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 1 Introduction 
    
Definition                
Chemoinformatics is a relatively young term, patterned after bioinformatics, still with 

alternative spellings (“cheminformatics”) and declinations (“chemical informatics”). 

Like bioinformatics, the boundaries of chemoinformatics are not well defined and 

may vary depending on people, context, etc. The narrowest definitions tend to 

emphasize drug discovery applications.  For instance, in a recent book, 

chemoinformatics is defined as “the set of computer algorithms and tools to store 

and analyse chemical data in the context of drug discovery and design projects”.  In 

a similar vein (Brown 1998), chemoinformatics is defined as "the mixing of 

information resources to transform data into information and information into 

knowledge, for the intended purpose of making better decisions faster in the arena 

of drug lead identification and optimizaton".  While the emergence and expansion of 

chemoinformatics is indeed  largely driven by the vast quantity of data associated 

with, or generate by, drug discovery projects (e.g. HTS, combinatorial chemistry), it 

is probably counterproductive to  use a narrow definition, and futile to try to precisely 

carve the boundaries of chemoinformatics as a scientific discipline. In our view, it is 

wiser to use more general and broadly encompassing definitions such as: 

“chemoinformatics encompasses the design, creation, organisation, management, 

retrieval, analysis, dissemination, visualization and use of chemical information", or 

“the application of informatics methods to solve chemical problems”, or “the 

intersection of the computational and chemical sciences”. In this broader sense that 

goes well beyond drug discovery, computational chemistry, quantum mechanical 

simulations, retrosynthesis, reaction discovery, molecular docking, compounds 

databases, reaction databases are all examples of topics that fall within the scope of 

chemoinformatics. 

 

Historical Perspective and Comparisons with Bioinformatics 
From an historical perspective, it is also informative to draw analogies between 

chemoinformatics and bioinformatics. In spite of its central role between physics and 

biology, chemistry has remained in a backward state of informatics development 

compared to its two close relatives. Computers, public databases, and large 

collaborative projects have become the pervasive hallmark of research in physics 

and biology. The Human Genome Project, for instance, required collaboration 
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among dozens if not hundreds of scientists across the world. And the resulting 

human DNA sequence, as well as a wealth of other biological information, are 

available for anyone to download from public repositories on the Web such as 

GenBank, Swissprot, the PDB, and PubMed. Virtually every biologist today uses 

publicly available tools, such as BLAST, to search sequence databases and analyze 

high-throughput data. Similar observations can be made in physics with large 

collaborative efforts in, for instance astronomy or high-energy physics. The Web 

itself was born at CERN, a European consortium with over half a century of history, 

and the world largest particle physics laboratory. In stark contrast, large 

collaborative efforts and public databases and software are comparatively absent 

from chemical research.  

 

This is not to say that chemists do not use computers or databases at all. Of course 

they do and chemoinformatics has a long tradition (Gasteiger 2006), but these uses 

have remained limited and somewhat peripheral to the chemical sciences. Suffice it 

to say that to this date there is no publicly available repository of all known 

molecules publicly available and downloadable over the Internet, and no large-scale 

collaborative effort to annotate any significant portion of chemical space. The 

equivalent of BLAST for chemistry remains to be created. 

 

The underdeveloped state of chemical informatics is even more surprising when one 

realizes that chemists were among the first to understand the importance of 

annotated repositories. The Beilstein system was created more than two centuries 

ago. However, most of these repositories have not kept pace with the explosion of 

chemical information, the computer/Internet revolution, and movements toward 

openness in other sciences. 

 

This unfortunate state of affairs and the overall conservatism of the chemistry 

community is unlikely to result from some intrinsic properties of chemistry as a 

science.  Rather, it is likely to be the product of complex historical and sociological 

factors, that may include: (1) the origins of chemistry in, for instance, secretive 

alchemy; (2) the early but large-scale industrial and commercial applications of 

chemistry; in contrast with more recent applications of biology to biotechnology; (3) 

related to (2) is the parallel development of modern computer and genomic 

sciences, as opposed to the early start of chemistry. Finally, in modern times, the 

American Chemical Society has certainly played a role in the current state of affairs 

(Marris 2005a and b, Kaiser 2005a) by controlling and profiting from the 
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dissemination of chemical information through journal and database ownership and 

commercialization. 

 

Development of new informatics methods and algorithms to search chemical space 

requires having access to large corpus of data in order to compute statistical 

properties and detect patterns that can then be used to develop search algorithms 

and other modern datamining methods. In many ways, the state of 

chemoinformatics today recalls the state of bioinformatics a few decades ago, 

before the advent of Genbank and BLAST. The lessons learnt from bioinformatics' 

exponential development over the last few decades strongly suggest that two 

ingredients are essential to develop the chemistry cyberinfrastructure: (1) large 

public data repositories; and (2) the tools to search them efficiently.  

 

Data 
Although the methods to be developed apply to other areas of chemistry, in this 

tutorial we will focus on organic chemistry and small molecules for several reasons. 

Small molecules, containing at most a few dozen atoms and the associated 

chemical reactions, are very important for a variety of purposes in biology, 

chemistry, and other areas. For instance, small molecules occur ubiquitously as 

metabolites during biochemical reactions, and their study is important for 

understanding biological systems (Camilli 2006). Small molecules are routinely used 

as building blocks in chemical synthesis to build more complex molecules (Schreiber 

2000, Agrafiotis 2002), including polymers. Natural and man-made polymers, from 

DNA/RNA, to proteins, to silk and nylon, are made of small molecular building 

blocks. In addition, most drugs consist of small molecules capable of selectively 

interacting with specific proteins (Lipinski2004, Jonsdottir 205). More broadly, 

identifying molecules that can selectively interact with and modify the behaviour of 

particular proteins is fundamental not only for drug design, but also for chemical 

genomics (Schreiber 2003, Stockwell 2004, Dobson 2004). Being able to selectively 

perturb molecular pathways is key to systems biology (Ideker 2001) and our ability 

to reverse engineer, model, and understand these pathways. Finally, huge arrays of 

new small molecules can be produced in a relatively short time (Houghten 2000, 

Schreiber 2000).  

 

In addition to their scientific and technological appeal, small molecules offer also 

technical advantages from an informatics standpoint. The space of small molecules 

is vast and largely unexplored. The current estimates for the total number of small 
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molecules are in the range of 1060 (Bohacek 1996). In contrast, only a few million 

molecules are found in the best current databases. Computers are bound to become 

an essential tool for exploring such chemical space (Baldi 2005). Finally, as we shall 

see in this tutorial, small molecules have simple compact representations that are 

suitable for developing fast search methods. 

