptor binds given that the signal is high and the inhibitor is
low, p(RE = yes|SI = high,IN = low) = 0.9.

The joint probability distribution p(ST, SI,IN, RE,GP,CR) can be expressed as a product
of distributions over a smaller number of variables, through repeated application of the product
rule of probability calculus

p(z,y) = p(zly)p(y) (1)

and by exploiting conditional independence relations described in the graph structure. Applying
the product rule, and then conditional independence gives:

p(ST,SI,IN,RE,GP,CR) = p(CR|ST,SI,IN,RE,GP)p(ST,SI,IN,RE,GP)
p(CR|GP)p(ST, SI,IN, RE,GP)



Continuing in this way, the joint probability over all the variables can be expressed as:

p(ST, SI,IN,RE,GP,CR) = p(CR|GP)p(GP|RE)p(RE|SI, IN)p(IN|SI)p(SI|ST)p(ST)

In the case of Bayesian networks, consisting of a set of n nodes x = {z1,...,z,} organised
in a directed acyclic graph (DAG), where each node z; has parents pa(z;), the joint probability
distribution is compactly expressed as:

n

p(x1, ..., z0) = [[ p(zilpala:)) (2)
=1

The ability to express the joint probability in this way (exploiting conditional independencies)
provides a concise representation in terms of simple component distributions (factors), thereby
reducing the number of parameters to be estimated. In this example, to specify the full joint
probability distribution as a conditional probability table would require 72 parameters, whereas
by exploiting conditional independence only 24 are required. This may not seem that advanta-
geous, however consider a network with 100 nodes, each taking 3 possible values. If the graph
was fully connected, the full probability distribution would require over 10%” parameters', com-
pared to only needing 1800 parameters if each node had only two parents (100 x 18 = 1800).
This demonstrates just how powerful conditional independence can be. Not only is the param-
eter space smaller, but the parameters are easier for an expert to estimate, since they involve
fewer variables. Learning of the parameters from data is discussed below. First, inference in
Bayesian networks is illustrated.

What is the probability of the G protein being active, given that the stimulant is
present?

Given evidence about the state of a variable, or set of variables, the state of other variables can
be inferred. For example, to find the probability that the G protein is active given that it has been
observed that a stimulant is present, i.e. to find p(GP = active|ST = present), it is necessary
to marginalise over the unknown parameters. This amounts to summing the probabilities of all
routes through the graph, using the sum rule:

p(z) = Zyp(z,y) 3)
where p(z,y) may be expanded using the product rule (Equation 1). Thus:

p(GP = active|ST = present) = X;X,3.p(GP = active| RE = x)
p(RE = z|IN =y,S1 = z)p(IN = y|SI = z)
p(SI = z|ST = present)

"In a fully connected directed acyclic graph there must be one node with 0,1,...,n — 1 parents, thus the number of

. . 2100
parameters is [ [~ 2 x 3" = 2 x 1532 = 3190 _ 1~ 5 x 1047



which when evaluated with the conditional probabilities in Figure 1 equals 0.592. [ p(GP =
active|ST = not present) = 0.5048 ].

What is the probability the stimulant is present, given that the signal is high?

It is often of interest to calculate posterior probabilities such as the probability that the stimulant
is present, given that the signal is high p(ST = present|SI = high) for which Bayes’ rule may

be applied:

plylr) = % @)

Note also: p(z) = X,p(z|y)p(y)
Thus:

p(ST = present|SI = high)
_ p(SI=high|ST=present)p(ST=present)
— p(SI=high|ST=present)p(ST=present)+p(SI=high|ST=notpresent)p(ST=notpresent)
— 0.6x0.4 _ O 8
~ 0.6x0.440.1x0.6 —

So within this neat representation of a Bayesian network, inference is easy. Inferences can
be made about the value of any variable(s), given evidence about the state of other variable(s).
[For example, consider the prior probability that the stimulant is present p(ST = present) = 0.4.
The inferred probability of the presence of a stimulant is dependent upon evidence about the
other variables: p(ST = present|GP = active) = 0.44 and p(ST = present|GP = not active) =
0.35 ].

Models with continuous variables

For Bayesian networks which use continuous variables, conditional probability densities (CPDs)
are used in a similar way to CPTs. Figure 2 presents a simple Bayesian network which intro-
duces the concept of using continuous variables. A continuous node, B, with a discrete parent,
A, (say, a variable with k states) could in effect model the continuous data with k& Gaussian
distributions. Thus given that A is in state a; the likelihood of a value of B may be inferred,
or alternatively, given a value b for variable B, the probability that variable A is in state a; may
be inferred. Linear regression may be used to fit the Gaussians (or other distributions) to the
training data in order to minimise the decision error between the classes.

Learning for Bayesian networks

In essence a Bayesian network is used to model a probability distribution X. A set of model
parameters 6 may be learned from the data in such a way that maximises the likelihood that
the data came from X. Given a set of observed training data, D = {x1,...,xn} consisting of
N examples, it is useful to consider the likelihood of a model, L(6), as the likelihood of seeing
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Figure 2: A simple Bayes net with a continuous node B, having a discrete parent A. The
usual notation is to use squares for discrete nodes and circles for continuous nodes. 63 is the
parameter set which encodes the model for B in terms of three Gaussians - one for each of
the three possible states of A. A mean u; and standard deviation o; are the parameters for the
Gaussian distribution which models p(b|a;).

the data, given a model:
N

L(6) = p(D|6) = [ ] p(xil) (5)

i=1
In order to infer the likelihood of an example observation, x, a joint probability of all the vari-
ables can be calculated (as in the previous section) as the product of the conditional probability
distributions for each variable:

n

p(x|0) = [ p(xilpa(z:), 0;) (6)
i=1

where x = {z1,...,x,} are the variables (and nodes in the BN), and the set of model param-
eters § = {61,...,0,}, where 0, is the set of parameters describing the distribution for the ith
variable z; which are used in conjunction with the known model structure given by pa(z;) - the
parents of z;. Each parameter set ; may take a number of forms, commonly a CPT (conditional
probability table) is used for discrete variables, and CPDs (such as Gaussian distributions) are
used for continuous variables. Classification/regression models can be used to learn the pa-
rameters for each node in the network. For the example using CPTs in Figure 1, it is possible
to learn the probabilities for these tables. For each node, the probability that the variable will
be in each possible state (given its parents’ states) could be calculated based on the frequency
observed in a set of training data.

It is often useful/necessary to use a prior distribution for the model parameters. For multi-
nomial sampling, a Dirichlet distribution is commonly used as a prior and can be thought of as
adding pseudo-counts to the observed frequencies. If the sample size is large, the effect of the
prior is small, however it can often be useful to allow a larger pseudo-count for classes with little
or very uncertain data, ensuring certain configurations of variables are still possible. Without a
prior, a configuration that was not seen in the training examples would be incorrectly assigned
a zero probability of being drawn from X.

The learning paradigm which aims to maximise L(#) is called maximum likelihood (ML).
This approximates the probability of a new example x given the training data D as p(x|D) =~



p(x]0rz) where 6,7, is the maximum (log) likelihood model which aims to maximise In p(D|0),
i.e. Oy = argmaxgInp(D|6). This amounts to maximising the likelihood of the ‘data given
model’. ML assumes a uniform prior. In order to consider other prior distributions, a maximum
a posteriori (MAP) model can be used. This approximates the probability of a new example
x given the training data D as p(x|D) =~ p(x|0rrap) Where 0y4p is the maximum a posteriori
probability (likelihood of the ‘model given data’) which aims to maximise lnp(6|D), i.e. Oy ap =
arg maxy Inp(0|D). This takes into account the prior, since through Bayes’ theorem: p(0|D) =
p(D|0)p(0)/p(D). Both ML and MAP produce a point estimate for §. One of the powers of
Bayesian statistics is not producing point estimates but is model averaging, which is considered
in the next section.

Bayesian learning

For Bayesian learning, the parameters are considered to be latent variables and the key idea is
to marginalise over these unknown parameters, rather than to make point estimates (which ML
and MAP do). The computation of a full posterior distribution, or model averaging, avoids severe
over-fitting and allows direct model comparison. Formulating Bayesian learning as an inference
problem, the training examples in D can be considered as N independent observations of the
distribution X (Figure 3).

Figure 3: Bayesian learning is an inference problem. The shaded nodes x; represent the ob-
served independent training data, x the incomplete example observation for which the missing
values are to be inferred, all of which are dependent upon the model 6.

The joint probability of our training data, the model and a new observation x is:
p(D, 8,x) = p(x|0)p(D|0)p(0) (7)

Applying the sum rule (3):
p(x.D) = [ p(D.0,2)d0 (®)

Applying the product rule (1) to the left hand side, and substituting (7) for the joint probability
on the right hand side, then dividing both sides by p(D), gives the predictive distribution for x:

pxiD) = s [ xl0)p(DIO)p(0)d0 ©
= [ pxi0)p(6lD)a8 (10)
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i.e. p(example|data) = p(examplelmodel) x p(model|data) over all models

This is computing a full Bayesian posterior. In order to do this, a prior distribution for the
model parameters needs to be specified. There are many types of priors which may be used,
and much debate about the choice of prior.

Learning from incomplete data

The parameters for Bayesian networks may be learned even when the training data set is
incomplete, i.e. the values of some variables in some cases are unknown. Commonly, the
Expectation-Maximisation (EM) algorithm is used, which estimates the missing values by com-
puting the expected values and updating parameters using these expected values as if they
were observed values.

EM is used to find local maxima for MAP or ML configurations. EM begins with a partic-
ular parameter configuration & (possibly random) and iteratively applies the expectation and
maximisation steps, until convergence:

e E-step. The expected values of the missing data are inferred to form D, - the most likely
complete dataset given the current model parameter configuration.

e M-step. The configuration of # which maximises p(4|D. ) is found (for MAP).

