
Exploring Computational Biology with a
Massively Parallel High Performance

Computing Environment

Kirk E. Jordan

IBM

1 Rogers Street

Cambridge., MA 02142

Srinivas Aluru

Department of Computer Sciences

Iowa State University

2

 Outline

In this tutorial, we present the audience with evidence that massively parallel

computing environments will and are playing a significant role in scientific discovery

in the biological sciences. The infrastructure and the knowledge to take advantage

of this infrastructure is presented along with pointers for added information and help

to employee massively parallel computing infrastructure to accelerate bioinformatics

and computational biology research

Need to explain this

Computation is playing an ever increasing and vital role in biology creating demand

for new machines. Vendors strive to meet demands with advanced computer

architectures such as IBM’s Blue Gene machine. In this tutorial, we will give an

overview of the Blue Gene architecture. We will briefly describe both the hardware

and software architecture and the central philosophy behind the development of the

Blue Gene that makes it easy to use on ultrascalable problems. We will emphasize

the key features that allow thousands of processors to work together on a user’s

problem. We will present the programming model used on Blue Gene. We will

explain ways to take advantage of the Blue Gene nodes and their associated

networks. We hope to provide a foundation for attendees to begin to think about

problems and how to design and implement them so they will scale out and take full

advantage of the computational power in Blue Gene.

Once we have presented a basic understand of the architecture, our goal will be to

show how Blue Gene is impacting bioinformatics through several examples. We will

describe briefly some solutions done on Blue Gene in such as areas as protein

folding, transcription factor binding sites, and systems biology to demonstrate to the

audience the wide applicability. We will try to illustrate the ease of use of the

systems through remote demonstration if Internet facilities are available. Depending

on the partition size, we will demonstrate some simple scaling up to the number of

processors available on some simple problems pertinent to the audience.

Through the computational power of Blue Gene, scientists will tackle problems that

to date they had not considered. This will happen in some ways we are starting to

see today but there are other approaches we yet can not predict. For this reason,

we will discuss alternative approaches to design of computation of the problem that

might spark others imagination. We will also show by example some problems that

3

one might not think would be suitable for the Blue Gene architecture. We will

discuss in these examples which have been run on Blue Gene systems, actual

performance results. More importantly, we will try to point how having

unprecedented number of processors changes how one approaches the

computational problem.

The tutorial will proceed to go in depth on one application area, Genome Assembly.

We will describe a massively parallel framework for genome assemblies on the Blue

Gene, and its application to the ongoing maize genome sequencing project. We will

show how to harness the power of the massively parallel system, Blue Gene, to

carry out genome assemblies at a significantly rapid pace of hours instead of days

and weeks. We will discuss the applicability of this framework to solve other large-

scale computational genomics problems including EST clustering, SNP

identification, and selected problems in comparative genomics.

If successful, the audience will leave this tutorial with sufficient knowledge of how

massively parallel or ultrascale out computing can accelerate their research in the

biological sciences. While some, based on their own experience and computational

background, may be able to put this knowledge to immediate use taking advantage

of opportunities mentioned for access, others will have sufficient information to know

where to get more details and possibly even to form new collaboration to accelerate

their research. The intention of this tutorial is to use examples of bioinformatics and

computational biology to demonstrate the utility of ultrascale out computing while

dismissing the myths associated with massively parallel/ultrascale out computing.

4

CONTENTS

INTRODUCTION.. 6
Background .. 6
Massively Parallel Computing Making a Difference ... 8

COMPONENT ARCHITECTURE .. 10
Massively Parallel (Ultrascale Out) Computing Environment............................... 10
Blue Gene/L Building Blocks.. 10
The Blue Gene/L System ... 11
The Blue Gene/L Networks .. 12
The Blue Gene/L Processors ... 14

SOFTWARE AND PROGRAMMING MODEL OVERVIEW 15
System Software .. 16
The Blue Gene/L System Overview ... 17
Programming Models and Development Environment... 18
The Blue Gene/L Processor Execution Modes .. 19

PERFORMANCE OPTMIZATION AND TOOLS... 20
Performance Optimization and Libraries.. 20
Performance Decision Tree ... 21
Compiler Options and Switches ... 21
HPC Toolkit Overview .. 21
Message Passing Performance ... 22
Processor Performance ... 22
Hardware Performance Monitors – Instrumented Code....................................... 22
Running Code on Blue Gene/L .. 23

APPLICATION PERFORMANCE.. 25
Blue Matter Framework.. 25
New Science and Outstanding Performance ... 26

MASSIVELY PARALLEL COMPUTING ENVIRONMENT...................................... 27
Massively Parallel Computing Environment - What Next?................................... 27

5

LARGE-SCALE COMPUTATIONAL GENOMICS ON THE IBM BLUE GENE/L
SUPERCOMPUTER .. 28

Genome Assembly... 28
Expressed Sequence Tag.. 29
Single Nucleotide Polymorphisms - SNP ... 29
Naïve Approach to Alignment .. 30
Lookup Tables.. 30
PaCE Methodology .. 30

MAIZE GENOME ASSEMBLY.. 31
Maize Genome... 31
Assembly Strategy ... 31
Maize Genome Assembly Effort... 31
Cluster-Then-Assemble ... 32
Pair Generation .. 33
PaCE Methodology .. 34
Pair Generation Algorithm.. 34
Master-Worker Paradigm ... 35
Assembly Pipeline.. 35
Blue Gene Performance... 35
Maize/Sorghum Assembled Genomic Islands ... 35
Maize Genome Project Future ... 36

MOUSE EST CLUSTERING... 36
Mouse EST .. 36
Validating Accuracy.. 37

CLOSING REMARKS.. 37
Blue Gene Consortium... 37
Final Remarks .. 38

REFERENCE LIST/ADDITIONAL READING .. 39

Additional WEB Sites ... 43

6

INTRODUCTION

Background [Slides 3-8]

Over the course of the years in computing, we have seen several trends develop in

high performance computing. Some of these trends have been the result of the chip

technology while other trends have been the result of innovative assembly of

processor technology. As technology hits a wall, innovation allows us to take new

approach. Massively parallel computing is not new, but innovation is allowing for

truly massive parallel computing in dense packaging while keep power consumption

and cooling requirements at a minimum.

The number of transistors on a computer chip has doubled every couple of years.

This is called Moore’s law. What this meant is the number of floating point

operations per second (flops) a computer could perform has also increased.

Eventually the constraint on the overall size of a single computer chip and the

physical limitations on how small a transistor could be produced have to stop that

curve.

Shrinking transistors has an absolute limit, which we are approaching, and also yield

increasingly difficult side effects such as power leakage. In order to continue to get

increased performance, we turn to the clustering of chips together to allow the

continued increase in the number of flops. This led to the development of computers

with numerous CPUs sharing the same memory requiring some very fast and

sophisticated interconnects that increase the system cost as the number of CPUs

within these shared memory machines increases.

