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 Outline 

 

Proteomics has become an important approach to analyze biological samples. This 

tutorial will introduce the central problem of searching mass spectrometry data 

against a database. Quantitative proteomics and peptide de novo sequencing will be 

covered as well. This presentation should stimulate the interest of bioinformatics 

researchers in other fields and provide a concise introduction to life scientists. 

 

Part 1 (20 min): Introduction to proteomics. We start by introducing the main 

problems in proteomics: identify proteins in a sample, characterize modified 

proteins, compare samples and quantify proteins. We point out the difficulty caused 

by excessively complex samples with high dynamic range of protein concentrations. 

We then rapidly introduce the concept of mass spectrometry as an analytical 

method. 

 

Part 2 (30 min): Peptide mass fingerprinting (PMF) and MALDI instruments. On the 

basis of the general context presented in Part 1, we introduce and detail a first 

proteomics method. Show a first example with a spectrum and a database search 

result. Explain a basic algorithm for searching PMF data against a database of 

protein sequences. Introduce the notion of scoring function and present classical 

examples, e.g. MOWSE, ProFound, MSA and OLAV-PMF. 

 

Part 3 (20 min): Peak detection. Raw spectrum processing is rapidly covered to 

actually link the somewhat abstract mass lists used for searching databases with the 

signal generated by the MS instruments. 

 

Part 4 (60 min): Complex samples and tandem mass spectrometry. Database sizes 

and sample complexity may limit the usage of PMF. Tandem mass spectrometry is a 

manner to obtain additional information via fragmentation. Explain the principle of 

fragmentation. 

 

Present a schematic abstract mass spectrometer with ion source, fragmentation cell 

and mass analyzer. Present different technologies (collision induced fragmentation, 

post-/in-source decay). Explain on-line mass spectrometry. 
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Several peptide scoring functions are reviewed: MASCOT, SEQUEST, post-

processing of SEQUEST, OLAV-Phenyx. The problem of scoring protein 

identification is then discussed. 

 

Part5 (40 min): Other problems, other approaches. We cover several problems 

which are of great importance in proteomics today: eukaryote genome searches, 

peptide de novo sequencing, differential proteomics via quantitative and semi-

quantitative methods, protein characterization by top-down techniques. 

 

Discussion (30 min).  
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INTRODUCTION 
 
Proteomics is the complete analysis of proteins. Proteomics involve numerous 

technologies and address numerous questions concerning the proteins: 

• What are the proteins contained in a biological sample? 

• What are their concentrations? 

• How their expression changes in various samples? 

• What are their posttranslational modifications (PTMs)? 

• How do they interact with other proteins or molecules? 

 

In this lecture we concentrate on computational aspects of protein identification. 

Characterization (identification of protein modifications), quantification and sample 

comparisons are discussed more rapidly. 

 

The analysis of proteins is much more complicated than the analysis of DNA or 

RNA. The technology available is less mature and more costly, and, mainly, the 

proteins are much more complex and fragile molecules. Nonetheless, there are 

important reasons to study the proteins: 

• Proteins can be modified in many ways by molecules that are bound to them 

(PTMs). Very often, these modifications are essential for the proteins to be 

active. These modifications are dynamically added or removed by the cell 

machinery. Protein spatial conformation may change depending on its 

environment (acidity, presence of water, etc.). It is not uncommon that 

secreted proteins reach their final conformation after having left the cell only. 

All these variations are not defined by the gene sequences. 

• Alternative splicing may generate unexpected gene products that only a 

proteomics analysis may reveal. Recently, experimental evidence of protein 

splicing has been reported. 

• The RNA concentration is not always correlated to the corresponding protein 

concentration. Therefore DNA-chip experiments must be completed and/or 

validated by protein concentration analyses. 

• Important circulating bio-fluids such as plasma are not made of cells and 

therefore studies based on genomics or transcriptomics are not possible. 

Nevertheless, such fluids give a general picture of the organism state – via 

hormones – and may be very appropriate for diagnostic. Moreover, fluids 
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such as plasma (blood) and tears for instance are accessible via non 

invasive techniques. 

• Most of the cell machinery is controlled and effectuated by proteins. Hence 

only the study of proteins can give the full picture. 

 

A typical proteomics project 
Most of the analyses in proteomics start from a biological sample that must be 

properly collected and prepared. Sample preparation is made of multiple stages, 

among the first ones we find the adjunction of protease inhibitors to stop protein 

degradation and maintain the original contents of the sample. Then one generally 

faces the problem that the sample is too complex: it contains proteins at very 

different concentrations. 

 

 

Figure 1: Protein concentrations in human plasma 

 

The technologies available for identifying the proteins cannot deal with extremely 

complex samples without missing most of the low abundant proteins. There are 

various techniques for separating the proteins contained in the original sample and 

for obtaining simpler samples – of reduced complexity – that are more amenable to 

in-depth analysis. 

 

The final analysis, aimed at identifying the proteins, is almost exclusively performed 

by mass spectrometry (MS). Former techniques such as Edman degradation are 

rarely used nowadays. MS produces data that are specific to the proteins analyzed 

and these data serve for database searching or, alternatively, to try to infer (part of) 
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the protein sequences directly. It is also possible to deduce information concerning 

protein concentrations and modifications from the MS data. 

 

Protein separation techniques 

We now review, with limited details, the more frequently used proteomics 

technologies.  

 

Liquid chromatography. The samples analyzed in proteomics are mostly liquids. If 

the sample is not a liquid, e.g. bones, it must be solubilized by using acids for 

instance. Several technologies are grouped under the name “liquid chromatography” 

(LC). A LC station consists of a column (a tube) and a pump that pushes the sample 

into the column. Depending on the column interior, proteins go out of the column at 

different times, depending on their physico-chemical characteristics (hydrophobicity, 

charge, etc.), allowing us to collect simpler samples, the so-called chromatographic 

fractions. 
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Figure 2: Fraction collection principle. Proteins elute from the LC column at different 

times and by collecting column output during time intervals we obtain fractions (sub-

samples) of reduced complexity. In the figure we show how the concentration of 11 

proteins depends on time and the effect of collecting fractions during fixed time 

intervals: not all 11 proteins are in each of the 4 resulting fractions. 

 

Two main categories of LC columns exist: columns filled with a medium that 

influence protein elution speed and columns coated with a solid phase that interacts 

with the proteins. In order for the second category to impose different retention time 

it is generally necessary to mix the original sample with a buffer, which composition 

varies over time. 
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The word ``chromatography'' comes from the fact that, usually, at the end of the 

column there is a chromatographic measurement at a certain wavelength. This 

measurement is made at a wavelength that interfere with peptide bonds or certain 

amino acids and the intensity of the signal provides an information about the amount 

proteins coming out of the column. This eventually allows for estimating protein 

concentrations in the collected fractions. 

 

A few abundant proteins. As already mentioned, it is possible that a few proteins 

represent almost all the protein mass. This extreme abundance hides less abundant 

and generally more interesting proteins. This is typically the situation encountered in 

plasma and serum, where the twelve most abundant proteins (serum albumin, 

immunoglobulins) comprise more than 95% of the total mass of plasma proteins. 

This problem is less dramatic when analyzing cell cultures or certain biopsies. There 

exists chromatographic columns coated with a solid phase containing antibodies 

that are aimed at retaining such abundant proteins by affinity with high-efficiency. 