Using EM to find a point estimate for the model parameters can be efficient to calculate and
gives good results when learning from incomplete data or for network structures with hidden
nodes. With large sample sizes the effect of the prior p(6) becomes small, and ML is often used
instead of MAP in order to simplify the calculation.

A number of sampling methods have been used to estimate the (full) posterior distribution
of the model parameters in the presence of incomplete data. Monte Carlo methods, such as
Gibbs sampling, are extremely accurate, and require lots of computation, often taking a long
time to converge, and become intractable as the sample size grows. Gaussian approximation
is often accurate for relatively large samples, and is more efficient than Monte-Carlo methods.
It is based on the fact that the posterior distribution p(#| D) which is proportional to p(D|6) x p(8)
can often be approximated as a Gaussian distribution. With more training data, the Gaussian
peak becomes sharper, and tends to the maximum a posteriori configuration 6 4p.

Structure learning

So far, only the learning of parameters of a Bayesian network of known structure has been
considered. Sometimes the structure of the network may be unknown and this may also be
learnt from training data. One approach to learning structure is to use a search to find a
‘good’ structure. This may be done by starting with an initial network with no connectivity and
adding parents to each node, measuring the accuracy of the resulting network at each stage
or alternatively an initial guess of the structure may be made and this may then be updated
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through modifications such as the addition or removal of edges. This could be achieved through
an optimisation process such as simulated annealing.

There are two common approaches used to decide on a ‘good’ structure. The first is to
test whether the conditional independence assertions implied by the structure of the network
are satisfied by the data. The second approach is to assess the degree to which the resulting
structure explains the data (as described for learning the parameters of the network). In this
case a penalty is required to prevent the selection of complex structures as these will have a
higher likelihood. For example, using ML without a penalty function would produce a completely
connected network, implying no simplification of the factors.

The computation of a full posterior distribution over the parameter space and the model
structure space is intractable. Markov chain Monte Carlo (MCMC) methods (such as the
Metropolis-Hastings algorithm) are used to obtain a set of ‘good’ sample networks from the pos-
terior distribution p(S, 8| D), where S is a possible model structure. This is particularly useful in
the bioinformatics domain, where data D may be sparse and the posterior distribution p(S, 6| D)
diffuse, and therefore much better represented as averaged over a set of model structures, than
through choosing a single model structure.

Dynamic Bayesian networks

An essential feature of many biological systems is feedback. For example, in the simple cell
signalling pathway presented at the start of this article, it may be that the strength of the extra-
cellular signal is dependent upon the cellular response (once successful, the signal becomes
blocked). This would create a feedback loop (cyclic graph). In order to combat this problem, the
network may be rolled out in time, to create a dynamic Bayesian network where there are con-
nections between time slices and each node is present in each slice. Hidden Markov models
(HMMs) are a special case of these.

Dynamic Bayesian networks have been used for inferring genetic regulatory interactions
from microarray data. Data from a few dozen time points during a cell cycle is a very small
amount of data on which to train a dynamic Bayesian network. Husmeier has recently used
MCMC on simulated data of microarray experiments in order to access the network inference
performance with different training set size, priors and sampling strategies (Husmeier et al.,
2005).

Causality

Often the really interesting problems involve the learning of causal relationships (Pearl, 2000),
such as protein-signalling networks (Sachs et al., 2005). In order to discover the underlying
causal model, more than just structure learning is needed, since many network structures
are equivalent. (In Markov equivalent network structures the nodes may be dependent upon
each other in different ways, but produce the same results). In order to identify a variable
which exhibits a causal influence over another variable, particular patterns of dependency of a
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third variable must be observed, in the context of interventions (fixing the values of particular
variables). This allows the directionality of the causal relation to be determined.

Software

A variety of software is used for Bayesian inference. Three commonly used packages are:
e Bayes Net Toolkit for Matlab (http://bnt.sourceforge.net/)
e Probabilistic Network Library (http://sourceforge.net/projects/openpnl)
e OpenBUGS (http://mathstat.helsinki.fi/openbugs/)

Example code for inference in the cell signalling pathway example in Matlab for use with the
Bayes Net Toolkit is available from http://www.comp.leeds.ac.uk/chrisn/research/cellsig/

Summary: Bayesian networks for computational biology

Many applications in computational biology have taken advantage of Bayesian networks or
more generally, probabilistic graphical models. These include: protein modelling, systems bi-
ology; gene expression analysis, networks and pathway modelling; biological data integration;
protein protein interaction and functional annotation; DNA sequence analysis; genetics and
phylogeny linkage analysis (Beaumont and Rannala, 2004). Bayesian networks and probabilis-
tic graphical models use results from graph theory which allow lucid expression of probability
theory. Bayesian networks coupled with Bayesian learning provide a robust framework in which
to combine domain knowledge and data, in order to make inferences about states of unknown
variables. Learning in Bayesian networks may use a point estimate of the parameters, or use
Bayesian statistics to average over possible model structures and parameters to provide an es-
timate of the posterior distribution of the variables, which avoids over-fitting to the data, which
may be noisy, limited, incomplete and uncertain.
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Timetable

Time

45 mins
40 mins
35 mins
30 mins
30 mins
30 mins
30 mins

Topic

Introduction to Bayesian statistics

Bayesian networks: representation and inference
Learning from data

coffee

More advanced concepts

Examples section

Discussion

Introduction to Bayesian statistics

Principles of learning from data
Other machine learning approaches
Probability: Classical vs Bayesian
Probability theory

« Bayesian inference

Classification

“Classification is hard” et thomton 1smeos
Don’t just want machine learning methods

that classify well...

 ...we want to form an interpretable model.

Yes/No is not enough, need to know why the

decision was made.




What is machine learning?

* Why do we want to learn from data?
« What problems can we tackle?

Decision Trees

+ Gini index: i(N) = 1 - ¥, P2(w))
» 20 questions?

Neural networks
» ‘Black box’

outputs

inputs O
O

hidden

SVMs

Data x; is transformed by a non-linear
mapping @(.) to a high dimensional space
where the y; = ¢(x;) are linearly separable.




Drawbacks

» Many of you use machine learning

algorithms...

What's wrong with them?

Bayesian networks

» A framework for explaining causal relationships
consisting of a set of variables connected by a
set of directed edges

* Probability calculus is used to
describe the probabilistic
relationship of each variable
with its parents

Bayesian networks

Combine domain knowledge and data
Avoid over-fitting of data

Handle incomplete datasets

Allow learning about causal relationships

first some probability theory...
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Bayesian Probability

+ A classical probability is a physical
property of the world

« The Bayesian probability of an event X is a

person’s degree of belief in that event

* Important difference: Do not need

repeated trials in order to assign a
Bayesian probability

* What is the probability that Brazil will win
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Probability assignment Probability Calculus
« Probability assessment is the process of Product rule:  p(x,y) = p(y|x)p(x) X
measuring a degree of belief and can be done in
a number of ways: Sum rule: p(x) = Zy p(x,y)
— probability wheel y
— ball drawing gambles
X B “rule: =
Your boss will give you an extra $1000 if you: ayes’ rule: p(xy) %);)(X)
A — Write 3 Journal papers this year Pty
B — Choose a red marble from a bag of 100 marbles,
with n red marbles y O (x]y) X)P(x)
At what n would event A and B be equally likely? VISIb|e 2x p(y[x)p(x)
. useful because often p(y|x) easy to find,
13 whereas p(x|y) hard to assess 14

Let p(test is positive | you have the disease) = 0.95

Have you gOt a disease? Suppose false positive rate is 5%: p(T=pos | D=false) = 0.05

« You've tested positive for a disease! and 1% of population have the disease, p(D=true) = 0.01

« What is the probability you have the disease? Bpisease = P(D) T F
+ It depends on accuracy and sensitivity of the test Diseased? 0.01 0.99

and background (prior) probability of the disease.
In our probabilistic graphical models notation:

eTest = p(TlD) pOS neg

ol =

Opisease = P(Diseased) Test T|0.95 0.05
Diseased? | D F10.05 0.95
P(D=true | T=pos) =
l P(T=pos | D=true) * P(D=true) (Bayes’ Rule)
eTest p(TestlDlseased) P(T=pos| D=true) * P(D=true) + P(T=pos| D=false) * P(D=false)
T = 0.95*0.01/(0.95*0.01 + 0.05*0.99) = 0.0095/0.0590 = 0.161

)_/‘MFb 2000‘1

---------------
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Disease example (cont.)

» So probability of having the disease given you
have tested positive is 16%

* Low?
+ Of 100 people, we expect only 1 of them to have
the disease, but we expect 5 to test positive (5%)

* So, of the 6 people who tested positive, we only
expect 1 of them to actually have the disease.
Indeed 1/6 = 0.16

* [Using multiple independent tests increases the

17

Guilty or not guilty?
+ After opening statements, a jury believes there is
an 80% probability that a suspect may be guilty
» Two pieces of evidence are presented, an eye
witness report and a DNA test result
* Prior studies have shown that the reliability of an
eye-witness report is 70% and the DNA test 95%

» The eye witness has identified the subject as the
guilty party, while the DNA test indicates the
suspect is innocent

* What would be the revised probability that the

p(G,D,E) = p(G|D,E)p(D,E)  --product rule
p(G,D,E) = p(G)p(D|G)p(E|G) --from graph/CI*

=> p(G|D,E) = p(D|G)p(E|G)p(G)/p(D)p(E)
8 =p(G) 8l Y N

DNA Test D E Eye Witness

Guilty?

oY N 0.8 0.2

Y[0.950.05 ¢ -ppio) o.=pElG) 6Bg|Y N

N[0.050.95 Y|0.7 0.3
NI0.3 0.7

18

What's the probability of guilty, given witness says guilty, and DNA not guilty?
P(G=Y|D=N,E=Y) = p(D=N|G=Y)p(E=Y|G=Y)p(G=Y) / p(D=N)p(E=Y)
=0.05*0.7 * 0.8/(0.05*0.8+0.95*0.2) * (0.7*0.8+0.3*0.2)
=0.028/(0.23*0.62)
=0.196 p(guilty| evidence) = 20%
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Summary

* Discussed some methods of machine
learning and their limitations

* Introduced graphical models and
probability theory

* Made lots of promises about Bayes nets

20




Bayesian networks:

representation and inference
Joint probability distributions

Bayesian networks

Conditional independence

Compact representation

 Conditional probability distributions

* Inference in Bayesian networks
 Calculating posterior probabilities

21

Joint Probability Distributions

* Given a set of n variables, X ={x,,...,X,},
we want to form the joint probability
distribution p(X) = p(x4,..., X,)

 Using this we can capture the
relationships between sets of variables

* And perform inference of unknown values,
such as p(x;[x;,x)

What are Bayesian networks?