 

Over the past three years, a few groups have developed large, downloadable, 

publicly accessible repositories of compounds including, UCSF’s ZINC (Irwin et al. 

2005), NIH PubChem (http://pubchem.ncbi.nlm.nih.gov}), Harvard's ChemBank 

(Strausberg et al. 2003), and UCI's ChemDB (Chen et al. 2005 

(http://cdb.ics.uci.edu). Aggregation and organization of datasets of chemical 

information allows for massive in silico processing that would be impractical or even 

impossible in a traditional experimental setting. In parallel with databases of 

compounds, it is important to develop also databases of chemical reactions.  Here 

again the main databases (e.g.~Beilstein) are commercial, expensive, and of limited 

use for developing large-scale methods, for instance in reaction discovery and 

retrosynthesis. Needless to say, even with a small library of reactions, as reactions 

are applied to a database of compounds, the number of new compounds generated 

grows exponentially, raising important algorithmic challenges both from a database 

and a datamining/datasearching standpoint. 

 

Similarity, Search, and Prediction 
The central notion to developing search methods is the notion of similarity between 

molecules. Similarity is central not only for searching current databases, but also for 

searching virtual compounds, and discovering new reactions and retrosynthetic 

pathways. Similarity between molecules can be defined in many ways and based on 

different representations, ranging from SMILES strings, to 2D graph of bonds, to 

molecular surfaces, and 3 D structures. Creating efficient search tools for small 

molecules is far from hopeless, particularly because to a first degree of 

approximation, by breaking cycles in the 2D graph of bonds, molecules can be 

viewed as small trees. The trees are small because both the number of vertices 

(atoms) in a small molecule is relatively small, and the branching factor for organic 

molecules is small.  Efficient techniques for storing and rapidly searching such data 

structures exist and can be further developed. Different kinds of similarities may be 

appropriate in different situations, and may have different computational costs. 

Efficient search requires combining multiple filters, with different resolutions and 

speeds.  
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Computational methods in chemistry can be organized along a spectrum ranging 

from Schrodinger equation, to molecular dynamics, to statistical machine learning 

methods. Quantum mechanical methods, or even molecular dynamics methods, are 

computationally intensive and do not scale well to very large datasets. These 

methods are best applied to specific questions on focused small datasets. Statistical 

and machine learning methods are more likely to yield successful approaches for 

rapidly sifting through large datasets of chemical information. Similarity is also 

essential, in the form of statistical machine learning kernels, for developing methods 

that can predict the chemical, physical, and biological properties of molecules from 

training examples. This is not too surprising since, given an annotated training set of 

molecules (e.g. toxic/non-toxic), the properties of a new molecule ought to be 

inferred from its similarities to the molecules in the training set.  Good kernels can 

be derived from different molecular representations (1D, 2D, 3D, etc). Spectral 

kernels in particular, counting the number of occurrences of each possible 

substructure, lead to efficient molecular ``fingerprints'' and similarity measures that 

are useful both in database searches and statistical machine learning applications 

(Ralaivola et al. 2005, Swamidass et al. 2005).  

 

In short, the notion of chemical similarity is complex and central to 

chemoinformatics. Understanding, modelling, and measuring chemical similarity are 

central computational tasks from which many applications can be derived.  Thus in 

logical order this tutorial is organized around: (1) molecular compound and reaction 

data and representations; (2) similarity measures, search, and prediction; (3) 

applications, including molecular docking and drug discovery/screening. 
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2 Molecular Models, Representations, and Annotations 
 

Communicating Chemical Data 

Like any scientific discipline, studying chemistry requires the ability to catalogue and 

communicate large amounts of data.  Unlike most disciplines however for which 

such data is restricted primarily to text and numbers, chemistry has the additional 

special challenge of modelling and representing molecules in a consistent manner, 

amenable to communication (Gasteiger 2003).  The standard valence-bond model 

of chemistry with respective 2D depictions is the most commonly used and 

understood representation with which non-informatics inclined chemists would 

naturally communicate.  This model accounts for discrete atoms with lines drawn 

between them to represent bonds, which themselves are abstractions of shared 

electron pairs.  While these 2D sketch representations of molecules are convenient 

and intuitive for chemists, communication and processing, particularly informatics 

processing within a computer, requires the meaning in these graphical depictions to 

be codified into a reproducible representation. 

 

2D Graph of Atoms and Bonds 

The graphical depiction maps very well to a labelled graph model with atoms 

mapping to labelled nodes and bonds mapping to labelled edges.  Note that it is 

common shorthand when depicting organic structures (such as that shown in the 

respective slide) to assume unlabeled nodes as carbon atoms and that hydrogen 

atoms implicitly populate all atoms based on standard valence rules, which indicate 

the expected number of connections (bonds) each type of atom has.  For example, 

the standard valences for common organic elements include 4 for carbon, 3 for 

nitrogen, 2 for oxygen and 1 for all halides (fluorine, chlorine, bromine and iodine). 

 

2D Data Formats 

Assuming a molecule is modelled as such a labelled graph, there are two common 

ways to encode these into a format fit for computer processing.  The first is a graph 

adjacency matrix, or bond matrix for molecules (Dugundji 1973).  Such a matrix M 

has one row and column for each atom in the molecule with each element Mij equal 

to the bond order between the ith and jth atoms or zero if the atoms are not bonded.  

The respective slide shows the graphical depiction of acetamide with sequence 

numbers labelling each atom, along with a respective bond matrix.  Note that this is 

more specifically an example of a bond-electron matrix because the diagonal 

elements further specify the number of free electrons at the atom (2 pairs for 
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oxygen, 1 pair for nitrogen).  This confers useful matrix properties, in particular that 

the sum over a column or row equals the number of valence electrons for the 

respective atom (assuming all hydrogens are also explicitly accounted for in the 

matrix). 

 

The adjacency matrix format is relatively simple and powerful, with some chemically 

meaningful mathematical properties, but in general, it is a very sparse matrix (mostly 

zeros) with size proportional to the square of the number of atoms.  A more compact 

representation would be a connection table that simply lists all of the atoms and then 

only the bonds that exist, referencing the atoms by an index position.  The size of 

such tables will only grow linearly with respect to the number of atoms and bonds.  A 

couple of the most commonly accepted molecular file formats, SDF and Mol2, use 

just such a representation.  While these are very useful and the most widely used 

formats for computer storage and transmission of molecular data, they would be too 

complex to expect a human to systematically read and write. 