The final concentration of the abundant proteins is massively reduced and the 

relative abundance of the minor proteins is thus augmented. Despite its obvious 

advantage, this technique has possible drawbacks such as variations in the amount 

of retained abundant proteins, which potentially introduce extra variability in the 

samples, and the risk to retain interesting proteins that interacts with the targeted 

abundant proteins. 

 

Gel filtration chromatography. Proteins are separated according to their size. Gel 

filtration columns are made of a heterogeneous medium that forces small proteins to 

go through a longer path in order to go out of the column than larger proteins. 

Consequently, large proteins elute first from the column. 

 

Ion exchange chromatography. Proteins are separated according to their charge. 

The column is coated with a solid phase carrying charges that interact with protein 

charges. If the sample is mixed with an acidic or basic buffer, there is a competition 

between the column coating and the buffer. As the composition of the buffer 

progressively changes from acidic to basic or vice versa, proteins are unbounded 

from the column coating differentially, see Figure. 
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Figure 3: Ion exchange column. The different elution times are obtained by 

changing the buffer and hence modifying the competition between the buffer and the 

column coating to bind to proteins, depending on proteins charge. Hence the 

separation according to the proteins charges. We also represent the chromatogram 

as generated by the detector (A). 

 

Reverse phase chromatography. Proteins are separated according to their 

hydrophobicity by a principle similar to the ion exchange chromatography, i.e. 

competition between column coating and the buffer. 

 

2D Gels. Two dimensional electrophoretic gels (2D gels) is an old technique for 

separating proteins that is still used today as it has some unique features. It is not 

a liquid chromatography technology. The principle of 2D gels is to first separate 

proteins by their isoelectric point (pI). The isoelectric focusing (IEF) concentrates 

proteins at their pIs and allows proteins to be separated on the basis of very small 

charge differences. Under the influence of an electric field, a protein moves in a pH 

gradient until it reaches the position where its net charge is zero (pI). IEF is 

performed in strips that are then deposited at one side of a rectangular 

polyacrylamide gel. The second dimension of separation is obtained by separating 

proteins according to their length in a direction orthogonal to the IEF strip. Sodium 

dodecyl sulphate (SDS) is an anionic detergent which denatures proteins by 

"wrapping around" the polypeptide backbone. SDS confers a negative charge to the 

protein in proportion to its length. The application of a second electric field achieves 

the second separation. 
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Figure 4: A typical 2D gel. 

 

After migration, the proteins in the gel are stained to make them visible, see 

Figure 4. Gels are scanned and imaging techniques are used for detecting the 

spots. The coordinates of the spots are transmitted to a robot called a spot picker 

that cuts the gels to collect small pieces corresponding to the spots. These spots are 

simpler samples that are further analyzed by MS as chromatographic fractions 

would be. 

 

Semi-quantitative information can be extracted from 2D gel images and it is possible 

to compare gels obtained from several tissues to do sample comparisons. 

Nonetheless, 2D gels are very difficult to make reproducible. Moreover, the amount 

of material (proteins) that can be loaded on a gel is limited and the problem of 

samples where a few abundant proteins constitute 95% of the protein mass is 

difficult to address with gels only. We mention one last limitation of 2D gels, the pI 

and MW range in which they work well is limited and hence part of the proteome is 

not amenable to 2D gels analyses. 
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PEPTIDE MASS FINGERPRINTING 
 

 

Introduction 
 

When one wants to search a database of protein sequences to identify proteins 

contained in a sample, it is necessary to have data that are specific to the proteins. 

Since we use MS, a first natural choice would be to use protein masses. This option 

does not allow identifying proteins uniquely because: (1) MS instrument precision is 

not absolute and several distinct proteins can have very close masses; (2) proteins 

are generally modified and not only one possible mass is associated to a protein but 

a list of possible masses, thus reducing further data specificity. We conclude that the 

protein mass is not specific enough, although it may be used as additional 

information to facilitate database searching. 

 

There exist highly-reliable enzymes, such as trypsin or chymotrypsin, that cleave at 

specific locations and yield peptides of reasonable size, e.g. an average of 10-12 

amino acids for trypsin. As the cleavage sites are amino acid sequence specific, the 

masses of the peptides are somehow correlated to the original protein sequence. 

 

Identifying proteins on the basis of the masses of their peptides is called peptide 

mass fingerprinting (PMF). PMF is only possible for very simple samples because 

when numerous proteins are mixed together, the masses of all their peptides no 

longer constitute a specific set of data. There are too many masses in the spectrum 

and, as we do not know in advance which peptide masses correspond to distinct 

proteins, we have to use them all when comparing to protein sequences taken from 

a database. This increases the rate of possible false identifications. Moreover, ion 

suppression effects and instrument resolution limit the number of detectable 

peptides by favoring the most intense signals. Consequently, PMF is a technique 

that is used mainly in combination with 2D gels, whose spots contain 1-2 dominating 

proteins only. The classical instrument for doing PMF is a MALDI-TOF instrument. It 

is described in the next chapter. 

 

Searching a database 
 

The principle of searching a database with PMF data is as follows. Given a list of 
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experimental peptide masses L (obtained from an experimental spectrum), apply the 

enzyme cleavage rule to the database protein sequences, compute the mass of the 

theoretical peptides and compare with L. 

 

The first two steps in designing a database search engine are hence in silico 

enzymatic digestion and peptide mass computation. 

 

Theoretical digestion. The most frequently used enzyme in PMF is trypsin. The 

generic rule for trypsin cleavage is: cleave after lysine (Lys, K) or arginine (Arg, R), 

provided it is not followed by a proline (Pro, P). Although trypsin is efficient in 

cleaving proteins, it happens that some cleavage sites are missed. Such locations 

are called missed cleavages. Since multiple copies of the protein are digested 

simultaneously, it is possible sometimes to observe both perfect cleavages and 

missed cleavages. Therefore, all cases must be considered in the theoretical 

digestion. 

 
Protein: MC*TM*ACTKGIPRKQWWEM*MKPCKADFCV 

Tryptic digestion (peptide, start, stop, nmc, mass): 

MCTMACTK          0    7    0    960.353715 

QWWEMMKPCK       13   22    0   1381.598105 

ADFCV            23   27    0    553.220625 

MCTMACTKGIPR      0   11    1   1383.613105 

MCTMACTKGIPRK     0   12    2   1511.708065 

GIPRK             8   12    1    569.364915 

GIPRKQWWEMMKPCK   8   22    2   1932.952455 

KQWWEMMKPCK      12   22    1   1509.693065 

KQWWEMMKPCKADFCV 12   27    2   2044.903125 

QWWEMMKPCKADFCV  13   27    1   1916.808165 

Figure 5: Theoretical digestion. (nmc) is the number of missed cleavages. Modified 

amino acids are indicated by an asterisk at their right-hand side (C is modified by 

iodoacetamide +57Da, M is oxidized +16Da). 

 

Peptides with one missed cleavage are not uncommon (typically 25% of the 

peptides), whereas peptides with two or more missed cleavages are less frequent. 

they are also larger and may be difficult to ionize thus giving a weaker signal in the 
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spectrum. It is customary to consider peptides with one missed cleavage maximum 

only when searching a database. 