« Bayesian networks encode the probabilistic
relationships between variables

* Nodes represent variables X = { x,,...,X.}

» Edges represent relationships between
variables

23
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Joint Probability Distributions

 Consider p(x,y,z)

» By successive application of the product
rule:

* p(x,y,2) = p(y,z|x)p(x)
= p(zIx.y)p(y[x)p(x)

24




Joint Probability Distributions

N
P(Xy,---X,) = TTp(x|pa;)
where pa, are the parents of x;

DAG: directed acyclic graph

p(x1,...,x7) = p(x1)p(x2)p(x3)
p(x4|x1,x2,x3)
p(x5|x1,x3)
p(x6|x4)p(x7|x4,x5)

25

Conditional Independence

* If two variables are independent given the state
of a third variable, then they are said to be
conditionally independent

p(X,y|z) = p(x|z)p(y|z)

+ Conditional Independence in Bayesian networks
allows us to find variables that are independent
and make the models of manageable size.

26

Serial connections

» Evidence transmitted unless state of
variable in connection is known

eg . Gene eXpreSSIon gene y promotes gene z

O—0—06

gene x promotes gene y

Y unknown: evidence of level of x effects level of z

Y known: the level of z depends only on y,
and is conditionally independent of x

27

Diverging connections

* Evidence transmitted unless connection is
instantiated

e.g. Transcription factor Y
turns two genes X and Z on

Y unknown: evidence gene x is on effects state of z

Y known: the state of z depends only on v,
and is conditionally independent of x

Additional example: different tests for a disease 28




Converging connections

« Evidence transmitted only if
variable in connection or one of
its children receives evidence

Genes X and Z promote gene Y

Y unknown: evidence of expression level of gene x
does not help to infer the expression level of z
-- X and z are conditionally independent

Y known: evidence of expression level of gene x
does help to infer the expression level of z

p(x.zly) # p(xly)p(zly)

Converging connections (example)

P(X,y,2) = p(y[x,2)p(X)P(2)
P(x,z) = p(x)p(z)

p(x,zly) # p(x|y)p(z]y)

* Pixel colour in an image
x = lighting colour, y = image colour, z = surface colour

Simple cell signalling pathway

+ Consider a simple example consisting of :
— a stimulant,
— an extracellular signal,
— an inhibitor of the signal,
—a G protein-coupled receptor,
—a G protein and the cellular response.

How do you model this pathway?

31
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A Bayesian network can be

Prior knowledge consfructed that expresses the

relationships between variables

STslimulant

5 the stimulant may or may not
R generate a signal
the concentration of the Sl-signal
signal may affect the e
level of the inhibitor Iinhiior | | whether the signal binds with
\ / the receptor depends on the
L concentrations of both the
the G protein should e signal and the inhibitor
become active if the ¥
receptor binds GP-G protein
an active G protein initiates a
v cascade of reactions that
ey causes the cellular response

32




Conditional probabilities

 Now we have a network structure, we need to
know the conditional probability distributions 6,

* These are much easier to specify, since they
involve fewer variables and don’t involve
estimating posterior probabilities.

* For example we only need to know
— p(G protein is active | receptor binds)

* rather than

— p(G protein is active | receptor binds, inhibitor is high,
signal is medium, stimulant is not present )

. We can learn these from data (next section)

33

Compactly expressing the JPD

p(ST,SI,IN,RE,GP,CR) = p(CR|GP)p(GP|RE)p(RE|SI,IN)p(IN|SI)p(SI|ST)p(ST)
full JPD has (2x3x3x2x2x2) - 1 = 143 free parameters

aralstimtan) *5T plstimulani

W | b Medm Low statmutnt | 4] et Bayes Net JPD has
ety | [t ] | 4 N\ L= e 24 free parameters
P (1+4+6+9+2+2)
i pireceptor binds'signal, inhibor)

6 , o

[y o e free parameters for each
g | e i CPD p(xlys.....Y,) are:

[ e o IL::
- o o P e yil*...xlya|x (IxI-1)

a1 | For example Bgg, p(receptor| inhibitor,signal)
linhibitor|x|signal|x(|receptor|-1) = 3x3x1 =9

eS| p(signal/stimulant) ®ST p(stimulant)

T
: )fMP_) 20001 Bayesian network of the cell signalling pathway
S~ Fartalens. bra] with example conditional probability tables 34

08

Stimulant High Medium Low ST-stimulant | Present Not present
Present 06 0.3 041 04 0.6
Not present 0.1 0.2 0.7
Sl-signal
“IN p(inhibitor/signal) “RE p(receptor binds/signal, inhibitor)
Signal High Medium Low / Signal Inhibitor | Yes No
High 0.6 0.3 0.1 AT High High 05 05
" IN-inhibitor
Medium 02 0.2 0.6 High Medium | 0.8 0.2
Low 0.1 0.1 0.8 High Low 0.9 0.1
\ Medium  High 0.3 0.7
Medium  Medium 05 05
®GP p(G protein/receptor) RE-receptor Medium  Low 08 02
Receptor bindg Active Not active Low High 0.2 0.8
Low Medium | 0.3 0.7
Yes ‘ 09 01 Low Low 0.5 05
No 0.1 0.9
GP-G protein
o . Needham, Bradford, Bulpitt & Westhead.
CR p(cellular response/G protein) ¢ Inference in Bayesian networks
G protein ‘ Yes No Nature Biotechnology 24(1):51-53. Jan 2006.
. CR-cellular
Active 0.8 0.2 reponse
Not active 0.1 0.9

Eob Crimi

p(G protein active | stimulant present)

Using the sum rule p(x) = > ,p(x,y) and the

product rule p(x,y) = (x|y)p(y) we
marginalise over the unknown variables:

p(GP = active| ST = present)
=2« 2, 2, P(GP = active|RE = x) p(RE = x|IN =y,S| = 2)
p(IN =y |SI = z) p(SI = z| ST = present)
=0.592

p(GP = active| ST = not present) = 0.5048

._ )_/'MFb 2000‘1

nu al.rl i axt]
1008

Inference in Bayesian networks




p(stimulant present | signal high)

* |It's often of interest to calculate posterior
probabilities — we use Bayes’ rule

p(ST = present | SI = high) =

p(SI = high| ST = present)p(ST=present)
p(Sl=high|ST=present)p(ST=present) + p(SI=high|ST=absent)p(ST=absent)

= 0.6x0.4 =08
(0.6x0.4) + (0.1x0.6)

Bayes’ rule: p(x]y) = p(y|x)p(x)
P(Y)

Calculating posterior probabilites ,,

Why have you come to ISMB?

* What factors influence people’s decision to
attend ISMB (or not) ?

Academic interest Location
Desire (beach?) Cost/Affordability
Travel paid Paper in

* Which of these are independent
+ Can we draw a Bayesian network?

Naive Bayes classifier attend All independent factors
ISMB
a_cadem|c desire location | |affordability paper tra\(el
interest accepted paid
a_cadem|c desire location | |affordability paper tra\(el
interest accepted paid
attend
Inverted naive Bayes classifier | 1SMB All dependent

38

Bayesian network for ISMB example

paper
accepted
Yes/No
Detriot/Fortaleza
v
academic . travel
) location .
interest paid

Excited/bored Full/Part/None

desire affordability

Want to go/don’t Yes/Maybe/Not

attend
ISMB Yes/No

39

40

10



Summary

Joint probability distributions

Basic concepts of Bayesian netowrks
Representation

Inference

Incorporating prior knowledge

41

Probabilistic terminology

* Prior p(6)
— the prior probability assigned to a parameter,

or to an event, in advance of any empirical
evidence

* Posterior p(6|D)

—the probability assigned to a parameter, or to
an event, on the basis of its observed
frequency in a sample, calculated from a prior
probability by Bayes’ rule

* Dataset D={x},n=1,...,N

43

Learning from data

Learning model parameters from data
Parameter priors
Continuous variables as well as discrete

Point estimates: maximum likelihood (ML),
maximum a posteriori (MAP) estimates

Bayesian learning — model averaging

42

Models with discrete variables
p(@b)| b, b, by p(@b)| by b, by

a;| 1/9 1/9 1/9 a,;10.30 0.10 0.01
ax| 1/9 1/9 1/9 a,| 0.02 0.05 0.15
az| 1/9 1/9 1/9 az|1 0.10 0.24 0.03

Prior model parameters 6 Posterior model parameters 6

prior (model no data) often posterior (model given data)

uniform uninformative can be formed from psuedo-

Dirichlet priors are used. counts of observed
frequencies in example
training data

44
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SNP prediction from Amino Acids

residue AA mutant AA

* Inverted naive Bayes
classifier

» Good predictor

* structure important!

p(dieased|residue,mutant)

A

8 | -*
E ||

cl m
G |
H

I

K

L H N
M

N

P |

Q

gl | | |
3

v

V¥I | |

ACDEFGHIKLMNPQRSTVWY

45

0 = (u,0)

Continuous data

* prior p(0) — estimate of model parameters

47

p(
p(academic interest)
p(paper accepted)
p(
p(

this way!