 

1D Line Notations 

Line notations, which can describe a molecule's complete constitution and 

connectivity with a single line of text, are desirable to facilitate rapid communication 

of molecular structures, especially in this age over the Internet.  Furthermore, a 

notation that is human readable and writeable would greatly facilitate human 

interaction with any chemistry information system. 

 

A few of the most important such chemical line notations include nomenclature 

systems to assign names to molecular structures (systematic and common), 

SMILES strings that were originally proprietary but have since become the de facto 

standard for much chemical communication, as well as the more recently developed 

InChi standard (http://www.iupac.org/inchi) officially supported by IUPAC (though 

not yet as widely accepted).  The accompanying slide shows a molecular structure 

and the respective line notations for each of the mentioned schemes. 

 

IUPAC Nomenclature 

The International Union of Pure and Applied Chemistry (IUPAC) is an organization 

of chemists that developed a systematic naming scheme for molecules.  The 

accompanying slide depicts the IUPAC standard names for a series of incrementally 

more complex molecules from propane to 2-amino-3-hydroxy-propanoic acid.  This 

is a fairly well established system that should produce unambiguous chemical 
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names, though not necessarily unique names due to inconsistent application by 

different parties.  The more significant problem with the system however is simply 

the extensive and complex nature of all of the naming rules, which makes both the 

composition and the actual length of names for larger complex molecules quite 

unwieldy.  Alternatively, many structures or substructures are known by common / 

trivial names such as the slide example of 2-amino-3-hydroxy-propanoic acid which 

is much more commonly known as the amino acid serine.  Such common names are 

extensively used in communicating chemical and biological information, but 

obviously these do not lend themselves to systematic name translation methods, 

particularly for novel compounds. 

 

SMILES Basics 

SMILES is a chemical line notation in widespread use for communicating structure 

information with chemical informatics services and databases with a relatively 

simple set of construction rules. 

1. Each atom is represented by it's atomic symbol 

2. Bonds are represented by special characters, distinct by bond order 

a. Single bond: - (dash, implicit, need not be specified) 

b. Double bond: = (equals) 

c. Triple bond: # (hash) 

3. Parentheses indicate a structure branch 

4. Matching numerical annotations indicate atoms connected in a cycle 

5. Hydrogens are implicitly assumed based on standard valence rules, though 

they may be specified for non-standard cases such as charged species 

The accompanying slides include several examples demonstrating these simple 

rules.  Additional extensions to the SMILES grammar allows for the specification of 

additional properties such as formal charges, stereochemistry, aromaticity, 

composite molecules and reactions. 

 

Canonical Representations 

Most of the representations discussed so far produce an unambiguous encoding of 

the molecular structure.  That is, given the encoding, we can reliably reproduce the 

molecule that it came from.  However, these have also been non-unique encodings, 

meaning a single structure can produce many different but equivalent encodings.  A 

unique encoding with a one-to-one mapping between structure and encoding would 

be much more desirable when we wish to address questions such as verifying the 
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uniqueness of a molecule amongst a pool of molecules or performing a rapid 

database lookup for a molecule record. 

 

Coming up with such a unique encoding, such as the so-called "canonical SMILES" 

(D Weininger 1989) essentially comes down to finding a unique and consistent 

manner to sequentially order the atoms of a molecule.  For N atoms, there are N! 

such orders (~3.6 million for 10 atoms) out of which a single one must be selected 

consistently.  One important algorithm for accomplishing this effect is the Morgan 

graph algorithm that iteratively labels nodes (atoms) based on their connectivity and 

the connectivity of their neighbors to establish an extended connectivity (EC) value 

for each node.  The nodes can then be sequentially numbered, essentially based on 

their EC ranking, with tie-breaking by atom and bond distinctions.  The algorithm 

works very well in general, though it can be broken by some confounding structures 

with high structurally symmetry.  For practical purposes, the point is that a one-to-

one mapping between molecular structure and computational representation exists. 

 

Stereochemistry / Isomers 

In our discussions of molecular structure thus far, we have really only considered 

the topological connectivity of the molecules, specifying which atoms are bonded to 

which.  In actuality however, atoms will have topographical spatial relationships with 

respect to each other.  This brings us to the issue of stereochemistry regarding 

molecules that have identical connectivity but are not super-imposable in real space 

due to distinct spatial configurations, conferring a "handedness" to molecules. 

 

This primarily occurs in two instances for organic chemicals.  Atoms with at least 4 

distinct connections (typically carbon with a tetrahedral geometry) are not super-

imposable with its mirror image.  Double bonds that have distinct components on 

both ends are not super-imposable on the equivalent structure with constituents on 

one side of the bond flipped.  Note that this is because double bonds resist rotation 

and will normally maintain a fixed planar configuration. 

 

Note that it is very common for chemicals that are otherwise identical except for 

stereochemical configuration to have completely distinct biochemical effects, 

generally because biological receptor structures themselves have non-symmetric 

spatial configurations.  To fully specify a molecule's configuration then, we must also 

label stereospecific atoms and double bonds such as in the isomeric SMILES strings 

found in the accompanying slide. 
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3D Atomic Coordinates 

Beyond even stereochemical configuration, a more complete molecular 

representation would indicate the complete 3D spatial coordinates of the atoms.  

Unfortunately, such complete 3D structures are only known for a small fraction of 

the millions of known molecules with about 300,000 available in the Cambridge 

Structure Database (http://www.ccdc.cam.ac.uk/).  Such coordinates are essential 

for more advanced analysis of physical, chemical and biological properties of 

chemicals however, so many structure prediction packages have been developed to 

fill this gap such as CORINA (J. Sadowski 1994). 

 

4D Conformers 

With respect to bond lengths and angles, molecules are fairly rigid structures.  

However, with respect to torsion angles around single bonds, molecules are quite 

free to rotate.  Different conformations of such torsion angles for a single molecule 

specify different conformers of that molecule.  Specifying any single rigid 3D 

structure for a molecule is thus misleading as it discounts the flexibility of the 

molecule, only accounting for a single conformer.  A more complete representation 

would account for all conformations, but this would be an unmanageable number, so 

a more common approach is to sample several low energy conformations for a 

single molecule. 