 

Mass computations. Because of the peptide structure represented in Figure 6, to 

compute the mass of unmodified peptides is straightforward: add the individual 

amino acid masses and the mass of a water molecule. As a matter of fact, there is 

an extra hydrogen at both the C-and N-term sides, and an extra oxygen at the C-

term side. 

 

 

Figure 6: Peptide structure and mass computation. 

 

As we already mentioned, proteins can be modified by PTMs or by chemical 

reagents such as the ones used for suppressing di-sulfur bonds between cysteines. 

The modifications are linked to specific amino acids in the protein sequence and the 

mass of these amino acids must be modified for computations. 

 

Two types of modification must be considered. Fixed modifications are always 

present, i.e. the mass of the modified amino acids can be replaced by the original 

mass corrected by the mass delta (positive or negative) due to the modification. For 

instance, the reagents normally used for breaking di-sulfur bonds are very efficient 

and we can consider that every cysteine is modified always. Carboxyamidomethyl 

cysteines (Cys_CAM) have a mass augmented by 57.02146 Da, i.e. their mass is 

103.00919+57.02146=160.03065 Da. 

 

Variable modifications are not always present and as we compute the theoretical 

masses of peptides we have to consider every possible combination. For instance, 

the oxidation of methionines is a typical variable modification that adds 15.9949 Da. 

Given a peptide sequence 'ARMTHLLMK' we must compute 4 theoretical masses 

H-NH-CH-CO-NH-CH-CO-…-NH-CH-COOH

CH2-R1        CH2-R2-mod    CH2-Rn 
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because there are two variable modification sites. When several variable 

modifications are taken into account simultaneously, the combinations to compute 

include all possible modification sites and their number grows very fast. 

 

Scoring function 
 

As we already explained the common method for searching PMF data against a 

database of protein sequences consists in digesting the protein sequences in silico 

and then in comparing the theoretical and the experimental masses. This 

comparison involves a scoring function, which role is to measure the correlation 

between experimental and theoretical data. 

 

The most obvious PMF scoring function is of course the so-called shared peak 

count, i.e. to count the number of matching theoretical and experimental masses 

given a certain instrument precision. The instrument precision is specified as a mass 

tolerance Delta and two masses within a distance Delta are considered as identical 

(match). Delta can be expressed as an absolute mass error in Da or as a relative 

mass error in ppm. Since MALDI – and other – instruments mass precision 

diminishes with increasing masses, a relative error tolerance is more appropriate 

generally. 

 

To associate a score to every protein in the database is one initial task of database 

searching. The next task is to decide which protein(s) is(are) the correct one(s) or to 

associate confidence levels to the protein identifications found in the database. This 

second task requires choosing a specific method for estimating the confidence 

levels and, obviously, its performance will be influenced by the performance of the 

scoring function. A good scoring function already discards many false positive 

protein identifications by giving high scores to the true positive ones. 

 

MOWSE score. The MOWSE score is a heuristic PMF score that is used – slightly 

modified – by Mascot PMF search engine. It is based on a model of the typical mass 

of peptides. By using a database of protein sequences, we learn the typical number 

of enzymatic peptides in mass windows of 100 Da depending on the intact protein 

mass (the protein mass may eventually bias the distribution of peptide masses); 

protein mass window size is 10 kDa. 
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When a database is searched, after the list of matching experimental masses has 

been established for a given mass tolerance, the principle of MOWSE score is to 

compute the score s by combining a quantity similar to a likelihood, a scale factor 

and the protein mass: 

 

 

The protein mass Mp reduces the score to limit the influence of large theoretical 

mass lists caused by large proteins, e.g. nebuline. The sort of likelihood is used as a 

divisor such since more peculiar peptide masses are assumed to bring more support 

to protein identification. 

 

MSA score. The heuristic MSA score is based on the observation that properly 

calibrated experimental masses should not deviate too much from the theoretical 

masses. It also includes a requirement that the protein sequence coverage should 

be as high as possible to validate protein identification. 

 

When comparing the experimental masses with the theoretical masses of a 

database sequence, MSA applies two successive re-calibration steps and too far 

experimental masses are removed from the set of matched masses progressively. 

The standard deviation of the mass errors of the finally matched masses is used as 

an indicator of the match quality (the smaller the better). The number of matched 

masses n, as well as the sequence coverage in percent g, are the two other 

elements of a heuristic scoring function: 

                                                  
gn

Z 2
500100
σ
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Reliable protein identifications should yield scores larger than or equal to 99. 

 

ProFound score. ProFound is a popular commercial search engine for PMF spectra. 

The score used by this engine is derived via a Bayesian approach. For a given 

database sequence, we are interested in computing the probability that this 

sequence corresponds to the experimental spectrum at hand. The derivation of 

ProFound’s formula relies on standard combinatorial arguments (probability to 

match n masses in a set of m theoretical masses, etc.) and assumed Gaussian 

mass errors. 
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OLAV-PMF score. The previous scoring functions do not include any physico-

chemical properties of peptides in their underlying models. To improve over these 

scoring functions, it is important to introduce more complicated models aimed at 

capturing certain trends of peptide ionization. The price to pay is a model with more 

parameters, that must be trained for specific sample preparation conditions and 

MALDI instrument settings. 

 

Another point which is not considered by the previous scoring functions is that the 

best statistics in an hypothesis test is often a likelihood ratio. Therefore, we 

introduce a family of scoring functions that are both designed as likelihood ratios 

and that model certain properties of peptides such as observed modification and 

amino acid composition. We also model protein sequence coverage. 
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RAW SPECTRUM PROCESSING 
 

Introduction 

 
In this chapter we explain how masses can be obtained from the experimental 

spectrum acquired by the MS instrument. We primaliry illustrate that in the case of 

peptide masses measured by a MALDI-TOF instrument. The masses extracted from 

a spectrum compose the mass list and they are the input data of database 

searching. 

 

MALDI-TOF 
 

The classical instrument for doing PMF is a MALDI-TOF instrument. The principle of 

MALDI is as follows. The sample to analyze (a digested gel spot) is mixed with a 

reagent named a MALDI matrix. This mixture is then deposited on a metallic plate 

and crystallized (in vacuum). A laser is used to turn the sample into a cloud of 

ionized peptides that are accelerated by a constant electric field. The ions are 

charged positively by the gain of one proton and they fly along an empty tube. The 

masses of the peptides are determined by the time needed to reach the detector at 

the tube extremity, hence the name time-of-flight (TOF). 

 

Peak Detection 
 

To obtain good quality mass lists, which obviously facilitate database searching and 

the solution of other problems in computational proteomics, it is of prime importance 

that the processing of the mass spectra is properly done. This is the role of peak 

detection or peak picking software. Such software generally comes with the 

instrument and is provided by the instrument manufacturer since it is convenient that 

it is integrated with software controlling the instrument and data acquisition. 

 

The signal acquired by the instrument is a sampled continuous signal that contains 

chemical and electronic noise. The masses to determine correspond to the top of 

the major peaks, whereas small peaks are the contribution of chemical (slow 

oscillation of roughly 1 Da frequency) and electronic (rapid oscillation) noises. 
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Each atom that composes a peptide may have isotopes, i.e. supplementary 

neutrons in its nucleus that augment its mass by 1.00728 Da. The probability to 

have isotopes is specific to each atom and consequently, the probability to have 

isotopes is specific to each peptide, depending on its atomic composition. Multiple 

copies of each peptide in the instrument cause a peptide signal made of several 

peaks. The extra peak due isotopes must be removed from the mass list before 

database searching. 