*  What questions do we need to ask?
— p(travel paid | paper accepted)
desire to go| location, academic interest)

affordability|location,travel paid)
attend ISMB| desire, affordability)

Example (ISMB BNet revisited)

+ How can we construct conditional probability adoantod
tables for this example?
— Using frequency counts DetriotFortal Yes/No
. etriot/rortaleza

* How does it work? - ~
academic . travel
N location .
interest paid

Excited/bored

»  Compare to building JPD over all variables in

Want to go/don’t

Full/Part/None

Yes/Maybe/Not
attend
ISMB

Yes/No

» Later we will consider how to do this in the
presence of incomplete data

46

04

p(bla,

GB—

(BJA)
p(B=b)

A=a1
A=8.2
A =a,

H1,04
H2,05
H3,03

p(blay)

O2

%3 \_p(blag)

M1

1008

Fory .l.n Brazil
wgw 10,

M2

Us b

1 )fMFb :ZOOO11 Discrete parent, continuous child,,

12



Learning model parameters

p(DIB)

prior

X XXXKXHRXHK K XXX data

* How do we fit a model to data?

* Do we measure how well the data fits the model?
or how well the model fits the data?

» Given training data, how do we predict a new
example'?

Maximum Likelihood estimate
* Likelihood function (for mdependent observations)
L(8) = p(DI8) =TT p(x,| 0)

* By, is maximum likelihood model parameters

By = arg maxg In p(D|0)
(data given model)

* Predictive distribution

(XID) =~ p(x|Oy.)

49

50

MAP estimate

* Byap IS Maximum posterior model parameters
Buap = @rg maxg In p(6|D)

(model given data) P(€ID) = p(DIe)p(8)
* Predictive distribution

P(X|D) = p(X|Byap)

51

Bayesian learning paradigm

j 0(x|8)p(8|D)d6

(x given model)(model given data)(over all models)
* Key idea is to marginalize over unknown
parameters, rather than make point estimates
— avoids the over-fitting of ML and MAP
— allows direct model comparison
* Parameters are now latent variables
. BayeS|an Iearnlng is an inference problem!

52
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Bayesian Learning

6 p(D, 8, x) = p(D[B)p(x|8)p(8)

p(DI6) =Tj p(xi(®)

Xy X5 XN X
Predictive distribution:

P(ID) = 515 [P(/E)P(DIBIP(©)d

Model evidence: p(D) jp(D|e)p (6)do

53

Summary

» Methods for learning model parameters
 Benefits of Bayesian learning
» Avoids over-fitting

Review of Bayes Nets

Binding site prediction

Data integration for gene function prediction
Evaluation of firearm evidence

Medical decisions

» Gene cluster analysis

55]

54

Binding site prediction

binding site Y/N

O residue interface

. electrostatic shape propensity
conservation potential

hydrophobicity ASA

* Naive Bayes classifier is excellent predictor of
binding site patches on protein surfaces.

b )fM b 20 O (31 Bradford, Needham Bulpitt & Westhead. Insights into protein-protein

............... interfaces using a bayesian network prediction method. JMB(submitiéd)

14



H Functional
(M Data Integration _ssewns S
. Genfetif: Physical
Association Association

Expression Data Noise :
Data Type P Level b?::ﬁ;

=)

K-means @ Hierarchical ‘
Clustering Clustering .

Troyanskaya et al. A Bayesian framework for combining heterogeneous
data sources for gene function prediction (in Saccharomyces cerevisiae).
PNAS, 100(14), 2003

WA/ MP 200061

H Fortaleza, Brazil
August 8:10, 1008

expert derived structure
combining domain knowledge and data e

Evaluation and combination of
firearm evidence

F: incriminated bullet

i : t llet:
D: distance was fired by suspect X: suspect’s bullets

subscripts:

m: marks relating
to manufacturer

a: acquired
characteristics

Y: Quantity of particles

in a Gun Shot Residue

y: incriminated bullet

Biedermann & Taroni. A probabilistic approach to the joint evaluation of firearm
evidence and gunshot residues. Forensic Science International. 2005

58

Medical Decisions

+ Radiologists have an overwhelming task of
integrating over a breadth of relevant and
diverse data

» Breast disease diagnosis factors:

—age, HRT, family history, calcifications (in a
variety of patterns), mass attributes, asymetric
densities

Burnside. Bayesian Networks: Computer-assisted diagnosis
Support in Radiology. Academic Radiology 12(4). 2005

59

Gene cluster analysis

Two arrays

Xg.a is the spot that
measures expression
of gene g in array a

Three genes

gene cluster

P(X|GC,AC)

spot

Friedman, Inferring cellular networks using probabilistic
graphical models. Science 303(6). 2004 60

SAL/1122050
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More advanced concepts

Learning from incomplete data
Markov chain Monte Carlo methods
Structure learning

Dynamic Bayesian Networks
Hidden Markov Models

Latent variables

Causality

61

Learning from incomplete data

» Parameters can be learned even when
some variables are unknown in some cases

« Commonly the Expectation-Maximisation
algorithm is used.

EM estimates the missing values by computing
the expected values and updating the parameters
using these expected values as if they were
observed values

The EM algorithm

» EM finds local maxima for MAP or ML
« Starts with 8,a parameter configuration (random)

* lteratively applies the expectation and
maximisation steps until convergence

» E-step. The expected values of the missing data
are inferred to form D, — the most likely complete
dataset given the current model parameters

+ M-step. The configuration of 8 which maximises
p( 6 |D,) is found (for MAP)

63

62

Sampling methods

+ Sampling methods have been used to estimate
the full posterior distribution of the model
parameters in the presense of incomplete data

* Monte Carlo methods such as Gibbs sampling
are extremely accurate (but require lots of
computation, take a long time to converge and
become intractable as the sample size grows)

+ Gaussian approximation is based on the fact
that p(8|D) =< p(D|0)p(6) can be approximated
as Gaussian distribution. With more training data
the Gaussian peak becomes sharper — By5p

64
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Structure learning

» We've seen that we can combine knowledge
about the domain with data

—i.e. get an expert to design a network structure
based on known relationships/ independencies
between the variables

 We can also learn the structure of the model!

— search for good structures which capture the
interactions between the variables, whilst
maintaining a compact model

65

Structure Learning

» Greedy search
— Iteratively: add, reverse or delete an edge
— Score the structure Sh

» Score functions
— Full Bayesian posterior

— BIC score function
In p(D|S") = In p(D|6;,S") - %2 dIn N

66

Learning Cellular Networks

(61 (61
QA mez
(63) (63)

Review article: Friedman, Inferring cellular networks using
probabilistic graphical models. Science 303(6). 2004

1o

67

Inferring genetic networks

» Constructing a genetic network from microarray gene
expression data by using a Bayesian network.
— agene corresponds to a node (random variable)
— gene regulations are shown by directed edges
— gene interactions are modelled by the conditional distribution of

each gene

* Incorporate prior knowledge from protein-protein
interactions, protein-DNA interactions, gene networks
and literature

» Analysis of Saccharomyces cerevisiae gene expression
data newly obtained by disrupting 100 genes, mainly
transcription factors.

Imoto et al. Combining microarrays and biological knowledge

for estimating gene networks via Bayesian networks. CSB 2&93.

17



Dynamic Bayesian networks (DBNs)

« Expression levels tHAt

t
of genes A, B, C 0‘/0
O\vasO
cA's

Static model — not a BN Dynamic Bayesian network

inhibits

promotes

WA/ MB 20001

Fortaleza, Brazil
wit £-10, 1008

Murphy & Mian. Modelling Gene Expression Data using
Dynamic Bayesian Networks. Tech Report. 1999. 69

Modelling the state of variable X, as a Markov process, with a DBN:

@-—P@—P@ — X; depends only on X4

Hidden Markov Models (HMMs)

HMMs can be represented as
Dynamic Bayesian networks,
@ @ @ with hidden variables.
t doesn't have to be time
HMMs are often used for
e Q @ sequence alignment, where
hidden state is INSERT,
DELETE, or MATCH, and t is the
White nodes unobserved. Shaded nodes observed.  next position in the sequence.

Latent (hidden) variables

 Latent variables can be added to models
to capture additional information or reduce
model size through expert knowledge

70

residue
class

residue AA

mutant
class

effect mutant AA

plresiduelresidue class)
\\\\\\\\\\ T

o, e B VI
A C D E F G H I K L MNUPQQR S TV WY

p(mutant|mutant class)
\\\\\\\\\\\\\\\\\\\

MV SV O e o
A C D E F G H I K L MNP QR S TV WY

p(neutrallresidue class, mutant class) p(diseaseresidue class, mutant class) ~ plresidue class)  p(mutant class)

ret ret et met

rc2 rc2 rc2 me2

met  me2 mel  me2

r

yen A latent variable model
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Causality

» The learning of causal relations is
somewhat trickier

 We'd like to determine what effects what,
rather than just what'’s related

» To do this requires the combination of
expert knowledge, and interventions

73

Causal protein-signalling networks

Perturbations
different conditions
Multi-parameter
Flow Cytometry*

[Correlated phospho—]

measures per cell

Datasets of cells Bayesian network Influence diagram of
for each condition analysis measured variables

measures11 phosphoprotems and phospholipids in individual cells in each perturbation

)fM P_) 20 O Sachs et al. Causal protein signalling networks derived from
s multi-parameter single-cell data. Science 308(5721) 200575

X .
X-Y
No inhibition X | *:. - a
X inhibited s
Y inhibited RS
gH
X-Y
Summary

« Handling incomplete data
* Structure learning
* Learning causal relationships

76
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Examples section

» The simple cell signalling example from
earlier, example in Matlab

» An application of Bayesian networks to
learning parameters and structures from
data for predicting functional
consequences of missense mutations