With commodity computing in the 1990’s, the cost of large scale machines giving

increased flops could be achieved using individual CPUs networked, or clustered, to

function together as a single unit. This class of systems became known as

massively parallel processing (MPP) systems. The only theoretical limit to their size

was the floor space, power consumption, and cooling needed to house and run the

aggregated equipment.

From the application point of view it became apparent that the limitation on

increased flops depended not only on the individual performance of the CPUs but

also on the performance of the entire system on which the CPUs depend including

7

memory system, the file access and network (messaging). It also became clear that

these types of systems could not handle every application. As the number of

processors increases taking advantage of them becomes more difficult, and there

are some type of applications that cannot take advantage of the extra power. But for

those that do, developers and users need access now to larger numbers of CPUs to

find ways to scale their applications to ever higher number of processors.

A massively parallel (MPP) system in general has the following characteristics:

• A single system image for up to thousands of nodes.
• The cost per flop is extremely low because each node is an inexpensive

processor.
• Each node has its own distinct uniquely addressable memory.
• The nodes are organized into a grid, mesh, torus or hypercube arrangement

to allow each node to communicate with all the other nodes.

The aggregate MPP system has access to a huge amount of real memory for the

application operations to access, because this is the sum of the memory available to

each node.

The parallelism we see in systems used for technical computing is pervasive. We

see this commercial off-the-shelf (COTS) systems assemble into large clusters.

Hybrid systems, combining commercial processors with high speed interconnects,

are available. Each of these kinds of systems is limited on the ability to obtain

ultrascale out. Custom architectures such as the IBM Blue Gene system are

addressing the environmental requirements while providing ultrascale out systems.

The IBM eServer Blue Gene Solution is not a completely new system with exotic

components. On the contrary, the processors of the Blue Gene/L system come from

IBM’s family of embedded PowerPC processors. They are enhanced for the kind of

work loads with heavy floating point computation expected in high performance

computing. The use of embedded processor technology keeps the computing

environmental requirements low.

In addition, the Blue Gene/L is not a radically different architecture for IBM. Looking

at computer systems in a two dimensional space consisting of scale up systems

versus scale out systems, we see that Blue Gene/L is at the high end of the scale

out systems. For this reason, we often refer to it as an ultrascale out system.

Placing Blue Gene/L in the IBM high performance computing portfolio, we see that it

8

is design for those that need capabilities that can only be satisfied by purpose built

systems which allows for ultrascale out.

Massively Parallel Computing Making a Difference [Slides 9-14]

Before delving into a lot of detail of a massively parallel computing environment, it is

worthwhile to demonstrate such an environment is of wide value in bioinformatics

and computational biology. Over the past year, the first author has enabled and

coached members of Charles DeLisi’s group at Boston University. This has resulted

in the implementation of the Gibtigs code on a massively parallel computing

environment, the IBM eServer Blue Gene Solution.

The human body consists of some 200 major cell types – various types of neurons,

blood cells, epithelial cells and so fourth – all of which differentiated from a single

blueprint encoded in the genome of a fertilized egg. The process of differentiation

itself, which leads to specialized cell function, remains poorly understood, but it is

generally believed to involve chromosomal remodelling induced by very tight protein

binding and structural modification that blocks the expression of certain sets of

genes, while allowing expression of others. .Understanding how genes are selected

– that is, cracking the genomic regulatory code – is a primary knowledge gap

between a genome sequence and the diversity of life encoded therein.

A computational approach has been taken to understand genomic regulation – the

code dictating the regions of the genome transcribed into molecular messengers.

The transcribed messengers become the proteins that define and control the cell.

Proteins regulate the initiation of gene expression by binding short nucleotide

sequences generally found upstream of the gene. A typical eukaryotic gene has on

average sites for 6-9 different regulators, and each regulator can bind upstream of

multiple genes. The result is a complex regulatory network. A first step and more

tractable problem is to find the binding sites, about 200 as compared with 600 for

mammalian cells, for the simplest eukaryotes, yeast in particular.

Computational attempts to detect the DNA sequence patterns recognized by

regulators is to look for short sequences of DNA that exist far more frequently than

would be expected at random. Unfortunately, the problem is difficult because the

fragments are found in a relatively large amount of unrelated and noisy DNA. At the

same time, the DNA sequences of the fragments to which a particular regulator

9

binds are not always identical. As such, even the best computational approaches

have met with considerable difficulty, especially in complicated organisms such as

humans.

Tim Reddy and Boris Shakhnovich, from the Biomolecular Systems Laboratory

(DeLisi) at Boston University have developed a code for cracking that first key step

in genomic regulation. The code, GibTigs, uses Gibbs Sampling, in a novel and

exhaustive manner. Current Gibbs sampling implementations generally attempt to

crack the code a few times and return the best answer from those attempts. This

results often in missing subtle, solutions while producing incorrect answers without

biological significance. GibTigs attempts to crack the code several thousands of

times, retaining all solutions, and identify potential sites by assembling overlapping

solutions. The result is a clear set of signals in a background of noise. By increasing

the number of attempts, GibTigs is able to distinguish between incorrect sequences,

which tend to appear randomly within the DNA, and correct results, which tend to

occur in a small, conserved set of positions every time they are found. From early

successes, the group has focused on much larger problems, such as identification

of key regulatory sequences across entire genomes as well as exploring

evolutionary models of the sequences.

While an individual Gibbs Sampling analysis requires relatively little compute time,

iterating the process exhaustively and on a large scale is computational challenge.

The feature of GibTigs that allows easy and productive deployment on cluster-based

supercomputers is that the computational core of the algorithm depends on

thousands of independent iterations of Gibbs Sampling, a directed statistical

sampling of the DNA sequence data, requiring much CPU, but little memory. Each

iteration can be performed independently allowing for the distribution of tasks over a

large cluster of CPUs with minimal overhead from inter-processor communication.

This Makes GibTigs ideal for the Blue Gene/L system.

One Blue Gene/L rack represents nearly a twenty fold increase in available compute

power, over a conventional cluster available at Boston University. With GibTigs

showing linear scalability up through 2048 CPUs, one Blue Gene/L rack (in virtual-

node mode) sped development from a few runs a week to many runs a day,

enabling large scale parameter searches, and regular production grade performance

evaluations. The results are dramatic improvements in sensitivity and specificity of

the algorithm, none of which would have been possible at the previous development

10

pace. Moreover, rather than making conservative modifications to GibTigs, the

power of Blue Gene has given the team the freedom to take risks in trying new

ideas, many of which have failed, but some of which have provided new insight and

new power to GibTigs. As a result, GibTigs has recently proved to be, according to

published measures, the most powerful predictor of DNA transcription regulatory

sites to date.

COMPONENT ARCHITECTURE

Massively Parallel (Ultrascale Out) Computing Environment [Slides 15-29]

In this section, we describe both the hardware and software philosophy that has led

to an ultrascale out machine. With the preceding example and the detailed

examples that follow, we believe that this ultrascale out environment will enable the

solution of many important problems in bioinformatics and computational biology.