 

One method of peak detection consists in (1) recognizing the individual peaks (to 

build the so-called peak table), and (2) de-isotope. An ad hoc algorithm first 

localizes potential peaks, which are subsequently more precisely determined by one 

of the following common methods: 

 

• Finding the m/z value where the slope is equal to zero (pre-smoothing 

mandatory). 

• Finding the m/z value where the signal is the most intense, i.e. the apex (pre-

smoothing would be wise). 

• Computing the centroid, i.e. the m/z value where half of the area under the 

peak is reached. 

• Fitting the spectrum peak to a theoretical model of a peak with shape 

parameters such as signal intensity, width, baseline. A Gaussian is generally 

appropriate for that. 

 

De-isotoping of the peak table can be achieved by looking for peaks at one Da 

distance with reasonable relative intensities and grouping them. Such a task may be 

done by applying heuristic rules or by introducing a scoring function that measures 

the quality of alternative peak groups in order to optimize the de-isotopization. 

 

Instead of first processing the peaks independently and then grouping them, it is 

possible to define a notion of peptide signal pattern and to look for all the isotope 

peaks of a peptide simultaneously. 
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TANDEM MASS SPECTROMETRY 
 

 

Introduction 
 

When we introduced the technique of peptide mass fingerprinting we explained that, 

due the enzyme specificity, the set of masses of enzymatic peptides constitute a 

much more specific data set for searching a database compared to the sole protein 

mass. Tandem mass spectrometry can be introduced in a similar way: There exist 

techniques to break peptides into smaller molecules, the so-called fragments, and 

because such fragmentation processes are governed by certain rules the set of 

fragment masses constitutes a more specific data set compared to the sole peptide 

mass. 

 

On-line mass spectrometry 
 

Today, the main two techniques for protein/peptide ionization are MALDI and 

electro-spray (ESI). ESI works in liquid phase and thus it can be combined with an 

LC column for peptide separation in order to analyze relatively complex samples. 

This is not possible with MALDI that requires more or less one protein per sample.  

 

Fragmentation cell 
 

A classical technique to induce peptide fragmentation is to use an inert gas such as 

helium to create collisions with the peptides. Such a technique is named collision 

induced dissociation (CID), note that the word fragmentation is sometimes replaced 

by dissociation. 

 

Mass analyzer 
 

We already described TOF detectors that generally yield high-resolution and good 

mass precision.  Another widely used technology, though less precise usually, is 

quadrupole ion filters. Fourier transform ion cyclotron resonance provides high mass 

accuracy (1 ppm). Finally, ion trap mass analyzers deliver medium precision (500 

ppm) but are very versatile and robust instruments. They dominate the market 

today. 
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The fragmentation spectrum 
 

The fragmentation of peptides follows certain rules. Would it not be the case, we 

could not use the fragment masses as specific data for identifying the peptides. A 

situation that is similar to the rules for enzymatic digestion and peptide mass 

fingerprinting, although fragmentation is governed by more stochastic rules. 

 

 

Figure 7: Schematic view of the generic fragmentation locations in a peptide. 

Fragments of type a, b, and c are N-terminal fragments, i.e. they include the N-

terminal side of the peptide, whereas x, y, and z are C-terminal fragments. 

Fragments of type v, w, and d include part of the side-chain and their are only 

created by high-energy collisions. They may be used for distinguishing between 

isobaric amino acids such as leucine and isoleucine. 

 

Since fragments of a given type always include the same atoms between residues, it 

is possible to compute their theoretical masses by summing the amino acid masses 

and by applying a correction for the atoms. 
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Figure 8: Example of fragment masses. 

 

A given type of instrument does not produce all the type of fragments usually, only a 

limited number of them a clearly detected in the MS/MS spectrum. Abundant 

fragment ions of tryptic peptides in most spectrometers are b and y. Fragments of 

type a yield weak signals and c, x, and z fragments are barely produced under 

normal conditions. 

 

Multiply charged peptide (precursor) ions may generate multiply charged fragment 

ions. It is hence useful to be able to compute multiply charged fragments theoretical 

masses: add one proton mass for each extra charge and divide by the charge. 

 

 

Figure 9: Doubly charged fragment masses. 

 

For tryptic peptides the most common multiply charged fragments are doubly 

charged fragments. Triply charged fragments a normally observed for large peptides 

only and quadruply charged fragments are such low abundant that their signal is 

hidden by the noise. Recall that to observe fragments with charge z the peptide 

must be charged at least z times. 

 

During the fragmentation process, certain residues (serine, threonine) may loose 

water or ammonia. Since such losses are not systematic we eventually may want to 

consider all combinations of losses. Moreover, since not all the residues may have 

loss, not all fragments may loose water of ammonia. For instance, to loose two 

water and one ammonia molecule, a fragment must include in its sequence at least 

two of S and T and at least one of N, Q, R. 
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Modified peptides 
 

When a peptide is modified there is not only an impact on the peptide total mass, 

where the total mass of all the modifications must be added, but also the fragment 

masses are modified. Since a modification is bound to a specific amino acid of the 

peptide, the fragments that do not include this amino acid have their original mass 

unchanged. On the contrary, fragments that include the modified amino acid have 

their mass augmented by the modification mass (which may be negative). 

 

Internal fragments 
 

It may happen that fragments of the precursor re-fragment thus producing internal 

fragments, i.e. fragments that neither include the N- nor the C-terminal sites of the 

peptide. Normally such internal fragment are low abundant and they do not 

contribute to the observed spectrum significantly. A special type of internal 

fragments named immonium ions, resulting from y/a fragmentations, and which only 

include one residue, produce a detectable signal for certain residue. They are not 

detectable by every type of instrument but, when visible, they usefully give 

information about the peptide composition as they have fixed masses depending on 

the residue only. 

 

MS/MS database search 

 

The principle of searching a database with MS/MS data is similar to PMF database 

search. The main two differences are that we identify peptides (we do not identify 

the proteins directly) and we often do not know the charge state of the peptides (we 

only know the m/z of the precursors and the corresponding MS/MS spectra). 

 

A simplified algorithm for searching a database is as follows: digest each database 

entry, compare peptide masses with experimental peptide masses, in case of match 

compute the theoretical fragmentation spectrum and determine a score. At the end 

of the database scan, the peptide identifications are grouped into protein 

identifications. A protein score is eventually computed. 
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MS/MS scoring functions 
 

Shared peak count. Same as for PMF but count the fragment peaks. 

 

Mascot score. Mascot developers (for MS/MS) never described their scoring 

function but they recognize that it is an adaptation of MOWSE score to 

fragmentation spectra. That is the parameters of the scoring function are trained to 

learn the probability to observe a fragment of a given mass given the mass of the 

precursor peptide ion. Some additional and proprietary preprocessing is applied to 

the experimental spectrum to normalize peak intensities and detect noise level. 

 

SEQUEST score. SEQUEST scores are not based on a model but it rather rely on a 

heuristic approach. Namely, an initial and purely heuristic score is computed and the 

n best peptides found in the database are re-scored with another more sophisticated 

scoring function. The first purely heuristic scoring function takes into account the 

number of matched ions, their intensities, the consecutive matches in a series, and, 

if applicable, the presence of immonium ions. The second scoring function creates 

an artificial spectrum from the theoretical fragment masses and gives intensities to 

the peaks. This artificial spectrum is then compared via a cross-correlation function 

to the experimental spectrum. 