7

Cell signalling pathway
example in Matlab

N = 6;
discrete_nodes = 1:N;

ST=1;SI=2;IN=3;RE=4; GP =5; CR=6;

dag = zeros(N,N);

dag(ST,Sl) = 1; dag= 0 1 0 0 0 O
dag(SI,[IN,RE]) = 1; 001100
dag(IN,RE) = 1; 000 100
dag(RE,GP) = 1; 0000 10
dag(GP,CR) = 1; v wowowow s

0000 00O

We must first setup the Bayes Net Toolbox (BNT) 79

eS| p(signal/stimulant) ®ST p(stimulant)
Stimulant High Medium Low ST-stimulant | Present Not present
Present 06 0.3 041 04 0.6
Not present 0.1 0.2 0.7
Sl-signal
“IN p(inhibitor/signal) ©RE p(receptor binds/signal, inhibitor)
Signal High Medium Low / Signal Inhibitor | Yes No
High 0.6 0.3 0.1 AT High High 0.5 05
Medium 02 02 06 [N-inhibitor High Medum| 08 02
Low 0.1 0.1 0.8 High Low 0.9 01
\ l Medium  High 0.3 0.7
Medium  Medium 05 05
®GP p(G protein/receptor) RE-receptor Medium  Low 08 02
Receptor bindg Active Not active Low High 0.2 0.8
Low Medium | 0.3 0.7
Yes ‘ 09 01 Low Low 0.5 05
No 0.1 0.9
GP-G protein

3 ! , Bradford, Bulpitt & Westhead.
IR Pl I e et ¢ Inference in Bayesian r‘:etworks
G protein ‘ Yes No Nature Biotechnology 24(1):51-53. Jan 2006.
) CR-cellular
Active ‘ 0.8 0.2 reponse
Not active 0.1 0.9

Bob Crimi

Bayesian network of the cell signalling pathway

with example conditional probability tables 78

node_sizes =[233222];

bnet = mk_bnet(dag, node_sizes, 'discrete’, discrete_nodes,
'names’, {'Stimulant','Signal','Inhibitor','Receptor','G protein’,'Cell Res'});

bnet.CPD{ST} = tabular_CPD(bnet, ST, [0.4 0.6]);

bnet.CPD{SI} = tabular_CPD(bnet, SI, [0.6 0.1 0.3 0.2 0.1 0.7]);

bnet.CPD{IN} = tabular_CPD(bnet, IN, [0.6 0.2 0.1 0.3 0.2 0.1 0.1 0.6 0.8]);

bnet. CPD{RE} = tabular_CPD(bnet, RE, [0.50.30.20.80.50.30.90.80.5
0.50.70.80.20.50.7 0.1 0.2 0.5]);

bnet.CPD{GP} = tabular_CPD(bnet, GP, [0.9 0.1 0.1 0.9]);

bnet.CPD{CR} = tabular_CPD(bnet, CR, [0.8 0.1 0.2 0.9]);

engine = jtree_inf_engine(bnet);

80
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ans = 0.4000 ans(:,;,1)= 0.5000 0.8000 0.9000

0.6000 0.3000 0.5000 0.8000

- ans(:,;,2) = 0.5000 0.2000 0.1000

ans 0.6000 0.3000 0.1000 07000 05000 0.2000
0.1000 0.2000 0.7000

0.8000 0.7000 0.5000
_ the first table above shows the

ans= 0.6000 0.3000 0.1000 conditional probabilities when the
0.2000 0.2000 0.6000 receptor binds, and the second when
0.1000 0.1000 0.8000 the receptor does not bind

ans= 0.9000 0.1000 ans = 0.8000 0.2000
0.1000 0.9000 0.1000 0.9000

81

Similarly, what is the probability that the
G Protein is active if the Stimulant not present?
i.e. p(G protein|Stimulant=not present)

evidence = cell(1,N);

evidence{ST} = 2;

[engine, loglik] = enter_evidence(engine, evidence);

marg = marginal_nodes(engine, GP);
marg.T

ans = 0.5048 p(GP = active | ST = not present) = 0.5048
0.4952 p(GP = not active | ST = not present) = 0.4952

83

Now we can make inferences!
e.g. What is p(G protein|Stimulant=present) ?

evidence = cell(1,N);

evidence{ST} = 1;

[engine, loglik] = enter_evidence(engine, evidence);

marg = marginal_nodes(engine, GP);
marg.T

ans = 0.5920 p(GP = active | ST = present) = 0.5920
0.4080 p(GP = not active | ST = present) = 0.4080

82

BNT functionality

» The Bayes Net Toolbox for Matlab
supports many conditional probability
distributions, inference engines, methods
for parameter learning, and some structure
learning.

* |t is free open source code and is available
from http://bnt.sourceforge.net/

84
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Missense mutations

* A single nucleotide polymorphism (SNP) is a
mutation (insertion, deletion or substitution)
observed in the genomic DNA of individuals of
the same species.

* When the SNP results in an amino acid
substitution in the protein product of the gene, it
is called a missense mutation.

* A missense mutation can have various
phenotypic effects. Here, we aim to predict
whether a missense mutation has an effect or
no effect on protein function.

WA/ MP

200 61
R

85

Naive Bayes classifier

» Overall error rates 20%
* Area under ROC =0.80

eperforms well when evolutionary information is hidden,
*but poorly when structural information hidden

-

A/ MP 20061

H Fortaleza, Braxil
August 6-10, 1008

87

Attributes

effect Effect of mutation on functionality

ac Solvent accessible area of native AA
rac Accessibility relative to maximum accessibility in training set
© bf Normalised B-factor of native AA
;:—nsf—nmmmm@ﬁmmww
é bur Mutant AA is charged AA at buried site
- proline
ifc Native AA is near subunit interface

soti nrent  Phylogenetic entropy of structural neighbourhood of native AA
rent Normalised phylogenetic entropy of native AA

cnsd  Native AA is at conserved position in phylogenetic profile
ncnsd Native AA is near conserved position in phylogenetic profile
uslaa Mutant AA is not in phylogenetic profile

uslby Mutant AA is not in the smallest AA class that includes the
phylogenetic profile

WA/ MP 20001

H Fortaleza, Brazil
August §-10, 1008

Evolutionary

86

Learned network structure S

WA/ MP

H Fortaleza, Brazil
August §-10, 1008

88
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Posterior distribution of edges in learned structures

T T T T T T
effect -
ac 4
racH 1

89

A simplified Bayesian network

» Three structural descriptors:
— solvent accessible area of the native amino acid
— whether the amino acid is charged at the buried site
— the flexibility of its structural neighbourhood

* No evolutionary information!
» Same performance!

90

Learning from incomplete data

1 T

0.9r

o
™

e
3

4
o
T

Area under ROC curve

o
2

Naive Bayes classifier
= = = |earned BN structure S

01 2 3 4 5 6 7 8 9 10 11 12 13 14
Number of missing data in each training case

91

Conclusions/Recap

This application has shown that Bayesian networks
— Generalise well to new data
— Parameters can be learned from incomplete datasets
— Predictions can be made with missing data

(through marginalising over the unknown variables)

— Structure learning can produce good compact models
(compared to big fully connected graphs)

— A naive Bayes’ classifier is excellent at integrating
information

92
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Discussion

93

Bayesian networks

for bioinformatics
An introduction to inference and learning

Many thanks must also go to
Dr Andrew Bulpitt & Prof David Westhead
for their contributions to this tutorial

24



14th Annual International Conference On Intelligent Systems For Molecular Biology

‘Wb 2000k

‘ ’ and 27 Annual AB°C_Conference:

Bayesian networks

for bioinformatics
An introduction to inference and learning

Dr Chris Needham Dr James Bradford

Computing Cellular and Molecular Biology
The University of Leeds, UK The University of Leeds, UK
chrisn@comp.leeds.ac.uk j.r.bradford@leeds.ac.uk

Introduction to Bayesian statistics

Principles of learning from data
Other machine learning approaches
Probability: Classical vs Bayesian
Probability theory

« Bayesian inference

59

Timetable

Time

45 mins
40 mins
35 mins
30 mins
30 mins
30 mins
30 mins

Topic

Introduction to Bayesian statistics

Bayesian networks: representation and inference
Learning from data

coffee

More advanced concepts

Examples section

Discussion

58

Classification

“Classification is hard” et thomton 1smeos
Don’t just want machine learning methods

that classify well...

 ...we want to form an interpretable model.

Yes/No is not enough, need to know why the

decision was made.

60




What is machine learning?

* Why do we want to learn from data?
« What problems can we tackle?

61

Neural networks
» ‘Black box’

outputs

inputs O
O

hidden

63

Decision Trees

+ Gini index: i(N) = 1 - ¥, P2(w))
» 20 questions?

62

SVMs

Data x; is transformed by a non-linear
mapping @(.) to a high dimensional space
where the y; = ¢(x;) are linearly separable.

64
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Drawbacks

» Many of you use machine learning
algorithms...

What's wrong with them?

65

Bayesian networks

» A framework for explaining causal relationships
consisting of a set of variables connected by a
set of directed edges

* Probability calculus is used to
describe the probabilistic
relationship of each variable
with its parents

Bayesian networks

Combine domain knowledge and data
Avoid over-fitting of data

Handle incomplete datasets

Allow learning about causal relationships

first some probability theory...

67

66

Bayesian Probability

+ A classical probability is a physical
property of the world

« The Bayesian probability of an event X is a

person’s degree of belief in that event

* Important difference: Do not need

repeated trials in order to assign a
Bayesian probability

* What is the probability that Brazil will win

68
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Probability assignment

» Probability assessment is the process of
measuring a degree of belief and can be done in
a number of ways:

— probability wheel
— ball drawing gambles

Your boss will give you an extra $1000 if you:

A — Write 3 Journal papers this year

B — Choose a red marble from a bag of 100 marbles,
with n red marbles

At what nwould event A and B be equally likely?

