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I.  INTRODUCTION 
 

The excitement in today’s biology is driven by the huge amounts of information 

generated by high-throughput data-acquisition technologies, and by the expectation 

that these datasets will soon provide detailed understanding of life’s processes.  

Ultimately, these datasets have to be integrated into a system-theoretic framework 

that should allow the study of the dynamics arising from networks of physico-

chemical interactions orchestrating the physiology of a biological cell.  The 

bioinformatics community is actively responding to this call for integration with the 

creation of a wide array of pathways databases.  This tutorial will first provide an 

overview of these databases and existing graphical pathway representations.  The 

underlying objective of the tutorial is to motivate the development of methods for 

extracting network models from databases.  Models come at different resolutions, 

and pathways databases often provide only information on the connectivity 

(topology) of the interactions involved in a biological process.  Thus, a unique 

feature of the tutorial is a discussion of a method of qualitative network analysis that 

the presenters think are appropriate for the treatment of uncertain or incomplete 

pathway datasets.  Also summarized in the tutorial are existing methods and tools 

for network visualization, analysis, and simulation.  Model extraction from databases 

cannot be automated at this time; however, we will explain how a modelling-focused 

utilization of pathways databases can be carried out.  The modelling problem that is 

treated in this tutorial involves a switching behaviour of an enzymatic activity at the 

G1-S transition in the mammalian cell cycle.  
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II.   PATHWAYS DATABASES AND KNOWLEDGEBASES 
 

II.1   PATHGUIDE 

 

PATHGUIDE provides a list of more than 210 web-accessible biological pathways 

and networks databases.  It is located at  http://www.pathguide.org .  The most 

recent paper describing this resource is the following: 

 

 Bader GD, Cary MP, and Sander C. (2006) “Pathguide: A Pathway Resource  

    List,” Nucleic Acids Research 34: D504-D506 (Database Issue) 

 

As of April 2006, the number of databases under the following categories used in 

PATHGUIDE are as follows (some databases are in listed in more than one 

category): 

 

  Categories          Number of databases

 1.  Protein-protein interactions      86 

 2.  Metabolic pathways       45 

 3.  Signaling pathways       45 

 4.  Pathway diagrams       23 

 5.  Transcription factors/Gene regulatory networks  30 

 6.  Protein-compound interactions     16 

 7.  Genetic interaction networks      5 

 8.  Protein-sequence focused      12 

 9.  Other          13 

 

Below are brief descriptions of the above categories as quoted from the reference 

given above (Bader, Cary & Sander, 2006): 

 

1. Protein-protein interaction databases “mainly store pairwise interactions or 

complexes between proteins and sometimes other molecular interaction 

types.” 

2. Metabolic pathways databases “generally store a series of biochemical 

reactions in pathways involved in metabolite conversions.” 
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3. Signaling pathways databases “generally collect sets of molecular 

interactions and chemical modifications (such as post-translational protein 

modifications) as regulatory pathways.” 

4. Pathway diagrams databases “generally store hyperlinked pathways 

images.” 

5. Transcription factors/Gene regulatory networks databases “capture 

transcription factors  and the genes they regulate.” 

6. Protein-compound interactions are interactions of proteins with non-protein 

compounds. 

7. Genetic interaction networks databases are “composed of genetic 

interactions, such as epistasis and synthetic lethality, which occur when two 

mutations have a combined phenotypic effect that is not simply the sum of 

the effects caused by either mutation alone.” 

8. Protein-sequence focused databases are “protein-sequence databases that 

store pathway information as secondary information.” 

9. ‘Other’ databases refer to those that are uncategorized. 

 

According to its creators, PATHGUIDE was designed to be “complementary to 

existing database link resources, such as Michael Galperin’s Molecular Database 

Collection 

                       http://www.oxfordjournals.org/nar/database/cap/

and the UBiC Bioinformatics Links Directory:”  

                      http://bioinformatics.ubc.ca/resources/links_directory  

 

PATHGUIDE highlights databases that are “free to all users and can be downloaded 

in a standard format such as the Proteomics Standards Initiative Molecular 

Interaction (PSI-MI) and BioPAX pathway data exchange standards, and the 

Systems Biology Markup Language (SBML) and CellML pathway simulations model 

exchange standards.” (Bader, Cary & Sander, 2006)   

  

Figure 1 shows the 40 largest databases in PATHGUIDE plotted in a database size-

popularity plane (Bader, Cary & Sander, 2006). 
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Figure 1. (from Fig 1 of Bader, Cary & Sander, 2006) 
 

 

 

II.2   PATHWAY DATA STANDARDS 

 

A brief review of pathway data standards is given in the following reference: 

 

Cary, M. P., Bader, G. D., and Sander, C. (2005) “Pathway information for 

systems biology,” FEBS Letters 579: 1815-1820. 

 

Shown in Fig. 3 of this reference (reproduced below) are the data coverage of the 

following pathway data formats: 

 

PSI-MI (Proteomics Standards Initiative’s Molecular Interaction) is “a data 

exchange format for protein-protein interactions  
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(http://psidev.sourceforge.net/mi/xml/doc/user/)    

SBML  (Systems Biology Markup Language)  is “a computer-readable format 

for representing models of biochemical reaction networks. SBML is applicable to 

metabolic networks, cell-signaling pathways, regulatory networks, and many others.” 

(http://sbml.org/index.psp)  

CellML  (Cell Markup Language) :  stores and exchange mathematical models 

even if different model-building software were used. (http://www.cellml.org/)  

BioPAX (Biological Pathways Exchange) (http://www.biopax.org) is “being 

developed by various database groups…Because many less-detailed data types 

that exist the pathway data space are difficult to represent in a highly detailed 

format, the BioPAX ontology allows representation of multiple levels of data 

resolution using an abstraction hierarchy.” (quoted from Cary et al., 2005). 

 

 

 
 
Figure 2.  Coverage of pathway data formats (figure from Cary et al., 2005) 
  

 

II.3   A MODELING-FOCUSED USE OF PATHWAYS DATABASES 

 

Rather than enumerating and discussing a long list of pathways databases, we will 

consider a specific modelling problem to illustrate how one can extract relevant 

network information.  The biological process we consider is the G1-S transition in 
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the mammalian cell cycle, and the specific modelling problem is to account for the 

switching behaviour of the kinase activity of Cyclin E/CDK2, a marker for entry into S 

phase (see Fig. 3 below). 
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Figure 3.  The mammalian cell cycle showing the G1, S, G2, and M phases along with the 

predominant cyclin-CDK activities associated with each phase (top panel).  The lower panel 

shows the position of the restriction point (R) which subdivides the G1 phase into G1-pm 

(post-mitosis) and G1-ps (pre-S-phase).  After R and a finite induction period, cyclin E/CDK2 

activity increases (shown by the dashed curve labelled ‘E’) as reported in the reference given 

below the graph (Ekholm et al., 2001). 

 

We will discuss the mammalian cell cycle in more detail later (in the last section of 

this tutorial).  In this section, we will only show what databases are relevant and 

what problems are encountered before arriving at a working network model that has 

the potential to answer the biological question posed – i.e. What is the mechanistic 
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and kinetic origins of the switching behaviour associated with the restriction point? A 

few of the useful relevant pathways databases are discussed next. 

 

 

Gene Ontology (GO) 
The omics revolution is providing a comprehensive parts list of biological cells.  

The Gene Ontology (GO) project aims for a controlled vocabulary for describing 

genes and gene products (http://www.geneontology.org).  GO’s classification and 

hierarchy of biological processes can be used as a starting point for identifying the 

parts list of the G1-S molecular machinery.  Figure 4 below illustrates the search 

sequence used to generate a list of genes involved in the G1-S process.  

Unfortunately, the GO hierarchy is not a tree, and a GO term (e.g. cell cycle) could 

have many parents. 

  

 

 

Gene Ontology : biological_process
cellular process
development
growth
interaction between organisms
physiological process
pigmentation
regulation of biological process 
reproduction
response to stimulus 
viral life cycle

GO:0009987 : cellular process ( 72351 ) 
GO:0007155 : cell adhesion ( 1170 ) 
GO:0007154 : cell communication ( 10578 ) 
GO:0030154 : cell differentiation ( 2913 ) 
GO:0008037 : cell recognition ( 57 ) 
GO:0050875 : cellular physiological process ( 66156 ) 

GO:0006914 : autophagy ( 132 ) 
GO:0035212 : cell competition (sensu Metazoa) ( 2 ) 
GO:0007049 : cell cycle ( 2611 ) 
GO:0008219 : cell death ( 1773 ) 
GO:0051301 : cell division ( 862 ) 
GO:0016049 : cell growth ( 520 ) 
GO:0019725 : cell homeostasis ( 738 ) 
GO:0006928 : cell motility ( 1376 ) 
GO:0016043 : cell organization and biogenesis ( 9371 ) 
GO:0008283 : cell proliferation ( 1331 ) 
GO:0044237 : cellular metabolism ( 41769 ) 
GO:0043482 : cellular pigment accumulation ( 0 ) 
GO:0007349 : cellularization ( 60 ) 
GO:0007059 : chromosome segregation ( 584 ) 
GO:0051606 : detection of stimulus ( 1485 ) 
GO:0030198 : extracellular matrix organization and biogenesis ( 163 ) 
GO:0009755 : hormone-mediated signaling ( 208 ) 
GO:0000280 : nuclear division ( 14 ) 
GO:0043108 : pilus retraction ( 0 ) 
GO:000627
GO:0009846 : pol
G :0051244 : r
GO:0048610 : reproductive cellular physiological proce
GO:0009991 : response to extracellular stimulus ( 414 )
GO:0009847 : spore germination ( 36 ) 
GO:0030435 : sporulation ( 41
GO:0010118 : stomatal movement ( 15 ) 
GO:0006949 : syncytium formation ( 2 ) 

GO:0050794 : regulation of cellular process ( 10906 )

6 : plasmid maintenance ( 21 ) 
len germination ( 9 ) 

O egulation of cellular physiological process ( 10282 ) 
ss ( 394 ) 
 

6 ) 

GO:0006810 : transport ( 18979 ) 
 