Those that learn how to take advantage of this ultrascale out environment as we are

already will lead in the breakthroughs and help to steer the directions of discovery in

the biological sciences.

Blue Gene/L Building Blocks [Slide 16]

Based on IBM’s Power architecture, the IBM eServer Blue Gene Solution is

optimized for bandwidth, scalability and the ability to handle large amounts of data

while consuming a fraction of the power and floor space required by today's fastest

systems. It is an ultrascale computer.

Blue Gene/L is a massively parallel machine. It is as a collection of small basic

elements, Power architecture chips, connected together by a set of networks.

Starting with the base elements, we show how these are package to build a systems

up to 64 racks, to become the current fastest computer.

The Chip: The base component of Blue Gene is a dual core Power PC CPU chip.

The CPU frequency is 700 MHz and each CPU can perform four floating point

operations per cycle. The theoretical peak performance of each CPU is 2.8 Gflops.

The 2 CPUs on the chip constitutes the compute node with a peak performance of

5.6 Gflops.

11

The Compute Card: The compute nodes are soldered to a processor card. Each

processor card has two compute nodes on it. The memory for each chip sits on the

other side of the processor card; there are either 512 MB or 1 GB per node (1 GB or

2 GB RAM per compute card) depending on the system. The original Blue Gene

System node cards only had 512 MB per node.

The Node Card: The processor cards are plugged on a node card consisting of two

rows of eight compute cards. On the node card there maybe two or four I/O nodes

but some node cards may not contain any I/O nodes. The I/O nodes are similar to

compute nodes; they also sit in pairs on a small processor card which is slightly

different from the one used for compute nodes. They are called I/O nodes because

their role is different from the compute node role; it is solely for handling I/O.

The Midplane: The processor cards, which bear 16 compute cards, are stacked in a

midplane which sits in a rack.

The Rack: A rack holds two midplanes, for a total of 32 compute cards.

The System: One can connect up to 64 racks for a Blue Gene/L system.

To calculate the number of processor in a system, the following formula is used:

The number of racks x number of node cards per rack x number of compute cards

per node card x number of processors per compute card,

or

the number of racks x 32 x 16 x 4,

or

the number of racks x 2048.

The largest possible configuration is 64 x 2048 = 131072 processors.

Even though the I/O nodes are made of the same PowerPC chip as the compute

nodes because they do not contribute to the actual computation, they are not

factored into the processor count.

The Blue Gene/L System [Slides 17-18]

12

The description above gives details of what goes into a Blue Gene Rack.

Essentially, the rack contains the compute part of the system. To make a complete

system, there are some other components. There are often two additional

computers that with the rack make up the Blue Gene System: a service node and

front-end node. In addition, file servers with appropriate storage are part of the

system. A typical configuration is given in order to understand how all the

components come together to really make up the massively parallel computational

environment that will be used.

The Blue Gene/L Networks [Slides 19]

As described above, the Blue Gene/L machine is a massively parallel computer. In

order for the CPUs to work on data together they must be able to communicate with

one another. To accomplish this task, Blue Gene/L needs a communication fabric

or network. Actually, Blue Gene/L has 5 networks. The 5 networks can be grouped

in two categories, those for efficient parallel coding and those to communicate with

the outside world. For parallel efficiency there are two characteristics to keep in

mind, bandwidth and latency of the network. The efficient parallel coding networks

of most important to the application programmer are the torus network, the global

tree network and the global barrier network. For communication to the outside

world, there is the gigabit Ethernet network and the control network. Each of these

is described below.

The 3D Torus Network: On Blue Gene/L instead of using a cross bar switch for

point-to-point communications, a 3D (dimensional) torus network is used. Each

node of the torus communicates with its six nearest neighbors through a

bidirectional network. In this manner, the 3D torus forms the communications

backbone for computations and connects all compute nodes (65,536 on a 64 rack

system). The characteristics of the 3D torus are:

• Virtual cut-through hardware routing.
• On each of the 12 connections of a compute node, 1.4Gb/s or 2.1 GB/s per

compute node.
• The hardware Latency (Nearest Neighbor) is 200nanoseconds (32B packet),

1.6 microseconds (256B packet). The worst case for 64 hops is 6.4
microseconds.

• The bisection bandwidth is 0.7/1.4 TB/s and a total bandwidth of 67 TB/s.

13

The Global Tree (Collective) Network: Blue Gene/L has a special network

devoted to MPI collective operations such as all-to-all, all-to-one, and one-to-all.

This is the Global Tree or Collective Network. This network connects all the

compute nodes in a shape of a tree. The root can be any node. The IBM

implementation of MPI on Blue Gene/L will use the tree network whenever it is more

efficient then the 3D torus for a collective communication. The application developer

when using the MPI collective operations will get the most efficient path. The

characteristics of the tree network are:

• Has one-to-all broadcast and reduction operations functionality.
• The bandwidth of each link is 2.8 Gb/s.
• The latency of a tree transversal 2.5 microseconds and approximately

23TB/s total binary tree bandwidth on a 64K compute node machine (64
racks).

• The binary tree interconnects all compute nodes and I/O nodes.

The Barrier (Global Interrupt) Network: On a very large system, there is often a

need to synchronize or bring every processor to the same point before moving on.

Since such communications require small amount of bandwidth but need very low

latency, a special network, the Barrier or Global Interrupt network, on Blue Gene/L is

provided to handle MPI synchronization routines like barriers or waits. The

characteristics of this network are:

• The latency is 1.3 microseconds for a round trip on the network.

All interactions between the outside world and Blue Gene/L go through the service

node to the I/O nodes. There are two networks connecting the service node to the

I/O nodes. The two networks that connect the service node to the I/O nodes are the

Ethernet network and the Control or JTAG network.

The Ethernet Network: This network is used to mount the global file system to

allow Blue Gene/L access to I/O. The link from I/O node to compute nodes is the

tree (collective) network. The global file system only has to be “global” to all the

nodes in a partition, plus the service node and the front-end system used to submit

the job.

The Control (JTAG) Network: The control network is used to give the service

node direct access to the Blue Gene/L compute nodes. It is used to boot the nodes.

14

The connection between the node cards and the service node is a 100 Mb/s

Ethernet network.

The Blue Gene/L Processors [Slides 20-21]

The compute nodes are comprised of 2 dual core chips. Each core or ASIC is a

complete System-On-a-Chip. The Blue Gene/L compute ASIC chip includes two

non cache-coherent microprocessors, each containing one single load/store unit,

one single 32-bit integer unit and one double Single-Instruction-Multiple-Data

(SIMD) 64-bit FPU. Each FPU can execute up to two multiply-adds per cycle,

meaning that the peak performance is eight 64-bit floating-point operations per

cycle. That is 2.8 Gflops/s per core and 5.6 Gflops/s per chip.