69

Have you got a disease?

* You've tested positive for a disease!
* What is the probability you have the disease?

* It depends on accuracy and sensitivity of the test
and background (prior) probability of the disease.

In our probabilistic graphical models notation:

Bpisease = P(Diseased)

Diseased? | D

l B+t = P(Test|Diseased)

71

Probability Calculus

Product rule: p(x,y) = p(y|x)p(x) X
Sum rule: p(x) = Zy p(x,y)

y
X Bayes’ rule: p(xy) = p(y[x)p(x)

p(y)

p(xly) = p(y|x)p(x)
y Owsmle 2x p(y[x)p(x)

useful because often p(y|x) easy to find,
whereas p(x|y) hard to assess 70

Let p(test is positive | you have the disease) = 0.95
Suppose false positive rate is 5%: p(T=pos | D=false) = 0.05
and 1% of population have the disease, p(D=true) = 0.01

eDisease = p(D) T F
0.01 0.99

eTest = p(TlD) pos neg

Diseased?

ol =

P(T=pos| D=true) * P(D=true) + P(T=pos| D=false) * P(D=false)

= 0.95%0.01/(0.95*0.01 + 0.05*0.99) = 0.0095/0.0590 = 0.161

)_/‘MF.') 20061

...............

72

Test T10.95 0.05
F10.05 0.95
P(D=true | T=pos) =
P(T=pos | D=true) * P(D=true) (Bayes’ Rule)

18



Disease example (cont.)

» So probability of having the disease given you
have tested positive is 16%

* Low?
+ Of 100 people, we expect only 1 of them to have
the disease, but we expect 5 to test positive (5%)

* So, of the 6 people who tested positive, we only
expect 1 of them to actually have the disease.
Indeed 1/6 = 0.16

* [Using multiple independent tests increases the

73

Guilty or not guilty?
After opening statements, a jury believes there is
an 80% probability that a suspect may be guilty
Two pieces of evidence are presented, an eye
witness report and a DNA test result
Prior studies have shown that the reliability of an
eye-witness report is 70% and the DNA test 95%
The eye witness has identified the subject as the
guilty party, while the DNA test indicates the
suspect is innocent

What would be the revised probability that the
jury should believe the suspect to be guilty?

74

p(G,D,E) = p(G|D,E)p(D,E)  --product rule
p(G,D,E) = p(G)p(D|G)p(E|G) --from graph/CI*

=> p(G|D,E) = p(D|G)p(E|G)p(G)/p(D)p(E)
8 =p(G) 8l Y N

DNA Test D E Eye Witness

Guilty?

oY N 0.8 0.2

Y[0.950.05 ¢ -ppio) o.=pElG) 6Bg|Y N

N[0.050.95 Y|0.7 0.3
NI0.3 0.7

What's the probability of guilty, given witness says guilty, and DNA not guilty?
P(G=Y|D=N,E=Y) = p(D=N|G=Y)p(E=Y|G=Y)p(G=Y) / p(D=N)p(E=Y)
=0.05*0.7 * 0.8/(0.05*0.8+0.95*0.2) * (0.7*0.8+0.3*0.2)
=0.028/(0.23*0.62)
=0.196 p(guilty| evidence) = 20%

7%

Summary

* Discussed some methods of machine

learning and their limitations

* Introduced graphical models and

probability theory

* Made lots of promises about Bayes nets

76
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Bayesian networks:

representation and inference
Joint probability distributions

Bayesian networks

Conditional independence

Compact representation

 Conditional probability distributions

* Inference in Bayesian networks
 Calculating posterior probabilities

7

Joint Probability Distributions

* Given a set of n variables, X ={x,,...,X,},
we want to form the joint probability
distribution p(X) = p(x4,..., X,)

 Using this we can capture the
relationships between sets of variables

* And perform inference of unknown values,
such as p(x;[x;,x)

What are Bayesian networks?

« Bayesian networks encode the probabilistic
relationships between variables

* Nodes represent variables X = { x,,...,X.}

» Edges represent relationships between
variables

* A directed acyclic graph (DAG) is formed
WA/

Fortaleza . Brazil 79
Mugust §-10, 2008

78

Joint Probability Distributions

 Consider p(x,y,z)

» By successive application of the product
rule:

* p(x,y,2) = p(y,z|x)p(x)
= p(zIx.y)p(y[x)p(x)

80
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Joint Probability Distributions

N
P(Xy,---X,) = TTp(x|pa;)
where pa, are the parents of x;

DAG: directed acyclic graph

p(x1,...,x7) = p(x1)p(x2)p(x3)
p(x4|x1,x2,x3)
p(x5|x1,x3)
p(x6|x4)p(x7|x4,x5)

81

Conditional Independence

* If two variables are independent given the state
of a third variable, then they are said to be
conditionally independent

p(X,y|z) = p(x|z)p(y|z)

+ Conditional Independence in Bayesian networks
allows us to find variables that are independent
and make the models of manageable size.

82

Serial connections

» Evidence transmitted unless state of
variable in connection is known

eg . Gene eXpreSSIon gene y promotes gene z

O—0—06

gene x promotes gene y

Y unknown: evidence of level of x effects level of z

Y known: the level of z depends only on y,
and is conditionally independent of x

83

Diverging connections

* Evidence transmitted unless connection is
instantiated

e.g. Transcription factor Y
turns two genes X and Z on

Y unknown: evidence gene x is on effects state of z

Y known: the state of z depends only on v,
and is conditionally independent of x

Additional example: different tests for a disease 84

21



Converging connections

« Evidence transmitted only if
variable in connection or one of
its children receives evidence

Genes X and Z promote gene Y

Y unknown: evidence of expression level of gene x
does not help to infer the expression level of z
-- X and z are conditionally independent

Y known: evidence of expression level of gene x
does help to infer the expression level of z

p(x.zly) # p(xly)p(zly) &

Converging connections (example)

P(X,y,2) = p(y[x,2)p(X)P(2)
P(x,z) = p(x)p(z)

p(x,zly) # p(x|y)p(z]y)

* Pixel colour in an image
x = lighting colour, y = image colour, z = surface colour

Simple cell signalling pathway

+ Consider a simple example consisting of :
— a stimulant,
— an extracellular signal,
— an inhibitor of the signal,
—a G protein-coupled receptor,
—a G protein and the cellular response.

How do you model this pathway?

87

86

A Bayesian network can be

Prior knowledge consfructed that expresses the

relationships between variables

STslimulant

5 the stimulant may or may not
R generate a signal
the concentration of the Sl-signal
signal may affect the e
level of the inhibitor Iinhiior | | whether the signal binds with
\ / the receptor depends on the
L concentrations of both the
the G protein should e signal and the inhibitor
become active if the ¥
receptor binds GP-G protein
an active G protein initiates a
v cascade of reactions that
ey causes the cellular response

88
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eS| p(signal/stimulant) ®ST p(stimulant)

. i Stimulant High Medium Low ST-stimulant | Present Not present
Bl 0.6 0.3 0.1 0.4 0.6
Conditional probabilities N
Sl-signal
* NOW we have anetwork StrUCtu re’ We need to °IN p(inhibitor/signal) ®RE p(receptor binds/signal, inhibitor)
know the conditional probability distributions 6, signal High Medum Low J/ Signal _Inhibitor| Yes  No
+ These are much easier to specify, since they o 08 o5 os | | mnnibior Heh  Medum| o8 op
involve fewer variables and don’t involve Low o1 o1 08 N UETT e I
estimating posterior probabilities. e — — Nedum  Medum| 05 05
° For eXampIe we Only need to knOW Receptor bindg Active Not active l ::gx algctllium 8525 gg
— p(G protein is active | receptor binds) 'S ‘ 5 o R B
GP-G protein
L]
ratherthan . o el s e T e e
— p(G protein is active | receptor binds, inhibitor is high, Gprotein | Yes  No Nature Biotechnology 24(1):51-53. Jan 2006
signal is medium, stimulant is not present ) Active ‘ 08 02 Crsanee”

Not active 0.1 0.9

* We can learn these from data (next section)

)_/'MF.') 20061

Forialexamis el
August §-10,

Eob Crimi

R
_ )be 2006‘ Bayesian network of the cell signalling pathway
b with example conditional probability tables %

89

Compactly expressing the JPD

p(ST,SI,IN,RE,GP,CR) = p(CR|GP)p(GP|RE)p(RE|SI,IN)p(IN|SI)p(SI|ST)p(ST)

p(G protein active | stimulant present)

full JPD has (2x3x3x2x2x2) - 1 = 143 free parameters . Using the sum rule p(X) Z p(X y) and the
s weam ton | [ 4| e Bayes Net JPD has pl"OdL!Ct r_ule pP(Xy) = (le)p(y) we
3 ra ) N Ed | 24free parameters marginalise over the unknown variables:
vy (1+4+6+9+2+2)
B s | e e
wem  |[02 o2 | oe | | memnens e w2n|sil i free parameters for each p(GP = active| ST = present)
o aoi] o8 s g | hae @ 5l 5 CPDp(Xlyy,....y,) are: =2x 2, 2. P(GP = active|RE = x) p(RE = x|IN =y,SI = z)
| T [ ] P(N =y [SI = 2) p(SI = 2| ST = present)
o ol o 2 ,,:w Low  Low 0k |yi|x---x|Yn|x (|X|'1) =0.592

=y For example B¢, p(receptor| inhibitor,signal) p(GP = active| ST = not present) = 0.5048

linhibitor|x|signal|x(|receptor|-1) = 3x3x1 =9
] be zoofﬂ

Fortaleza, Br u||
August §-10. 200

Inference in Bayesian networks ,,




p(stimulant present | signal high)

* |It's often of interest to calculate posterior
probabilities — we use Bayes’ rule

p(ST = present | SI = high) =

p(SI = high| ST = present)p(ST=present)
p(Sl=high|ST=present)p(ST=present) + p(SI=high|ST=absent)p(ST=absent)

= 0.6x0.4 =08
(0.6x0.4) + (0.1x0.6)

Bayes’ rule: p(x]y) = p(y|x)p(x)
P(Y)

Calculating posterior probabilites ,,

t&-10, 2008

Why have you come to ISMB?

