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Outline

Proteomics has become an important approach to analyze biological samples. This
tutorial will introduce the central problem of searching mass spectrometry data
against a database. Quantitative proteomics and peptide de novo sequencing will be
covered as well. This presentation should stimulate the interest of bioinformatics

researchers in other fields and provide a concise introduction to life scientists.

Part 1 (20 min): Introduction to proteomics. We start by introducing the main

problems in proteomics: identify proteins in a sample, characterize modified
proteins, compare samples and quantify proteins. We point out the difficulty caused
by excessively complex samples with high dynamic range of protein concentrations.
We then rapidly introduce the concept of mass spectrometry as an analytical

method.

Part 2 (30 min): Peptide mass fingerprinting (PMF) and MALDI instruments. On the

basis of the general context presented in Part 1, we introduce and detail a first
proteomics method. Show a first example with a spectrum and a database search
result. Explain a basic algorithm for searching PMF data against a database of
protein sequences. Introduce the notion of scoring function and present classical
examples, e.g. MOWSE, ProFound, MSA and OLAV-PMF.

Part 3 (20 min): Peak detection. Raw spectrum processing is rapidly covered to

actually link the somewhat abstract mass lists used for searching databases with the

signal generated by the MS instruments.

Part 4 (60 min): Complex samples and tandem mass spectrometry. Database sizes

and sample complexity may limit the usage of PMF. Tandem mass spectrometry is a
manner to obtain additional information via fragmentation. Explain the principle of

fragmentation.

Present a schematic abstract mass spectrometer with ion source, fragmentation cell
and mass analyzer. Present different technologies (collision induced fragmentation,

post-/in-source decay). Explain on-line mass spectrometry.



Several peptide scoring functions are reviewed: MASCOT, SEQUEST, post-
processing of SEQUEST, OLAV-Phenyx. The problem of scoring protein

identification is then discussed.

Part5 (40 min): Other problems, other approaches. We cover several problems
which are of great importance in proteomics today: eukaryote genome searches,
peptide de novo sequencing, differential proteomics via quantitative and semi-

guantitative methods, protein characterization by top-down techniques.

Discussion (30 min).
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INTRODUCTION

Proteomics is the complete analysis of proteins. Proteomics involve numerous

technologies and address numerous questions concerning the proteins:

What are the proteins contained in a biological sample?
What are their concentrations?

How their expression changes in various samples?
What are their posttranslational modifications (PTMs)?

How do they interact with other proteins or molecules?

In this lecture we concentrate on computational aspects of protein identification.

Characterization (identification of protein modifications), quantification and sample

comparisons are discussed more rapidly.

The analysis of proteins is much more complicated than the analysis of DNA or

RNA. The technology available is less mature and more costly, and, mainly, the

proteins are much more complex and fragile molecules. Nonetheless, there are

important reasons to study the proteins:

Proteins can be modified in many ways by molecules that are bound to them
(PTMs). Very often, these modifications are essential for the proteins to be
active. These madifications are dynamically added or removed by the cell
machinery. Protein spatial conformation may change depending on its
environment (acidity, presence of water, etc.). It is not uncommon that
secreted proteins reach their final conformation after having left the cell only.
All these variations are not defined by the gene sequences.

Alternative splicing may generate unexpected gene products that only a
proteomics analysis may reveal. Recently, experimental evidence of protein
splicing has been reported.

The RNA concentration is not always correlated to the corresponding protein
concentration. Therefore DNA-chip experiments must be completed and/or
validated by protein concentration analyses.

Important circulating bio-fluids such as plasma are not made of cells and
therefore studies based on genomics or transcriptomics are not possible.
Nevertheless, such fluids give a general picture of the organism state — via

hormones — and may be very appropriate for diagnostic. Moreover, fluids



such as plasma (blood) and tears for instance are accessible via non
invasive techniques.
e Most of the cell machinery is controlled and effectuated by proteins. Hence

only the study of proteins can give the full picture.

A typical proteomics project

Most of the analyses in proteomics start from a biological sample that must be
properly collected and prepared. Sample preparation is made of multiple stages,
among the first ones we find the adjunction of protease inhibitors to stop protein
degradation and maintain the original contents of the sample. Then one generally
faces the problem that the sample is too complex: it contains proteins at very

different concentrations.
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Figure 1: Protein concentrations in human plasma

The technologies available for identifying the proteins cannot deal with extremely
complex samples without missing most of the low abundant proteins. There are
various techniques for separating the proteins contained in the original sample and
for obtaining simpler samples — of reduced complexity — that are more amenable to

in-depth analysis.

The final analysis, aimed at identifying the proteins, is almost exclusively performed
by mass spectrometry (MS). Former techniques such as Edman degradation are
rarely used nowadays. MS produces data that are specific to the proteins analyzed

and these data serve for database searching or, alternatively, to try to infer (part of)



the protein sequences directly. It is also possible to deduce information concerning

protein concentrations and modifications from the MS data.

Protein separation techniques

We now review, with limited details, the more frequently used proteomics

technologies.

Liquid chromatography. The samples analyzed in proteomics are mostly liquids. If
the sample is not a liquid, e.g. bones, it must be solubilized by using acids for
instance. Several technologies are grouped under the name “liquid chromatography”
(LC). A LC station consists of a column (a tube) and a pump that pushes the sample
into the column. Depending on the column interior, proteins go out of the column at
different times, depending on their physico-chemical characteristics (hydrophobicity,
charge, etc.), allowing us to collect simpler samples, the so-called chromatographic

fractions.
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Figure 2: Fraction collection principle. Proteins elute from the LC column at different
times and by collecting column output during time intervals we obtain fractions (sub-
samples) of reduced complexity. In the figure we show how the concentration of 11
proteins depends on time and the effect of collecting fractions during fixed time

intervals: not all 11 proteins are in each of the 4 resulting fractions.

Two main categories of LC columns exist: columns filled with a medium that
influence protein elution speed and columns coated with a solid phase that interacts
with the proteins. In order for the second category to impose different retention time
it is generally necessary to mix the original sample with a buffer, which composition

varies over time.



The word ““chromatography" comes from the fact that, usually, at the end of the
column there is a chromatographic measurement at a certain wavelength. This
measurement is made at a wavelength that interfere with peptide bonds or certain
amino acids and the intensity of the signal provides an information about the amount
proteins coming out of the column. This eventually allows for estimating protein

concentrations in the collected fractions.

A few abundant proteins. As already mentioned, it is possible that a few proteins
represent almost all the protein mass. This extreme abundance hides less abundant
and generally more interesting proteins. This is typically the situation encountered in
plasma and serum, where the twelve most abundant proteins (serum albumin,
immunoglobulins) comprise more than 95% of the total mass of plasma proteins.
This problem is less dramatic when analyzing cell cultures or certain biopsies. There
exists chromatographic columns coated with a solid phase containing antibodies
that are aimed at retaining such abundant proteins by affinity with high-efficiency.
The final concentration of the abundant proteins is massively reduced and the
relative abundance of the minor proteins is thus augmented. Despite its obvious
advantage, this technique has possible drawbacks such as variations in the amount
of retained abundant proteins, which potentially introduce extra variability in the
samples, and the risk to retain interesting proteins that interacts with the targeted

abundant proteins.

Gel filtration chromatography. Proteins are separated according to their size. Gel
filtration columns are made of a heterogeneous medium that forces small proteins to
go through a longer path in order to go out of the column than larger proteins.

Consequently, large proteins elute first from the column.

lon exchange chromatography. Proteins are separated according to their charge.
The column is coated with a solid phase carrying charges that interact with protein
charges. If the sample is mixed with an acidic or basic buffer, there is a competition
between the column coating and the buffer. As the composition of the buffer
progressively changes from acidic to basic or vice versa, proteins are unbounded

from the column coating differentially, see Figure.
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Figure 3: lon exchange column. The different elution times are obtained by

changing the buffer and hence modifying the competition between the buffer and the
column coating to bind to proteins, depending on proteins charge. Hence the
separation according to the proteins charges. We also represent the chromatogram

as generated by the detector (A).

Reverse phase chromatography. Proteins are separated according to their
hydrophobicity by a principle similar to the ion exchange chromatography, i.e.

competition between column coating and the buffer.