GO:0007049 : cell cycle ( 2611 ) 
GO:0030037 : actin filament reorganization during cell cycle
GO:0007098 : centrosome cycle
GO:0007113 : endomitotic cell cycle
GO:0051325 : interphase
GO:0000279 : M phase
GO:0051321 : meiotic cell cycle
GO:0000278 : mitotic cell cycle
GO:0051726 : regulation of cell cycle
GO:0016330 : second mitotic wave (sensu Endopterygota)

GO:0051726 : regulation of cell cycle ( 1280 ) 
GO:0051727 : cell cycle switching, meiotic to mitotic cell cycle ( 0 ) 
GO:0051728 : cell cycle switching, mitotic to meiotic cell cycle ( 0 ) 
GO:0000074 : regulation of progression through cell cycle ( 1274 ) 

GO:0000075 : ( 284 )  cell cycle checkpoint
GO:0008054 :  30 )  cyclin catabolism (
GO:0019055 : modification by virus of host cell cycle regulation ( 1 ) 
GO:0045786 :  

Gene Ontology : biological_process
cellular process
development
growth
interaction between organisms
physiological process
pigmentation
regulation of biological process 
reproduction
response to stimulus 
viral life cycle

negative regulation of progression through cell cycle ( 237 )
GO:0045787 : ( 54 ) positive regulation of progression through cell cycle
GO:0000320 : ( 7 ) re-entry into mitotic cell cycle
GO:0031991 : regulation of contractile ring contraction during cytokinesis ( 20 ) 
GO:0000079 :  117 ) regulation of cyclin dependent protein kinase activity (
GO:0007088 : regulation of mitosis ( 239 ) 
GO:0051445 : regulation of progression through meiotic cell cycle ( 7 ) 
GO:0007346 :  147 regulation of progression through mitotic cell cycle (

GO:0009987 : cellular process ( 72351 ) 
GO:0007155 : cell adhesion ( 1170 ) 
GO:0007154 : cell communication ( 10578 ) 
GO:0030154 : cell differentiation ( 2913 ) 
GO:0008037 : cell recognition ( 57 ) 
GO:0050875 : cellular physiological process ( 66156 ) 

GO:0006914 : autophagy ( 132 ) 
GO:0035212 : cell competition (sensu Metazoa) ( 2 ) 
GO:0007049 : cell cycle ( 2611 ) 
GO:0008219 : cell death ( 1773 ) 
GO:0051301 : cell division ( 862 ) 
GO:0016049 : cell growth ( 520 ) 
GO:0019725 : cell homeostasis ( 738 ) 
GO:0006928 : cell motility ( 1376 ) 
GO:0016043 : cell organization and biogenesis ( 9371 ) 
GO:0008283 : cell proliferation ( 1331 ) 
GO:0044237 : cellular metabolism ( 41769 ) 
GO:0043482 : cellular pigment accumulation ( 0 ) 
GO:0007349 : cellularization ( 60 ) 
GO:0007059 : chromosome segregation ( 584 ) 
GO:0051606 : detection of stimulus ( 1485 ) 
GO:0030198 : extracellular matrix organization and biogenesis ( 163 ) 
GO:0009755 : hormone-mediated signaling ( 208 ) 
GO:0000280 : nuclear division ( 14 ) 
GO:0043108 : pilus retraction ( 0 ) 

6 : plasmid maintenance ( 21 ) 
len germination ( 9 ) 

O egulation of cellular physiological process ( 10282 ) 
ss ( 394 ) 
 

6 ) 

GO:0006810 : transport ( 18979 ) 
 

GO:0007049 : cell cycle ( 2611 ) 
GO:0030037 : actin filament reorganization during cell cycle

GO:000627
GO:0009846 : pol
G :0051244 : r
GO:0048610 : reproductive cellular physiological proce
GO:0009991 : response to extracellular stimulus ( 414 )
GO:0009847 : spore germination ( 36 ) 
GO:0030435 : sporulation ( 41
GO:0010118 : stomatal movement ( 15 ) 
GO:0006949 : syncytium formation ( 2 ) 

GO:0050794 : regulation of cellular process ( 10906 )

GO:0007098 : centrosome cycle
GO:0007113 : endomitotic cell cycle
GO:0051325 : interphase
GO:0000279 : M phase
GO:0051321 : meiotic cell cycle
GO:0000278 : mitotic cell cycle
GO:0051726 : regulation of cell cycle
GO:0016330 : second mitotic wave (sensu Endopterygota)

GO:0051726 : regulation of cell cycle ( 1280 ) 
GO:0051727 : cell cycle switching, meiotic to mitotic cell cycle ( 0 ) 
GO:0051728 : cell cycle switching, mitotic to meiotic cell cycle ( 0 ) 
GO:0000074 : regulation of progression through cell cycle ( 1274 ) 

GO:0000075 : ( 284 )  cell cycle checkpoint
GO:0008054 :  30 )  cyclin catabolism (
GO:0019055 : modification by virus of host cell cycle regulation ( 1 ) 
GO:0045786 :  negative regulation of progression through cell cycle ( 237 )
GO:0045787 : ( 54 ) positive regulation of progression through cell cycle
GO:0000320 : ( 7 ) re-entry into mitotic cell cycle
GO:0031991 : regulation of contractile ring contraction during cytokinesis ( 20 ) 
GO:0000079 :  117 ) regulation of cyclin dependent protein kinase activity (
GO:0007088 : regulation of mitosis ( 239 ) 
GO:0051445 : regulation of progression through meiotic cell cycle ( 7 ) 

 GO:0007346 :  147 regulation of progression through mitotic cell cycle (

 

Figure 4.  A search sequence to extract a list of genes involved in the regulatory network of 

the G1-S transition in the mammalian cell cycle. 
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Kyoto  Encyclopedia of Genes and Genomes (KEGG) 
The preceding GO search will not give information on the structure of the G1-S 

network.  One can begin to learn about the network by visiting pathways databases 

such as KEGG.  Its URL is http://www.genome.jp/kegg/ .   There are 4 constituent 

databases in KEGG, but we will only mention two of them: PATHWAY and BRITE. 

KEGG PATHWAY is a collection of manually drawn pathway maps on 

 

1. Metabolism 

2. Genetic Information Processing 

3. Environmental Information Processing 

4. Cellular Processes 

5. Human Diseases 

6. Drug Development (drug structure maps) 

 

Items 1-5 represent the first level of the KEGG Orthology (KO), a pathway-based 

classification of orthologous genes.  ‘Drug Development’ (item 6 above) includes 

chronology of drug development, target-based structure classification, and skeleton-

based structure classification. 

 

KEGG BRITE is “a collection of hierarchical classifications representing our 

knowledge on various aspects of biological systems. In contrast to KEGG 

PATHWAY, which is limited to molecular interactions and reactions, KEGG BRITE 

incorporates many different types of relationships. Thus, the mapping of genomic 

and molecular data to KEGG BRITE (by the KO system) supplements the KEGG 

PATHWAY mapping for inferring higher-order functions….The KEGG Orthology 

(KO) system is the backbone of KEGG BRITE. It is a pathway-based classification 

of orthologous genes, including orthologous relationships of paralogous gene 

groups. The KO identifier, or the K number, is a common identifier for linking the 

gene and the pathway node, enabling automatic generation of organism-specific 

pathways.” (quotes from http://www.genome.jp/kegg/brite.html ).  

  

Figures 5A & 5B illustrate what pathway information on the cell cycle is obtained 

from KEGG. 

10 

http://www.genome.jp/kegg/
http://www.genome.jp/kegg/brite.html


 

Metabolism 
Genetic Information Processing 
Environmental Information Processing 
Cellular Processes
Human Diseases

NETWORK HIERARCHY IN KEGG

01400 Cellular Processes
01410 Cell Motility   
01420 Cell Growth and Death   

04410 Cell division 
04420 Sporulation [GO:0030435 0030436] 
04430 Germination [GO:0009847] 
04110 Cell cycle [PATH:ko04110hsa] 
04210 Apoptosis [PATH:ko04210] [GO:0006915] 

CLICK TO SEE PATHWAY

NETWORK HIERARCHY IN KEGG

Metabolism 
Genetic Information Processing 
Environmental Information Processing 
Cellular Processes
Human Diseases

NETWORK HIERARCHY IN KEGG

Metabolism 
Genetic Information Processing 
Environmental Information Processing 
Cellular Processes
Human Diseases

01400 Cellular Processes
01410 Cell Motility   
01420 Cell Growth and Death   

04410 Cell division 
04420 Sporulation [GO:0030435 0030436] 
04430 Germination [GO:0009847] 
04110 [PATH:ko04110hsaCell cycle ] 
04210 Apoptosis [PATH:ko04210] [GO:0006915] 

01400 Cellular Processes
01410 Cell Motility   
01420 Cell Growth and Death   

04410 Cell division 
04420 Sporulation [GO:0030435 0030436

CLICK TO SEE PATHWAY

] 
04430 Germination [GO:0009847] 
04110 [PATH:ko04110hsaCell cycle ] CLICK TO SEE PATHWAY
04210 Apoptosis [PATH:ko04210] [GO:0006915]  

 

Figure 5A.   Finding a cell cycle pathway map from the network hierarchy link in BRITE. 

 

 
Figure 5B.  Pathway diagram of the cell cycle (H. sapiens) from KEGG. 

 

The boxes in the pathway map are clickable if there is information stored in them in 

the database.  Clicking on other processes or modules (e.g. ‘MAPK signalling 

pathway’ or ‘Apoptosis’) will open up the corresponding pathway map.  Clicking on 
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the ‘Help’ button located at the top right of the map will show the legend for the 

graphical objects (boxes and edges) used.  Beyond this legend, no links are 

provided for further information on the interactions (edges).  More detailed 

information on a particular interaction may be found in binary interaction databases 

such as BIND and DIP (go to the PATHGUIDE list to link to these protein-protein 

interaction databases).  An unsatisfactory feature of the map given in Fig. 5B is the 

assignment of parts of the network to the G1, S, G2, and M phases of the cell cycle 

(see bottom of map).  One must always remember that, at least at this point in time, 

pathway maps such as those in KEGG embody the curators’ interpretation of 

available literature information and are tentative. 