The ASIC block diagram shows the details of two processors, each having a special

double floating point unit, connecting individually to L2 cache, and accessing the L3

controller to connect to the L3 cache. The integrated networks on the ASIC, as

described before, include:

• six 1.4 Gbit/s bidirectional ports for 3-dimensional torus network connection
• three 2.8 Gbit/s bidirectional ports to a tree (collective) network connection
• one gigabit network connection
• one Joint Technical Advisory Group (JTAG) control and monitoring network

connection
• one barrier (global interrupt) network connection

The basic elements of the PowerPC 440 microprocessors are:

• 32-bit architecture at 700 MHz.
• Single integer unit
• Single load/store unit
• L1 cache: 32KB total size, 32-Byte line size, 64-way associative, round-

robin replacement
• L2 cache: prefetch buffer, holds 16 128-Bytes lines
• L3 cache: 4MB, approximately 35 cycle latency, on-chip
• Special double floating pointing unit

o 32 primary floating point registers, 32 secondary floating point
registers that support –

 standard PowerPC instructions which execute on primary
registers such as fadd, fmadd, fdiv, … and

 special SIMD instructions for 64-bit floating point numbers
which execute on the primary and secondary registers such
as fpadd, fpmadd,

o The floating point pipeline is 5 cycles
o The floating point load-to-use latency is 4 cycles

The Blue Gene/L Double Floating Point Unit [Slide 22-24]

15

The Double Floating Point unit of the Blue Gene/L Processor has two pipes. The

primary pipe executes the standard instructions and the SIMD (Single Instruction

Multiple Data) instructions while the second pipe only executes the SIMD

instructions. The double FPU (Floating Point Unit) implemented on Blue Gene/L chip

offers more capabilities than a pure SIMD unit. Some instructions cause two

different operations to be performed in the two pipes. For example, the instructions

allow to efficiently support complex cross products. Other instructions cause a single

operation to occur on a single set of data.

The results from the pipes are only written to the corresponding FPRs (Floating

Point Registers), primary FPRs for the primary pipe and secondary FPRs for the

secondary pipe. However, the cross micro architecture of FPU allows the primary

and secondary pipes to select primary FPR values or secondary values. Each pipe

has 5 stages and can execute one multiply-add per cycle.

Although, there are two sets of register files, they are not independent and share

address buses for each port. The secondary FPR is accessed with the same

addresses as the primary FPR. The optimal way to fill out the FPRs is to access the

operands in pairs, one primary and one secondary. The Load/Store pipe of the

double FPU makes full use of the quadword APU interface. One load and store can

provide two double-precision operands or two single-precision operands, one for the

primary and one for the secondary pipe. To achieve this, the memory accesses

must be quadword aligned.

In order to understand the impact of the double floating point units as a brief aside,

we show the impact of the performance on a DAXPY, double precision scalar times

a vector plus another vector, kernel. This is a fundamental kernel often found in the

Basic Linear Algebra Subroutines, BLAS, which are optimized for a particular

architecture and called from a library.

In this example, give the source code in both C and Fortran. The graph illustrates

the impact of both aligning the data to be quad word aligned and use of the

secondary floating point unit when aligned. Note that compiler switches are used as

well as directives in the code.

SOFTWARE AND PROGRAMMING MODEL OVERVIEW

16

System Software [Slide 25-26]

The fundamental philosophy behind the systems software is simplicity in order to

scale to tens and hundreds of thousands of processors. In addition, a familiar

application interface that will allow users to easily move existing codes to the

system. With this in mind, the systems software developers avoid features in the

operating systems that were not essential for high performance computing and

strove fro simplicity to achieve both efficiency and reliability.

The system software consists of:

The Compute Node Kernel: The kernel that runs on the compute node is called

Compute Node Kernel (CNK). This is a small simple kernel that provides a Linux-like

simple runtime environment to run the user’s application. It is IBM proprietary. It

does include a subset of Linux system calls primarily to handle I/O so the end-user

can open and close, read and write, create directories, etc. This kernel is Single

user, Single process and no paging. The Compute Node, as mentioned,

communicates to the outside world through the I/O Node. The executable program

is loaded from the I/O node through the Collective network.

The I/O Node Kernel: The kernel of the I/O node is called Mini-Control Program

(MCP). It is a port of Linux Kernel which means it is GPL/LGPL licensed. It has

specific patches for the Blue Gene Architecture such as:

• Patches for Blue Gene/L
• New interrupt controller (BIC)
• Save and restore for dual FPU registers on context switch
• New memory layout
• New set of Device Control Registers (Dicers)
• Driver for new Ethernet Macro (EMAC4 based on EMAC3)

The I/O service is provided through the Compute Node I/O Daemon (CIOD) on the

Compute Nodes. It is started during the boot procedure of the MCP. The CIOD is a

user level process which controls and services applications in the Compute Node

and interacts with the Midplane Management and Control System (MMCS).

The Midplane Management and Control System(MMCS): Both Blue Gene/L

hardware and software are controlled and managed by the Midplane Management

and Control System(MMCS). The service node, front-end nodes and the file servers

17

are not under the control of MMCS. MMCS currently consists of several daemons

which interact with a DB2 database running on the service node.

The Service Node Blue Gene/L Software: The Service Node has three daemons

running on it that perform Blue Gene system management services. These

daemons are idoproxydb, mmcs_db_server and ciodb. These three daemons

perform the following functions:

• idoproxydb - handles the communication to the cluster hardware.
• mmcs_db_server - manages the blocks(also known as partitions), handles

the requests from mmcs_db clients (mmcs_db_console, mmcs_db command
scripts or a job scheduler).

• ciodb - detects the block when it is initialized and manages the job
submission request.

There are four DB2 databases on the Service Node that interact with the MMCS.

These are:

• The configuration database which records Blue Gene/L component
location and connectivity. Most items in this database relate to specific
physical pieces of hardware.

• The operational database which records partitions, job status, and events
related to ongoing Blue Gene/L system activity. (Although it called one of the
four databases, the operational database is actually part of the configuration
database.)

• The environmental database which records periodic readings of voltage
levels, switch

• settings, and sensors.
• The Reliability, Availability, Serviceability (RAS) database which records

both software- and hardware-related errors. It is the RAS database which is
most closely watched by system administrators keeping an eye on the
overall system health.

The Blue Gene/L System Overview [Slide 27]

Taking all the above into account, we see that the Blue Gene/L system is really

comprised of several computers, the Service Node, the Front-End Node(s), File

Servers all connected with the Blue Gene rack which contains the compute and I/O

nodes. Summarizing these systems perform the following functions:

• Service Node - Used for controlling the Blue Gene/L system.
• Front End Nodes - Users log in to these nodes and submit jobs to the Blue

Gene/L system.
• Compute Nodes - The compute engines inside the Blue Gene/L racks.
• I/O Nodes - Installed inside the Blue Gene/L racks.