 

Molecular Surfaces 

When considering intermolecular interactions, one final representation discussed 

here, the molecular surface, can be especially important.  For intermolecular 

interactions, the "interior" of a molecule is relatively unimportant since the solvent 

and other molecules can never "see" the interior.  Instead, only the solvent-

accessible molecular surface (Richards 1977) and physicochemical properties there 

should be primarily relevant. 

 

Of course, molecules and atoms have no real hard surface in the macroscopic 

sense.  In the microscopic sense, at best they have electron probability density 

isocontours or Van der Waals radii where atomic attraction forces are overtaken by 

repulsion forces.  The accompanying slide demonstrates conceptually how a 

solvent-accessible molecular surface can be constructed.  To begin with, the Van 

der Waals radii for each of the three atoms are traced out in red.  Probe spheres in 

blue representing the standard radius of the solvent (usually a water molecule) are 

used to trace out the surface of the atom Van der Waals radii.  This will mostly 
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correspond to the atomic radii themselves where the probe sphere can contact the 

atoms, but at certain concave areas of the structure, the probe sphere cannot 

completely contact as shown.  Tracing out the border of the probe sphere in these 

regions yields a completed and smooth molecular surface, all of whose points are 

accessible  by the solvent. 

 

Valence Model Limitations 

All of the models discussed thus far have been based on the valence-bond model of 

chemistry with atoms connected by one or more bonds.  However, bonds are only 

models for shared electrons across molecular orbitals and as a result valence-bond 

based models have inherent difficulty modelling certain concepts such as 

aromaticity, resonance and tautomers.  The accompanying slide illustrates several 

pairs of molecules or atoms that are chemically equivalent, despite the fact that the 

valence-bond model suggests they are distinct.  The Representation Architecture for 

Molecular Structures by Electron Systems (RAMSES) (S. Bauerschmidt 1997) is at 

least one computational representation that has been developed to address many of 

these shortcomings by more directly modelling the molecular orbital systems.  

Unfortunately, these have yet to see widespread use and acceptance, probably in 

large part due to the entrenchment of the valence-bond model in chemical 

communication in general, let alone chemical informatics. 
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3 Chemical Similarity and Searching 
The Similarity Problem 

Assessing similarity between chemicals is a fundamental operation in chemical 

informatics. Good measures of similarity allow us to construct meaningful database 

indexes, predict properties of molecules, cluster groups of related compounds, and 

even de-noise screening datasets (Klon, Glick et al. 2004; Camastra and Verri 2005; 

Swamidass, Chen et al. 2005).   

 Similar chemicals have similar properties. Chemicals similar to estrogen are 

more likely to bind estrogen receptor (ER) than other chemicals. We can imagine 

computing similarity between chemicals along several different dimensions with 

varied importance for given applications. We could, for example, measure similarity 

in terms of the size, the shape, the polar surface area, or atom composition. 

Different similarities will have higher correlation with different properties. For 

example, compounds with similar polar surface areas will have similar logP, and 

compounds with similar shapes will tend to bind similar protein pockets. 

So the question now becomes: what are fast ways to compute meaningful 

similarity between chemicals? 

 

The Historical Progression 

Database searching naturally introduces basic algorithms in computing chemical 

similarity. The earliest similarity measures where directed at just this application 

(Daylight Chemical Information Systems 1992). 

One of the earliest ways chemical similarity was the size of Maximum Common 

Substructure (MCS) of the atom-bond graphs of the two chemicals. MCS reduces to 

the subgraph isomorphism problem which is known to be NP-complete in the 

general case.  On chemical graphs, this algorithm normally works in polynomial 

time: tolerable for small datasets. As databases grew in size, a new method, 

structural keys, was used to pre-filter a database before running MCS.  

Structural keys are bitmaps, vectors of ones and zeros. Each bit position in the 

key corresponds with a predetermined structure. If the structure is in the chemical its 

key’s bit corresponding to that structure will be set to one. For example, if the first bit 

corresponds to a benzene ring, this first bit of the corresponding key will be set to 

one. We can now do fast, linear-time comparisons between molecules by assessing 

the similarity between these fixed-length, pre-computed keys. Subset searches on 

well constructed keys correspond well with exact substructure queries. Structural 

keys have the useful the property that the key of molecule A is a subset of the key of 

molecule B if and only if A is a subset of B.   
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Structural keys require us to choose before knowing the application a set of 

structures to look for in chemicals. This is a problem. In some applications certain 

structures are important while in others they are irrelevant. We manually choose the 

structures in the key with our goals in sight. Our key, however, has limited utility for 

other applications. How do we create a general structural key which can be used for 

many different applications? 

Fingerprints were designed be more broadly useful than structural keys. Rather 

than only searching for structures in a predetermined list, chemical fingerprints are 

constructed by enumerating all substructures of a certain size in a given molecule. 

We once again set a bit to one for each substructure observed in a molecule. 

However, rather than finding the bits position from a lookup table as we did for 

structural keys, we compute the corresponding bit’s position by calculating the hash 

value of a canonical representation of the structural key.  While improving the 

generality of structural keys, fingerprints still have the useful the property that the 

key of molecule A is a subset of the key of molecule B if and only if A is a subset of 

B. Fingerprints are the current standard in large molecular database searches. 

Most fingerprint systems sequentially scan all fingerprints in a database to 

answer queries. Newer methods are being developed which can prune these scans 

using bounds on similarity (Swamidass and Baldi 2006). Additionally, Locality 

Sensitive Hashing (LSH) may be the next advance, allowing for O(log n) complexity 

searches of large datasets (Dutta, Guha et al. 2006).  

 

Venn Similarity 

How do we compute similarity between fingerprints? There are many different 

formula which can be used to compute similarity between two fixed length bitmaps, 

Euclidian distance, hamming distance, cosine angle, and more. Two measures of 

similarity for comparing chemical fingerprints arose early on and tend to produce the 

most useful measures of similarity. 

These two standard formulas, Tanimoto and Tversky, can best be rationalized 

with a Venn diagram. The area in common corresponds with the number of features 

found both in chemical A and B, and the area not in common corresponds to the 

features observed in A alone and B alone, then Tanimoto similarity is the 

percentage overlap between the two Venn circles. It is computed as the area in 

common over the total area covered: i.e. the percentage overlap. 
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Superstructure and Substructure Searches 

A molecule is a substructure of another if it is exactly contained inside the other. A 

superstructure is the opposite. If molecule B is a substructure of A, then A is a 

superstructure of A.  Tversky similarity reduces to Tanimoto similarity alpha and 

beta are set equal to one. Choosing alpha and beta correctly allows us to penalize 

the mismatched bits asymmetrically, allowing us to search for substructures or 

superstructures of our query. 