 

Reactome 
 Reactome is a curated knowledgebase of human biological pathways which 

operates like a scientific journal in the sense that specialists in particular biological 

topics (i.e. biological processes selected by the editors) are invited to provide 

experts’ reviews which are subsequently substantiated with bioinformatic weblinks 

by in-house curators.  The URL is http://www.reactome.org.  Reactome is a 

collaborative project among the Cold Spring Harbor Laboratory (USA), European 

Bioinformatics Institute, and the Gene Ontology Consortium. 

 

The Table of Contents (TOC on the main menu bar) and the Pathway Topics List on 

the home page of Reactome give listings of the curated biological pathways.  For 

our G1-S modelling problem, clicking on Cell Cycle, Mitotic Hs leads to another link 

called G1/S transition [homo sapiens] which can be perused to learn more about the 

process.  A useful Reactome tool is Pathfinder which can be used to identify or 

discover pathways between a starting molecule, gene, or event and a terminating 

molecule, gene, or event. 

 

GenMAPP 

 Unfortunately, Reactome does not provide good pathway maps that integrate 

the interactions described in detail under each biological process.  GenMAPP 

(http://genmapp.org) contains a database of pathway maps contributed by users, 

including some that are translated from Reactome (see Fig. 6).  A clickable listing of 

human pathway maps could be found at 

       http://genmapp.org/HTML_MAPPs/Human/MAPPIndex_Hs_Contributed.htm
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Figure 6.  The Hs_G1_to_S_cell_cycle_Reactome.mapp from GenMAPP (see URL 

preceding this figure).  This map was translated from Reactome by A. C. Zambon. 

 

 

Biocarta 
The company BioCarta is a “developer, supplier and distributor of uniquely 

sourced and characterized reagents and assays for biopharmaceutical and 

academic research” (quoted from Biocarta’s URL :  http://biocarta.com).  This 

website contains maps of pathways that are subjects of active research.  For the 

subject on G1-S cell cycle transition, one finds at least 6 relevant pathway modules, 

namely 

1.  Cyclins and Cell regulation 

2.  Cell Cycle: G1/S checkpoint  (see Figure 7 below) 

3.  Regulation of p27 phosphorylation 

4.  CDK regulation of DNA replication  

5.  Cyclin E destruction pathway  

6.  Influence of Ras and Rho proteins on G1 to S transition 
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Figure 7.  The pathway module called Cell Cycle: G1/S checkpoint  in Biocarta (contributed 

by Cell Signaling Technology).  A legend for the meaning of the symbols (edges and 

molecules) is provided on the same page.  The genes/proteins can also be clicked to open 

windows of information on genes, proteins, Biocarta products, references, etc. 

 

 

 

Pathguide lists other sources of pathway maps which should be consulted for more 

detailed information.  The small number of pathways databases discussed above 

already provides a good start for sketching a network model focusing on the 

regulation of cyclin E/CDK2 which we assume to be the primary marker for the G1-S 

transition.  Admittedly, the extraction of the G1-S network model discussed in the 

last section of this tutorial was largely guided by published review papers on the 

subject ; one can carry out a Pubmed search to search for these papers at:    

                                         http://www.ncbi.nlm.nih.gov    
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II.4   REPOSITORIES OF MODELS 

 

Mathematical and computational modelling of biological pathways is, of course, not 

new but this activity has recently been stimulated by the availability of large amounts 

of data generated by omics technologies.  The recent creation of online repositories 

of models is a welcome development because they promise to gather and 

standardize model representation so that models can be conveniently shared and 

interpreted by members of the modelling community.  The URLs of these model 

repositories are given below.   

 

Biomodels Database at EBI:   http://www.ebi.ac.uk/biomodels/

   CellML at the Univ Auckland:  http://www.cellml.org

 

The Biomodels Database is a “free, centralized database of curated, published, 

quantitative kinetic models of biochemical and cellular systems” (quote from the 

Biomodels URL above).  CellML aims to “store and exchange computer-based 

mathematical models” (quote from the CellML URL above).  An example of a model 

graph from the Biomodels Database is the cell cycle model shown in Fig. 8.  This 

model (kinetic equations and parameters) can be downloaded from the website 

using various formats such as SBML, CellML, SciLab, and XPP. 

 

                                 
Figure 8.  Graph view of model Tyson1991_CellCycle_6var from Biomodels Database. 
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Figure 9 below is a G1-S model network from CellML. 

 

 
Figure 9.  The Hatzimanikatis model of the G1-S network in the mammalian cell cycle 

(downloaded from the CellML database). 
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III.   NETWORK VISUALIZATION AND ANALYSIS 
 

By ‘network visualization’ we mean the graphical representation of networks of 

molecular processes and interactions.  Ideally, a network graph would contain all the 

details (or at least clickable links to them) of the individual interactions and 

processes comprising the network.  Beyond these local details, a network graph is 

essential in understanding the associated biological process because the graph as a 

whole embodies system-level properties emerging from the coupling (or topology) of 

the interactions among the network components.  It is these non-intuitive emergent 

global properties that are often the object of computer-based mathematical 

modeling.  In this section, we summarize the activities in the systems biology 

community that are geared towards the development of standards of graphical 

representation of networks; we also survey existing methods and tools of network 

analysis and computer simulation of models. 

With the view of developing a kinetic model, a network graph is used to extract 

the two essential model components, namely, a set of dynamical variables and a set 

of interaction functions corresponding to the network topology.   

Every kinetic model assumes a set of dynamical variables that sufficiently 

describes the state of the system.  A network graph is composed of nodes and 

edges where the nodes correspond to entities (molecules, genes, proteins, 

complexes, even pathway modules) that are connected by edges (often directed to 

signify causality of the interaction).  In other graphs, interactions themselves are 

considered nodes and an edge between an entity node and an interaction node 

could mean either ‘the entity is a substrate or reactant of the interaction’ or ‘the 

interaction gives rise to or affects the entity’.  Only entity nodes may correspond to 

dynamical variables in kinetic models.  Depending on the resolution of the model, a 

dynamical variable may correspond to one entity node or a set of nodes (modules). 

A directed interaction edge signifies that the state of the target node is a 

function of the state of the source node.  In a dynamical model, the instantaneous 

state of a given target node would be equal to the algebraic sum of the interaction 

functions associated with all source nodes.  These interaction functions are referred 

to as the ‘kinetics’ or ‘rate expressions’ of the interactions.  
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III.1  SOME EXAMPLES OF NETWORK GRAPHS 

 

Qualitative network (qNET) graphs 

 In the primary literature, most molecular biologists and geneticists present 

pictures of pathways by using what we call qualitative network graphs where only 

arrows and hammerheads are shown (see, for example, Fig 7 above).  These qNET 

graphs are directed binary interactions where arrows could mean any of the 

following: ‘activates’, ‘induces’, or some positive influence that increases the level of 

the target node; and hammerheads could mean ‘inhibits’ or some other negative 

influence that decreases the level of the target node.  Admittedly, the meaning of 

these arrows and hammerheads is not well defined.  In the last section of this 

tutorial, we will give clear definitions and say more about the utility of these qNET 

graphs in assessing network stability.  Majority of the available information on 

biological pathways and networks is at the qNET level – this is really the motivation 

why we must find ways to analyze qNET graphs to generate valid conclusions 

despite the incompleteness and uncertainty of the data. 

 

Metabolic network (MBN) graphs 
 Sample graphs of metabolic networks from the two most popular databases 

KEGG and EcoCyc are shown in Fig 10 below.  The nodes are low molecular 

metabolites and the reactions are characterized by functional classes of enzymes 

which are abstracted to standardized EC numbers. The MBN graph has a clear and 

simple semantics that is easily amenable to mathematical analysis and, in fact, co-

evolved with a number of analytical methods and tools, such as metabolic control 

analysis and stoichiometric network analysis.  
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Figure 10.  Top panel:  a portion of the pentose phosphate pathway from KEGG.  Bottom 

panel: tryptophan synthesis pathway from EcoCyc. 

 
Gene regulatory network (GRN) graphs 

Gene Regulatory Network (GRN) notation is another example of a specialized 

representation developed to capture regulatory relationships specifically within gene 

networks, or even more precisely, among various transcription factors. The notation, 

originally developed in Davidson’s group at Caltech (Yuh et al., 1998), is centered 

on cis-regulatory elements of genes and their positive or negative regulation by 

other genes. Several extensions of the GRN notation were provided by Bolouri 

(Longabaugh et al., 2005) and Arkin (McAdams and Arkin, 1997) to include 
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description of proteins and their interactions. However, the GRN notation is a DNA-

centric approach which does not cover signal transduction or metabolic networks. 

Presently the GRN notation is supported by the BioTapestry software being 

developed by the Bolouri group (Longabaugh et al., 2005). 

 

 

 

Figure 11.  An example of a GRN graph from (Davidson and Erwin, 2006). 

 

 

Towards a general graphical network representation 

    MIM. Molecular Interaction Maps (Kohn, 1999; Kohn, 2001) represent one of 

the first attempts to develop a general graphical notation suitable for description of 

any molecular network but specifically geared towards signaling networks. MIMs are 

also based on nodes and edges; however complexes are denoted differently from 

“single” molecules (see Figure 12 for an example). The semantics of notation is rich 

and allows representation of enzymatic activity, molecular modifications, formation 

of large molecular complexes, etc. The set of notations was designed to represent 

both qualitative and detailed mechanistic interactions. The development of the MIM 

notation also uncovered issues and pitfalls that are blocking the way to a universal 

network notation. Thus, to provide representational richness the notations become 

relatively complex and their correct and unambiguous interpretation may require 

prior domain knowledge which, in turn, aggravates the problem of being machine 

readable and writable. 
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Figure 12.  A fragment of a large MIM (Kohn and Aladjem, 2006). 

 

 

     PDN.  Process Diagram notation was developed in Japan’s Systems Biology 

Institute by Kitano and colleagues (Oda and Kitano, 2006; Kitano et al., 2005).  The 

notation builds on the earlier work of Kohn and co-workers on MIMs but is based on 

a different philosophy.  The notation is graphically rich and appeals to human image 

processing capabilities.  The notation explicitly introduces notions of “process” and 

“state”.  Each state of the molecule (e.g., receptor – ligated receptor, inactive – 

active protein) is represented separately and the transition between them 

(“process”) is shown explicitly.  This representational convention makes PDN highly 

intuitive and easy to read for biologists.  PDN is fully supported by the CellDesigner 

software (being developed in the same institute) which was initially conceived to be 

a pathway and network editor, but is now being extended to become a computer 

simulation platform. 