2D Gels. Two dimensional electrophoretic gels (2D gels) is an old technique for
separating proteins that is still used today as it has some unique features. It is not

a liquid chromatography technology. The principle of 2D gels is to first separate
proteins by their isoelectric point (pl). The isoelectric focusing (IEF) concentrates
proteins at their pls and allows proteins to be separated on the basis of very small
charge differences. Under the influence of an electric field, a protein moves in a pH
gradient until it reaches the position where its net charge is zero (pl). IEF is
performed in strips that are then deposited at one side of a rectangular
polyacrylamide gel. The second dimension of separation is obtained by separating
proteins according to their length in a direction orthogonal to the IEF strip. Sodium
dodecyl sulphate (SDS) is an anionic detergent which denatures proteins by
"wrapping around" the polypeptide backbone. SDS confers a negative charge to the
protein in proportion to its length. The application of a second electric field achieves

the second separation.



Figure 4: A typical 2D gel.

After migration, the proteins in the gel are stained to make them visible, see
Figure 4. Gels are scanned and imaging techniques are used for detecting the
spots. The coordinates of the spots are transmitted to a robot called a spot picker
that cuts the gels to collect small pieces corresponding to the spots. These spots are
simpler samples that are further analyzed by MS as chromatographic fractions

would be.

Semi-quantitative information can be extracted from 2D gel images and it is possible
to compare gels obtained from several tissues to do sample comparisons.
Nonetheless, 2D gels are very difficult to make reproducible. Moreover, the amount
of material (proteins) that can be loaded on a gel is limited and the problem of
samples where a few abundant proteins constitute 95% of the protein mass is
difficult to address with gels only. We mention one last limitation of 2D gels, the pl
and MW range in which they work well is limited and hence part of the proteome is

not amenable to 2D gels analyses.
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PEPTIDE MASS FINGERPRINTING

Introduction

When one wants to search a database of protein sequences to identify proteins
contained in a sample, it is necessary to have data that are specific to the proteins.
Since we use MS, a first natural choice would be to use protein masses. This option
does not allow identifying proteins uniquely because: (1) MS instrument precision is
not absolute and several distinct proteins can have very close masses; (2) proteins
are generally modified and not only one possible mass is associated to a protein but
a list of possible masses, thus reducing further data specificity. We conclude that the
protein mass is not specific enough, although it may be used as additional

information to facilitate database searching.

There exist highly-reliable enzymes, such as trypsin or chymotrypsin, that cleave at
specific locations and yield peptides of reasonable size, e.g. an average of 10-12
amino acids for trypsin. As the cleavage sites are amino acid sequence specific, the

masses of the peptides are somehow correlated to the original protein sequence.

Identifying proteins on the basis of the masses of their peptides is called peptide
mass fingerprinting (PMF). PMF is only possible for very simple samples because
when numerous proteins are mixed together, the masses of all their peptides no
longer constitute a specific set of data. There are too many masses in the spectrum
and, as we do not know in advance which peptide masses correspond to distinct
proteins, we have to use them all when comparing to protein sequences taken from
a database. This increases the rate of possible false identifications. Moreover, ion
suppression effects and instrument resolution limit the number of detectable
peptides by favoring the most intense signals. Consequently, PMF is a technique
that is used mainly in combination with 2D gels, whose spots contain 1-2 dominating
proteins only. The classical instrument for doing PMF is a MALDI-TOF instrument. It

is described in the next chapter.

Searching a database

The principle of searching a database with PMF data is as follows. Given a list of
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experimental peptide masses L (obtained from an experimental spectrum), apply the
enzyme cleavage rule to the database protein sequences, compute the mass of the

theoretical peptides and compare with L.

The first two steps in designing a database search engine are hence in silico

enzymatic digestion and peptide mass computation.

Theoretical digestion. The most frequently used enzyme in PMF is trypsin. The
generic rule for trypsin cleavage is: cleave after lysine (Lys, K) or arginine (Arg, R),
provided it is not followed by a proline (Pro, P). Although trypsin is efficient in
cleaving proteins, it happens that some cleavage sites are missed. Such locations
are called missed cleavages. Since multiple copies of the protein are digested
simultaneously, it is possible sometimes to observe both perfect cleavages and
missed cleavages. Therefore, all cases must be considered in the theoretical

digestion.

Protein: MC*TM*ACTKGIPRKQWWEM*MKPCKADFCV

Tryptic digestion (peptide, start, stop, nmc, mass):

MCTMACTK 0 7 0 960.353715
QWWEMMKPCK 13 22 0 1381.598105
ADFCV 23 27 0 553.220625
MCTMACTKGIPR 0 11 1 1383.613105
MCTMACTKGIPRK 0 12 2 1511.708065
GIPRK 8 12 1 569.364915
GIPRKQWWEMMKPCK 8 22 2 1932.952455
KQWWEMMKPCK 12 22 1 1509.693065
KQWWEMMKPCKADFCV 12 27 2 2044 .903125
QWWEMMKPCKADFCV 13 27 1 1916.808165

Figure 5: Theoretical digestion. (nmc) is the number of missed cleavages. Modified
amino acids are indicated by an asterisk at their right-hand side (C is modified by

iodoacetamide +57Da, M is oxidized +16Da).

Peptides with one missed cleavage are not uncommon (typically 25% of the
peptides), whereas peptides with two or more missed cleavages are less frequent.

they are also larger and may be difficult to ionize thus giving a weaker signal in the
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spectrum. It is customary to consider peptides with one missed cleavage maximum

only when searching a database.

Mass computations. Because of the peptide structure represented in Figure 6, to
compute the mass of unmodified peptides is straightforward: add the individual
amino acid masses and the mass of a water molecule. As a matter of fact, there is
an extra hydrogen at both the C-and N-term sides, and an extra oxygen at the C-

term side.

CHZ-Rz-mOd CH>-R,

| |
H- NH-CH-CO-...-NH-CH-COOH

Figure 6: Peptide structure and mass computation.

As we already mentioned, proteins can be modified by PTMs or by chemical
reagents such as the ones used for suppressing di-sulfur bonds between cysteines.
The modifications are linked to specific amino acids in the protein sequence and the

mass of these amino acids must be modified for computations.

Two types of modification must be considered. Fixed modifications are always
present, i.e. the mass of the modified amino acids can be replaced by the original
mass corrected by the mass delta (positive or negative) due to the modification. For
instance, the reagents normally used for breaking di-sulfur bonds are very efficient
and we can consider that every cysteine is modified always. Carboxyamidomethyl
cysteines (Cys_CAM) have a mass augmented by 57.02146 Da, i.e. their mass is
103.00919+57.02146=160.03065 Da.

Variable modifications are not always present and as we compute the theoretical
masses of peptides we have to consider every possible combination. For instance,
the oxidation of methionines is a typical variable modification that adds 15.9949 Da.

Given a peptide sequence 'ARMTHLLMK' we must compute 4 theoretical masses

13



because there are two variable modification sites. When several variable
modifications are taken into account simultaneously, the combinations to compute

include all possible modification sites and their number grows very fast.

Scoring function

As we already explained the common method for searching PMF data against a
database of protein sequences consists in digesting the protein sequences in silico
and then in comparing the theoretical and the experimental masses. This
comparison involves a scoring function, which role is to measure the correlation

between experimental and theoretical data.

The most obvious PMF scoring function is of course the so-called shared peak
count, i.e. to count the number of matching theoretical and experimental masses
given a certain instrument precision. The instrument precision is specified as a mass
tolerance Delta and two masses within a distance Delta are considered as identical
(match). Delta can be expressed as an absolute mass error in Da or as a relative
mass error in ppm. Since MALDI — and other — instruments mass precision
diminishes with increasing masses, a relative error tolerance is more appropriate

generally.

To associate a score to every protein in the database is one initial task of database
searching. The next task is to decide which protein(s) is(are) the correct one(s) or to
associate confidence levels to the protein identifications found in the database. This
second task requires choosing a specific method for estimating the confidence
levels and, obviously, its performance will be influenced by the performance of the
scoring function. A good scoring function already discards many false positive

protein identifications by giving high scores to the true positive ones.

MOWSE score. The MOWSE score is a heuristic PMF score that is used — slightly
modified — by Mascot PMF search engine. It is based on a model of the typical mass
of peptides. By using a database of protein sequences, we learn the typical number
of enzymatic peptides in mass windows of 100 Da depending on the intact protein
mass (the protein mass may eventually bias the distribution of peptide masses);

protein mass window size is 10 kDa.
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When a database is searched, after the list of matching experimental masses has
been established for a given mass tolerance, the principle of MOWSE score is to
compute the score s by combining a quantity similar to a likelihood, a scale factor

and the protein mass: B 5000
M pH fLm/moJ,LMp/looooj

meS

The protein mass M, reduces the score to limit the influence of large theoretical
mass lists caused by large proteins, e.g. nebuline. The sort of likelihood is used as a
divisor such since more peculiar peptide masses are assumed to bring more support

to protein identification.