 

OLAV score. The general approach here is, as in the PMF case, to design the 

scoring function as a likelihood ratio and to consider informative patterns that may 

be observed from the comparison of theoretical and experimental masses. We use 

the probabilities to observe each ion type with a given instrument, a HMM scores the 

consecutive matches, a model of typical intensity distributions scores the observed 

intensities, and there are also components of the score that depend on the amino 

acid founds at the ends of the fragments. 

 

Protein identification 
 

Besides peptide identifications we are interested in the proteins present in the 

biological sample. Therefore, peptide identification can be regarded as an 

intermediary step towards protein identification usually. To obtain reliable protein 

lists based on reliable peptide lists is not as straightforward as it might seem since 
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several complications occurs. A first problem is caused by peptides shared by 

several proteins, variants or paralogs: 

 

 

Figure 10: One example of ambiguous protein identifications. It is impossible to 

decide which of protein A alone or B+C or A+B+C should be considered as 

identified. Other such problematic patterns exist. 

 

Errors in sequence databases can cause wrong identifications and redundancy is a 

source of multiple identifications or ambiguous cases such as in Figure 10. The 

situation is even more complicated if several databases are considered for 

identification. We typically have to assign them different reliability levels. 

 

Two solutions exist for producing protein identifications. The first one is to simply 

rely on a set of empirical rules such as a certain number of required distinct 

peptides, thresholds on peptide scores, multiple occurrences of the protein in 

different LC fraction in case of protein separation, etc. Alternatively, we can compute 

a protein score and set a threshold on the latter. Protein score computation is 

usually performed by using a probabilistic model and by including in the model 

elements related to the empirical rules of the score-free approach. 

 

Independent of the method used for obtaining protein identifications, the aim is to 

obtain a list of reliable identifications, where each set of proteins that are identified 

by the same peptides is reported as a group with one representative protein 

sequence. Ambiguous identifications can be reported additionally or discarded. 
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OTHERS 
 

Peptide de novo sequencing 
 

So far we identified MS data by searching a biological sequence database but there 

are situation where such a database is not available or not appropriate. A classical 

example is the analysis of a sample coming from an organism whose genome is not 

completely sequenced. If a significant proportion of the gene products are still 

unknown for this organism then to search known sequences will not explain much of 

the MS data. A more difficult example is the case where peptides are modified in an 

unexpected manner and hence are not found via the variable modifications allowed 

in the database search. To consider all possible modifications is not feasible and 

thus a method that would predict part of peptide sequences – the non modified parts 

– would allow to recognized candidate peptides from the database and then a 

dedicated processing could reveal the modifications. 

 

To predict the peptide sequence from the MS/MS spectrum directly – de novo 

peptide sequencing – is a difficult problem and to predict short reliable parts of the 

sequence, the so-called sequence tags, is more realistic. The latter sequence tags 

can then be used as an incomplete but reliable sequence or they can be used for 

searching a database by allowing mismatches. Sequence tags of several peptides 

from the same protein identify the protein specifically. 

 

To predict sequence tags can be achieved through several methods. Typically three 

main approaches can be identified: (1) heuristic methods; (2) graph theoretic 

algorithms; (3) MCMC algorithms. 

 

Heuristic methods build solutions by enlarging previous solutions and code for many 

empirical knowledge of peptide fragmentation. Graph theoretic algorithms first 

translate the problem into a directed acyclic graph problem by representing every 

experimental mass as a node and by linking nodes with a mass difference close to 

an amino acid mass. The predicted peptide sequence is then a “longest” path in the 

graph. MCMC algorithms optimize a MS/MS scoring function over the space of all 

possible peptide sequences. 
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Direct genome searches 
 

Proteomics provides experimental data that can be used for further annotating 

genome sequences, thereby complementing existing annotations, which are 

obtained in silico partially. New genes, new exons, and new splice variants can be 

recognized by this technique. 

 

When dealing with a eukaryotic genome the main difficulties are the size of the 

search space – the translated human genome yields 7 billions amino acids – and 

intronic sequences that break the continuity of the coding sequence. 

 

The extremely large size of the search space forces us to use stringent thresholds to 

avoid a myriad of false positive peptide identifications, thereby causing many false 

negatives. This limitation can be attenuated by improving MS/MS scoring functions 

and by introducing alternative search strategies: search gene predictions first or 

combine with peptide de novo sequencing. 

 

 

Figure 11: ROC curves for ion trap data illustrating the increase of false positives as 

the database size grows. Doubly and triply charged peptides searched against the 

human part of swiss-prot, all gene predictions obtained by genescan and hmmgene, 

and the translated human genome. All the peptides in the dataset are contained in 

one exon only. 
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To get rid of the intronic sequences and identify peptides that are across several 

exons requires to couple gene structure prediction with MS data identification. Such 

algorithms exist and can be applied without causing much additional false positives. 

 

 

Figure 12: Tryptic peptides in the translated amino acid sequence do not coincide 

with splice site necessarily. Spliced peptides are coded across two exons or more. 

 

 

Figure 13: Additional spliced peptides can be found by locally refining a regular 

genome search through splice sites prediction. Results for a standard ion trap 

instrument, a linear ion trap coupled with a Fourier Transform instrument for exact 

parent mass acquisition yields spliced peptides identifications without additional 

false positives. 
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Differential proteomics 
 

The implementation of differential proteomics analysis of biological samples can be 

achieved by several techniques. Classical semi-quantitative methods involve the 

comparison of 2DE gel images and spot volume computations. More recently, these 

methods have been complemented by DIGE staining, a technique that allows to 

stain up to three samples and then to pool them before 2DE gel production. By 

examining the gel at different wavelengths it is possible to compare the samples. 

 

Nowadays a lot of comparative studies are performed without gels and they apply 

techniques that can be divided into two categories: label-free methods and labelling 

methods. 

 

Label-free methods do not necessitate any special sample preparation and they 

either use areas under chromatograms or peptide counts to estimate 

relative/absolute peptide abundances. From the latter the protein abundances are 

deduced by averaging or any other method. 

 

Labelling methods necessitate to prepare samples specifically before to pool them 

and to analyze them simultaneously, the relative peptide abundance being deduced 

afterwards as well as the protein abundance. Isotopic labelling introduces additional 

isotopes for certain amino acids or at specific places of the peptide. This causes the 

peptides to appear as pairs of peaks, labelled copies of the peptide being heavier. 

The relative intensities of the peaks give the relative abundances. 

 

Another kind of labelling technique bind a cleavable label to the peptides – ICAT, 

iTraq – that cause shifted masses (ICAT), as for isotopic labelling, or additional 

reporting peaks (iTraq). 