 

2D Graph Substructures 

How are all substructures enumerated? This is an implementation detail. Most 

systems use something like a depth-first search to enumerate all paths of a 

particular length. We can of course, imagine other types of substructures which 

maybe suited for certain applications.  

There are polynomial time algorithms for enumerating all paths if the 

connectivity of a graph is bounded. In the case of chemicals, the branching factor is 

relatively low so we can safely apply exhaustive, exact, algorithms. Even though the 

space of all possible paths is quite large and difficult to count, the number of paths in 

a single molecule is manageable. Fingerprints are all pre-computed and stored in 

the database, so once the index is created, comparisons are linear and rapid. 

 

Mapping Structures to Bits 

For fingerprints, how do we map substructures to particular bit positions? The 

algorithm is simple: 1) find a canonical representation of the substructure, 2) 

compute a good hash value of this representation, and 3) compute the bit position 

by calculating the modulus of the hash value and the length of the fingerprint.  So, to 

construct a fingerprint, we set the bits corresponding with every substructure we 

enumerate. 

 An obvious concern with this algorithm is that sometimes different 

substructures will be mapped to the same bit position. We refer to this conflict as a 

clash. If two substructures we observe clash, we set there bit position equal to one 

(1+1=1). This amounts to a sort of lossy compression of data. Each bit position 

corresponds to a family of unrelated structures.  

 

The Fingerprint Approximation 

So fingerprints can be thought of as a compressed representation of a very long 

structural key. Within certain limits, Tanimoto similarity computed between 

fingerprints approximates similarity computed on this longer structural key. What 
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makes this approximation fall apart? The more clashes the more error. The higher 

the density of ones in a fingerprint, the more error in computing its similarity with 

other fingerprints. 

 

2D MinMax 

Fingerprints as described do not consider the frequency/counts of substructures. So 

no distinction is made between molecules with one benzene ring vs. two benzene 

rings other than a unique path which might cross over both rings in one molecule but 

not the other. It has been shown that measures that appropriately consider the 

counts of substructures correspond more directly with molecular properties. MinMax 

is one of the best performing measures. MinMax is a generalization of Tanimoto 

similarity which incorporates information about the counts of substructures 

(Ralaivola, Swamidass et al. 2005).  

 

Fingerprint Similarity is a Spectral Similarity/Kernel 

Computing similarity between objects is a fundamental operation in Machine 

Learning as well as Chemical Informatics. Kernel methods have been established as 

a powerful method of solving classification, regression, visualization and clustering  

problems (Camastra and Verri 2005; Swamidass, Chen et al. 2005). 

It is important to note that Tanimoto, Tversky (when alpha=beta) and MinMax 

similarity computed between either fingerprints or chemicals are examples of 

spectral kernels. Spectral kernels are a type of similarity computed by 1) 

enumerating all substructures of an object and 2) comparing these enumerations. 

Tanimoto and MinMax similarity are Mercer kernels, therefore they can be used as 

the core of any general kernel methods in order to solve chemical problems. 

 

Normal Distribution of Fingerprints 

What are the statistical properties of fingerprints? What is there distribution? 

Lessons from sequence analysis have shown us that these questions can help us 

design more efficient powerful algorithms. 

 Using a set of 50K random chemicals and plotting the distribution of the 

number of bits sets to one, we can see that fingerprint bit counts are distributed 

approximately normally. 

 

Pruning Search Space Using Bounds 

We can bound the similarity of a given database molecule using a simple formula. 

This bound is dependent on bit count of the query and the bit count of the database 
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fingerprint. If we are only interested in molecules of a 0.9 or greater similarity to our 

query, we can prune most of the database by using the bounds formula. This can 

dramatically accelerate database searches, on average as much as an 8x 

improvement in speed. 

 

Speedup from Pruning 

This speedup depends on the similarity threshold we choose and the bit count of the 

query. The speedup can range from 100-fold to 2-fold speedup. It will never be 

worse than a sequential scan. 

 

Aggregate Queries 

We can imagine situations where we would like to search a database use a group of 

chemicals as the query. For example, we may want to search for all molecules 

which bind ER by querying by all known binders of ER. There are many ways to 

think of constructing this sort of aggregate query. This is an active area of research 

which will hopefully lead to new sorts of more accurate searches. 
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4 Chemical Reactions 
 

Basic Principles 

Reactions represent the dynamic nature of chemistry whereby different compounds 

can interconvert between one another, perhaps yielding energy for biological 

pathways or for constructing an industrial polymer under regulated conditions.  At a 

minimum, specifying a chemical reaction requires identification of the chemical 

structures of the reactants and subsequent products.  Supplementary information 

such as any catalysts used in the reaction, solvent and temperature conditions, etc. 

are not strictly necessary to understand the chemical structural changes that occur 

in the reaction, but can be very useful for building and understanding reaction 

knowledge bases and for practical application. 

 

Given the reactants and products for a reaction, the reaction center is the specific 

substructure of atoms and bonds that are actually rearranged.  More generally, it 

refers to the functional groups of the reactants and how they are rearranged to form 

the products. 
 

Needed Information 

For chemical informatics, a complete reaction specification must include more than 

just the reactant and product structures.  A complete specification must also include 

a mapping between the reactant and product atoms, at least at the reaction center.  

Without this, ambiguous mechanistic pathways for transforming the reactants into 

products could be inferred such as the slide example either showing the hydroxyl 

group directly substituting the bromide or indirectly by adding to the double-bonded 

carbon on the other end. 

 

Furthermore, a complete and correct reaction specification must respect 

conservation of mass in the universe by fully specifying a stoichiometrically 

balanced reaction equation.  That is, over the course of a reaction, no atoms or 

electrons can be created or destroyed.  Unfortunately, "trivial" reactants and 

products such as a water molecule in condensation reactions are often neglected in 

reaction specifications, making it much harder to systematically process them. 

 

Note that for practical chemistry, even more information is necessary including 

reaction catalysts, solvent and temperature conditions, yield, rate and other factors 

that are necessary to reproduce the reaction in a laboratory. 
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Reaction Databases 

While small molecule databases are becoming more common and available today, 

databases cataloguing reaction information are still generally in a poor state.  Most 

repositories consist only of thousands of records, perhaps millions, but in general 

the data has poor consistency.  In particular, the data is often incomplete with 

respect to balanced stoichiometry and reaction conditions (Gasteiger 2006).  Well-

developed, publicly available reaction databases have not been identified by this 

group, though some privately licensed ones are referenced in the literature such as 

the CASREACT and ChemInform RX systems. 