MSA score. The heuristic MSA score is based on the observation that properly
calibrated experimental masses should not deviate too much from the theoretical
masses. It also includes a requirement that the protein sequence coverage should

be as high as possible to validate protein identification.

When comparing the experimental masses with the theoretical masses of a
database sequence, MSA applies two successive re-calibration steps and too far
experimental masses are removed from the set of matched masses progressively.
The standard deviation of the mass errors of the finally matched masses is used as
an indicator of the match quality (the smaller the better). The number of matched
masses n, as well as the sequence coverage in percent g, are the two other
elements of a heuristic scoring function:

500

on’g

Reliable protein identifications should yield scores larger than or equal to 99.

Z =100 -

ProFound score. ProFound is a popular commercial search engine for PMF spectra.
The score used by this engine is derived via a Bayesian approach. For a given
database sequence, we are interested in computing the probability that this
sequence corresponds to the experimental spectrum at hand. The derivation of
ProFound’'s formula relies on standard combinatorial arguments (probability to
match n masses in a set of m theoretical masses, etc.) and assumed Gaussian

mass errors.
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OLAV-PMF score. The previous scoring functions do not include any physico-
chemical properties of peptides in their underlying models. To improve over these
scoring functions, it is important to introduce more complicated models aimed at
capturing certain trends of peptide ionization. The price to pay is a model with more
parameters, that must be trained for specific sample preparation conditions and

MALDI instrument settings.

Another point which is not considered by the previous scoring functions is that the
best statistics in an hypothesis test is often a likelihood ratio. Therefore, we
introduce a family of scoring functions that are both designed as likelihood ratios
and that model certain properties of peptides such as observed modification and

amino acid composition. We also model protein sequence coverage.
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RAW SPECTRUM PROCESSING

Introduction

In this chapter we explain how masses can be obtained from the experimental
spectrum acquired by the MS instrument. We primaliry illustrate that in the case of
peptide masses measured by a MALDI-TOF instrument. The masses extracted from
a spectrum compose the mass list and they are the input data of database

searching.

MALDI-TOF

The classical instrument for doing PMF is a MALDI-TOF instrument. The principle of
MALDI is as follows. The sample to analyze (a digested gel spot) is mixed with a
reagent named a MALDI matrix. This mixture is then deposited on a metallic plate
and crystallized (in vacuum). A laser is used to turn the sample into a cloud of
ionized peptides that are accelerated by a constant electric field. The ions are
charged positively by the gain of one proton and they fly along an empty tube. The
masses of the peptides are determined by the time needed to reach the detector at

the tube extremity, hence the name time-of-flight (TOF).

Peak Detection

To obtain good quality mass lists, which obviously facilitate database searching and
the solution of other problems in computational proteomics, it is of prime importance
that the processing of the mass spectra is properly done. This is the role of peak
detection or peak picking software. Such software generally comes with the
instrument and is provided by the instrument manufacturer since it is convenient that

it is integrated with software controlling the instrument and data acquisition.

The signal acquired by the instrument is a sampled continuous signal that contains
chemical and electronic noise. The masses to determine correspond to the top of
the major peaks, whereas small peaks are the contribution of chemical (slow

oscillation of roughly 1 Da frequency) and electronic (rapid oscillation) noises.
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Each atom that composes a peptide may have isotopes, i.e. supplementary
neutrons in its nucleus that augment its mass by 1.00728 Da. The probability to
have isotopes is specific to each atom and consequently, the probability to have
isotopes is specific to each peptide, depending on its atomic composition. Multiple
copies of each peptide in the instrument cause a peptide signal made of several
peaks. The extra peak due isotopes must be removed from the mass list before

database searching.

One method of peak detection consists in (1) recognizing the individual peaks (to
build the so-called peak table), and (2) de-isotope. An ad hoc algorithm first
localizes potential peaks, which are subsequently more precisely determined by one

of the following common methods:

¢ Finding the m/z value where the slope is equal to zero (pre-smoothing
mandatory).

e Finding the m/z value where the signal is the most intense, i.e. the apex (pre-
smoothing would be wise).

e Computing the centroid, i.e. the m/z value where half of the area under the
peak is reached.

e Fitting the spectrum peak to a theoretical model of a peak with shape
parameters such as signal intensity, width, baseline. A Gaussian is generally

appropriate for that.

De-isotoping of the peak table can be achieved by looking for peaks at one Da
distance with reasonable relative intensities and grouping them. Such a task may be
done by applying heuristic rules or by introducing a scoring function that measures

the quality of alternative peak groups in order to optimize the de-isotopization.
Instead of first processing the peaks independently and then grouping them, it is

possible to define a notion of peptide signal pattern and to look for all the isotope

peaks of a peptide simultaneously.
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TANDEM MASS SPECTROMETRY

Introduction

When we introduced the technique of peptide mass fingerprinting we explained that,
due the enzyme specificity, the set of masses of enzymatic peptides constitute a
much more specific data set for searching a database compared to the sole protein
mass. Tandem mass spectrometry can be introduced in a similar way: There exist
techniques to break peptides into smaller molecules, the so-called fragments, and
because such fragmentation processes are governed by certain rules the set of
fragment masses constitutes a more specific data set compared to the sole peptide

mass.

On-line mass spectrometry

Today, the main two techniques for protein/peptide ionization are MALDI and
electro-spray (ESI). ESI works in liquid phase and thus it can be combined with an
LC column for peptide separation in order to analyze relatively complex samples.

This is not possible with MALDI that requires more or less one protein per sample.

Fragmentation cell

A classical technique to induce peptide fragmentation is to use an inert gas such as
helium to create collisions with the peptides. Such a technique is named collision
induced dissociation (CID), note that the word fragmentation is sometimes replaced

by dissociation.

Mass analyzer

We already described TOF detectors that generally yield high-resolution and good
mass precision. Another widely used technology, though less precise usually, is
quadrupole ion filters. Fourier transform ion cyclotron resonance provides high mass
accuracy (1 ppm). Finally, ion trap mass analyzers deliver medium precision (500
ppm) but are very versatile and robust instruments. They dominate the market

today.
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The fragmentation spectrum

The fragmentation of peptides follows certain rules. Would it not be the case, we
could not use the fragment masses as specific data for identifying the peptides. A
situation that is similar to the rules for enzymatic digestion and peptide mass

fingerprinting, although fragmentation is governed by more stochastic rules.
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Figure 7: Schematic view of the generic fragmentation locations in a peptide.
Fragments of type a, b, and ¢ are N-terminal fragments, i.e. they include the N-
terminal side of the peptide, whereas x, y, and z are C-terminal fragments.
Fragments of type v, w, and d include part of the side-chain and their are only
created by high-energy collisions. They may be used for distinguishing between

isobaric amino acids such as leucine and isoleucine.

Since fragments of a given type always include the same atoms between residues, it
is possible to compute their theoretical masses by summing the amino acid masses

and by applying a correction for the atoms.
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Ion type | K Vv P Q V S T P T L R
a - | 2002 | 297.2 | 4253 | 5244 | 611.4 | T12.4 | 809.5 | 910.5 | 1023.6 -
b - | 2282 | 3252 | 453.3 | 552.4 | 639.4 | 740.4 | 837.5 | 938.5 | 1051.6 -

2452 | 3423 | 470.3 | 569.4 | 656.4 | 757.5 | 854.5 | 955.6 | 1068.6 -
1123.6 | 1024.5 | 927.5 | 799.4 | 7004 | 613.3 | 512.3 | 4152 | 3142 | 201.1
1097.6 | 9986 | 901.5 | 773.5 | 6744 | 587.4 | 486.3 | 389.3 | 288.2 | 175.1
1081.6 | 9825 | 885.5 | 757.4 | 6584 | 571.3 | 470.3 | 373.2 | 272.2 | 159.1

Nl =

Figure 8: Example of fragment masses.

A given type of instrument does not produce all the type of fragments usually, only a
limited number of them a clearly detected in the MS/MS spectrum. Abundant
fragment ions of tryptic peptides in most spectrometers are b and y. Fragments of
type a yield weak signals and c, x, and z fragments are barely produced under

normal conditions.

Multiply charged peptide (precursor) ions may generate multiply charged fragment
ions. It is hence useful to be able to compute multiply charged fragments theoretical

masses: add one proton mass for each extra charge and divide by the charge.