18

• File Servers - Provide a file system accessible both by the Front End Nodes
and by the I/O nodes.

• Functional Network - A common network used by all components of the
Blue Gene/L system except the Compute Nodes.

• Control Network - Used for specific system control functions between the
Service Node and the I/O nodes.

Programming Models and Development Environment [Slide 28]

One of the goals of the Blue Gene Project was to create a system that was familiar

to the application developer. To achieve this, a message passing programming

model built on MPI (Message Passing Interface) was adopted. Most application

programmers familiar with programming on clusters using MPI would be familiar with

the Blue Gene environment.

The development environment should be familiar to many programmers. The

programmer interacts with the Blue Gene system through the front-end node. The

front-end node runs the Linux operating system. The users does all development,

compilations, job submission, and debugging on the front-end node. The

compilation for Blue Gene is done through the use of a cross compiler, the user

compiles on the front-end or other supported platform but targets the executable

through appropriate compiler switch to run on Blue Gene. Supported languages are

Fortran, C, and C++ with MPI (MPI1 plus an appropriate subset of MPI2). The

compilers also support automatic generation of the SIMD instruction for double

floating point unit.

For the most part, the programming model on Blue Gene is a Single Program

Multiple Data (SPMD) model. This, too, is familiar to many who program clusters.

Numerous applications written using MPI calls fit into this model making it easy to

move codes over to try out Blue Gene.

In addition, there are numerous tools familiar to application developers and more

tools are being added. Some familiar tools include:

• Debuggers – TotalView
• Profiling and trace tools – MPI Tracer
• Hardware performance monitors – HPC Toolkit, Paraver, Tau, Kojak

You can find more information about these tools and the status of them and others

at the following Websites:

19

• TotalView (Etnus @ Entus LLC)
http://www.etnus.com/TotalView/

Parallel debugger

• PARAVER (UPC @ U of Barcelona)
http://www.cepba.upc.es/paraver/

KOJAK (ICL @ U of Tennessee and ZAM @ FZ Jülich)

http://www.fz-juelich.de/zam/kojak/

Kit for Objective Judgement and Knowledge-based Detection of

Performance Bottlenecks

• PAPI (ICL @ U of Tennessee)
http://icl.cs.utk.edu/papi/

Performance Application Programming Interface

• TAU (U of Oregon)
http://www.cs.uoregon.edu/research/paracomp/tau/tautools/

Tuning and Analysis Utilities

• mpiP (LLNL)
http://www.llnl.gov/CASC/mpip/

Lightweight, Scalable MPI Profiling

While the application development should be familiar to many, there are a few things

to keep in mind while developing code to run on the Blue Gene/L Compute Nodes.

One feature on running a code on Blue Gene is the system is strictly a space

sharing system. This means that there is one parallel job (user) for each partition of

the machine. Further, there is one process per processor of the compute node.

The virtual memory of the system is constrained to the physical memory. This

requires the developer to understand the memory requirements of the application. It

is wise to manage memory carefully on this system.

The Blue Gene/L Processor Execution Modes [Slide 29]

The Compute Nodes are composed of a pair of CPUs in a single chip, supporting

chips, and 512 MBs (1 GB) of dedicated memory in which the user’s application

runs. The application user may set up at the time the partition is booted to use the

two processors in one of three ways: Coprocessor Node Mode, Virtual Node Mode,

or Hybrid Node Mode.

20

• Coprocessor Node Mode is a configuration that uses the secondary CPU
as an offload coprocessor for processing the I/O of the main CPU. This
reduces the burden on the main CPU, and provides all 512 MB (1 GB) of
memory for the user application in that CPU. Coprocessor Node Mode, will
not assist with file based I/O, only messaging, and only then after the primary
node starts it.

• Virtual Node Mode is a configuration that uses both CPUs separately,
running a different instance of the user’s application on each processor. In
this mode, the 512 MB (1 GB) memory is split between the two processors,
giving each processor effectively 256 MB (512 MB) of memory for the
Compute Node Kernel and user application. Each processor also handles it
own I/O interactions for messages and the file system I/O stubs.

• Hybrid Node Mode is a non-default configuration created by the coder. It

sometimes is referred to as “Communication Coprocessor Mode with
Computation Offload”. In this mode, the secondary processor functions as
both an I/O coprocessor and as user application processor. This mode is of
use for those who don’t mind coding their own behavior and the details that
go with performing such a task, details such as handling the lack of L1 cache
coherence between the two processors, in order to wring out the last 2-4% of
speed possible in the Blue Gene/L system.

PERFORMANCE OPTMIZATION AND TOOLS

Performance Optimization and Libraries [Slides 30-32]

To develop programs on Blue Gene/L, one needs to compile their code. The IBM XL

compilers for Fortran, C and C++ are available. In addition, IBM’s batch processing

scheduler called LoadLeveler is available for dispatching jobs. For I/O performance,

the General Parallel File System (GPFS) is available for Parallel I/O to external disk.

Several math libraries have been optimized for Blue Gene, The Engineering and

Scientific Subroutine Library (ESSL) is ported to Blue Gene and most functions are

available in highly optimized form. The MASS and MASSV library provide an

additional performance benefit via highly optimized intrinsic functions. The

comparison between the default libm.a and the MASS and MASSV library for

several intrinsic functions is illustrated in the table below.

Cycle count per evaluation on Blue Gene/L processor

Function Libm.a Libmass.a Libmassv.a

Exp 185 64 22

Log 320 80 25

Pow 460 176 29-48

21

Sqrt 106 46 8-10

Rsqrt 136 … 6-7

1/x 30 … 4-5

The relative costs of operations on the Blue Gene/L processor are given in the table.

It shows that division is the costliest primitive operation. Avoiding division, one can

achieve 1 mult-add per cycle on each pipe on each of two processors, unless limited

by load-stores. There is no hardware square-root function on Blue Gene/L and the

default GNU library function from libm.a is slow. The recommendation for codes

dominated by SQRT is to use the IBM supplied MASS and MASSV libraries which

are available for download from the following URL:

http://www-

1.ibm.com/support/docview.wss?rs=2021&context=SSVKBV&dc=D400&uid=swg24

009222&loc=en_US&cs=UTF-8&lang=en .

Performance Decision Tree [Slide 33]

On the Blue Gene/L system, there is a variety of tools one uses to obtain and

improve code performance. These tools and their connection are outlined the

Performance Decision Tree. Total performance comes from computation,

communication and I/O performance. The tools available for each are list in this tree

diagram.

Compiler Options and Switches [Slide 34]

For computation, one should not forget the compiler. A lot of performance

improvement can be obtained through a variety of compiler switches. There are

various levels of optimization O through O5. With the wealth of compiler switches

and options, it is hard to determine what will work best in all cases. Here we

recommend a specific starting point of –g for debugging purpose, -O for minimal

optimization purpose, -qarch=440 for the architecture and –qmaxmem=64000. The

–qarch is important because we are doing cross-compiling, in other words, we are

compiling on another PowerPC architecture and targeting for the 440PC.