 

     EPN. The Edinburgh Pathway Notation (EPN) was recently proposed by 

Goryanin, Ghazal and co-workers (Sorokin et al., 2006) to alleviate problems 

discovered during the development of PDN.  EPN can “hide” many detailed 

mechanistic blocks behind convenient high-level notation such as “logical gates” and 

“protein expression”.  The notation is based on the concept of “state” with a specific 

notation abstracted from a similar notation in PDN.  In general, each protein, 

complex and biomolecular entity has to have at least one state, but they can also 
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have multiple states.  To conserve graphical space, all states of the biomolecule 

contained in the same object.  EPN is also meant to provide a more convenient 

interface for machine readability and writability.  Less human-readable but more 

compact EPN can be developed into the more human-readable but much more 

verbose PDN on the per-module basis to enable both perception and efficiency of 

information presentation. At the moment this notation is developed and supported by 

the Edinburgh Pathway Editor. 

  

     PATIKA.  The acronym stands for Pathway Analysis Tools for Integration and 

Knowledge Acquisition (Demir et al., 2004; Demir et al., 2002).  Patika represents 

another example of a conceptual platform and graphical notation that provides 

modularization, encapsulation and hierarchical representation of interaction 

networks.  The primary semantic elements are “state”, “complex”, “transition”, 

“compartment” and “abstraction”.  “Abstractions” of states and transitions serve to 

implement modularization of networks as well as to incorporate the uncertainty of 

biological data.    

 

     SBGN.  Presently, the need to develop a standard notation for representing 

biomolecular networks became well appreciated by the systems biology and 

bioinformatics community. The Systems Biology Graphical Notation (SBGN) 

consortium was formed to discuss problems, identify contradictions in notation and 

find solutions. A pathbreaking first workshop of SBGN took place in Tokyo in 

February 2006 to set the course for the much-anticipated unification of various 

graphical notations.  A complementary effort is currently being undertaken by the 

XML language communities represented by SBML, CellML and BioPAX projects 

(Gauges et al., 2006). The goal of this effort is to enable a next-generation of SBML 

and other exchange standards for graphical representation of networks in a clear 

and unambiguous format, independent of particular platforms and graphical 

notations.  Convergence of the SBGN and the SBML-CellML-BioPAX efforts, long 

awaited by the systems biology community, should result in a free and effortless 

sharing of pathway and network information among scientists from multiple 

disciplines and heterogeneous backgrounds. 
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III.2  METHODS AND TOOLS FOR NETWORK ANALYSIS AND MODELLING 
 

Once the elements of the network have been identified and the relationships 

between them have been established, the dynamical behavior of the network can be 

analyzed by various methods through the construction of a network model. 

Typically, “simulation” of the model implies some computational process that 

attempts to imitate the temporal (and sometimes spatial) dynamics of the actual 

network.  Simulation is often conceptually straightforward, and multiple tools are 

available. In contrast, “analysis” usually implies that some qualitative conclusions 

are derived about the behavior of the network without explicitly simulating its 

dynamics.  In this part of the tutorial we start by surveying the space of modeling 

methods and exploring this space beginning with the conventional simulation 

methods to the more qualitative, symbolic, and analytic techniques.  We briefly 

cover foundations of the formalism of stoichiometric network analysis and metabolic 

control analysis, with emphasis on available tools and potential applications rather 

than on the details of their mathematical formalism. 

 

The choice of method or approach for analyzing a network depends on the 

levels of certainty and detail on network data, as well as on one’s research 

objective.  Two complementary approaches can be formulated as follows. The more 

“brute force” approach relies on numerical simulation to arrive at a qualitative 

insight. Typically one would begin by formulating a detailed mechanistic 

mathematical model that is equipped with kinetic parameter values.  The model is 

then numerically simulated over a wide range of parameters.  These computer 

simulations sometimes suggest ways to reduce the model to smaller, more 

manageable size through, for example, elimination of fast and slow variables. 

Qualitative insights can be also obtained from numerically computed bifurcation and 

phase diagrams.  Alternatively, one can start by applying methods of qualitative 

analysis to reduce the complexity of the model prior to embarking on numerical 

simulations.  For example, one may analyze the topology of the network to identify 

the “elementary” or “principal” fluxes, and identify which among these are 

responsible for a particular qualitative phenomenon, such as bistability.  A reduced 

or minimal model can sometimes be generated by identifying the smallest number of 

these fluxes that could still retain the qualitative behavior being modeled.  

 

A large variety of modeling methods is presently available for researchers 

interested in biological pathways and networks (Alves et al., 2006; Pettinen et al., 
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2005).  Before delving into the details of some of these methods, we first give an 

overview of the full spectrum of methods. An early approach to modeling biological 

systems - dating back to the works of Jacob, Monod, Volterra and Lotka - are almost 

entirely based on the use of ordinary and partial differential equations.  This 

approach is deterministic.  More recently, significant interest has been paid to the 

use and development of stochastic methods which allow the investigation of noise in 

biological systems. 

 

In the past decade, significant efforts have also been put toward the 

development of qualitative and symbolic methods of modeling.  In the early 1970s 

Kaufmann and Glass developed the formalism of Boolean networks to predict  

qualitative behaviors of gene networks. Later, several methods borrowed from 

computer science, such as Petri Nets and Bayesian networks, were adopted for the 

analysis of biological systems.  Process calculi is a more recent addition to this 

collection (see Fig 13). 
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Figure 13.  Space of modeling methods 
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Stoichiometric Kinetic Modeling (SKN) 
 To perform a stoichiometric or chemical kinetic modeling, a network should be 

“translated” into the stoichiometric kinetic notation.  Many modern simulation 

packages allow the user to enter diagrammatic information while some older 

packages require direct inputs of equations.  To define a model, the user needs to 

supply connectivity information (graphically), define the compartments (volume), 

species (names, concentrations or copy numbers) and reactions (kinetic law, 

reaction rate constants).  Once the model is fully defined, its simulation can be 

performed either deterministically or stochastically and the simulation output will be 

generated usually as a time series of variable concentrations or molecule copy 

numbers.  It should be kept in mind that for stochastic simulations, the steps in the 

mechanism must be elementary steps (usually first or second order reactions) that 

correspond to mass-action rate laws, as opposed to composite rate expressions 

such as Michaelis-Menten or Hill-type functions.  The example given on the slide 

represents the classical Michaelis-Menten kinetic diagram for the transformation of 

substrate S into product P catalyzed by an enzyme E.  The mechanism, as defined 

here consists of only mass-action rate laws so it can be simulated either 

deterministically or stochastically.  

 
 

 

Figure 14.  Various software tools used to simulate kinetic models. 
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Petri Nets (PNs) 
  The Petri Net formalism was initially introduced as an analytical tool for testing 

concurrent processes in computer engineering in the early 1960s.   Only recently 

was it realized that this formalism can also be used for modeling biological systems 

(Goss and Peccoud, 1998).  In their basic formulation, PNs are equivalent to the 

SKNs with “places” equal to “species” and “transitions” equal to “reactions”; 

however, PNs assume discrete values for species numbers (“marking’ , ‘tokens”).  

This concept was extended in hybrid functional Petri nets (HFPNs) to admit both 

discrete and continuous values for place markings.  This flavor also introduced ‘test’ 

and ‘inhibitory’ arcs to represent closer feature found in signaling networks.  To 

achieve more quantitative approximation of chemical kinetics, the formalism of 

stochastic Petri Nets can be applied to essentially mimic the behavior of the 

Gillespie algorithm (Peleg et al., 2002).  More recently, colored Petri Nets (CPNs) 

(Mandel et al., 2004) have been applied to introduce hierarchical representation of 

biological systems with increasingly more fine-grained description.  A variety of 

computational tools exist for the three major flavors described; however, none of 

these has been designed specifically to model biological networks and pathways.  

Thus expert-level knowledge in the PN domain is generally needed to operate these 

tools. 

 

Boolean Networks (BNs) 
Boolean networks were proposed by Kauffman and Glass as a ‘simple’ model 

for gene interaction networks (see e.g., (Kauffman, 2004; Perkins et al., 2006) and 

references therein).  An advantage of Boolean networks is that they offered a 

biologically plausible and computationally tractable model when virtually nothing is 

known about the details of gene expression control.  BNs are cellular automata with 

simple transition rules and are close relatives of neural networks.  Original BNs, 

heavily influenced by cybernetics, had only Boolean variables (0,1) and logical 

transition rules.  Later transition rules have been generalized, e.g., as shown on the 

slide, and variables were allowed to take a finite range of values.  Another recent 

development in the area is the introduction of probabilistic Boolean networks (PBN) 

that allow many transition functions for each node of the network which are chosen 

at random with a given probability (Shmulevich et al., 2002).  The main proposed 

use of various BNs is the inference of gene regulation networks from genomic data.  
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Bayesian Networks (BaNs) 
In Bayesian networks (BaN) the edges represent causality between the nodes 

through the statistical dependence.  Usually, many networks will fit the experimental 

data.   Further analysis is required to narrow down the selection of potential 

networks.  As such, BaN have been used as an analytical (Friedman et al., 2000) 

rather than simulation tool.  

 

 

Analysis of network topology 
 

Graph-theoretic Analysis.  Application of graph-theoretic approaches to 

large-scale networks, regardless of the nature of the component interactions, 

resulted in the modern theory of “network biology” mainly developed by Barabasi 

and colleagues (Barabasi and Oltvai, 2004; Ravasz et al., 2002).  The main 

topological characteristics of the networks are the distributions of connectivity P(k) 

and modularity C(k) or clustering coefficient.  The majority of biological networks 

show scale-free distribution characterized by exponential dependence of P and C on 

k.  While scale-free networks are not necessarily modular, many natural networks 

also show modularity which requires that C(k) drops with k, for hierarchical networks 

C~1/k.  The scale-free property of biological networks, which has been 

demonstrated for some networks, such as metabolic and protein-protein interaction, 

endows them with some structural robustness properties but also leaves them open 

to catastrophes upon removal of the “hubs”, the highly connected nodes that are 

responsible for the connectivity of the network.  Biological networks with exponent 2 

< γ < 3 are also ultrasmall in a sense that their average node connecting path scales 

as L~log log N while for random networks it is only log N.  Perhaps the most popular 

general-purpose tool specifically to work with large networks, such as protein-protein 

interaction networks, is Cytoscape from Ideker’s group.  Among many “plug-ins” that 

extend the functionality of this tool is Network Analyzer which computes a number of 

network topology statistics and probability distributions.  