[on type | K A% P Q vV S T P T L R
y - | 1097.6 | 998.6 | 901.5 [ 773.5 | 674.4 | 5874 | 486.3 | 389.3 | 288.2 | 175.1
y++ - | 549.3 | 499.8 | 451.3 | 387.2 | 337.7 | 294.2 | 243.7 | 195.1 | 144.6 | 88.1
b - | 2282 | 325.2 | 453.3 | 552.4 | 639.4 | 740.4 | 837.5 | 938.5 | 1051.6 -
b-++ - | 1146 | 163.1 | 227.1 | 276.7 | 320.2 | 370.7 | 419.2 | 469.8 | 526.3

Figure 9: Doubly charged fragment masses.

For tryptic peptides the most common multiply charged fragments are doubly
charged fragments. Triply charged fragments a normally observed for large peptides
only and quadruply charged fragments are such low abundant that their signal is
hidden by the noise. Recall that to observe fragments with charge z the peptide

must be charged at least z times.

During the fragmentation process, certain residues (serine, threonine) may loose
water or ammonia. Since such losses are not systematic we eventually may want to
consider all combinations of losses. Moreover, since not all the residues may have
loss, not all fragments may loose water of ammonia. For instance, to loose two
water and one ammonia molecule, a fragment must include in its sequence at least
two of S and T and at least one of N, Q, R.
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Modified peptides

When a peptide is modified there is not only an impact on the peptide total mass,
where the total mass of all the modifications must be added, but also the fragment
masses are modified. Since a modification is bound to a specific amino acid of the
peptide, the fragments that do not include this amino acid have their original mass
unchanged. On the contrary, fragments that include the modified amino acid have

their mass augmented by the modification mass (which may be negative).

Internal fragments

It may happen that fragments of the precursor re-fragment thus producing internal
fragments, i.e. fragments that neither include the N- nor the C-terminal sites of the
peptide. Normally such internal fragment are low abundant and they do not
contribute to the observed spectrum significantly. A special type of internal
fragments named immonium ions, resulting from y/a fragmentations, and which only
include one residue, produce a detectable signal for certain residue. They are not
detectable by every type of instrument but, when visible, they usefully give
information about the peptide composition as they have fixed masses depending on

the residue only.

MS/MS database search

The principle of searching a database with MS/MS data is similar to PMF database
search. The main two differences are that we identify peptides (we do not identify
the proteins directly) and we often do not know the charge state of the peptides (we

only know the m/z of the precursors and the corresponding MS/MS spectra).

A simplified algorithm for searching a database is as follows: digest each database
entry, compare peptide masses with experimental peptide masses, in case of match
compute the theoretical fragmentation spectrum and determine a score. At the end
of the database scan, the peptide identifications are grouped into protein

identifications. A protein score is eventually computed.
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MS/MS scoring functions

Shared peak count. Same as for PMF but count the fragment peaks.

Mascot score. Mascot developers (for MS/MS) never described their scoring
function but they recognize that it is an adaptation of MOWSE score to
fragmentation spectra. That is the parameters of the scoring function are trained to
learn the probability to observe a fragment of a given mass given the mass of the
precursor peptide ion. Some additional and proprietary preprocessing is applied to

the experimental spectrum to normalize peak intensities and detect noise level.

SEQUEST score. SEQUEST scores are not based on a model but it rather rely on a
heuristic approach. Namely, an initial and purely heuristic score is computed and the
n best peptides found in the database are re-scored with another more sophisticated
scoring function. The first purely heuristic scoring function takes into account the
number of matched ions, their intensities, the consecutive matches in a series, and,
if applicable, the presence of immonium ions. The second scoring function creates
an artificial spectrum from the theoretical fragment masses and gives intensities to
the peaks. This artificial spectrum is then compared via a cross-correlation function

to the experimental spectrum.

OLAV score. The general approach here is, as in the PMF case, to design the
scoring function as a likelihood ratio and to consider informative patterns that may
be observed from the comparison of theoretical and experimental masses. We use
the probabilities to observe each ion type with a given instrument, a HMM scores the
consecutive matches, a model of typical intensity distributions scores the observed
intensities, and there are also components of the score that depend on the amino

acid founds at the ends of the fragments.

Protein identification

Besides peptide identifications we are interested in the proteins present in the
biological sample. Therefore, peptide identification can be regarded as an
intermediary step towards protein identification usually. To obtain reliable protein

lists based on reliable peptide lists is not as straightforward as it might seem since
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several complications occurs. A first problem is caused by peptides shared by

several proteins, variants or paralogs:

Peptides
1 2 3 4
Protein & [} ] ] .
Protein B {1 1 C 1
Protein C — o o

Figure 10: One example of ambiguous protein identifications. It is impossible to
decide which of protein A alone or B+C or A+B+C should be considered as

identified. Other such problematic patterns exist.

Errors in sequence databases can cause wrong identifications and redundancy is a
source of multiple identifications or ambiguous cases such as in Figure 10. The
situation is even more complicated if several databases are considered for

identification. We typically have to assign them different reliability levels.

Two solutions exist for producing protein identifications. The first one is to simply
rely on a set of empirical rules such as a certain number of required distinct
peptides, thresholds on peptide scores, multiple occurrences of the protein in
different LC fraction in case of protein separation, etc. Alternatively, we can compute
a protein score and set a threshold on the latter. Protein score computation is
usually performed by using a probabilistic model and by including in the model

elements related to the empirical rules of the score-free approach.

Independent of the method used for obtaining protein identifications, the aim is to
obtain a list of reliable identifications, where each set of proteins that are identified
by the same peptides is reported as a group with one representative protein

sequence. Ambiguous identifications can be reported additionally or discarded.
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OTHERS

Peptide de novo sequencing

So far we identified MS data by searching a biological sequence database but there
are situation where such a database is not available or not appropriate. A classical
example is the analysis of a sample coming from an organism whose genome is not
completely sequenced. If a significant proportion of the gene products are still
unknown for this organism then to search known sequences will not explain much of
the MS data. A more difficult example is the case where peptides are modified in an
unexpected manner and hence are not found via the variable modifications allowed
in the database search. To consider all possible modifications is not feasible and
thus a method that would predict part of peptide sequences — the non modified parts
— would allow to recognized candidate peptides from the database and then a

dedicated processing could reveal the modifications.

To predict the peptide sequence from the MS/MS spectrum directly — de novo
peptide sequencing — is a difficult problem and to predict short reliable parts of the
sequence, the so-called sequence tags, is more realistic. The latter sequence tags
can then be used as an incomplete but reliable sequence or they can be used for
searching a database by allowing mismatches. Sequence tags of several peptides

from the same protein identify the protein specifically.

To predict sequence tags can be achieved through several methods. Typically three
main approaches can be identified: (1) heuristic methods; (2) graph theoretic
algorithms; (3) MCMC algorithms.

Heuristic methods build solutions by enlarging previous solutions and code for many
empirical knowledge of peptide fragmentation. Graph theoretic algorithms first
translate the problem into a directed acyclic graph problem by representing every
experimental mass as a node and by linking nodes with a mass difference close to
an amino acid mass. The predicted peptide sequence is then a “longest” path in the
graph. MCMC algorithms optimize a MS/MS scoring function over the space of all

possible peptide sequences.
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Direct genome searches

Proteomics provides experimental data that can be used for further annotating
genome sequences, thereby complementing existing annotations, which are
obtained in silico partially. New genes, new exons, and new splice variants can be

recognized by this technique.

When dealing with a eukaryotic genome the main difficulties are the size of the
search space — the translated human genome yields 7 billions amino acids — and

intronic sequences that break the continuity of the coding sequence.

The extremely large size of the search space forces us to use stringent thresholds to
avoid a myriad of false positive peptide identifications, thereby causing many false
negatives. This limitation can be attenuated by improving MS/MS scoring functions
and by introducing alternative search strategies: search gene predictions first or

combine with peptide de novo sequencing.
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Figure 11: ROC curves for ion trap data illustrating the increase of false positives as
the database size grows. Doubly and triply charged peptides searched against the
human part of swiss-prot, all gene predictions obtained by genescan and hmmgene,
and the translated human genome. All the peptides in the dataset are contained in

one exon only.
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To get rid of the intronic sequences and identify peptides that are across several
exons requires to couple gene structure prediction with MS data identification. Such

algorithms exist and can be applied without causing much additional false positives.
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Figure 12: Tryptic peptides in the translated amino acid sequence do not coincide

with splice site necessarily. Spliced peptides are coded across two exons or more.
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Figure 13: Additional spliced peptides can be found by locally refining a regular
genome search through splice sites prediction. Results for a standard ion trap
instrument, a linear ion trap coupled with a Fourier Transform instrument for exact
parent mass acquisition yields spliced peptides identifications without additional

false positives.
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Differential proteomics

The implementation of differential proteomics analysis of biological samples can be
achieved by several techniques. Classical semi-quantitative methods involve the
comparison of 2DE gel images and spot volume computations. More recently, these
methods have been complemented by DIGE staining, a technique that allows to
stain up to three samples and then to pool them before 2DE gel production. By

examining the gel at different wavelengths it is possible to compare the samples.