HPC Toolkit Overview [Slides 35-36]

22

IBM has an integrated tool kit, the HPC Toolkit. Couples several tools, a profiler,

Xprofile, to understand the performance of code on a processor; an interface to the

PowerPC chip monitors, HPM; and a message passing profiler, MP Profiler and

Trace facility to understand communication. Work is underway to include profilers

for I/O. All these performance monitoring tools are integrated in a common viewing

tool called Peekperf which aids in visualizing and analyzing the performance.

Message Passing Performance [Slides 37-39]

In the first set of slides, we show the information on message passing performance.

Information can be obtained through the MP_Profiler library and the MP Trace

library. The profiler library captures summary message passing data while the trace

library essentially timestamps MPI calls. The information can be conveniently

displayed through the Peekperf tool.

Processor Performance [Slides 40-43]

We can obtain a variety of information on the performance a code on a processor

through the use of the Xprofiler tool. This tool is much like gprof that many

experienced code developer are use to. Using procedure profiling a graphical

display of call graph can be produced. Hot spots in the code can be readily

identified. Using the source code window and the disassembly windows users are

able to identify to the line those parts of the codes that are the most CPU intensive.

The dissembler code is useful in understanding results of various compiler options

and quickly identifying the use of the double floating point unit. From this

information, the user is able to easily revise his code in the higher language,

recompile and gain improved performance on the processor.

Hardware Performance Monitors – Instrumented Code [Slides 44-46]

The hardware performance monitors are actually additional logic placed on the

PowerPC processors. They count specific events and were originally intended for

understanding of the logic by the processor designers. As a consequence, the

additional logic is limited information available for an application developer. The

hardware performance monitor library is the mechanism that applications

developers can access the hardware performance monitor HPM. It requires the

application developer to insert calls to the HPM library in his code. One advantage

23

of the HPM for the application developer is sections of code perhaps identified by

the Xprofiler can be instrumented. The instrumentation can be nested to easily

identify subsections. Again, the results of the HPM can be displayed through the

Peekperf tool.

Running Code on Blue Gene/L [Slides 47-48]

When a user is ready to submit a run on Blue Gene/L, he first identifies and acquires

a partition. This may be done through a script of a job scheduler or the user may

allocate a partition depending on how the Blue Gene is administered locally. The

allocation of a partition is done from the front-end node. Through the allocation, the

user boots the partition to prepare it for execution of the program.

Multiple users may be using different partitions in the Blue Gene rack. This allows

different users to share the rack but the individual partitions are not shared.

Once the partition is set up for the user, the user will submit his parallel job. The job

submission may be done through a job scheduler or through the submit job

command.

The mpirun command is also available for those familiar with it. The use of the

mpirun command offers an advantage over the submitjob command because

mpirun allows the allocation of the partition and the execution of the parallel job to

be performed through a single command.

We present some results from two simple programs running on a Blue Gene/L

system. All the results presented are from a partition consisting of 32 compute

nodes. The information presented comes from editing the output on the front-end

node. The results demonstrate a few features of the Blue Gene/L system.

The first program developed by Jim Sexton at Watson Research Center is a C code

C, Sanity.c and the executable is referred to as Sanity.rts. It is a simple program

that gathers during execution and subsequently prints out information on the

compute node that the MPI task was running on. The information comes from the

bglpersonality.h. The personality is static data given to every compute and I/O node

at boot time. This simple code queries and extracts the information in the

blgpersonality structure. The code was executed twice, once in coprocessor mode

24

and once in virtual node mode. Coprocessor mode is the default mode when booting

a partition. If we were in coprocessor mode and wanted to run this program in

virtual node mode, we would have to reboot the partition because of the static

nature of the personality data. This is not a big task as the partitions on Blue

Gene/L are design to quickly boot up.

There are two lines output from two separate runs, one representing coprocessor

mode in the first line, VN? 0, and the other virtual node mode, where we have in the

second line VN? 1. Both lines are line 20 from standard output file and the

represent the 20th MPI rank which in line 1 is out of 32 MPI tasks (coprocessor

mode 32 processors used) and in line 2 is out of 64 MPI tasks (virtual node mode 64

processors used). The next item prefaced by Pers indicates the X, Y, Z coordinates

in the 4x4x2 mesh and the last coordinate indicating the T coordinate for the

processors that share a compute node. The default torus ordering was assumed,

X0Y0Z0. The Memory size is recorded to be 512 MB. The last item is the location

of node in the system.

Line 1:
stdout[20]: MPI: 20/32, Pers: <0,1,1,0>/<4,4,2,1>, Torus? X0Y0Z0, VN? 0, Mem:

512MB(6), Loc: R00-M1-Nf-C:J14-U11

Line 2:
stdout[20]: MPI: 20/64, Pers: <0,1,1,0>/<4,4,2,2>, Torus? X0Y0Z0, VN? 1, Mem:

512MB(6), Loc: R00-M1-N2-C:J14-U11

The next program is a Monte Carlo code developed by Bob Walkup at Watson

Research Center. It calculates the value of R using a different number of

processors but keeping the amount of work the same. For this particular example,

the code was running in coprocessor mode on a 32 compute node partition. In the

results, it is of interest note the linear scaling, see the table below. In addition, note

the time on each of the number of processors.

Monte Carlo Calculation of R

#cpus #trials pi(est) err(est) err(abs) time(s) Mtrials/s

32 256000000 3.14176 0.00022 0.00017 1.082 236.58

16 256000000 3.14164 0.00022 0.00004 2.164 118.29

25

8 256000000 3.14157 0.00022 0.00002 4.328 59.15

4 256000000 3.14160 0.00022 0.00000 8.656 29.57

2 256000000 3.14155 0.00022 0.00004 17.313 14.79

1 256000000 3.14145 0.00022 0.00014 34.625 7.39

APPLICATION PERFORMANCE

For an ultrascale out system with a massive number of processors, one might very

well ask can one really take advantage of such a system on a single application. In

addition, one might ask what problems/applications are suited to an ultrascale out

architecture. In this section, we highlight a few applications that have some

relevance to the computational biology community that have exploited the utlrascale

out architecture of Blue Gene.

At IBM’s Yorktown Heights facility, IBM runs a large Blue Gene system consisting of

20 Blue Gene racks. The purpose of this facility is for production science in support

of IBM’s Research Division’s mission of basic science. This machine is referred to

as BGW, Blue Gene at Watson.

Blue Matter Framework [Slides 50-54]

As part of the public unveiling of the Blue Gene project in December 1999, the

project’s two main goals were stated: (1) to advance our understanding of biological

phenomena such as the mechanisms behind protein folding via large-scale

simulation, and (2) to explore novel ideas in massively parallel machine architecture

and software. This project should enable biomolecular simulations that are orders of

magnitude larger than those achieved with previously available technology.