 

To search through reaction databases, at least for the structural component of the 

data, we can reuse many of the same search techniques for simple chemicals.  

Searching for reactions by reactant or product structure is fundamentally no different 

than a simple chemical search.  Alternatively, one can search based on just those 

atoms and bonds which change over the course of a reaction to focus in on reaction 

centers and thus find reactions of similar class. 

 
Virtual Chemical Space 

Once a collection of reaction profiles is known and available in a computational 

representation, this offers us the power to address such problems as exploring 

virtual chemical space.  Searching for chemicals in a database similar to a query 

molecule has already been well established, but consider the target structure 

molecule in the accompanying slide.  No structure in the UCI ChemDB (Jonathan 

Chen 2005) is found to be directly similar to it.  If this were theoretically a very 

important compound however, we could instead search for it in virtual chemical 

space that is just one reaction away from the directly available chemical space 

represented by the database of available chemicals.  We can accomplish this by 

applying the retro form of one of our reactions (Diels-Alder in this case) to produce a 

pair of precursor molecules.  Searching for similar chemicals to each precursor 

independently does yield several similar results.  Reapplying the normal forward 

version of the reaction to each pair of similar results yields theoretical compounds 

that are not directly available in the database, but should be indirectly accessible by 

applying one reaction to pairs of readily available compounds 
 

Knowledge Based Reactions 

Exploring a virtual space of chemicals is one example of the power and utility of 

having these reactions.  The most common way of working with reactions 
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computationally is what we refer to as “knowledge based reactions.”  These 

explicitly specify what functional groups can react with one another and precisely 

how to rearrange the atoms and bonds to form the product.  This specific and 

discrete representation can be convenient for many uses, but has its limitations. 

 
Knowledge Based Limitations 

Even if reaction databases were better developed and curated, a knowledge based 

method requires manual pre-specification of many different reaction profiles to 

achieve any level of generality.  The accompanying slide illustrates 3 example 

reactions, all of which would require a separate reaction profile specification for the 

computer to understand how to process them. 
 

Reaction Discovery 

One reaction research area then is to discover reaction profiles by more general 

principles, with the virtue that this would not be limited to existing knowledge bases.  

Furthermore, if doing so allowed us to discover wholly new and novel reaction 

schemes that chemists haven’t already discovered, this would already be inherently 

useful as a chemist’s tool and could even suggest leads for targeting biologically 

relevant functional groups.  For example, the post-translational modification of nitro-

tyrosine is a known marker for diseases such as coronary artery disease, so if we 

could find a reaction scheme that uniquely reacts with the nitro-tyrosine functionality, 

that could be used to probe that disease system, determine if it is a causative agent, 

and maybe even offer a therapeutic lead if the reaction product alters the disease 

process. 

 

This problem of predicting how two arbitrary chemicals will react is essentially 

solvable with quantum chemical methods, but this is too demanding computationally 

to be done on a large scale.  Systems developed to predict chemical reactions using 

more approximate theoretical concepts such as partial charge and frontier molecular 

orbitals include CAMEO (Julia Schmidt Burnier 1984) and EROS (Robert Hollering 

2000). 

 

We present here a simplified approach to reaction discovery, touching on several 

concepts used in such systems.  To discover reaction profiles from more general 

principles, consider that the very simple reaction profile in the accompanying slide 

involving any four atoms where the bonds just exchange positions already accounts 

for all of the reactions in the previous slides, and in fact about 50% of organic 
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reactions (Johann Gasteiger 2003).  The accompanying slide includes the concrete 

example of an amide bond formation.  Here the carbon, chlorine, nitrogen and 

hydrogen are the four atoms A, B, C and D.  Removing the 2 original bonds and 

exchanging them for bonds in the other direction yields the expected amide product.  

This simple approach has already covered 50% of all reactions, but of course this 

general pprofile has issues. 
 

Generic Reaction Profile Issues 

Allowing any four atoms to exchange bonds in this generic pattern yields many 

unreasonable products like those shown in the accompanying slide.  Furthermore, 

there are many reactions with more sophisticated profiles not covered by this 

scheme such as the Diels-Alder and azide + alkyne aromatic cyclization reactions, 

and others where the reaction involves more than 4 atoms.  As is, these will not be 

covered unless we manually specify more knowledge-based profiles, perhaps 

involving 6 atoms. 
 

Reaction Favorability Scoring 

To address the first issue of unreasonable reaction predictions, we need some 

scoring system to suggest reaction favourability. One such mechanism based on 

thermodynamic favourability is illustrated in the accompanying slide by estimating 

the change in enthalpy of proposed reactions, and only taking those with 

energetically favourable changes.  A simple additive method to do so is to simply 

look up bond-dissociation energies for all of the bonds in the reactants and products 

and assess which side of the reaction is more stable in that respect.  For additional 

robustness, this scoring method can offer stability bonuses and penalties for 

aromatic compounds and compounds with ring strain.  Other schemes that consider 

additional effects beyond thermodynamics such as reaction kinetics provide greater 

accuracy, but quantitative data is much less available. 
 

Pseudo-Mechanistic Reactions 

To address the issue of modelling reactions with reaction centers more 

sophisticated than 4 atoms, we can try a more formal “pseudo-mechanistic” 

approach.  The main addition is introducing the concept of intermediates into the 

reaction predictor.  For example in the accompanying slide, using the same basic 4 

atom reaction profile, instead of directly exchanging the bonds, we first model the 

shifting of the bond electrons to the attached atoms by just applying formal positive 
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and negative charges.  In that case, closing the intermediates to produce the 

product is just a matter of matching + and – charges and closing the bonds.   

 

Thus far, we added an extra intermediate step but still have the same 4 atom bond 

rearrangement profile.  The difference is that we can now allow these intermediates 

to rearrange themselves based on general electron-shifting rules before reclosing 

into products.  The accompanying slide shows an enol with its OH bond opened to 

create an intermediate.  Rather than allowing it to immediately react with another 

intermediate to create a product, we can apply basic electron shifting rules to yield 

an equivalent intermediate since it now has a negative charge (representative of a 

lone pair of electrons) adjacent to an atom with a π orbital double bond.  Putting all 

of these pieces together, many known reactions can be discovered by basic 

principles, including the Diels-Alder and azide+alkyne aromatic cyclization reactions 

depicted in the slides. 
 