 

SNA.  This is the acronym that Bruce Clarke gave for the formalism he 

developed and called stoichiometric network analysis (Clarke, 1988). Central to the 

use of stoichiometric methods is the concept of the stoichiometric matrix (SM) N 

which describes connectivity and stoichiometry of the reaction network. The power 

of the approaches based on the analysis of the SM lies in the fact that a number of 

qualitative conclusions can be made regarding the properties of the network 
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regardless of the detailed definition of reaction fluxes which are usually complex 

nonlinear functions of the species concentrations.  Introduction of the SM results in a 

linear relationship between the time derivative of the vector of m species 

concentrations and the vector of n reaction fluxes.  To ensure that all reaction fluxes 

are non-negative, reversible reactions are often represented as two opposite 

reaction fluxes following the work of Clarke.  

 In the stationary state, the vector of fluxes satisfies a very simple equation.  If 

the rank of the SM is r then all possible stationary flux vectors are found within the 

so-called null space of the SM with dimension n - r.  It is convenient to introduce a 

so-called kernel matrix K with dimensions n x n - r that consists of the null-space 

basis vectors.  Incidentally, the kernel matrix allows to express all reaction fluxes 

through the independent reaction fluxes as shown on the slide.  However, arbitrarily 

chosen basis vectors of the null-space are not unique and do not have any 

biochemical meaning.  Fortunately, using convex analysis it is possible to overcome 

this problem.  It can be shown that all admissible flux vectors lie within a (n – r )-

dimensional convex cone within the positive orthant of the n-dimensional flux space. 

The edges of this cone are so-called “extreme currents” and their number is 

generally higher than the dimension of the null-space. Interestingly, although this 

means that algebraically they are dependent, biochemically they are still 

independent because they cannot be expressed through each other using only non-

negative coefficients. On the network diagram, such extreme currents correspond 

to characteristic pathways with none of them being a subset of another.  Schuster 

and co-workers relaxed the requirement for non-negativity of fluxes introducing 

‘elementary modes’ as the cone edges in this situation (see for review (Papin et al., 

2003)).  Finally, Schilling (Schilling et al., 1999) and colleagues introduced an 

intermediate concept of ‘extreme pathways’ by assuming non-negativity for internal 

fluxes and arbitrary sign for the exchange reactions with the ‘environment’ of the 

system. This concept is illustrated in Fig 15. 
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Figure 15.  An example of how to determine the extreme pathways in a network. 

 

 

 

Mathematical analysis of stoichiometric matrices and especially extraction of 

the extreme currents, elementary modes and pathways is a nontrivial task and 

should be performed with dedicated tools.  Publicly available software for SNA has 

become available since the end of 1990s.  The most recent developments are 

CellNetAnalyser and SNA toolbox which are toolboxes for Matlab and Mathematica 

respectively.    

What can be done once the extreme currents are computed?  Originally SNA 

was developed by Clarke specifically to analyze the stability of stationary states of 

large reactions networks.  The mathematical apparatus of this approach is beyond 

the scope of this tutorial.  Importantly, SNA was applied to derive a reduced model 

of a complex network so that it preserves certain characteristic behavior.  Thus 

Aguda and Clarke (Aguda and Clarke, 1987) used SNA to derive a reduced model 

for the bistability behavior exhibited by the peroxidase-oxidase reaction.  This 

approach involved identification of those extreme currents that are necessary to 

preserve the bistable behavior of the whole system.  More recently SNA was applied 

to identify criteria for the emergence of calcium oscillations in olfactory cilia (Reidl et 

al., 2006). Papin and Palsson (Papin and Palsson, 2004) presented an example of 
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how SNA can be used to analyze the structure and properties of a generic signal 

transduction pathway on the example of JAK-STAT pathway.  

 

Metabolic Control Analysis (MCA).  MCA (Hofmeyr et al., 2002) is another 

theoretical approach based on the analysis of the stoichiometric matrix.  The main 

question addressed by MCA is how the stationary state of the network described by 

the set of all stationary concentrations S and reaction fluxes J is influenced by the 

perturbation introduced into the system parameters.  In the classical metabolic 

context, these parameter perturbations are normally achieved by altering 

concentrations or molecular properties of the enzymes that catalyze the 

corresponding reactions.  To reach its goal, MCA introduces a number of differential 

characteristics which define sensitivities of stationary quantities to the change in 

concentrations and parameters.  “Local” properties that describe how the individual 

reaction rates v depend on the reactants and parameters that are directly involved in 

these reactions are called elasticities and are expected to be experimentally 

measured.  Indeed for a great number of biochemical systems these parameters 

can be relatively easily measured in vitro. Of interest, however, are the “global” 

characteristics, response and control coefficients that represent systemic properties 

of the entire network.  Experimental measurements of these characteristics would 

require in vivo experiments which are normally difficult.  The main advantage of the 

MCA is the derivation of the algebraic relationships between hard to obtain 

coefficients and elasticities based only on the topology of the network as encoded in 

the stoichiometric matrix. 
 MCA relates global properties to local properties through the so-called 

summation and connectivity theorems that relate matrices of control coefficients with 

the stoichiometric matrix through the kernel matrix K and link matrix L.  These 

matrices describe the linear dependence between the network fluxes (columns of N) 

and the species (rows of N).  In the example shown on the slide a simple system of 

3 species S is connected by 4 reactions.  Four additional “boundary” species X are 

assumed to be kept constant by external processes are thus the parameters of the 

system together with the reaction rate constants.  The final outcome of the MCA 

analysis here is the system of linear equations that relates all control coefficients 

with the stationary fluxes, concentrations and elasticities which are assumed to be 

measured experimentally.  For the systems of practical size, all the above 

calculations, of course, are performed using software tools. 

 A number of software tools provides support for MCA analysis, usually by 

calculating elasticities, response and control coefficients numerically.  The majority 
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of these tools are also kinetic modeling/simulation engines.  Among the available 

tools the most prominent are PySCeS (Olivier et al., 2005) which evolved from the 

first MCA tool MetaMod, JDesigner/Jarnac and Copasi (the latest, and improved 

version of Gepasi).  Importantly, Jarnac can be run as a module of the broker 

applications SBW and BioSpice, providing additional functionality and application 

data exchange. Some other tools like BioSens and MetaFluxNet are not MCA tools 

in the strict sense but provide additional and complimentary functionality such as 

sensitivity analysis and metabolic flux balance analysis, respectively. 

Sensitivity coefficients computed using MCA can be useful for the 

understanding of the organization of the network. An example (Goryachev et al., 

2005) shown on the slide presents a bacterial quorum sensing network which 

operates as a bistable switch that is flipped by accumulation of the communication 

molecule, termed autoinducer, in the extracellular environment. Calculation of 

sensitivity of the transcription factor concentration to variation in the reaction rates 

revealed parts and submodules of the network which are responsible for the 

maintenance of the transcription factor in the “on” and “off” states. Interestingly, the 

analysis showed that most of the submodules have non-overlapping functions as 

they control either “on” or “off” states and rarely both. While in a relatively small 

network, as in this example, the function of network components can be inferred 

directly from the simulations, in larger networks, analytical approaches, such as 

MCA, could potentially offer an advantage over brute force simulation approaches. 

 

Network stability through circuit analysis 

 Further generalization of the network topology analysis assumes that only the 

signs of relationships between the network nodes are known in the qualitative 

“activates” – “inhibits” terms. Since this method is considered in detail in the next 

section of our tutorial, only a brief exposition of the early results is given here. The 

approach is based on the qualitative analysis of the system’s Jacobian matrix. The 

major observation mentioned in works of Clarke (Clarke, 1988), Thomas (Thomas et 

al., 1995) and others is that only the network cycles contribute to the characteristic 

equation and therefore only cyclic paths influence the network stability. Defining 

closed feedback loops in the network and classifying them as “positive” or “negative” 

it is often possible to make conclusions about the potential instability of a stationary 

state of the network without knowing the kinetic details. Thus, it has been shown 

that a positive circuit is a necessary condition for multistationarity and a negative 

circuit is a necessary condition for stable oscillations. In the examples shown on the 

lecture slides (borrowed from Tyson’s paper (Tyson, 1975)) two mutually repressing 
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pathways are characterized by the Jacobian with both positive and negative circuits. 

Indeed, at various values of network parameters it exhibits oscillations and 

bistability. 
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IV.  EXTRACTING AND ANALYZING A BIOLOGICAL MODEL  

 

In this section, we give a detailed example of a biological model to illustrate the use 

of pathways databases and, more importantly, to show what valid conclusions can 

be generated despite the incompleteness and uncertainties of the information 

currently available; it is this latter aim that we believe is crucial in exploiting the 

current state of pathway information in databases. 

 
IV.1   THE G1-S TRANSITION IN THE MAMMALIAN CELL CYCLE 
 

The modelling process usually begins with a question that focuses on specific 

phenomenon.  We already stated our biological question in Section II.3 : What is the 

mechanistic and kinetic origins of the switching behaviour associated with the 

restriction point?  The different phases of the eukaryotic cell cycle are shown in 

Figure 3.  The restriction (R) point is ‘located’ in mid- to late G1 phase, and is often 

described as a commitment point for another round of DNA replication. The 

significance of studying R point regulation is underlined by the fact that almost all 

human cancers involve dysregulation of this G1 checkpoint (it is considered a 

checkpoint in the sense that if there is something wrong, such as DNA damage, 

then the cell cycle is arrested to give time for some DNA damage repair machinery 

to operate). 