 

By spiking known quantities of a peptide in a sample it is possible to obtain absolute 

concentration estimations in a way that is very competitive compared to classical 

antibody-based methods. 
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Outline

• Introduction to proteomics
• Peptide mass fingerprinting
• Raw spectra processing
• Tandem mass spectrometry
• Other problems
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Intro :: Main problems

• To identify proteins in a biological sample
• To compare samples
• To quantify proteins
• To characterize proteins (modifications)

• Interactions, localization, protein structure
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Intro :: Sample complexity
• Many samples contain 

proteins at very different 
concentrations

• A few proteins represent 
most of the protein total 
mass

• Extreme case: plasma
• No PCR !
• Need for protein 

separation techniques
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Intro :: 2DE-Gels
• Proteins are separated 

according to their pI and 
their size:
– Isoelectric phocusing pI
– SDS-PAGE size

• Staining
• Spots are detected, 

picked, and further 
analyzed

Sanchez, et al., Electrophoresis, 1995

Human platelet
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Intro :: Liquid chromatography
• Proteins elute in a medium with different speeds

depending on their chemico-physical properties
• Gel filtration: size, small proteins follow longer paths
• Ion exchange: charge, interaction with the wall of a 

column, competition with column coating by 
progressively changing the buffer

• Reverse phase: hydrophobicity

+ + + + + + + + + +
- - +

+ +
A Further

analysis

Ion exchange
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Intro :: Chips
• Antibodies chips: localized and specific

interaction – similar to gene chips
• Affinity chips: surface with varying affinity 

properties – example Ciphergen Chip™
• Different methods of reading the chip, e.g. 

SELDI, phosphorescence
Reader

Seong & Cho, Proteomics, 2003
Cutler, Proteomics, 2003
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Intro :: Mass spectrometry

• After sample complexity reduction one 
usually wants to identify the proteins

• Mass spectrometry measures molecules 
masses

• Masses may constitute specific data sets
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Intro :: To identify
• Identify proteins from MS data
• Database searching:

– Protein databases
– mRNA or DNA databases after translation

• Prediction de novo
• Databases are not complete for every 

organism additional homology searches 
are performed sometimes
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Intro :: To compare
• Sample comparisons are essential to 

understand biological processes
• Need for differential proteomics
• Many relative (semi-) quantitative methods:

– 2D gels through image comparisons
– Protein chips
– Chromatography through area comparisons
– Labels (introduced later on)
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Intro :: To quantify

• Initial discoveries require validation
• Absolute quantitation by MS is an 

alternative to ELISA
• No specific antibodies necessary
• May be very sensitive and precise
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Intro :: To characterize

• Find posttranslational modifications such 
as phosphorylations and glycosylations

• Elucidate glycans structures
• Discover new (active) fragments

• Help in 3D structure determination
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• Protein masses are generally not specific 
enough

• Mass spectrometry is simpler with small 
molecules (500-4500 Da)

• Peptide mass fingerprinting (PMF):
– Digest proteins by an enzyme (trypsin)
– Measure resulting peptide masses

PMF :: Introduction
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PMF :: Introduction
• Sample assumed to contain one protein only
• Digest and measure peptide masses

• Extract masses from raw spectrum
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PMF :: Introduction
Search a database by
(1) Digesting database 

sequences theoretically
(2) Compute theoretical peptides 

masses

(3) Compare with experimental 
data

(4) Output the best match(es)

Theoretical spectrum 2
Experimental spectrum

sequence 1
sequence 2
sequence 3

.

.

.

.

.
sequence N

Database

Comparison

Theoretical spectrum 3...
Theoretical spectrum N
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PMF :: MALDI-TOF
• How to obtain peptide masses?

• Digested samples are mixed with a matrix
(reagent)

• Then deposited on a metallic plate
• Then ionized: Matrix Assisted Laser 

Desorption Ionization
• The masses of the peptides are measured
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PMF :: MALDI-TOF
Laser

Sample
plate

Metallic
grid

Electric
field

Field-free region

Ion
cloud

Accelerated ions Detector

• Ions are singly charged
• Constant electric field
• Detector scans at a fixed 

frequency
• Time-of-flight gives the mass

Signal
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PMF :: First attempt
BSA PMF spectrum Score = Shared Peak Count, 250ppm

Search result (SwissProt)…
971.31 158.3
974.26 304.6
993.31 135.7

1034.25 440.9
1056.29 109.1
1068.17 289.1
1072.29 174.3
1073.41 58.3
1107.29 192.8
1121.30 222.2
1138.31 898.5
1149.28 171.9
…

AC           ID                         Score         P-value
Q9W596 FUTSC_DROME 35 1.46896e-20
P20929 NEBU_HUMAN 33 1.99675e-19
P02769 ALBU_BOVIN 32 7.36173e-19
Q15149 PLEC1_HUMAN 27 5.01492e-16
P16881 RBS_EUGGR 24 2.51325e-14
Q9C0A7 SYNE1_HUMAN 23 9.26599e-14
P58107 EPIPL_HUMAN 23 9.26599e-14
P19751 R1AB_CVMJH 23 9.26599e-14
Q16992 LWA_ANTEL 22 3.41624e-13
Q9PYA3 R1AB_CVM2 22 3.41624e-13
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PMF :: Theoretical digestion

• Trypsin rule: cleave after K and R, except 
when followed by P

• There are missed cleavages: include them 
in the theoretical spectrum

• Example: ATESKILTRPQSURHIS
– No missed cleavage: ATESK, ILTRPQSUR, HIS
– 1 missed cleavages: ATESKILTRPQSUR, 

ILTRPQSURHIS
– 2 missed cleavages: ATESKILTRPQSURHIS
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PMF :: Peptide masses

• Unmodified peptides (p=a1 … an):

• Modified peptides (p=a1 … ai{modj} … an):

∑
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One amino
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PMF :: Variable modifications

• Variable Ξ not always present
• All combinations must be computed and 

added to the theoretical spectrum because 
they have different masses

• HISTM{Oxi}C{CAM}UM{Oxi}LIK{BIOT}:
– (2+1)(1+1)=6 combinations: 
– 1xCAM, 1xCAM+Oxi, 1xCAM+2xOxi
– 1xCAM+BIOT, 1xCAM+BIOT+Oxi
– 1xCAM+BIOT+2xOxi

Introduction to computational proteomics 150

PMF :: Calibration
BSA

250 or 50 ppm ??
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PMF :: Search parameters

• Mass precision: instrument dependent, 
impacts specificity

• Noise level: impacts specificity
• Missed cleavages: reduce specificity
• Modifications: variable modifications 

increase search space
• Database size: reduce by taxonomy or 

estimation of pI/MW (gel)
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PMF :: Scoring function

• Measures the correlation between 
experimental and theoretical spectra

• The example with BSA shows that shared 
peak count (SPC) is not an option!!