Chemical Synthesis 

As a simplified concept, chemical reagents applied to appropriate chemical 

reactants will result in a reaction.  The accompanying slide illustrates a simple 

chemical synthesis pathway, which is simply a chain (or tree) of several reactions 

applied to starting reactants to reach a final product.  An important reaction based 

research problem is to reverse-engineer these synthesis pathways. 
 

Synthesis Design Problem 

A standard setup for chemical synthesis design problems is to be given a desired 

target molecule (e.g., a natural product drug), a collection of readily available 

starting reactants (e.g., a chemical vendor catalog), and known reagents that can 

perform reactions on those reactants (i.e., a reaction database).  The goal then is to 

find a proper combination and sequence of reaction reagents to apply to the 

reactants to generate the product. 

 

Performing an exhaustive search to divine the synthesis pathway by recursively 

applying all known reactions to all available starting material reactants would be 

intractable.  The starting material pool itself could consist of millions of chemicals.  

Alternatively, a retro-synthetic approach (E.J. Corey 1985) starts from the product 

and computationally applies retro-reactions (transforms) to generate precursors until 

it can trace a path back to available starting materials.  Existing packages such as 

LHASA, SECS and SYNCHEM apply this basic methodology (Todd 2004), with the 
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former two calling upon human interaction to guide the pathway search.  Other 

packages like SST and CHIRON attempt the forward direction of search in a sense, 

though only in terms of looking for abstract structural pattern correlations between 

the starting materials and products, not tracing out a specific reaction pathway.  

Other packages like IGOR, EROS and SYNGEN use more formal methods to model 

the reactivity of molecules, lending themselves well to extensions like CAMEO and 

WODCA to predict whole new reaction schemes in manners similar to that 

discussed earlier. 
 

Retro-Synthesis Example 

The accompanying slide illustrates the framework for the retro-synthetic search 

strategy.  Given a target molecule, we apply known reactions in reverse to produce 

several possible precursors.  If one of these precursors is found amongst the 

available starting materials, the search is complete.  If not, we can recursively 

search for a retro-synthesis pathway for the best precursors.  This is comparable to 

a search space with a branching factor of P where P is the number of possible 

precursors generated for each target product.  For large numbers of known 

reactions and large, complex target products, this branching factor can be quite 

large, necessitating heuristic measures to guide the search.  For example, one could 

pursue only those precursor branches where the precursor has greater similarity to 

compounds in the starting material reactant pool. 
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5 Molecular Docking 
 

The Docking Problem 

In this section we consider Virtual Ligand Screening (VLS): the task of identifying 

chemicals, i.e. ligands, in a database which fit into a protein’s binding pocket. There 

are other types of docking, including protein-protein and protein database screening, 

but we focus here on the task of screening a large database of chemicals for activity 

by geometrically fitting them into a given protein cavity.  

Small molecule-protein docking is distinct from molecular modelling. Molecular 

modelling attempts to model feasible atomic trajectories as accurately as possible. 

Current methods require hours, days, or weeks to simulate a single ligand’s 

trajectory into a binding pocket. Docking, on the other hand, can be rapidly 

calculated in minutes for each ligand. This allows tens of thousands of chemicals to 

be docked in just a few days on a cluster. This speed is achieved by simplifying the 

molecular dynamics formulation. Instead of searching for feasible trajectories for the 

whole system in dynamic motion, the ligand is allowed only to rotate bonds and the 

protein is kept rigid. Instead of simulating a trajectory, docking algorithms search for 

a single low energy geometric configuration, or pose. 

 There are two critical modules in any docking program: a search algorithm and 

a scoring function. The search algorithm heuristically searches for the best scored 

poses. The scoring function quickly computes how well a pose fits a ligand into the 

protein’s cavity. These two modules work together to rapidly find low-energy poses. 

 

Challenges 

Screening databases by docking is a challenging task for a number of reasons. The 

search algorithm must robustly find good minima in a high dimension, variable size 

space full of local minima, singularities and sharp curvature. The scoring algorithm 

must robustly and rapidly screen out false negatives and correlate well with 

experimental binding affinity. 

 If we are screening a database for chemicals with activity in a biological 

system, we face additional problems. Experimental binding affinity (pKd) does not 

always correspond with biological activity. For example, but estrogen receptor 

antagonists and agonists bind in the same pocket with high affinity. Each class 

causes different structural shifts in the protein resulting in different biological 

activities. 
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 Docking is designed to answer one question: which chemicals bind this 

protein?  If we find chemicals which bind our protein, we still have more questions to 

answer: what is the absorption rate, the distribution, the metabolism, and excretion 

of the chemical? These questions are collectively referred to as ADME concerns 

and are left unresolved by docking studies.  

 Despite these challenges docking can be useful as a first pass screen for more 

expensive, time-consuming experiments. Limiting experiments to compounds with 

higher chance of binding a protein can reduce the time and cost of discovering new 

drugs. 

 
Scoring Function 

Predicting binding affinity from a single pose is difficult. Many phenomenon are 

simultaneously at play as a ligand binds a protein: electrostatics, hydrophobic 

interactions, desolvation, loss of entropy as bonds are frozen in place, hydrogen 

bonding, protein flexibility, alternate binding positions, cavity accessibility, inclusion 

of precisely oriented active site waters, etc. 

Docking programs do not model binding affinity from first principles. Their 

scoring functions use simplified approximations which can be rapidly computed from 

a single pose.  For example, most programs use grid-based optimizations which 

allow for linear computation of energy at the cost of holding the protein rigidly in 

place. 

  Scoring functions must also screen out false positives with high efficiency. 

Even a low false positive rate can rapidly allow a large number of false positives to 

quickly overwhelm the small number of expected binders. 

 
Search Algorithms 

There are a large number of search algorithms used by docking programs to find 

good binding configurations. Most of them are tuned to the specific details of 

molecular energy functions. For example, many programs treat ligand flexibility 

using ‘incremental construction,’ to first dock in one rigid segment of a molecule and 

then grow out the rest(Ewing, Makino et al. 2001). Other methods include simulated 

annealing and other forms of Monte Carlo simulation(Bursulaya, Totrov et al. 2003).   