 

 From consulting literature reviews and pathways databases (such as Biocarta, 

see Figure 7), a consensus qualitative network for G1-S regulation can be drawn, as 

shown in Figure 16.  A brief description of this network is given in this figure’s 

caption.  Since the G1-S marker to be used for our model is cyclin E/CDK2, we 

focus on the interactions involving this kinase and find out how the switching 

behaviour of its activity is generated.  Very often, such switches originate from some 

intrinsic instability of the network.  We will make the assumption that a network 

instability causes the cyclin E/CDK2 switching behaviour, and then identify from Fig 

16 a core subnetwork that exhibits this instability.  We summarize in the next 

subsection the theoretical basis for the method we used in identifying this 

subnetwork. 
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Figure 16.  The regulatory network of the G1-S transition in the mammalian cell cycle.  

Growth factors (GFs) trigger certain signalling cascades that lead to the activation of cyclin 

D/CDK4 complexes and to the inhibition of CDK inhibitors such as p27.  Active CDK4 

phosphorylates (thereby deactivating) the retinoblastoma protein (pRb) which inhibits entry 

into S phase due mainly to inhibitory binding with E2F transcription factors;  these factors 

induce many of the genes required for S phase (such as members of the pre-replication 

complex, cyclin E, cyclin A, Cdc25A, etc.).  The dashed arrows signify gene expression.  

Synthesis of cyclins E and A leads to activation of CDK2 which further phosphorylates 

(thereby deactivates) pRb.  Another transcription factor, namely Myc, also contributes to the 

G1-S transition but this protein’s regulation is not shown in the figure.  Arrows mean 

‘activate’ and hammerheads mean ‘inhibit’. 
 

 

IV.2   FROM A QUALITATIVE NETWORK TO A KINETIC MODEL 
 

The major steps we take in arriving at a kinetic model for R point regulation are the 

following: 

1. Start with a qualitative network (qNET) that contains the core subnetwork 

you are interested in; this requires that you know a set of markers and 

processes that describes the phenomenon you are modelling.  We have 

done this in Figure 16.  The marker would be cyclin E/CDK2 and the 
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process would be growth-factor stimulation that leads to the activation of 

the marker. 

2. Identify destabilizing cycles that involve the set of markers and processes.  

We will define what we mean by ‘destabilizing cycles’ below.  This step is 

required to find an instability that we assume (hypothesize) to cause the 

switching behaviour in the activity of cyclin E/CDK2.  If information on 

mechanisms involved in these destabilizing cycles is available, one can 

check what kind of instabilities are involved (as we will show below). 

3. A minimal qNET model is formed from the destabilizing cycles involving the 

marker and other interactions encompassing the process involved (this is 

growth-factor stimulation in our example).  

4. From the minimal qNET model a kinetic model is generated by using 

available information on the mechanisms and rate expressions for the 

interactions involved. 

 

 

Destabilizing cycles in a qNET graph 
A qNET graph is a directed binary interaction graph.  A qNET graph 

corresponds to the algebraic signs of the elements of the Jacobian matrix  M 

associated with the dynamical equations (which are assumed to be ODEs) that are 

linearized about the steady state.  The correspondence between the edges of a 

qNET graph and the signs of a matrix element mij is as follows: 

 

qNET edge           meaning    sign of mij

Xj      Xi Xj ‘activates’ Xi + 
Xj   --|   Xi Xj ‘inhibits’ Xi - 

Xj   --•   Xi

Xj ‘influences’ Xi ≠0 

 

‘Activates’ in the table above should be generally interpreted as ‘increases the rate 

of growth of’ while ‘inhibits’ would mean ‘decreases the rate of growth of’. 

 

 The local stability of the steady states is determined by the eigenvalues λ of 

the matrix M.  These eigenvalues are the roots of the characteristic polynomial 
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assuming that the size of M is n×n.  The steady state is unstable if any of the 

eigenvalues has a positive real part. 

 

 It turns out that the coefficients αi in the characteristic polynomial above can be 

expressed as follows: 

 

      )]([ 11 iC
i

∑ −=α

     )]([)]()][([ 21
,

12 pqCjCiC
pqji
∑∑ −+−−=α  

     )]([)]()][([)]()][()][([ 32
,

111
,,

13 vwsCpqCtCkCjCiC
vwspqtkji
∑∑∑ −+−−+−−−=α  

     etc. 

 

where Ck is a k-cycle in the qNET graph examples of which are given below: 
 

      iimiC =)(1

      qppq mmpqC =)(2

      svwsvw mmmvwsC =)(3

      etc. 

 

We sometime also refer to the Ck expressions above as the ‘strengths’ of the cycles 

determined by the magnitudes of the mij’s.  Since the eigenvalues depend on the 

coefficients αi’s which in turn depend on the cycles, we conclude that only cycles in 

the qNET graph can influence the local stability of the network.  We say that a cycle 

is destabilizing if any eigenvalue increases towards a more positive direction when 

the strength of the cycle is increased.  The following theorem is useful for linear 

stability analysis: 

 

Routh-Hurwitz Theorem.  The number of eigenvalues λi with Re λi > 0 is equal to the 

sum of the number of changes of sign in the sequences   

                               {1, Δ1, Δ3, Δ5, …}  and  {1, Δ2, Δ4, Δ6, …}. 

 

The Δi’s are called Hurwitz determinants;  they come from the Hurwitz array which is 

defined below: 
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 Hurwitz determinants 

Δ1  =  α1       

       Δ2  =  α1 α2 - α3

       Δ3  =  α3 Δ2 – α1(α1 α4- α5)     

        etc. 

 

The stability analysis presented in Fig 17 is an example of how to use the Routh-

Hurwitz Theorem.  This figure also illustrates that the mere topology of the qNET 

could already allow some conclusions on the stability of steady states. 

 

X1 X2

X3

sufficient instability conditions

              

[1] S > 0

[2] T <  0

[3] SD < T  when T  >  0

1-cycle     S = m33

2-cycle D = m12 m21

3-cycle T = m21 m13 m32

X1 X2

X3

sufficient instability conditions

[1] S > 0

[2] T <  0

[3] SD < T  when T  >  0

1-cycle     S = m33

2-cycle D = m12 m21

3-cycle T = m21 m13 m32

X1 X2
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sufficient instability conditions

[1] S > 0

[2] T <  0

[3] SD < T  when T  >  0

1-cycle     S = m33

2-cycle D = m12 m21

3-cycle T = m21 m13 m32

1-cycle     S = m33

2-cycle D = m12 m21

3-cycle T = m21 m13 m32

 
Figure 17.  A 3-node qNET with the strengths of the component 1-, 2-, and 3- cycles 

labeled as S, D, and T, respectively.  Application of the Routh-Hurwitz Theorem gives the 

sufficient instability conditions listed. 
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A minimal qNET model  
From Fig 16, one can then extract a minimal qNET model that includes 

destabilizing cycles that directly involve cyclin E/CDK2 and interactions that link 

these cycles to growth-factor stimulation.  This minimal qNET model is shown in Fig 

18. 
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Figure 18.  The proposed minimal qNET model for the initiation of S phase from which the 

control machinery of the R point is analyzed (see text).   
 

 

The nature of the instability 

 Two of the destabilizing cycles that involve cyclin E/CDK2 are shown in Fig 19.  

This mutual-activation-mutual-inhibition topology is expected to generate a sharp 

switch (as was shown by Aguda & Tang, 1999).  CDK2 and Cdc25A are locked in a 

pair of positively coupled phosphorylation-dephosphorylation (PD) cycles which 

exhibits transcritical bifurcation (see Fig 20, and Aguda, 1999). 
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Figure 19.  A sharp switch is expected from the mutual-activation and mutual-inhibition 

topology involving CDK2.  Also shown are the known detailed mechanistic steps 

corresponding to the qNET. “a” refers to active, and “i” to inactive. 
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Figure 20.  The instability (transcritical bifurcation) involved in positively coupled cycles. 
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The kinetic model 
 From the minimal qNET model (Fig 18) and known details of the molecular 

mechanism, one can then set up a kinetic model with the associated ODEs.  A 

summary of the kinetic model is shown in Fig 21 (see Aguda & Tang (1999) for 

details).  
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Figure 21.  The kinetic model of the R point based on the minimal qNET shown in Fig 18.  

See Aguda & Tang (1999) for details. 

 

 

 

IV.3   COMPUTER SIMULATION OF THE KINETIC MODEL 
 

Experimentally, the operational definition of the restriction (R) point is the following:  

for a quiescent (non-dividing) cell exposed to growth-factor stimulation, the R point 

is the point in time after which withdrawal of growth factors does not prevent entry 

into S phase (in our model, this would correspond to the activation of cyclinE/CDK2).  

The computer simulation shown in Fig 22 shows different times at which growth-

factors are cut off (this is implemented by setting the synthesis/activation of cyclin D 

– i.e. the left-most arrow pointing towards cyclin D/CDK4 in Fig 21).  Qualitatively, 

the results of this set of simulations agree well with the experimental observation 
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shown in the lower panel of Fig 3, including a conspicuous lag period prior to 

activation of cyclin E/CDK2.  The conclusion of this work is that, within the known 

regulatory network of the G1-S transition, one can identify a subnetwork that 

reproduces the behaviour of the R point (at least qualitatively). 
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Figure 22.  Simulation of R point behaviour using the kinetic model given in Fig 21.  The 

red arrow indicates the point in time after which cutting off growth factor stimulation can be 

done without preventing the activation of CDK2.  See Aguda & Tang (1999) for details. 
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GO:0030198 : extracellular matrix organization and biogenesis ( 163 ) 
GO:0009755 : hormone-mediated signaling ( 208 ) 
GO:0000280 : nuclear division ( 14 ) 
GO:0043108 : pilus retraction ( 0 ) 
GO:0006276 : plasmid maintenance ( 21 ) 
GO:0009846 : pollen germination ( 9 ) 
GO:0051244 : regulation of cellular physiological process ( 10282 ) 
GO:0048610 : reproductive cellular physiological process ( 394 ) 
GO:0009991 : response to extracellular stimulus ( 414 ) 
GO:0009847 : spore germination ( 36 ) 
GO:0030435 : sporulation ( 416 ) 
GO:0010118 : stomatal movement ( 15 ) 
GO:0006949 : syncytium formation ( 2 ) 
GO:0006810 : transport ( 18979 ) 
GO:0050794 : regulation of cellular process ( 10906 ) 