Nowadays a lot of comparative studies are performed without gels and they apply
techniques that can be divided into two categories: label-free methods and labelling

methods.

Label-free methods do not necessitate any special sample preparation and they
either use areas under chromatograms or peptide counts to estimate
relative/absolute peptide abundances. From the latter the protein abundances are

deduced by averaging or any other method.

Labelling methods necessitate to prepare samples specifically before to pool them
and to analyze them simultaneously, the relative peptide abundance being deduced
afterwards as well as the protein abundance. Isotopic labelling introduces additional
isotopes for certain amino acids or at specific places of the peptide. This causes the
peptides to appear as pairs of peaks, labelled copies of the peptide being heavier.

The relative intensities of the peaks give the relative abundances.

Another kind of labelling technique bind a cleavable label to the peptides — ICAT,
iTrag — that cause shifted masses (ICAT), as for isotopic labelling, or additional

reporting peaks (iTraq).
By spiking known quantities of a peptide in a sample it is possible to obtain absolute

concentration estimations in a way that is very competitive compared to classical

antibody-based methods.
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Intro :: Main problems

To identify proteins in a biological sample
* To compare samples

» To quantify proteins

To characterize proteins (modifications)

* Interactions, localization, protein structure

Introduction to computational proteomics 131

Outline

* Introduction to proteomics

* Peptide mass fingerprinting
* Raw spectra processing

« Tandem mass spectrometry
» Other problems

Introduction to computational proteomics 130

Intro :: Sample complexity

. mM N albumin
Many samples contain
proteins at very different immunoglobulins
concentrations uM- alpumip .
A few proteins represent 5 Common \Alkaline phosphatase
most of the protein total = -
mass £ My P
Extreme case: plasma §
No PCR ! (@] - More interesting insulin
Need for protein
separation techniques Parathyroid hormone
M : —TNF
100 1000

. Number of proteins
Rose et al., Proteomics, 2004
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Intro :; 2DE-Gels

Human platelet

* Proteins are separated
according to their p/ and
their size:

— Isoelectric phocusing - pl
— SDS-PAGE - size

+ Staining :

» Spots are detected, e
picked, and further SR T, 8 el
analyzed JERy ol

Sanchez, et al., Electrophoresis, 1995
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Intro :: Chips

» Antibodies chips: localized and specific
interaction — similar to gene chips

« Affinity chips: surface with varying affinity
properties — example Ciphergen Chip™
+ Different methods of reading the chip, e.g.

SELDI, phosphorescence

Seong & Cho, Proteomics, 2003
Cutler, Proteomics, 2003
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Intro :: Liquid chromatography

* Proteins elute in a medium with different speeds
depending on their chemico-physical properties
+ Gelfiltration: size, small proteins follow longer paths

« lon exchange: charge, interaction with the wall of a
column, competition with column coating by
progressively changing the buffer

* Reverse phase: hydrophobicity '

@@@@@@@@@@F\

ST A > tnabes
lon exchalngiB ® \ /
WA/ MP zo?@

Introduction to computational proteomics 134

Intro :: Mass spectrometry

 After sample complexity reduction one
usually wants to identify the proteins

* Mass spectrometry measures molecules
masses

» Masses may constitute specific data sets

Introduction to computational proteomics 136
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Intro :: To identify

Identify proteins from MS data

Database searching:

— Protein databases

— mRNA or DNA databases after translation
Prediction de novo

Databases are not complete for every

organism —-> additional homology searches
are performed sometimes
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Intro :: To compare

« Sample comparisons are essential to
understand biological processes

* Need for differential proteomics
* Many relative (semi-) quantitative methods:
— 2D gels through image comparisons
— Protein chips
— Chromatography through area comparisons
— Labels (introduced later on)

Introduction to computational proteomics
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Intro :: To quantify

Initial discoveries require validation

Absolute quantitation by MS is an
alternative to ELISA

No specific antibodies necessary
May be very sensitive and precise

Introduction to computational proteomics 139

Intro :; To characterize

Find posttranslational modifications such
as phosphorylations and glycosylations

Elucidate glycans structures
Discover new (active) fragments

Help in 3D structure determination

Introduction to computational proteomics
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PMF :: Introduction

» Protein masses are generally not specific
enough

» Mass spectrometry is simpler with small
molecules (500-4500 Da)

» Peptide mass fingerprinting (PMF):
— Digest proteins by an enzyme (trypsin)
— Measure resulting peptide masses

Introduction to computational proteomics 141

PMF :: Introduction

+ Sample assumed to contain one protein only
» Digest and measure peptide masses

ll.llL
T e R

amin el

» Extract masses from raw spectrum

) ? M?rl ];w“;lmyiu ? !
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PMF :: Introduction

Search a database by

(1) Digesting database (3) Compare with experimental

sequences theoretically data
(2) Compute theoretical peptides  (4) Output the best match(es)
masses

Database

sequence 1
sequence 2 .
sequence 3 ‘ Comparison

| |

Experimental spectrum

sequence N .
a Theoretical spectrum 2

Theoretical spectrum 3

Theoretical spectrum N
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PMF :: MALDI-TOF

How to obtain peptide masses?

Digested samples are mixed with a matrix
(reagent)
Then deposited on a metallic plate

* Then ionized: Matrix Assisted Laser
Desorption lonization

* The masses of the peptides are measured
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PMF :: MALDI-TOF

Laser

Field-free region
Ion E ° o

cloud —_— Signal
Accelerated ions Detector

- S

>

Sample Metallic |* lons are singly charged
plate

Electric grid » Constant electric field

field » Detector scans at a fixed
frequency

» Time-of-flight gives the mass
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PMF :: First attempt

BSA PMF spectrum Score = Shared Peak Count, 250ppm

Search result (SwissProt)

971.31 158.3 AC 1D Score P-value
974.26 304.6 Q9W596 FUTSC_DROME 35 1.46896e-20
993.31 1357 ‘ P20929 NEBU_HUMAN 33 1.99675e-19
1034.25 440.9 P02769 ALBU_BOVIN 32 7.36173e-19
1056.29 109.1 Q15149 PLEC1_HUMAN 27 5.01492¢-16
1068.17 289.1 P16881 RBS_EUGGR 24 2.51325e-14
1072.29 1743 | 4 Q9COA7 SYNE1_HUMAN 23 9.26599¢-14
107341 583 P58107 EPIPL_HUMAN 23 9.26599¢-14
1107.29 192.8 P19751 R1AB_CVMJH 23 9.26599¢-14
112130 2222 | =t Q16992 LWA_ANTEL 22 3.41624e-13
1138.31 8985 | QYPYA3 R1AB_CVM2 22 3.41624e-13
1149.28 171.9

[
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PMF :: Theoretical digestion

» Trypsin rule: cleave after K and R, except
when followed by P

» There are missed cleavages: include them
in the theoretical spectrum

» Example: ATESKILTRPQSURHIS
— No missed cleavage: ATESK, ILTRPQSUR, HIS

— 1 missed cleavages: ATESKILTRPQSUR,
ILTRPQSURHIS

— 2 missed cleavages: ATESKILTRPQSURHIS
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PMF :: Peptide masses

Oqe amino
aCld CHz‘Rz'mod CHz'Rn
H O<NH-CH-CO-...-NH-CH-COOH

* Unmodified peptides (p=a;, ... a,):

len(

p)
m(p)= > m(a;)+m(H,0)
i=1
* Modified peptides (p=a, ... a{mod} ... a,):

len(p) #mod

m(p) = Zm(ai)+m(HZO)+ ZA(modj)
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PMF :: Variable modifications

« Variable = not always present

 All combinations must be computed and
added to the theoretical spectrum because
they have different masses

* HISTM{Oxi}C{CAM}UM{Oxi}LIK{BIOT}:
— (2+1)(1+1)=6 combinations:
— 1xCAM, 1xCAM+Oxi, 1XCAM+2xOxi
— 1xCAM+BIOT, 1xCAM+BIOT+Oxi

149

PMF :: Search parameters

« Mass precision: instrument dependent,
impacts specificity

* Noise level: impacts specificity

* Missed cleavages: reduce specificity

* Modifications: variable modifications
increase search space

» Database size: reduce by taxonomy or

151

PMF :: Calibration

BSA ™ T T T T

L L
Livcunatfoal (e [ET

250 or 50 ppm ?7?
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PMF :: Scoring function

* Measures the correlation between
experimental and theoretical spectra

* The example with BSA shows that shared
peak count (SPC) is not an option!!