Blue Matter is a molecular simulation framework and application developed to

support the scientific goals of IBM’s Blue Gene project, to serve as a platform for

research into application programming patterns for massively parallel architectures,

and to explore ways to exploit hardware features of the Blue Gene/L architecture. A

major design goal for Blue Matter has been to achieve strong scaling of molecular

dynamics for moderately sized systems (10,000 – 100,000 particles) to very small

numbers of atoms per node. This supports one of the aims of the scientific

26

component of the project, to carry out simulations on a scale that allows meaningful

comparisons with experimental data. Results from early production use of prototype

Blue Gene/L hardware were recently published in the Journal of the American

Chemical Society.

Included here are results from the Blue Matter Framework for various molecular

dynamic problems, such as G Protein-Coupled Receptors (GPCR) in a membrane

environment and lipid bilayers. For comparison purposes, we provide the Blue

Matter code performance against that of a popular free available code NAMD, the

best NAMD performance. One key component of the Blue Matter code is to have an

efficient 3D FFT. The performance of this kernel is displayed.

New Science and Outstanding Performance [Slides 55-63]

Several codes with some relevance to this community have achieved significant

performance milestones. These are documented last fall at the SC05 conference,

where the ddcMD code broke the 100 Tflops barrier. We describe the science and

the performance results for ddcMD, a scalable, general purpose code for

performing classical molecular dynamics (MD) simulations using the highly accurate

model generalized pseudopotential theory (MGPT) potentials. These semi-empirical

potentials, which are based on a rigorous expansion of many body terms in the total

energy, are needed in order to investigate quantitatively the dynamic behavior of

transitions metals and actinides under extreme conditions. What is shown is the

nucleation of the solid phase in Tantalum and Uranium. This is the first time that it

has been possible to see multiple nucleation sites in a computer modeling

experiment. We also see that scaling of the code to greater than 10,000 processors

is excellent.

Similarly, the CPMD code from IBM Zurich Research Labs has also exceeded the

100 Tflops mark. The CPMD is based on the Car-Parrinello Molecular Dynamics

codes. The code uses a plane wave/pseudopotential implementation of the Density

Functional Theory. The parallel implementation is designed for ab-initio molecular

dynamics. For more detailed information including how to download the code visit:

http://www.cpmd.org .

The work being done at AIST combines genome decoding with protein engineering

for drug design. This is natural use of Blue Gene.

27

Not every computational biology problem is related to molecular dynamics. We

mentioned the transcription regulatory work at Boston University. We will give

details on the use of Blue Gene for genome assembly later. But another area the

Blue Gene is impacting the biological sciences is the neurology. The Blue Brain

Project at EPFL (Ecole Polytechnique Fédérale de Lausanne) in Switzerland

headed by Prof. Henry Markham is using Blue Gene to accelerate their research

efforts.

MASSIVELY PARALLEL COMPUTING ENVIRONMENT

Massively Parallel Computing Environment - What Next? [Slide 64-72]

In the above, it was mentioned that a familiar programming model, Single Program

Multiple Data (SPMD), is easily used on Blue Gene/L. Many cluster programs

assume this programming paradigm. As a consequence, it is easy to get started on

Blue Gene/L. In some instances, the programs moved to Blue Gene will tackle

larger problems of interest to society with real impact. In other instances to get

more accuracy, finer resolution, greater refinement or larger searchers may be done

utilizing a lot of processors. To take full advantage of the power of tens or even

hundreds of thousands of processors, one may want to rethink the problem. For

some problems, a Multiple Program Multiple Data (MPMD) paradigm may be more

appropriate. The Blue Gene system can support such a model through use of MPI

communicators. Through the use of multiple communicators, different parts of the

Blue Gene system may be able to work on different aspects of the problem

simultaneously. While this may not really be a Multiple Program Multiple Data

situation, it provided the initial thinking in this direction.

In Biology, we are interested in exploring interactions of complex systems. We

might model and perform simulations at various levels such as at the molecular,

cellular, organ or organism level. But of real interest is to understand the

interactions between these different levels. Even trying to fully model a single cell, a

simple system, result in a set of complex systems interacting. A MPMD

programming paradigm may be the right way to tackle such a problem.

Examples where concepts of multiple program with multiple data may apply abound

in biology. Blue Gene provides the infrastructure with the ability to do atomistic

28

(discrete) level computations and easily couple these to microscale, mesoscale and

continuum computations. One might look at the whole cell as composed of different

simulations all coupled together or pharmaceutical manufacturing problems that

involve multiple scales such as for inhalers.

Other examples include, analyzing the various data available from gene expression

profiling, protein expression profiling, combined with multi-modal imaging and then

coupled to models for simulation. Ultimately, as we learn how to use massively

parallel computing environment to model biological systems, we will be able to rely

on these models for predictions of out comes. This eventually will lead to moving

through the various biological scales, moving from gene data, to proteins, to cells

and ultimately to organs and finally to complex biological systems. With systems

like Blue Gene, we are starting to get the needed computational power but there

remains a lot to learn on how to best use such tools combined with other tools such

as high resolution imaging device. All of this is moving us in the realm of systems

biology.

The goal of systems biology is to provide predictive simulations of complex

biological problems. Here again we are faced with systems of complex systems.

Modeling each system and then combining them in some fashion may lead naturally

to a MPMD programming paradigm. Blue Gene/L provides the facilities to serious

explore this realm and provides the opportunity for new discoveries.

Large-Scale Computational Genomics on the IBM Blue Gene/L
Supercomputer

We first present an overview of a number of large scale problems in computational

genomics and then present a unified methodology to solve them on high

performance parallel supercomputers such as the Blue Gene/L.

Genome Assembly [Slides 75-76]

Current sequencing techniques can only determine short sequences experimentally

(up to 1000 nucleotides). To overcome this limitation, sequencing projects break a

large sequence into many smaller sequences. As an example, consider whole

genome sequencing. Multiple large genomic sequences are randomly fragmented

29

such that the output is a collection of unordered, but overlapping, fragments that can

be sequenced. Genome assembly algorithms then take advantage of the inherent

overlap information to reconstruct the original sequence similar to putting together a

very large jigsaw puzzle.

Expressed Sequence Tag [Slides 77-78]

Expressed Sequence Tag (EST) sequencing is an approach used to enrich for the

protein-coding sequences present in a genome. Messenger RNA is extracted from

multiple tissues of interest, converted into cDNA via reverse transcription and cloned

to generate a collection of expressed molecules often called a library. One or both

ends of these cDNAs are then sequenced, resulting in many single-pass fragments.

As shown in slide 5, however, genes are not uniformly expressed and in the

absence of biochemical normalization the rate at which a specific gene is sampled is

directly proportional to its frequency in the original cDNA pool. This frequency

information is useful to analyze gene expression computationally, but also

significantly affects the computational complexity because there are a quadratic

number of potential overlaps among these data. For this reason most collections of

ESTs are first grouped based on a single-linkage clustering algorithm to reduce their

analysis to multiple subproblems.