• For small proteins, need to identify a 
protein with 5-6 peptide masses in human 
SwissProt
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PMF :: MOWSE
• Digest a protein database
• Learn frequencies of 

peptide masses per 
protein mass windows of 
10 kDa

• More peculiar masses 
convey more information

Score = Pappin, et al, Curr.Biol., 1993 

Mascot implements a “probabilistic” MOWSE score, Free web server at
http://www.matrixscience.com
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PMF :: Mascot (~MOWSE)
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PMF :: ProFound

• Score = Probability that the match
between experimental and theoretical 
spectra is correct given the data at hand

• Bayesian approach

• Purely “combinatorial” model
Zhang & Chait, Anal.Chem., 2000
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PMF :: MSA

BSA spectrum against BSA
sequence: mean ± 50 ppm

BSA spectrum against NEBULIN
sequence: mean ± 100 ppm
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MSA

Theoretical mass

E
xp

er
im

en
ta

l m
as

s Ideal case

Linear regression2σ

• Successive recalibrations
with reduced mass tolerance

• Heuristic score with protein
coverage and data precision

Egelhofer, et al., Anal.Chem., 2000
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PMF :: OLAV-PMF

• Signal detection theory: best score is a 
likelihood ratio

• Collect informative observations
• Assume their independence

Magnin, et al., J.Prot.Res., 2004
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PMF :: OLAV-PMF

Lcov(s,P) = Gaussian/exponential Lcomp(p) = independent Bernoulli’s

Lmod(m) = Binomials
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PMF :: “Limited” comparison
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PMF :: Observations
• Re-calibration helps all the scoring functions
• Re-calibration makes p-value estimations more 

complicated: only a few random scores available
• Statistics-based methods have more potential
• BUT their parameters must be tuned
• Otherwise use MSA
• Robustness not studied so far

• Other similar scorings exist, meta-scorings
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PMF :: Open problems

• Scoring, always scoring
• P-value, E-value estimations

• Several proteins in a spectrum
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Raw :: Noisy continuous signal

Limited sampling
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Raw :: Isotopes

1 peptide several peaks
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Raw :: More difficult

Limited resolution
Multiple charges

Overlapping peptides
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Raw :: Isotopic distribution 
model

h

m

σ

h0

Gaussian peaks

Isotopes relative
heights depend
on m

Markus Müller
(Gras et al., Electrophoresis, 1999)
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Raw :: Open problems
• Need for sound theoretical approaches
• Parameter-free algorithms
• Fast algorithms
• Works fine with limited resolution and multiple 

charges
• Reliable charge state determination
• Eliminate noisy peaks
• Eliminate low quality spectra
• Add spectra from the same peptide
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MS2 :: Limitations of PMF

• Lack of specificity: requires many 
peptides, problem with small proteins

• Needs highly separated proteins: LC 
technologies are usually not applicable

• The above limitations are not due to 
MALDI !
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MS2 :: Specificity

• Peptide fragmentation (MS/MS or MS2) 
provides more information on peptides:
– Peptides are broken into smaller molecules, 

the so-called fragments
– Fragment masses are measured

• One spectrum per peptide
• Peptide can be (ideally) identified

individually
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MS2 :: Sample complexity
• Peptides in digested samples are separated by 

LC in liquid phase (peptides too small for gels)
• MS2 specificity we do not need all the 

peptides of a protein in the same spectrum
• Electrospray ionization (ESI) can be performed 

on-line after peptide LC separation

Pump ESI-MS/MS

Digested sample
in solvent

LC column
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MS2 :: ESI

Electrospray ionization works in liquid
phase

Metallic needle

Sample/solvent

Nebulizing gas

Drying gas

Electric field

+
+

+
+

+
+

+

Accelerated ions

Peptide ions are often multiply charged

Capillary
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MS2 :: Generic mass instrument

ESI

MALDI

Gas
collisions

Internal
energy

ETD

TOF

Triple quad

Ion trap

FTICR

Three main components

Ionization (Fragmentation) Mass analyzer
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MS2 :: LC-ESI-MS-MS/MS
• Peptides enter the instrument 

continuously
• The instrument acquires an 

MS spectrum (peptide masses)
• It selects the most intense 

peaks
• The instrument successively 

acquires MS/MS spectra for 
each selected peak

• Repeat

The complete analysis of a sample (all the spectra) constitutes an
MS/MS run or a LC run
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MS2 :: Database search

• For each protein sequence
– Digest the protein sequence
– Compute peptide masses
– Finds matching experimental masses
– Compute theoretical fragmentation spectra
– Compare with experimental spectra
– Store high-scoring peptide matches

• Group peptide matches into protein 
identifications
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MS2 :: Peptide fragmentation
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MS2 :: Peptide fragmentation
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MS2 :: Fragment masses

• For a peptide p=s1s2…sn we have

• Example:
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MS2 :: Multiply charged 
fragments

• Peptide ions carrying several charges can yield 
multiply charged fragment ions (z > 1)

• Mass analyzers normally only “see” m/z values
• Theoretical spectrum in m/z scale
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MS2 :: Modified peptides
• As for PMF, all the combinations of variable 

modifications must be considered (with position)
• The fragment masses must be adjusted
• KVPQVSTphosPTphosLR (phos=79.9663):

• KVPQVSTPTLR:
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MS2 :: Neutral losses

Water: S, T;   ammonia: Q, R, N



46

Introduction to computational proteomics 181

MS2 :: A match
• Mass tolerance matched peaks

• Standard quality criteria: 
– intense peaks should match
– as many as possible peaks 

should match
– series of contiguous matches
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MS2 :: Mascot
• Mascot is a commercial program that 

implements a MOWSE-like score for MS/MS: 
distribution of fragment masses depending on 
the peptide mass

• Mascot estimates p-values
• Mascot does some spectrum pre-processing to 

adapt to diverse data types automatically
• Latest versions include a proprietary peak 

detection algorithm
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MS2 :: Mascot search result

HPGDFGADAQGAMTK

Perkins, et al., Electrophoresis, 1999
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MS2 :: Sequest
• Sequest is a commercial program that uses a heuristic 

approach
• A preliminary scoring function is used for rapidly 

scanning the database:

is the sum of matched ion intensities
nm is the number of matches ions
nτ is the total number of ions
β is for the continuity of the match
ρ is the presence of immonium ions

• Stores the 200 best peptides for each experimental 
spectrum

Eng, et al., J.Am.Soc.Mass Spectrom., 1994
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MS2 :: Sequest

• Assign empirical intensities to the 
theoretical masses to create an artificial 
spectrum a

• Rescore the best matches by a second 
function Xcorr (e is the experimental 
spectrum):
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MS2 :: Sequest search result 
(DTAselect)

Tabb, et al., J.Prot.Res, 2002
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MS2 :: Post-processed Sequest
(Mascot)

• Use exported data (score, p-value, initial score 
for Sequest, etc.) to build a statistical model of 
correct/wrong matches

• Tons of papers (SVM, Bayesian, NN, …)
• Significant improvement, especially for Sequest
• Some people use both Sequest and Mascot and 

only keep common identifications
• Decoy database to estimate FP rate

Moore, et al., J.Am.Soc.Mass Spectrom, 2002           Sadygov & Yates, Anal.Chem., 2003 
MacCoss, et al., Anal.Chem., 2002                             Keller, et al., Anal.Chem., 2002
Nesvizhskii, et al., Anal.Chem., 2003
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MS2 :: OLAV

• As for PMF:
– Collect useful observations
– Build “sub-scores” as likelihood ratios for each 

observation
– Assume independence and multiply

Score L = L1LintLsuccLpair

• OLAV is Phenyx, free web server at
http://phenyx.vital-it.ch/

Colinge, et al., Proteomics, 2003 & 2004
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MS2 :: Phenyx search result 
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MS2 :: Phenyx search result
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MS2 :: OLAV (L1)
• Each type of fragment θ has a certain probability to be 

detected in a correct match pθ and in a random match rθ
• Depends on the peptide charge z

0.390.400.350.170.610.57correct

0.160.100.100.090.110.13random

y++yby++yb

z=3z=2

Ion trap instrument

Dancik, et al., JCB, 1999
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MS2 :: OLAV (L1)
z=2

z=3
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Lpair

Radius: relative 
entropy of fragments

Top left: b, ion trap

Top right: y, ion trap

Bottom left: b, Q-TOF

Bottom right: y, Q-TOF

Circle: relative entropy
of the residue pairs

Doubly charged
peptides

Colinge, et al., Proteomics, 2004
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MS2 :: OLAV (Lint)
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MS2 :: OLAV (Lsucc)