» For small proteins, need to identify a
protein with 5-6 peptide masses in human
SwissProt

Introduction to computational proteomics
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PMF :: MOWSE

« Digest a protein database °

+ Learn frequencies of -
peptide masses per £
protein mass windows of §

10 kDa 5~

* More peculiar masses "
convey more information

5000
Score = pH f[m/looj,\_Mp/moooj

meS

Pappin, et al, Curr.Biol., 1993

Mascot implements a “probabilistic” MOWSE score, Free web server at
http://www.matrixscience.com
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PMF :: ProFound

» Score = Probability that the match
between experimental and theoretical
spectra is correct given the data at hand

» Bayesian approach

| B P(H | [P(D|H. D)

P(H,|D,I) = PO

 Purely “combinatorial” model

Zhang & Chait, Anal.Chem., 2000
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seil Mowse Score

PMF :: Mascot (~MOWSE)

Perkins, et al., Electrophoresis, 1999
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PMF :: MSA

BSA spectrum against BSA
sequence: mean + 50 ppm

BSA spectrum against NEBULIN
sequence: mean + 100 ppm
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MSA

Ideal case

Linear regression

Experimental mass

» Successive recalibrations
with reduced mass tolerance

* Heuristic score with protein
coverage and data precision

Theoretical mass

Egelhofer, et al., Anal.Chem., 2000
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PMF :: OLAV-PMF
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PMF :: OLAV-PMF

+ Signal detection theory: best score is a
likelihood ratio = rp(H)

 Collect informative observations

« Assume their independence

Lis) = b | Lopwls. £} I-I ‘-:wmlitf*} #3“}3 z Enwd(-‘")]

meEM{p)

Magnin, et al., J.Prot.Res., 2004
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PMF :: “Limited” comparison
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PMF :: Observations

* Re-calibration helps all the scoring functions

* Re-calibration makes p-value estimations more
complicated: only a few random scores available

+ Statistics-based methods have more potential
» BUT their parameters must be tuned

» Otherwise use MSA

* Robustness not studied so far

» Other similar scorings exist, meta-scorings
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Raw :: Noisy continuous signal

AT
5 & 8 5//

f PUV& ﬁ%

Limited sampling

200 =1 . . .
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PMF :: Open problems

+ Scoring, always scoring
* P-value, E-value estimations

» Several proteins in a spectrum
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Raw :: More difficult

Overlapping peptides

Limited resolution
Multiple charges |
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Raw :: Open problems

» Need for sound theoretical approaches
» Parameter-free algorithms
* Fast algorithms

* Works fine with limited resolution and multiple
charges

* Reliable charge state determination
* Eliminate noisy peaks

» Eliminate low quality spectra

* Add spectra from the same peptide

Introduction to computational proteomics 167

Raw :: Isotopic distribution

Gaussian peaks
e L N Isotopes relative
L [E—————p—— h - heights depend
e I st ! onm
-} o
% “_
il ¢/ SN~
= wml- h
£l AR
£ am|-
!5 | Markus Miller
® gl . . (Gras et al., Electrophoresis, 1999)
| 1
b DAL e
']
1 1 r 1 1 ! | 1 1
e Likat %8 TS5 mm
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MS?2 :: Limitations of PMF

* Lack of specificity: requires many
peptides, problem with small proteins

* Needs highly separated proteins: LC
technologies are usually not applicable

* The above limitations are not due to
MALDI !
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MS?2 :: Specificity

« Peptide fragmentation (MS/MS or MS?)
provides more information on peptides:

— Peptides are broken into smaller molecules,
the so-called fragments

— Fragment masses are measured

» One spectrum per peptide

» Peptide can be (ideally) identified
individually
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MS? :: ESI
Electrospray ionization works in liquid

phase

Nebulizing gas Electric field

— % _ >
0%° ® . L[] . L]
.  — _—
:: “ Accelerated ions
Drying gas

Peptide ions are often multiply charged

Sample/solvent

Capillary

Metallic needle
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MS?2 :: Sample complexity

* Peptides in digested samples are separated by
LC in liquid phase (peptides too small for gels)

* MS2 specificity - we do not need all the
peptides of a protein in the same spectrum

» Electrospray ionization (ESI) can be performed
on-line after peptide LC separation

Digested sample

in solvent
M ESI-MS/MS

LC column
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MS?2 :: Generic mass instrument
Three main components
ESI Triple quad
Internal
MALDI energy lon trap
FTICR
lonization (Fragmentation) Mass analyzer
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MS2 :: LC-ESI-MS-MS/MS

» Peptides enter the instrument
continuously

* The instrument acquires an
MS spectrum (peptide masses)
* |t selects the most intense
peaks \
* The instrument successively
acquires MS/MS spectra for
each selected peak
* Repeat

The complete analysis of a sample (all the spectra) constitutes an

173

MS2 :: Database search

» For each protein sequence
— Digest the protein sequence
— Compute peptide masses
— Finds matching experimental masses
— Compute theoretical fragmentation spectra
— Compare with experimental spectra
— Store high-scoring peptide matches
» Group peptide matches into protein
identifications

- %~
Collision induced o *@pC
dissociation (CID) Xq’k/ N

Q One doubly
charged fragment
ETD S
"
Internal energy: in- >§\’\,G?\P‘
or post-source decay g - W
L

One long doubly
charged fragment

\ | Two singly
\\N\\' charged fragments
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MS? :: Peptide fragmentation

* ¥a ] *y ¥i Bl

"y
|

NH T CH 7

HHN— CcH——co CO—NH CH——CooH
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MS? :: Fragment masses

» For a peptide p=s,s,...s, we have
mass(by) = Zf=1 mis;)+m(H)
mass(yp) = i ey misi) + m(Hz0)

* Example:

(on type | K | P Q S T 5] T L R
a 7.2 | 4253 G114 HOELS [ 9105 1023.6
b 25.2 45383 6394 B37T.5 5 -
© G420 AT003 (] [alis 5 -
X 1024.5 | 927.5 TO0.4 512.3 201.1
¥ l[l'h G 9056 01,5 G74.4 ARG.3 175.1
= 1081.6 09825 RBEAG 658,04 470,53 158.1
177
2
MS? :: Modified peptides
» As for PMF, all the combinations of variable
modifications must be considered (with position)
» The fragment masses must be adjusted
. KVPQVSTphosPTphosLR (phos =79.9663):
lon type | K v Q S T P T L R
v o amsne [ Ess | 10614 '}HI 8349 | 7473 | 5663 m 2882 | 1761
[0 - 2282 | 3252 | 4533 | 5524 | 630.4 | 8204 | 9174 [ 100ss | 12115 -
+ KVPQVSTPTLR:
lon type | K v P [8] v S T P T L R
¥ - | 10976 | 9956 TIAS | 674 | 58T | 463 (B80.)) | 2882 | 1751
V++ - S49.3 | 4008 | 513 | 3RT.2 | 377 | 2042 | AT | 1951 144.6 EX.1
b - 2982 | 325.2 | 453.3 | Bh2.4 | 630.4 | TA0.0 | 8375 | 9385 | 10516 -
h++ - [14.6 | 1631 | 2270 | 276.7 | 3202 | 370.7 [ 419.2 | 469.8 526.3 -
179

MS?2 :: Multiply charged
fragments

* Peptide ions carrying several charges can yield
multiply charged fragment ions (z > 1)

* Mass analyzers normally only “see” m/z values
» Theoretical spectrum in m/z scale % i

m(f)+ (= l)mtpwlnu) ' l’

m(f.z) =
- ._.[ AN
lon type | K vV P Q 5 T P L [
v - 10976 | 9956 | 9015 G744 | 58T | 486.3 Q\‘.]..i 288.2 175.1
v+ S| 519.3 | 4998 | 4513 3377 | 2942 | 2037 | 1951 | 1446 | 851
b BN R AR 6304 | TADA | 8375 | 9385 | 10516 -
b+ - 1146 1631 2271 3202 | 3707 | 419.2 | 4698 56,4 -