* What factors influence people’s decision to
attend ISMB (or not) ?

Academic interest Location
Desire (beach?) Cost/Affordability
Travel paid Paper in

* Which of these are independent
+ Can we draw a Bayesian network?

Naive Bayes classifier attend All independent factors
ISMB
a_cadem|c desire location | |affordability paper tra\(el
interest accepted paid
a_cadem|c desire location | |affordability paper tra\(el
interest accepted paid
attend
Inverted naive Bayes classifier | 1SMB All dependent

94

Bayesian network for ISMB example

paper
accepted
Yes/No
Detriot/Fortaleza
v
academic . travel
) location .
interest paid

Excited/bored Full/Part/None

desire affordability

Want to go/don’t Yes/Maybe/Not

attend
ISMB Yes/No

95

96
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Summary

Joint probability distributions

Basic concepts of Bayesian netowrks
Representation

Inference

* Incorporating prior knowledge

97

Probabilistic terminology

* Prior p(6)
— the prior probability assigned to a parameter,

or to an event, in advance of any empirical
evidence

* Posterior p(6|D)

—the probability assigned to a parameter, or to
an event, on the basis of its observed
frequency in a sample, calculated from a prior
probability by Bayes’ rule

* Dataset D={x},n=1,...,N

99

Learning from data

Learning model parameters from data
Parameter priors
Continuous variables as well as discrete

Point estimates: maximum likelihood (ML),
maximum a posteriori (MAP) estimates

Bayesian learning — model averaging

98

Models with discrete variables
p(@b)| b, b, by p(@b)| by b, by

a;| 1/9 1/9 1/9 a,;10.30 0.10 0.01
ax| 1/9 1/9 1/9 a,| 0.02 0.05 0.15
az| 1/9 1/9 1/9 az|1 0.10 0.24 0.03

Prior model parameters 6 Posterior model parameters 6

prior (model no data) often posterior (model given data)

uniform uninformative can be formed from psuedo-

Dirichlet priors are used. counts of observed
frequencies in example
training data

100
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SNP prediction from Amino Acids

p(dieased|residue,mutant)

A
residue AA mutant AA g - L *
E ||
F
¢} B -
|
effect K
- L [ |
M
. N
* Inverted naive Bayes P m
classifier Q - | R
» Good predictor s -
3
\%
. i l w [ | |
structure important! YL

ACDEFGHIKLMNPQRSTVWY

Example (ISMB BNet revisited)

+ How can we construct conditional probability adoantod
tables for this example?
— Using frequency counts DetriotFortal Yes/No
. etriot/rortaleza

* How does it work? - ~
academic . travel
N location .
interest paid

*  What questions do we need to ask?
— p(travel paid | paper accepted) Excited/bored
p(desire to go| location, academic interest)
p(academic interest)
p(paper accepted)
p(
p(

Full/Part/None

Yes/Maybe/Not
attend
ISMB

— p(affordability|location,travel paid) \

— p(attend ISMB| desire, affordability) Want to gofdon't

+ Compare to building JPD over all variables in
this way!

* Later we will consider how to do this in the
presence of incomplete data

Yes/No

Continuous data
* prior p(0) — estimate of model parameters
0 = (p,0)
\
O
v
__ )_/‘szoofﬂ N

Forialeza, dr lul
August & ]

102

B = p(BJA)
p(B=b)
A=a; | My,04
A=a, | .02

e A=az | U303
ay a as

O2
04

p(bla, p(blay) %3 \_p(blag)

B M2 K3 b

' )be 2006‘ Discrete parent, continuous child,,

Forialeza, dr lul
August & ]
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Learning model parameters

p(DIB)

prior

X XXXKXHRXHK K XXX data

* How do we fit a model to data?

+ Do we measure how well the data fits the model?
or how well the model fits the data?

» Given training data, how do we predict a new

105

Maximum Likelihood estimate
* Likelihood function (for independent observations)
N
L(6) = p(DIB) = 1T p(x,| 6)

* By, is maximum likelihood model parameters

By = arg maxg In p(D|0)
(data given model)

» Predictive distribution
P(X|D) = p(x|6\y)

106

MAP estimate

* Byap IS Maximum posterior model parameters
Buap = @rg maxg In p(6|D)

(model given data) P(€ID) = p(DIe)p(8)
* Predictive distribution

P(X|D) = p(X|Byap)

107

Bayesian learning paradigm

ID) = [p(ie)p(eID)de

(x given model)(model given data)(over all models)
* Key idea is to marginalize over unknown
parameters, rather than make point estimates
— avoids the over-fitting of ML and MAP
— allows direct model comparison

Predictive di
p(x

« Parameters are now latent variables

108
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Bayesian Learning

6 p(D, 8, x) = p(D[B)p(x|8)p(8)

p(DI6) =Tj p(xi(®)

Xy X5 XN X
Predictive distribution:

P(ID) = 515 [P(/E)P(DIBIP(©)d

Model evidence: p(D) jp(D|e)p (6)do

109

Summary

» Methods for learning model parameters
 Benefits of Bayesian learning
» Avoids over-fitting

Review of Bayes Nets

Binding site prediction

Data integration for gene function prediction
Evaluation of firearm evidence

Medical decisions

» Gene cluster analysis

111

110

Binding site prediction

binding site Y/N

O residue interface

hydrophobicity . ASA  electrostatic shape propensity
conservation potential

* Naive Bayes classifier is excellent predictor of
binding site patches on protein surfaces.

b )fM E’) 20 O 6‘ Bradford, Needham Bulpitt & Westhead. Insights into protein-protein

............... interfaces using a bayesian network prediction method. JMB(submittéd)
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H Functional
(M Data Integration _ssewns S
. Genfetif: Physical
Association Association

Expression . Data Noise -
Data Type direct
binding
——
») | U<
K-means @ Hierarchical ‘
Clustering Clustering .
Troyanskaya et al. A Bayesian framework for combining heterogeneous

data sources for gene function prediction (in Saccharomyces cerevisiae).
PNAS, 100(14), 2003

expert derived structure
combining domain knowledge and data 113

Evaluation and combination of
firearm evidence

F: incriminated bullet

i : t llet:
D: distance was fired by suspect X: suspect’s bullets

subscripts:

m: marks relating
to manufacturer

a: acquired
characteristics

Y: Quantity of particles

in a Gun Shot Residue

y: incriminated bullet

Biedermann & Taroni. A probabilistic approach to the joint evaluation of firearm
evidence and gunshot residues. Forensic Science International. 2005

114

Medical Decisions

+ Radiologists have an overwhelming task of
integrating over a breadth of relevant and
diverse data

» Breast disease diagnosis factors:

—age, HRT, family history, calcifications (in a
variety of patterns), mass attributes, asymetric
densities

Burnside. Bayesian Networks: Computer-assisted diagnosis
Support in Radiology. Academic Radiology 12(4). 2005

Gene cluster analysis

Two arrays

Xg.a is the spot that
measures expression
of gene g in array a

Three genes

gene cluster

P(X|GC,AC)

116
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More advanced concepts

Learning from incomplete data
Markov chain Monte Carlo methods
Structure learning

Dynamic Bayesian Networks

» Hidden Markov Models

 Latent variables

» Causality

117

Learning from incomplete data

» Parameters can be learned even when
some variables are unknown in some cases

« Commonly the Expectation-Maximisation
algorithm is used.

EM estimates the missing values by computing
the expected values and updating the parameters
using these expected values as if they were
observed values

The EM algorithm

» EM finds local maxima for MAP or ML
« Starts with 8,a parameter configuration (random)

* lteratively applies the expectation and
maximisation steps until convergence

» E-step. The expected values of the missing data
are inferred to form D, — the most likely complete
dataset given the current model parameters

+ M-step. The configuration of 8 which maximises
p( 6 |D,) is found (for MAP)

119

118

Sampling methods

+ Sampling methods have been used to estimate
the full posterior distribution of the model
parameters in the presense of incomplete data

* Monte Carlo methods such as Gibbs sampling
are extremely accurate (but require lots of
computation, take a long time to converge and
become intractable as the sample size grows)

+ Gaussian approximation is based on the fact
that p(8|D) =< p(D|0)p(6) can be approximated
as Gaussian distribution. With more training data
the Gaussian peak becomes sharper — By5p

120
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Structure learning

» We've seen that we can combine knowledge
about the domain with data

—i.e. get an expert to design a network structure
based on known relationships/ independencies
between the variables

 We can also learn the structure of the model!

— search for good structures which capture the
interactions between the variables, whilst
maintaining a compact model

121

Learning Cellular Networks
© O
% (]
© ©3)

Review article: Friedman, Inferring cellular networks using

123

Structure Learning

» Greedy search
— Iteratively: add, reverse or delete an edge
— Score the structure Sh

» Score functions
— Full Bayesian posterior

— BIC score function
In p(D|S") = In p(D|6;,S") - %2 dIn N

122

Inferring genetic networks

» Constructing a genetic network from microarray gene
expression data by using a Bayesian network.
— agene corresponds to a node (random variable)
— gene regulations are shown by directed edges
— gene interactions are modelled by the conditional distribution of

each gene

* Incorporate prior knowledge from protein-protein
interactions, protein-DNA interactions, gene networks
and literature

» Analysis of Saccharomyces cerevisiae gene expression
data newly obtained by disrupting 100 genes, mainly
transcription factors.