 
Docking Programs 

One of the oldest, and most affordable, docking programs is DOCK from Tack 

Kuntz’s lab in UCSF (Ewing, Makino et al. 2001). It is open source software which 

can be run on large clusters of computers for very fast results. 
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 There are number of other programs, some of which seem produce more 

accurate results than DOCK. However, most of them cost quite a bit for yearly 

single-processor licensing and are prohibitively expensive for cluster computing. 

Some of the best are ICM (Bursulaya, Totrov et al. 2003) and Glide (Halgren, 

Murphy et al. 2004). Using DOCK on a cluster to rank a large database of 

compounds and then rerunning the top few results on a slower, more accurate setup 

has been a workable strategy for screening large databases on reasonable budgets. 

Confirming the results of one docking program with the results of another controls 

some types of systematic error (Clark, Strizhev et al. 2002). 

 
Cluster Based Computing 

Docking is trivially parallelized by dividing input files across a large number 

computational nodes. Licensing costs are the typical barrier. For DOCK licensing is 

not per-processor, so we have automated large database runs using a combination 

of bash and python scripting.  PVM and MPI are parallel computing standards which 

can be used to parallelize code, however they prove to be much more complex to 

use and less robust to equipment and software failures.  

 
Visualization 

Viewing docking results is surprisingly challenging. Common molecular viewers like 

SwissPDB Viewer, RasMol, and VMD are not designed to flip through a large 

number of molecules listed in one file. There are two good options: VIDA and 

Chimera. VIDA is free for academics from Open Eyes and Chimera from UCSF is 

free for everyone. Both these viewers have the ability to read a concatenated file of 

molecules and scroll through them one by one. This allows researchers to manually 

assess the quality of particular poses using familiar visualization tools. 
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6 Applications: Drug Screening/Design-A Case Study 
 

Tuberculosis (TB) 

TB is still a real threat. Multi-drug resistant (MDR) TB is difficult to treat and has a 

high morbidity and mortality rate. TB typically infects the lungs but can also cause 

serious infections in bones and even the digestive track. Treatment includes a six-

month course of special antibiotics with undesirable side-effects. Additional drugs 

targeting TB could reduce side-effects of treatment, shorten treatment time, and 

provide physicians with additional therapeutic options for MDR TB. This results of 

this work have been recently published (Lin, Melgar et al. 2006). 

 

The Cell Wall: Key to Pathogen Survival 

TB is difficult to treat because of its mycolic acid cell wall. This cell wall is both a 

shield against most standard antibiotics and the target of effective drugs. Its cell wall 

is especially waxy and densely packed with a number of fatty acids unique to this 

family.  Targeting the biosynthesis of these fatty acids kills TB and can cure the 

disease. 

 

AccD5 

AccD5 is an enzyme necessary for the synthesis of the TB cell wall. It is part of a 

family of Acyl-CoA-ases which elongate fatty acids.  This particular enzyme is 

sufficiently different from human enzymes that it could be used as a drug target. 

 

AccD5 Protein Structures 

One of our collaborators crystallized and solved three different isozymes in the AccD 

family from TB. AccD forms a large halo-shaped hexamer. This structure was solved 

using x-ray diffraction experiments. Each of these enzymes were characterized by in 

vitro experiments showing activity and different specificities for different substrates.   

 

Structure-Based Drug Design 

We used an iterative method to prioritize compounds for experimental assays. For 

the first pass we docked a representative set of molecules from the ChemDB (Chen, 

Swamidass et al. 2005) using both ICM and DOCK into the active pocket of AccD5. 

The top few were assayed. We then searched the ChemDB for compounds similar 

with our confirmed positives and prioritized them based on further docking studies. 

The top few from this iteration were assayed again.  
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Two Strategies 

We used a combination of two strategies to search ChemDB, similarity searches 

and docking simulations. Similarity searches produces compounds which look very 

much like known binders. Docking yields much more diverse results. Combining the 

two strategies heuristically explores the database and biases computation toward 

experimental information about known binders. 

 
Identified Inhibitor 

From these two studies we identified two inhibitors of AccD5. One of which has 

about 5 micro molar inhibition constant and kills about 50% of TB cells in culture at 

about 50 micro molar concentration. Ideally, further iterations of searching will find 

compounds with nano-molar inhibition constants and with favorable ADME. This 

example shows how a combination of docking and similarity searching can be used 

to find novel inhibitors of important protein targets. 
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8 WEB RESOURCES 
 

The following list provides a few pointers and is not meant to be comprehensive in 

any way. 

 

DATABASES, DATASETS, SEARCH: 
Cambridge Crystallographic Data Centre 

http://www.ccdc.cam.ac.uk/  

DrugBank  

http://redpoll.pharmacy.ualberta.ca/drugbank/cat_browse.htm 

eMolecules (formerly Chmoogle) 

http://www.emolecules.com/ 

ChemBank 

http://chembank.broad.harvard.edu/ 

ChemDB and other datasets 

http:/cdb.ics.uci.edu  

IUPAC InChi Website 

http://www.iupac.org/inchi  

Ligand Info (PDB chemical info) 

http://ligand.info/ 

MSD Ligand Chemistry (PDB chemical Info)  

http://www.ebi.ac.uk/msd-srv/chempdb/cgi-bin/cgi.pl 

NCI Data 

http://dtp.nci.nih.gov/webdata.html 

PubChem 

http://pubchem.ncbi.nlm.nih.gov/ 

Standard Datasets http://www.cheminformatics.org/datasets/index.shtml 

http://www.cheminformatics.org/ 

ZINC 

http://blaster.docking.org/zinc/ 
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TOOLKITS: 
Chemistry Development Kit 

http://www.chemistry-development-kit.org/ 

Frowns 

http://frowns.sourceforge.net/ 

Jmol 

jmol.sourceforge.net/ 

OEChem 

http://www.eyesopen.com/products/toolkits/oechem.html 

OpenBabel 

http://openbabel.sourceforge.net/ 

 

VISUALIZATION: 
Chimera 

http://www.cgl.ucsf.edu/chimera/ 

VIDA 

http://www.eyesopen.com/products/applications/vida.html 

 

 

 

MISCELLANEOUS: 
http://www.chemaxon.com/ 

http://www2.chemie.uni-erlangen.de/index.html 

http://www.daylight.com/ 

http://www.daylight.com/dayhtml/doc/theory/index.html 

http://www.eyesopen.com/ 

http://www.tripos.com/ 

 

 



 

 

  

  

 

  

 

 