178
M82 Neutral Iosses
Lon type K P Q v B I T L R
b - 2-.»-.2 3252 | 4543 | 5524 | 63nd | 740 t BATS | 0385 | 10516 .
b-H20 - - - - - | B2L4 [ T2z | 8195 | 92005 | 10336
b-2{H20) - - - - . - [ Toad [ R0LE | u0zE | 10156
b= H20) - - - - - - - - | 885 0976
L-NH3 - - S| das6.a | s | e22d | 7254 | 8205 | 0205 | 10346
b-H20-NH33 - - - - - | 6043 [ TOG4 | ROZ4 1016.6
b-2(H20)-NH3 | - - - - - - [ 68T | TR44 08,6
b-3(H20)-NH3 - - - - - - - - | 867G O8I G -
y S ronne | oose | 90ns | TTaS | 6744 | AATd | 4s6d | as0a | 2882 ] 1750
v-H20 om0 T o806 | asan | TA64 [ 6564 | s603 | 46=3 | 4712
y-2(H20) - | 106l | 0625 | 8655 | 774 | 6384 | 5513
y-3(H20) S rodda | 045 | s4TS | TIng | 6204 -
v=NH3 - | 10806 | 9815 | ssds -
y-H20-NH3 - | 10626 | 9635 | 8665
v-2(H20)-NH3 | - | 10446 | 9455 | 8485
y-3{ H20)-NH3 - 1026.6 | 927.5 | 8305
Water: S, T; ammonia: Q, R, N
ol
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MS? :: A match

* Mass tolerance - matched peaks

VGDFGTAAQQPDGLAVVGVFLEK
a - QOOOO0OOOO®OOOCOOCC J/"JC\ :
b - 0000000800000 :
b-H2O
h-NH3
b++
s Q00000
\-H20 COO0O0) - RN
v-NH3 OO0 J’)(\OOC J’JO . £
vt - OC J’)C\.OO’JODC}OF JO(\DOC J/"JC\ @

+ Standard quality criteria:
— intense peaks should match
— as many as possible peaks 5 g
should match i
— series of contiguous matches| 7

181
MS? :: Mascot search result
LY Mascot Search Results ‘i:,
b s a b inding pratain & pracurser (Ig binding pratein &
HPGDFGADAQGAMTK ’
w1 TE s ; - H
: | Illl ey . w'"'Lh”.:l.:‘“"lthL.-.'_l _..||.:|.I...A.-.,J.. ol L # ', I.L
| ‘ Perkins, et al., Ele;:trophoresis, 1999 ‘
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MS?2 :: Mascot

+ Mascot is a commercial program that
implements a MOWSE-like score for MS/MS:
distribution of fragment masses depending on
the peptide mass

» Mascot estimates p-values

* Mascot does some spectrum pre-processing to
adapt to diverse data types automatically

+ Latest versions include a proprietary peak
detection algorithm

Introduction to computational proteomics
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MS?2 :: Sequest

+ Sequest is a commercial program that uses a heuristic
approach

* A preliminary scoring function is used for rapidly
scanning the database:

'L;p = [Z jm}”rrr(l + Jl:'{l - .I“],";“T

Z*’»- is the sum of matched ion intensities
m is the number of matches ions

n is the total number of ions

,8 is for the continuity of the match

o is the presence of immonium ions

» Stores the 200 best peptides for each experimental
spectrum

Eng, et al., J.Am.Soc.Mass Spectrom., 1994
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MS2 :: Sequest

+ Assign empirical intensities to the
theoretical masses to create an artificial
spectrum a

* Rescore the best matches by a second
function X_,,, (e is the experimental

spectrum):
SN (@i — E(a))(eirs — E(e
[” '4.'(](?‘] _ L,.,:U{ ’f{ ']-E‘[”}}'lv(aﬁ.—.’ IE‘[ ]]
\/\;ll'[fr}\ ar(e)
Neorr = (axe)(0) — E((a #e)(t)) _75c<75
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MS?2 :: Post-processed Sequest
(Mascot)

» Use exported data (score, p-value, initial score
for Sequest, etc.) to build a statistical model of
correct/wrong matches

* Tons of papers (SVM, Bayesian, NN, ...)
 Significant improvement, especially for Sequest

+ Some people use both Sequest and Mascot and
only keep common identifications
* Decoy database to estimate FP rate

Moore, et al., J.Am.Soc.Mass Spectrom, 2002 Sadygov & Yates, Anal.Chem., 2003
MacCoss, et al., Anal.Chem., 2002 Keller, et al., Anal.Chem., 2002
Nesvizhskii, et al., Anal.Chem., 2003
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MS? :: Sequest search result
(DTAselect)

s Cout Sequence Covernge Length MalWt pl Descriptive Name

pe Mo DeltCN Precwrsor M+H+ Mass Rank by Sp Tou Proportion Copies Sequence

14 EFBL

186

MS2 :: OLAV

* As for PMF:
— Collect useful observations

— Build “sub-scores” as likelihood ratios for each
observation

— Assume independence and multiply
Score L = LlLinthuchpair
* OLAV is Phenyx, free web server at
http://phenyx.vital-it.ch/

Colinge, et al., Proteomics, 2003 & 2004
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MS? :: Phenyx search result MS? :: Phenyx search result

Database Match Detail (Q9PTY0)

Database/AC/ Peptide viewlob (Job 105)

ATPB_CYPCALGIFTYO)
ATP synthase bata cha

~l ki
Sl VP11 I Y 1

55 25) [
' 3 205 [
018 66 143607 2. Ms 1

flal precrgsr (|
= :m..n\‘....r.'_ T T
2 -0012 63 Bt 203-215 [ I+

[(1=7m |wia
Tina | e
(141710 '
2115200
[0y =050

MS2:: OLAV (L,) MS2 :: OLAV (L,)
YGDFGTAAQOPDGLAVVGVFLERK
» Each type of fragment 6 has a certain probability to be =2 . : 8888%8‘988808%88 :
. . bH20 |- - QOOO olee] oo o ]
detected in a correct match pg, and in a random match r, <£§ TR %O 888 .§ mQQ
. 1 4+ ! ( - J90 %) 18/45)
Depends on the peplide charge z N 000080000000 oo/
v-H20 A s - - - - |50%] 9/89
v-NH3 /89
z=2 z=3 D) ooOOooo@goooooomooo 9/140
3 Hell00e] [eeel] Seeeeeeoen
b ++ b ++ Z: a2
Y y Y Y : C8000006 800.96\ XK -
correct | 057 | 061 | 017 | 035 | 040 | 0.39 e 1 8Ee5 e 9%88
> [~ 0000008 OOGOO0 - fium]17/4]
random | 0.13 | 011 | 009 | 010 | 010 | 0.16 50 ooooho B S
[ NH3 OO0 E
lon trap instrument D) OOG0.000C)DOOOOC\OOOOO :
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AcoelroH I|kL wnr[pPans|Tver
DR a0 AR N R AN Ol
¥ b Y b e S - .
o[% R IR L . MS2 :: OLAV (L)
o NRIC RN T QEINN OO pair int
. R IXCO A XE XN ion probability densities
. X OH9 L LG8X X _— @
" LIS L ALY S v o maemments —
' 2 RG 7) XM Py otirag b
K N VRN, o - b-H20
Ll 00‘):{‘1\‘!:?:4’(1\' Top left: b, ion trap ';HD-HHE
o .+'4_ b, A Top right: y, ion trap 2 ¥
l | ?.‘,’}d'ﬂu;.; LX) Bottom left: b, Q-TOF T — yheo
il m’:‘?‘.“? q Bottom right: y, Q-TOF ® — y-MH3 /
? 2 XX %\‘@ NN
] o -
: QY IRROYIRCIK S v ooy :
: R SRS i
M ot 3.3‘3 U!"‘ 3‘?‘&’:‘ T T T \ \ \
w °+.+.’ ) i _.@‘*." Doubly charged
v RCA S NN OV peptides a0 02 04 08 g 1.8
Colinge, et al., Proteomics, 2004 relative imh '!m_h
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MS2 :: OLAV (L.,..) 1
succ 2
-
e
HMM for generic type B (doubly charged peptides, ion trap)

o

E

£

'E 0.2 ;

P 1M ’ — E3000+ 3+

z @ 4 k

= H ,'f’J A ~— E3000+ 2+
0—- 30% /] e . — E3000 3+
30 - 50 % A P -— E30002+
50 - 70 % p — QTOF 3+
70 — 90 % . —~ QTOF 2+
90 — 100 % £

d
Colinge, et al., WABI’03, LNCS 2812, Springer, 2003 0.01 0.1
false positive rate
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MS?2 :: “Limited” comparison

* At high sensitivity levels: 90% to 95%
« ESI-IT, ESI-Q-TOF, MALDI-TOF/TOF

* OLAV yields less than 1% false positive peptide
identifications (database size 10,000-100,000)

» Improves over Mascot and post-processed
Sequest by a factor 3-5 at this sensitivity level

Open-source: Craig & Beavis, Bioinformatics, 2004
Geer, et al., J.Prot.Res., 2004

Colinge, et al., Proteomics, 2004
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MS2 :: Back to proteins

» To identify peptides reliably does not yield
unambiguous protein identifications
automatically.