HMM for generic type B (doubly charged peptides, ion trap)

0 – 30 %
30 – 50 %
50 – 70 %
70 – 90 %
90 – 100 %

Colinge, et al., WABI’03, LNCS 2812, Springer, 2003
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Databases of 10,000 and 100,000
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MS2 :: “Limited” comparison
• At high sensitivity levels: 90% to 95%
• ESI-IT, ESI-Q-TOF, MALDI-TOF/TOF
• OLAV yields less than 1% false positive peptide 

identifications (database size 10,000-100,000)

• Improves over Mascot and post-processed 
Sequest by a factor 3-5 at this sensitivity level

Colinge, et al., Proteomics, 2004

Open-source: Craig & Beavis, Bioinformatics, 2004
Geer, et al., J.Prot.Res., 2004
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• To identify peptides reliably does not yield 
unambiguous protein identifications 
automatically.

• Peptides shared by several proteins:

• Redundancy and errors in databases

MS2 :: Back to proteins

Protein A

Protein B
Protein C

Nesvizhskii & Aebersold, MCP, 2005
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MS2 :: To score or not to score
• Lists of proteins only by using rules. For 

instance:
– Two distinct peptides identified
– Deals with ambiguities in shared peptides
– Multiple protein occurrences in distinct LC fractions 

(protein separation)
– Peptide tryptic terminii

• Computation of a protein score: same 
“ingredients”.

• Complications: protein length not always known, 
combine databases.

Cargile, et al., J Proteome Res, 2004
Nesvizhskii, et al., Anal Chem, 2003
Allet, et al., Proteomics, 2004
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MS2 :: Open problems
• Peptide scoring function
• Protein scoring function
• Variants: splice, polymorphism
• Variable modifications
• Database representation (suffix tree)
• Search results representation and 

integration
• Visualization
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Others :: de novo sequencing
• Goal: to infer the peptide sequence (or part of it) 

from the MS/MS spectrum directly
• No database!
• Motivations:

– Incomplete databases for certain organisms
– Unexpected modifications
– Save search time with large databases (?)

• Types of algorithms: empirical, optimization, 
evolutionary computations

Shevchenko, et al., Anal Chem, 2001
Tanner, et al., Anal Chem, 2005
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Difficulties:
• We do not know whether a mass is a N- or C-term fragment
• Some masses may be missing
• b1 is not detected
• I=L, K≈Q, F≈oxi-M
• Many pairs of amino acids share the same mass

Solutions:
• Use N- and C-terminal fragments in a combined manner
• Focus on partial safe predictions: the so-called sequence tags
• Sufficient mass accuracy

Others :: de novo :: Principle
Peptide: LFR y1 y2

b2

peptide mass

175 322261 436 m/z0

R F L

RLF
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Others :: de novo ::Heuristic

• Build the peptide sequence by extending it 
one amino acid at a time

• Generally maintain a population of many 
candidates

• Elimination of candidate sequences by a 
set of rules or a direct global comparison 
with the spectrum

Taylor & Johnson, Anal.Chem., 2000
Tabb, et al., Anal.Chem., 2003
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Others :: de novo ::Optimization
• Several possible optimization formulations
• Example: find the optimal path in a graph

– Nodes are peaks
– Creates additional nodes by assuming the masses 

are from C-terminal fragments
– Vertices when the mass differences are close to 

amino acid masses
– Find the best path by using a scoring function
– Eventually consider sub-optimal solutions as well as 

partial solutions (sequence tags)
Chen, et al., JCB, 2001; Frank & Pevzner, Anal Chem, 2005; Ma, et al., Rapid Comm.Mass Spectrom., 2003 
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Others :: de novo :: Evolutionary 
computation

• Take a scoring function
• Optimize over the space of possible 

peptide sequences
• Sequence tags: locate reliable regions

Skilling, European patent, 1999
Heredia-Langner, et al., Bioinformatics, 2004
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Others :: Genome searches
• Direct genome searches
• Motivations: Incomplete or inaccurate 

annotations
• Difficulties: size and/or spliced peptides

(eukaryotes)
• Approaches:

– Search gene predictions
– Peptide de novo sequencing + homology search
– Adapted database search strategy
– Combination Kuster, et al., Proteomics, 2001

Jaffe, et al., Proteomics, 2004
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Others :: Genome :: Size
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Others :: Genome :: Spliced 
peptides

Genome sequence

Enzyme cleavage in
translated sequence

Signal

N-term
peptide

normal peptide

spliced peptide

Stop
codon
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Others :: Genome :: Spliced 
peptides

• Predict donor sites and store up-stream 
sequences of length < Lmax

• Predict acceptor sites and store down-stream 
sequences of length < Lmax

• Combine up- and down-stream sequences of 
donor/acceptor sites at distance < Dmax

• Search this virtual database with MS data

AD A
Try and Chen, RECOMB 2001
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Others :: Genome :: Spliced 
peptides

Standard genome
search followed by
Chen’s algorithm.

1FP/5TP at 
medium sensitivity.

1FP/3TP at high
sensitivity.

Several examples
of corrected or
completed genescan
predictions.

Colinge, et al. J.Prot.Res., 2005
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Others :: Genome :: Spliced 
peptides
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Others :: Differential proteomics
• 2DE-Gel images comparisons: spot volumes 

may provide semi-quantitative information
• Samples direct mass spectrometry profiles

• Ion chromatograms: area is semi-quantitative

timet3t1 t2
Wang, et.al, Anal.Chem, 2003

Proteomics 2003 3(9); Appel, et al., Electrophoresis, 1997
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Others :: Differential :: Counting 
peptides

Spiking of 0.5 ml human plasma
with purified proteins. Low-
nanomolar concentrations.

Alpha-2-HS-Glycoprotein

Add a statistical test.

2.5- to 5-fold changes are 
detected with 90-95%
confidence in human plasma, 
with 2-3 repetitions.

7.5-10% false positives.

Liu, et al., Anal. Chem., 2004
Colinge, et al., Anal. Chem., 2005
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Others :: Differential :: Labels
Sample A Sample B Sample B is 18O labeled:

• Introduced during tryptic
digestion or by impregnation

• Adds 4 Da (2x18O) to the tryptic
peptides (ends in K or R)

Samples A & B are mixed and 
analyzed as one sample

Sample A
Sample B
Unlabeled
Partially labeled

Ratio = blue/yellow

Low nM in human plasma
Moniatte & Colinge, SPS’04
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Others :: Structure or modifs

1

3

5

4

6

2
7

8

87

9

9

10

10

Break disulfur bondsOriginal spectrum

Also applicable to certain PTMs (phosphorylation, glycans, etc.)
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Others :: Open problems

• Peptide de novo sequencing
• Automatic detection of modifications
• Structure elucidation
• Analysis of protein complexes
• Differential expression analysis
• Genome annotation
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Open source

• Generic Perl library at
http://insilicospectro.vital-it.ch

• Digestion and mass computations
• Peptide LC elution time predictions
• Graphical display (also LaTex)
• XML description of atoms, amino acids, 

modifications, fragment types.
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