GO:0007049 : cell cycle ( 2611 ) 
GO:0030037 : actin filament reorganization during cell cycle
GO:0007098 : centrosome cycle
GO:0007113 : endomitotic cell cycle
GO:0051325 : interphase
GO:0000279 : M phase
GO:0051321 : meiotic cell cycle
GO:0000278 : mitotic cell cycle
GO:0051726 : regulation of cell cycle
GO:0016330 : second mitotic wave (sensu Endopterygota)

GO:0051726 : regulation of cell cycle ( 1280 ) 
GO:0051727 : cell cycle switching, meiotic to mitotic cell cycle ( 0 ) 
GO:0051728 : cell cycle switching, mitotic to meiotic cell cycle ( 0 ) 
GO:0000074 : regulation of progression through cell cycle ( 1274 ) 

GO:0000075 : cell cycle checkpoint ( 284 ) 
GO:0008054 : cyclin catabolism ( 30 ) 
GO:0019055 : modification by virus of host cell cycle regulation ( 1 ) 
GO:0045786 : negative regulation of progression through cell cycle ( 237 ) 
GO:0045787 : positive regulation of progression through cell cycle ( 54 ) 
GO:0000320 : re-entry into mitotic cell cycle ( 7 ) 
GO:0031991 : regulation of contractile ring contraction during cytokinesis ( 20 ) 
GO:0000079 : regulation of cyclin dependent protein kinase activity ( 117 ) 
GO:0007088 : regulation of mitosis ( 239 ) 
GO:0051445 : regulation of progression through meiotic cell cycle ( 7 ) 
GO:0007346 : regulation of progression through mitotic cell cycle ( 147 



47

185www.kegg.jp
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Cellular Processes
Human Diseases

NETWORK HIERARCHY IN KEGG

01400 Cellular Processes
01410 Cell Motility   
01420 Cell Growth and Death   

04410 Cell division 
04420 Sporulation [GO:0030435 0030436] 
04430 Germination [GO:0009847] 
04110 Cell cycle [PATH:ko04110hsa] 
04210 Apoptosis [PATH:ko04210] [GO:0006915] 

CLICK TO SEE PATHWAY
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04410 Cell division 
04420 Sporulation [GO:0030435 0030436] 
04430 Germination [GO:0009847] 
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04210 Apoptosis [PATH:ko04210] [GO:0006915] 

CLICK TO SEE PATHWAY

Kyoto Encyclopedia of 
Genes and Genomes

186Cell cycle network from KEGG

187 188
G1-S network from REACTOME and GENMAPP

www.reactome.org
www.genmapp.org
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189G1-S network from BIOCARTA

www.biocarta.com

190

Biomodels Database at EBI: www.ebi.ac.uk/biomodels/

Tyson cell cycle model 
from BIOMODELS

Model repositories

191

CellML at the Univ Auckland: www.cellml.org

Model repositories

Hatzimanikatis G1-S
model from CELLML

192

II.  Network visualization and analysis
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Problem definition and challenges
Math perspective : General kinetic notation
“Metabocentric” view :     Biochemical/metabolic notation
“Genecentric” view :        “Caltech” notation
Signalling views :             Molecular Interaction Maps

Process Diagram Notation
Edinburgh Pathway Notation

Modular perspective :      Patika
Future: unification and standardization

Graphical Representation of Pathways and Networks

194

Graphical Notation: a necessity for the 
conceptual representation of biopathways

Thiery & Sleeman, Nat. Rev. Mol. 
Cell. Biol 7:131 (2006)

Qualitative Mechanistic

various degree of
detail, mixed level 
of presentation

Aladjem et al., Science STKE 
pe8 (2004)

195

Stoichiometric Kinetic notation: language of 
mathematical models (almost standard)

Species:
molecule, molecular
complex, process, etc

A B

Reaction:
constants, kinetic law,
stoichiometry

kA B⎯⎯→

dA dt k A
dB dt k A

= −
=

ODEs:

Stochastic 
algorithms

JDesigner (H. Sauro)

Petri Nets

Mandel et al, Brief. Bioinf. 5:270 
(2004)

Used in many simulators: JDesigner, Copasi, etc. 196

Notations accepted in the field of metabolic 
biochemical pathways

EcoCyc
KEGG

Used in databases of metabolic pathways

M1 M2 M3E1 E2

X Y W Z
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Gene Regulatory Network notation
(E. Davidson, H. Bolouri, A. Arkin, H. MacAdams)

Davidson & Erwin, Science  311:796 (2006)
self-inhibition

self-activationgene transcription

indirect
activation

activation “in trans”

Supported and extended by BioTapestry (H. Bolouri)
198

Molecular Interaction Maps
(K. Kohn, M. Aladjem)

Aladjem et al., Science STKE pe8 (2004)

Kohn, Chaos 11:84 (2001)

199

Kitano et al., Nat. Biotech. 23:961 (2005)

Process Diagram Notation
(H. Kitano et al.)

Supported by CellDesigner (SBI)
200

Sorokin et al., ?. in press (2006)

Edinburgh Pathway Notation
(I.Goryanin, P. Ghazal et al.)

Supported by Edinburgh Pathway Editor (UofE)

protein state

logical gate

state transition

complex

protein expression

Meta-level notation
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Demir et al., Bioinf. 20:349 (2004)

PATIKA: Abstract Pathway Notation
(U. Dogrusoz, E. Demir et al.)

Supported by PATIKA  (Bilkent University, Turkey)

complex

complex

state

transition

“transition abstraction”

202

SBGN: towards the unified graphics standard

CellML SBML
BioPAX

Graphic      Notation    Standards

SBGN

203

Simulation versus analysis: choice of strategy and methods
Multidimensional space of modeling techniques
Kinetic modeling with ODEs and stochastic methods
Petri Nets, Boolean and Bayesian Networks
Topological analysis of large networks based on graph 

theory
Stoichiometric Network Analysis
Metabolic Control Analysis
Qualitative stability analysis 

Methods and Tools for Network Analysis & Modelling

204

Strategies: simulate or analyse?
(or rather what to do first)

convert diagram 
into a quantitative 

model

simulate model 
behavior 

numerically

obtain qualitative 
understanding 

through numerical 
results and model 

reduction

qualitatively 
analyze network 

topology, stability, 
etc

identify 
“elementary 

modes”

build and 
simulate a 

reduced model
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Space of modeling methods

qualitative  ↔ quantitative

co
nt

in
uo

us
 ↔

di
sc

re
te

mechanistic      ↔
symbolicODE  

st
oc

hs
im

Petri Nets

B
oo

le
an

 
ne

tw
or

ks

Process calculi

BaN

206

Kinetic Modeling: Deterministic & Stochastic

S E ES P E+ → +�

1 1

1 1 2

2

( )
dS dt k E S k ES
dE dt k E S k k ES
dP dt k ES

−

−

= − ⋅ +
= − ⋅ + +
=

reactionsspecies

207

Tools for simulation of kinetic models

pr
oj

ec
t  

si
ze

deterministic                             ↔ stochastic

JDesigner/Jarnak

SBW

COPASI

DBsolve

BioNetS

Cellware

E-CELL
V-CELL

Dizzy

M-Cell
BioSpice

KinetikitJigCell

MesoRD

Narrator

XPPAUT

SBToolbox

CellX/Karyote

PySCeS

208

Many Flavors of Petri Nets 

http://www.informatik.uni-hamburg.de/TGI/PetriNets/

Mandel et al, Brief. Bioinf. 5:270 (2004)

places

test arc

inhibitory arc

Stochastic Petri Nets:

Colored Petri Nets:

Hybrid Functional Petri Nets:

transitions

Mobius, TimeNET

Design/CPN, CPN tools

Genomic Object Net
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Boolean networks

Huang, Pharmacogenomics. 2: 203 (2001)

1

1

0 1

0 0

t
ji j i

j

t
i
t
i

F w S

if F S

if F S

+

+

⎛ ⎞
−Θ⎜ ⎟

⎝ ⎠
≥ ⇒ =

< ⇒ =

∑

Mandel et al, Brief. Bioinf. 5:270 
(2004)

Genetic Network Analyzer, Biocham
210

Bayesian Networks

Pe’er, Sci. STKE. pl4 (2005) Sachs, Science. 308: 523 (2005)

211

Topological analysis of network connectivity

( ) 2 3
2

( 1)

( )

P k k
nC k k

C k k

γ γ

δ

−

−

< <

= −

�

�

Barabasi, Nat Rev Gen. 5: 101 (2004)

Cytoscape/NetworkAnalyzer
212

Stoichiometric Matrix

d dt =S Nv

Hofmeyr et al., Kinetics, Control and Regulation of 
Metabolic Systems. ICSB02. (2002)
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Stoichiometric Network Analysis

0=Nv

Hofmeyr et al., ICSB02. (2002)

dim Nul rank dim n+ = =N N v

rank r= ⇒N dim Nul n r= −N

0=NK n n r× −

= 2

6

v
v
⎡ ⎤
⎢ ⎥
⎣ ⎦

v1

v2

v3

214
Schilling & Palsson, PNAS, 95:4193 (1998)

rank 5r= =N

=N

Extreme pathways: An example

215

SNA: Tools and Uses

extreme
pathways

• METATOOL
Pfeiffer et al. Bionf. 15:251 

(1999)

• FluxAnalyzer
Klamt et al. Bionf. 19:261 

(2003)

• CellNetAnalyzer
Klamt et al. BMC Bionf. 7: 56 

(2006)

• SNA toolbox
Urbanzcik. BMC Bionf. 7: 129 

(2006)

• Network stability analysis
Clarke, Adv. Chem. Phys. 43:1 (1980)
• Extraction of reduced
models 
Aguda & Clarke. J. Chem. Phys. 87:
3461 (1987)
• Signal pathway analysis
Papin & Palsson. Bioph. J. 87: 37
(2004)
• Analysis of Ca oscillations
Reidl et al. Bioph. J. 90:1147 (2006)

216

Metabolic Control Analysis

Local properties:

Elasticities:
ln ln,
ln ln

v v
S p

v v
S p

ε ε∂ ∂
= =
∂ ∂

Global properties:
Response
coefficients:

ln , ,
ln

Y
p

YR Y S J
p

∂
= =
∂

Control
coefficients:

ln , ,
ln

Y
v

YC Y S J
v

∂
= =
∂

, ,Y Y v
p v pR C Y S Jε= =

Hofmeyr et al., Kinetics, Control and Regulation of 
Metabolic Systems. ICSB02. (2002)
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MCA relates global to local properties
Summation theorems:

S

J

C K = 0

C K = K

Hofmeyr et al., Kinetics, Control and Regulation of 
Metabolic Systems. ICSB02. (2002)

Connectivity theorems:
S

s

J
s

C ε L = -L

C ε L = 0

Control-matrix equation:

[ ]⎡ ⎤
−⎢ ⎥

⎣ ⎦

J

s nS

C
K ε L = I

C

⎡
⎢
⎣

⎤
⎥
⎦

rank 2=N

N L K

218

MCA-MFA enabled tools

JDesigner/Jarnak

SBW

COPASI

DBsolve

BioSpice

SBToolbox

PySCeS

BioSens

MetaFluxNet

219

MCA: understanding the network function
TraRd

unstable range

Ae nM
“off”

“on”

Goryachev et al., PLOS Comp. Biol. 1: 265 (2005)
220

Analysis of circuits and network stability

Thomas et al., Bul. Math. Biol. 57: 247 (1995)

i
ij

j

Fa
S
∂⎡ ⎤= =⎣ ⎦ ∂

A( , )i
i

dS F S p
dt

=
r r

1 4

3 2

1E

2E

0 0
0
0 0

0

− +⎡ ⎤
⎢ ⎥− + −⎢ ⎥=
⎢ ⎥− +
⎢ ⎥+ − −⎣ ⎦

A

Tyson , J. Chem. Phys. 62: 1010 (1975)
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III. Extracting and analyzing a biological model

222

pRB
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Cdc6
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Cdc7/Dbf4
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Cdk2/Cyclin-E

Myc

Max

pRb
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TK,
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GFs
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GFs

‘consensus’ G1-S qualitative network
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mij > 0          Xj activates Xi ( Xj Xi ) 
mij < 0          Xj inhibits Xi ( Xj Xi )

mij= [∂xi/ ∂xj]o
•

1-cycle               mii

Cycle                strength                     graph

2-cycle               mijmji

3-cycle               mijmjkmki

Xi

Xi Xj

•

••

Xi Xj

Xk

•
•

•

qNET graphs from Jacobian matrix M 224

stable unstable

STABILITY OF A STEADY STATE
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λn + α1λn-1 + α2 λn-2 + … + αn-1λ + αn = 0

where   α1 =  Σi [-C1(i)]
α2 =  Σi,j [-C1(i)][-C1(j)]   + Σjk [-C2(jk)]
α3 =  Σi,j,k [-C1(i)][-C1(j)][-C1(k)] + Σi,jk [-C1(i)][-C2(jk)]  + Σijk [-C3(ijk)] 
...
where C1(i) = mii (1-cycles)

C2(jk) = mjkmkj (2-cycles)
C3(ijk) = mijmjkmki (3-cycles)
… ...

eigenvalues are functions of cycles only

226

Hurwitz determinants  Δ1 =  α1
Δ2 =  α1α2 - α3
Δ3 =  α3Δ2 – α1(α1α4-α5)    
etc.

Routh-Hurwitz Theorem

The number of eigenvalues λi with Re λi > 0 equals the sum of the number of 
changes of sign in the sequences  {1, Δ1, Δ3, Δ5, …}  and  {1, Δ2, Δ4, Δ6, …}.

227

X1 X2

X3

sufficient instability conditions

[1] S > 0

[2] T <  0

[3] SD < T  when T  >  0

1-cycle     S = m33

2-cycle D = m12 m21

3-cycle T = m21 m13 m32
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p27/CycE/CDK2

iCycE/CDK2aCycE/CDK2
.

.

p27

.

..
..

aCdc25AiCdc25A

CDK2p27 Cdc25A

A SHARP SWITCH

p27/CycE/CDK2

iCycE/CDK2aCycE/CDK2
.

.

p27

.

..
..

aCdc25AiCdc25A

CDK2p27 Cdc25A

A SHARP SWITCH
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Unstable couplings between cycles

BD Aguda (1999) Oncogene 18: 2846.

CDK - Cdc25 couple
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BD Aguda & Y Tang (1999) Cell Prolif. 32: 321.
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BD Aguda & Y Tang (1999) Cell Prolif. 32: 321.
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	 I.  INTRODUCTION
	 II.   PATHWAYS DATABASES AND KNOWLEDGEBASES
	II.1   PATHGUIDE
	PATHGUIDE provides a list of more than 210 web-accessible biological pathways and networks databases.  It is located at  http://www.pathguide.org .  The most recent paper describing this resource is the following:
	II.2   PATHWAY DATA STANDARDS
	 
	 
	Figure 5A.   Finding a cell cycle pathway map from the network hierarchy link in BRITE.
	 
	Figure 5B.  Pathway diagram of the cell cycle (H. sapiens) from KEGG.
	The boxes in the pathway map are clickable if there is information stored in them in the database.  Clicking on other processes or modules (e.g. ‘MAPK signalling pathway’ or ‘Apoptosis’) will open up the corresponding pathway map.  Clicking on the ‘Help’ button located at the top right of the map will show the legend for the graphical objects (boxes and edges) used.  Beyond this legend, no links are provided for further information on the interactions (edges).  More detailed information on a particular interaction may be found in binary interaction databases such as BIND and DIP (go to the PATHGUIDE list to link to these protein-protein interaction databases).  An unsatisfactory feature of the map given in Fig. 5B is the assignment of parts of the network to the G1, S, G2, and M phases of the cell cycle (see bottom of map).  One must always remember that, at least at this point in time, pathway maps such as those in KEGG embody the curators’ interpretation of available literature information and are tentative.
	 
	Figure 7.  The pathway module called Cell Cycle: G1/S checkpoint  in Biocarta (contributed by Cell Signaling Technology).  A legend for the meaning of the symbols (edges and molecules) is provided on the same page.  The genes/proteins can also be clicked to open windows of information on genes, proteins, Biocarta products, references, etc.
	Pathguide lists other sources of pathway maps which should be consulted for more detailed information.  The small number of pathways databases discussed above already provides a good start for sketching a network model focusing on the regulation of cyclin E/CDK2 which we assume to be the primary marker for the G1-S transition.  Admittedly, the extraction of the G1-S network model discussed in the last section of this tutorial was largely guided by published review papers on the subject ; one can carry out a Pubmed search to search for these papers at:   
	                                         http://www.ncbi.nlm.nih.gov   
	 III.   NETWORK VISUALIZATION AND ANALYSIS
	By ‘network visualization’ we mean the graphical representation of networks of molecular processes and interactions.  Ideally, a network graph would contain all the details (or at least clickable links to them) of the individual interactions and processes comprising the network.  Beyond these local details, a network graph is essential in understanding the associated biological process because the graph as a whole embodies system-level properties emerging from the coupling (or topology) of the interactions among the network components.  It is these non-intuitive emergent global properties that are often the object of computer-based mathematical modeling.  In this section, we summarize the activities in the systems biology community that are geared towards the development of standards of graphical representation of networks; we also survey existing methods and tools of network analysis and computer simulation of models.
	With the view of developing a kinetic model, a network graph is used to extract the two essential model components, namely, a set of dynamical variables and a set of interaction functions corresponding to the network topology.  
	Every kinetic model assumes a set of dynamical variables that sufficiently describes the state of the system.  A network graph is composed of nodes and edges where the nodes correspond to entities (molecules, genes, proteins, complexes, even pathway modules) that are connected by edges (often directed to signify causality of the interaction).  In other graphs, interactions themselves are considered nodes and an edge between an entity node and an interaction node could mean either ‘the entity is a substrate or reactant of the interaction’ or ‘the interaction gives rise to or affects the entity’.  Only entity nodes may correspond to dynamical variables in kinetic models.  Depending on the resolution of the model, a dynamical variable may correspond to one entity node or a set of nodes (modules).
	A directed interaction edge signifies that the state of the target node is a function of the state of the source node.  In a dynamical model, the instantaneous state of a given target node would be equal to the algebraic sum of the interaction functions associated with all source nodes.  These interaction functions are referred to as the ‘kinetics’ or ‘rate expressions’ of the interactions. 
	 
	III.1  SOME EXAMPLES OF NETWORK GRAPHS
	Metabolic network (MBN) graphs
	 Sample graphs of metabolic networks from the two most popular databases KEGG and EcoCyc are shown in Fig 10 below.  The nodes are low molecular metabolites and the reactions are characterized by functional classes of enzymes which are abstracted to standardized EC numbers. The MBN graph has a clear and simple semantics that is easily amenable to mathematical analysis and, in fact, co-evolved with a number of analytical methods and tools, such as metabolic control analysis and stoichiometric network analysis. 
	Gene regulatory network (GRN) graphs
	Gene Regulatory Network (GRN) notation is another example of a specialized representation developed to capture regulatory relationships specifically within gene networks, or even more precisely, among various transcription factors. The notation, originally developed in Davidson’s group at Caltech (Yuh et al., 1998), is centered on cis-regulatory elements of genes and their positive or negative regulation by other genes. Several extensions of the GRN notation were provided by Bolouri (Longabaugh et al., 2005) and Arkin (McAdams and Arkin, 1997) to include description of proteins and their interactions. However, the GRN notation is a DNA-centric approach which does not cover signal transduction or metabolic networks. Presently the GRN notation is supported by the BioTapestry software being developed by the Bolouri group (Longabaugh et al., 2005).
	  
	Figure 11.  An example of a GRN graph from (Davidson and Erwin, 2006).
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	     PDN.  Process Diagram notation was developed in Japan’s Systems Biology Institute by Kitano and colleagues (Oda and Kitano, 2006; Kitano et al., 2005).  The notation builds on the earlier work of Kohn and co-workers on MIMs but is based on a different philosophy.  The notation is graphically rich and appeals to human image processing capabilities.  The notation explicitly introduces notions of “process” and “state”.  Each state of the molecule (e.g., receptor – ligated receptor, inactive – active protein) is represented separately and the transition between them (“process”) is shown explicitly.  This representational convention makes PDN highly intuitive and easy to read for biologists.  PDN is fully supported by the CellDesigner software (being developed in the same institute) which was initially conceived to be a pathway and network editor, but is now being extended to become a computer simulation platform.
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