Imoto et al. Combining microarrays and biological knowledge

i

for estimating gene networks via Bayesian networks. CSB %223.
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Dynamic Bayesian networks (DBNs)

« Expression levels tHAt

of genes A, B, C 0‘/0
O\vasO
cA's

Static model — not a BN Dynamic Bayesian network

inhibits

promotes

| )be 2006‘ Murphy & Mian. Modelling Gene Expression Data using
: S [zt Dynamic Bayesian Networks. Tech Report. 1999. 125

Modelling the state of variable X, as a Markov process, with a DBN:

@-—P@—P@ — X; depends only on X4

Hidden Markov Models (HMMs)
HMMs can be represented as
Dynamic Bayesian networks,
with hidden variables.

e Q hidden state is INSERT,
DELETE, or MATCH, and t is the

t doesn't have to be time
HMMs are often used for
@ sequence alignment, where
White nodes unobserved. Shaded nodes observed.  next position in the sequence.

Latent (hidden) variables

 Latent variables can be added to models
to capture additional information or reduce
model size through expert knowledge

127

126

residue
class

residue AA

mutant
class

effect mutant AA

plresiduelresidue class)
\\\\\\\\\\ T

\\\\\\\\\\
ACDEFGH\KLMNPQRST\/WV

p(mutant|mutant class)
\\\\\\\\\\\\\\\\\\\

\\\\\
ACDEFGH\KLMNPQRSTVWV

p(neutrallresidue class, mutant class) p(diseaselresidue class, mutant class)  p(residue class)  p(mutant class)

ret ret et met

rc2 rc2 rc2 me2

met  me2 mel  me2

e A latent variable model.s
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Causality

» The learning of causal relations is
somewhat trickier

 We'd like to determine what effects what,
rather than just what'’s related

» To do this requires the combination of
expert knowledge, and interventions

129

Causal protein-signalling networks

Perturbations
different conditions
Multi-parameter
Flow Cytometry*

[Correlated phospho—]

measures per cell

Datasets of cells Bayesian network Influence diagram of
for each condition analysis measured variables

* measures 11 phosphoproteins and phospholipids in individual cells in each perturbation

)fM b 20 O 6‘ Sachs et al. Causal protein signalling networks derived from
5 multi-parameter single-cell data. Science 308(5721) 200531

X LI
X-Y
No inhibition X | *:. - a
X inhibited s
Y inhibited RS
gH
X-Y
130
Summary

« Handling incomplete data
* Structure learning
* Learning causal relationships

132
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Examples section

» The simple cell signalling example from
earlier, example in Matlab

» An application of Bayesian networks to
learning parameters and structures from
data for predicting functional
consequences of missense mutations

133

Cell signalling pathway
example in Matlab

N = 6;
discrete_nodes = 1:N;

ST=1;SI=2;IN=3;RE=4; GP =5; CR=6;

dag = zeros(N,N);

dag(ST,Sl) = 1; dag= 0 1 0 0 0 O
dag(SI,[IN,RE]) = 1; 001100
dag(IN,RE) = 1; 000 100
dag(RE,GP) = 1; 0000 10
dag(GP,CR) = 1; v wowowow s

0000 00O

We must first setup the Bayes Net Toolbox (BNT) 135

eS| p(signal/stimulant) ®ST p(stimulant)
Stimulant High Medium Low ST-stimulant | Present Not present
Present 06 0.3 041 04 0.6
Not present 0.1 0.2 0.7
Sl-signal
“IN p(inhibitor/signal) ©RE p(receptor binds/signal, inhibitor)
Signal High Medium Low / Signal Inhibitor | Yes No
High 0.6 0.3 0.1 AT High High 0.5 05
" IN-inhibitor
Medium 02 0.2 0.6 High Medium | 0.8 0.2
Low 0.1 0.1 0.8 High Low 0.9 0.1
\ l Medium  High 0.3 0.7
Medium  Medium 05 05
®GP p(G protein/receptor) RE-receptor Medium  Low 08 02
Receptor bindg Active Not active Low High 0.2 0.8
Low Medium | 0.3 0.7
Yes ‘ 09 01 Low Low 0.5 05
No 0.1 0.9
GP-G protein
A I , Bradford, Bulpitt & Westhead.
IR Pl I e et ¢ Inference in Bayesian networks
G protein ‘ Yes No Nature Biotechnology 24(1):51-53. Jan 2006.
) CR-cellular
Active 0.8 0.2 reponse H
Not active 0.1 0.9 3
E
o

Bayesian network of the cell signalling pathway

with example conditional probability tables!34

node_sizes =[233222];

bnet = mk_bnet(dag, node_sizes, 'discrete’, discrete_nodes,
'names’, {'Stimulant','Signal','Inhibitor','Receptor','G protein’,'Cell Res'});

bnet.CPD{ST} = tabular_CPD(bnet, ST, [0.4 0.6]);

bnet.CPD{SI} = tabular_CPD(bnet, SI, [0.6 0.1 0.3 0.2 0.1 0.7]);

bnet.CPD{IN} = tabular_CPD(bnet, IN, [0.6 0.2 0.1 0.3 0.2 0.1 0.1 0.6 0.8]);

bnet. CPD{RE} = tabular_CPD(bnet, RE, [0.50.30.20.80.50.30.90.80.5
0.50.70.80.20.50.7 0.1 0.2 0.5]);

bnet.CPD{GP} = tabular_CPD(bnet, GP, [0.9 0.1 0.1 0.9]);

bnet.CPD{CR} = tabular_CPD(bnet, CR, [0.8 0.1 0.2 0.9]);

engine = jtree_inf_engine(bnet);
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ans = 0.4000 ans(:,;,1)= 0.5000 0.8000 0.9000

0.6000 0.3000 0.5000 0.8000

- ans(:,;,2) = 0.5000 0.2000 0.1000

ans 0.6000 0.3000 0.1000 07000 05000 0.2000
0.1000 0.2000 0.7000

0.8000 0.7000 0.5000
_ the first table above shows the

ans= 0.6000 0.3000 0.1000 conditional probabilities when the
0.2000 0.2000 0.6000 receptor binds, and the second when
0.1000 0.1000 0.8000 the receptor does not bind

ans= 0.9000 0.1000 ans = 0.8000 0.2000
0.1000 0.9000 0.1000 0.9000
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Similarly, what is the probability that the
G Protein is active if the Stimulant not present?
i.e. p(G protein|Stimulant=not present)

evidence = cell(1,N);

evidence{ST} = 2;

[engine, loglik] = enter_evidence(engine, evidence);

marg = marginal_nodes(engine, GP);
marg.T

ans = 0.5048 p(GP = active | ST = not present) = 0.5048
0.4952 p(GP = not active | ST = not present) = 0.4952
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Now we can make inferences!
e.g. What is p(G protein|Stimulant=present) ?

evidence = cell(1,N);

evidence{ST} = 1;

[engine, loglik] = enter_evidence(engine, evidence);

marg = marginal_nodes(engine, GP);
marg.T

ans = 0.5920 p(GP = active | ST = present) = 0.5920
0.4080 p(GP = not active | ST = present) = 0.4080
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BNT functionality

» The Bayes Net Toolbox for Matlab
supports many conditional probability
distributions, inference engines, methods
for parameter learning, and some structure
learning.

* |t is free open source code and is available
from http://bnt.sourceforge.net/
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Missense mutations

* A single nucleotide polymorphism (SNP) is a
mutation (insertion, deletion or substitution)
observed in the genomic DNA of individuals of
the same species.

* When the SNP results in an amino acid
substitution in the protein product of the gene, it
is called a missense mutation.

* A missense mutation can have various
phenotypic effects. Here, we aim to predict
whether a missense mutation has an effect or
no effect on protein function.
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Attributes

effect Effect of mutation on functionality

ac Solvent accessible area of native AA
rac Accessibility relative to maximum accessibility in training set
© bf Normalised B-factor of native AA
|2 nbf  Normalised B-factor of structural neighbourhood of native AA |
é bur Mutant AA is charged AA at buried site

- proline
ifc Native AA is near subunit interface

soti nrent  Phylogenetic entropy of structural neighbourhood of native AA

rent Normalised phylogenetic entropy of native AA

cnsd  Native AA is at conserved position in phylogenetic profile
ncnsd Native AA is near conserved position in phylogenetic profile
uslaa Mutant AA is not in phylogenetic profile

uslby Mutant AA is not in the smallest AA class that includes the

Evolutionary

phylogenetic profile
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Naive Bayes classifier

» Overall error rates 20%
* Area under ROC =0.80

eperforms well when evolutionary information is hidden,
*but poorly when structural information hidden
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Posterior distribution of edges in learned structures

T T T T T T
effect -
ac 4
racH 1
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A simplified Bayesian network

» Three structural descriptors:
— solvent accessible area of the native amino acid
— whether the amino acid is charged at the buried site
— the flexibility of its structural neighbourhood

* No evolutionary information!
» Same performance!
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Learning from incomplete data

1 T

0.9r

o
™

e
3

4
o
T

Area under ROC curve

o
2

Naive Bayes classifier
= = = |earned BN structure S

01 2 3 4 5 6 7 8 9 10 11 12 13 14
Number of missing data in each training case
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Conclusions/Recap

This application has shown that Bayesian networks
— Generalise well to new data
— Parameters can be learned from incomplete datasets
— Predictions can be made with missing data

(through marginalising over the unknown variables)

— Structure learning can produce good compact models
(compared to big fully connected graphs)

— A naive Bayes’ classifier is excellent at integrating
information
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Discussion

149

Bayesian networks

for bioinformatics
An introduction to inference and learning

Many thanks must also go to
Dr Andrew Bulpitt & Prof David Westhead
for their contributions to this tutorial
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