» Peptides shared by several proteins:

ProteinA I }V—1 +—{ +—1{ 1
ProteinB I +—T"+—1 +—
Protein C A1 F+—1 "+

Nesvizhskii & Aebersold, MCP, 2005

MS?2 :: To score or not to score

+ Lists of proteins only by using rules. For
instance:
— Two distinct peptides identified
— Deals with ambiguities in shared peptides
— Multiple protein occurrences in distinct LC fractions

(protein separation)

— Peptide tryptic terminii

» Computation of a protein score: same
“‘ingredients”.

» Complications: protein length not always known,
combine databases.

Cargile, et al., J Proteome Res, 2004
Nesvizhskii, et al., Anal Chem, 2003
Allet, et al., Proteomics, 2004
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MS?2 :: Open problems

» Peptide scoring function

 Protein scoring function

« Variants: splice, polymorphism

+ Variable modifications

» Database representation (suffix tree)

» Search results representation and
integration

* Visualization

Introduction to computational proteomics 200
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Others :: de novo sequencing

Goal: to infer the peptide sequence (or part of it)
from the MS/MS spectrum directly

No database!

+ Motivations:

— Incomplete databases for certain organisms
— Unexpected modifications Tanner, etal,, Anal Chem, 2005
— Save search time with large databases (?)
Types of algorithms: empirical, optimization,

Shevchenko, et al., Anal Chem, 2001

201

Others :: de novo :: Principle
Peptide: LFR peptide mass
R Y1 F Y2 L
b2
LF R

Difficulties: 175 261 322 436 m/z

» We do not know whether a mass is a N- or C-term fragment
« Some masses may be missing
* b, is not detected
* |=L, K=Q, F=oxi-M
* Many pairs of amino acids share the same mass
Solutions:
« Use N- and C-terminal fragments in a combined manner
« Focus on patrtial safe predictions: the so-called sequence tags
« Sufficient mass accuracy

Others :: de novo ::Heuristic

« Build the peptide sequence by extending it
one amino acid at a time

» Generally maintain a population of many
candidates

 Elimination of candidate sequences by a
set of rules or a direct global comparison
with the spectrum

Taylor & Johnson, Anal.Chem., 2000
Tabb, et al., Anal.Chem., 2003
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203

__£szooo1

Fortaleza, Brazil
Mugust §-10. 1006
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Others :: de novo ::Optimization

» Several possible optimization formulations
+ Example: find the optimal path in a graph
— Nodes are peaks

— Creates additional nodes by assuming the masses
are from C-terminal fragments

— Vertices when the mass differences are close to
amino acid masses

— Find the best path by using a scoring function

— Eventually consider sub-optimal solutions as well as
partial solutions (sequence tags)

Chen, et al., JCB, 2001; Frank & Pevzner, Anal Chem, 2005; Ma, et al., Rapid Comm.Mass Spectrom., 2003
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Others :: de novo :: Evolutionary
computation

» Take a scoring function

» Optimize over the space of possible
peptide sequences

» Sequence tags: locate reliable regions

Skilling, European patent, 1999
Heredia-Langner, et al., Bioinformatics, 2004

Others :: Genome searches

* Direct genome searches

* Motivations: Incomplete or inaccurate
annotations

+ Difficulties: size and/or spliced peptides
(eukaryotes)

* Approaches:
— Search gene predictions
— Peptide de novo sequencing + homology search
— Adapted database search strategy
— Combination

Kuster, et al., Proteomics, 2001
Jaffe, et al., Proteomics, 2004
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Others :: Genome :: Spliced
peptides

([ ]

e

B Genome sequence [_]signal [ normal peptide Stop
Enzyme cleavage in N-term spliced peptide codon
translated sequence I:l peptide -
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Others :: Genome :: Spliced
peptides

* Predict donor sites and store up-stream
sequences of length < Lmax

* Predict acceptor sites and store down-stream
sequences of length < Lmax

* Combine up- and down-stream sequences of
donor/acceptor sites at distance < Dmax

» Search this virtual database with MS data

D A A
Try [l and []

Chen, RECOMB 2001
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Others :: Genome :: Spliced
peptides

P11226_WOESIGO &7 SPGPEGQEODPOESE

GDEELARE

D:Dlgatc]
ran 2

NT_008E33-8 -2B1630 t
asaagoaaactaaty bttogtea

F11126_WOSLGO 91 ERKALUTEMARIEK LTFSLGKOY
ERFALOTEMARTHE LTFSLGEQV
EREALOTEMAR TEE WeW o) LTFELGEQY
NT_008583-0 -200204 gaagccagageasaTGTAAGCT Intron 3 TAGGGcattogacg
agactacatogtan €1 [280161:27942-13  tetotgaat
aaatgaaagatcag coctgoaat

P11226_WOESIGO 118 GHNEFFLTHGETMTFEEVEALCVEFQASVATTRNALENGAT QML TKERLF
GHNEFPLTNGE IMTFEEVEALCVEFQAS VATPRNAAENGALONL L FEEAF
GHEFFLTHGETMTFEEVEALCVEFQASVATPRNARERGATNLIKEEAF

NT_008%583-8 -179396 gaatt gat t
JRALTLCATAT LOTAATACTITATACCEOCOQACCARTCT AT LARACT

' 1 ryte Egeaogt Lagt 2

P11226_WOSIGO 164 LGITDEKTEGQFVDLTGHRLTYTHWHEGEPMNAGSOEDCVLLLENGOWN
LI TOEETEGQFVDLTGHNRLTY THWHECEPNNACSDEDCVLLLENGOWN
LG ITLERTEGOFVOLTGHNRELT T TNWHEGE PNNAGSDEDCY LLLENGUWN
NT_008583-8  -279249 £gAadgaagdctggcagaacataatagagcasggraggrgrocaageta
totoaaacagat tat egagt . EE L Ladgaga
goct gtgaat

cotttttattagagatoggt
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Others :: Genome :: Spliced
peptides

o Standard genome
search followed by
b Chen’s algorithm.
/ i 9
"! !

A/ 1FP/5TP at

=
By

1FP/3TP at high

LS POV
-
5

medium sensitivity.

sensitivity.
L
f Several examples
1 1 "1 ofcorrected or
LM a completed genescan
3 + ¥ predictions.
a ] 1
" &
* = ';H‘!rmi'.irt ;g‘ e ! Colinge, et al. J.Prot.Res., 2005
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Others :: Differential proteomics

» 2DE-Gel images comparisons: spot volumes
may provide semi-quantitative information

» Samples direct mass spectrometry profiles
Proteomics 2003 3(9); Appel, et al., Electrophoresis, 1997

* lon chromatograms: area is semi-quantitative

|
t, t3 time
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Others :: Differential ::

peptides

Counting

-
Spiking of 0.5 ml human plasma e H
with purified proteins. Low-
nanomolar concentrations. !-
Add a statistical test. E_

2.5- to 5-fold changes are
detected with 90-95% I_
confidence in human plasma,
with 2-3 repetitions.

7.5-10% false positives.

Liu, et al., Anal. Chem., 2004 T T T T T T
Colinge, et al., Anal. Chem., 2005 . a L K a w

Alpha-2-HS-Glycoprotein
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Julka & Regnier, J.Prot.Res., 2004

Others :: Differential :; Labels

Sample A Sample B | Sample B is 180 labeled:

@ . Introduced during tryptic

peptides (ends in K or R)

Sample A
Sample B
Unlabeled
Partially labeled

digestion or by impregnation
* Adds 4 Da ( ZXWOZ(to the tryptic
Samples A & B are mixed and
analyzed as one sample

Ratio = blue/yellow

Low nM in human plasma
Moniatte & Colinge, SPS’04

G %
1 L 5 \
Origin%ectrum Breakwr bonds

il

Also applicable to certain PTMs (phosphorylation, glycans, etc.)

97 8 10
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Others :: Open problems

Peptide de novo sequencing
Automatic detection of modifications
Structure elucidation

Analysis of protein complexes
Differential expression analysis
Genome annotation
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Open source

Generic Perl library at
http://insilicospectro.vital-it.ch

Digestion and mass computations
Peptide LC elution time predictions
Graphical display (also LaTex)

XML description of atoms, amino acids,
modifications, fragment types.
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