Single Nucleotide Polymorphisms - SNP [Slides 79-82]

Although the underlying process used to generate genomic fragments and ESTs

differ greatly, these sequencing strategies are highly complementary because ESTs

can be mapped onto their respective genomic loci using algorithms collectively

called spliced alignment. For example, it is possible to compute an optimal

alignment solely based on scores assigned to matches, mismatches and constant

penalties for insertions/deletions that satisfy a specified minimum length criterion.

Moreover, ESTs are invaluable resources for locating single base differences

between related individuals called single nucleotide polymorphisms, or SNPs. This

is performed by analyzing a multiple sequence alignment composed of a reference

sequence (e.g., an assembled genome) and multiple ESTs as illustrated in these

slides. An alternative SNP detection approach is to perform an assembly of the

diverse EST sequences themselves and determine columns of the corresponding

multiple sequence alignment that differ, which is useful when no reference sequence

is available.

30

Naïve Approach to Alignment [Slide 83-85]

The above slides are an example of some of the problems in computational

genomics which can in principle be solved by finding good alignments between pairs

of sequences and processing the results. This tutorial will focus on how to solve

such problems effectively on large parallel computers. The naïve approach to

determine which sequences overlap involves computing an alignment between all

pairs of input sequences; this is computation-intensive and often wasteful. Avoiding

an all-vs.-all comparison is especially important for large scale data. For example,

some of the largest EST collections such as human, mouse and maize are

composed of millions of input ESTs. To overcome this pitfall, many software tools

restrict the search space to sequences that are more likely to have a significant

alignment by using criteria such as one or more exact matches of length l. Locating

all sequences that share common exact matches can be performed using a linear

time and space data structure such as a lookup table, which can then be used to

restrict alignments to only between these “promising pairs”. Even so, ESTs may be

non-uniformly sampled such that the number of promising pairs computed could

scale quadratically even when using the most stringent of heuristics.

Lookup Tables [Slide 86]

Lookup tables are easy to program, require linear space, and have a very small

space constant, which enables them to be useful on many machines. There are,

however, limitations with this approach. We would expect that the quality of an

alignment is somewhat correlated with the longest exact match between two strings.

Lookup tables can not determine the length of long exact matches because the

space required to store them grows by a factor of 4l for indexing substrings of length

l. Moreover, a single long exact match of length m would reveal itself as m – l + 1

fixed length matches with no implicit order unless we initially sort all of the pairs.

PaCE Methodology [Slide 87]

Our contribution, which is implemented as a software tool called PaCE, overcomes

the limitations of a lookup table and introduces additional algorithmic innovations for

large-scale sequence analysis. This software constructs a distributed version of a

generalized suffix tree (GST) that allows generating promising pairs in decreasing

31

order of maximal common substring length in time and space proportional to the

size of the input. In addition, an on-demand non-increasing pair generation scheme

eliminates storing a potentially quadratic number of overlaps while decreasing the

total amount of work by filtering these matches based on previously computed

results. This provides a scalable framework that we show can effectively utilize

thousands of processors to reduce run-time and increase available memory when

processing large sequence collections.

Maize Genome Assembly

Maize Genome [Slide 88-89]

Here, we present an application of the PaCE framework to both maize genome

assembly and large-scale EST clustering. Just as the human genome will

accelerate advances in medicine, recent plant genome sequencing endeavors

should help improve food production. Maize, also known as corn, is the best

studied model for the cereal crops (rice, wheat, barley, and oat) and is itself

economically important. Unfortunately, it is also one of the most complex eukaryotic

genomes with a total size of ~2.5-3 billion bases, most of which is composed of

highly similar retrotransposons. These present a significant challenge during

assembly and were the focus of pilot studies to better understand the landscape of

the maize genome.

Assembly Strategy [Slides 90-91]

As mentioned earlier, software tools that perform all pairwise comparisons such as

genome assembly use an exact match filter to substantially reduce the search

space. This also can lead to a linear space requirement in most shotgun

sequencing projects because the number of overlaps each sequence participates

should, on average, be the same as the number of times that base is represented in

the set of sequences. Even so, assembly of genomes as large as the human

genome and maize places enormous computational demands and requires tens of

thousands of CPU hours. For example, twenty seven million fragments were

assembled by the Celera Assembler in 20,000 CPU hours, half of which was spend

detecting overlaps.

Maize Genome Assembly Effort [Slides 92-96]

32

Current estimates state that maize contains approximately 50,000 genes, which are

roughly twice as many genes in the human genome and the model plant

Arabidopsis. These genes, however, only occupy about 15-20% of the maize

genome. To address this disparity and to devise a strategy for maize genome

sequencing, an NSF workshop was held in 2001 to discuss various options and

resulted in two consortiums being funded to explore multiple strategies. One

consortium that involved Rutgers and the University of Arizona performed traditional

Bacterial Artificial Chromosome (BAC) sequencing including a substantial number of

end sequences to obtain a relatively random sampling of the maize genome at

multiple resolutions: both at random (ends) and specific blocks (BACs). The other

consortium involving the Danforth Plant Science Center, TIGR, Purdue, and Orion

Genomics tested techniques that have since been termed “gene-enrichment”

because they apply unique filters to traditional genomic fragments to substantially

enrich for genic sequences. Each of these approaches is explained in detail below.

Arguably the best enrichment strategy for plant genomes involves selecting against

methylated DNA prior to sequencing using special strains of E. coli. Unlike

mammalian genomes, genes in plants tend to be highly hypomethyated, i.e., there

are no methyl groups attached to the genome at these loci. Moreover, the repetitive

sequences in plants tend to be highly methylated. Removing methylated DNA

therefore enriches for genic sequences because repeats are preferentially removed

during this strategy. This strategy is also very simple; only the type of bacteria used

during the clone step needs to be changed in order for this strategy to work. The

other gene-enrichment technique involved C0T filtration using methodology similar to

that used to normalize cDNA libraries prior to EST sequencing in the 1990s.

Although this approach is also effective, it is much more complex and is subject to

sequence artifacts because single-stranded DNA must be converted to double-

stranded DNA prior to sequencing.

Cluster-Then-Assemble [Slides 97-98]

Gene-enrichment has been shown to be a cost-effective strategy to survey the

“gene space” of at least two genomes: maize and sorghum. These strategies,

however, place the same computation requirements on assembly algorithms as

ESTs because certain sequences may preferentially survive the filtration steps

33

and/or residual repeats cause non-uniform sampling of certain regions of the

genome.

To overcome the potential computational bottleneck of non-uniform genome

assembly, we developed a “cluster-then-assemble” strategy. This strategy locates

all of the connected components in the overlap graph used during genome

assembly and then runs a serial assembly on each component in parallel. In order

for this strategy to work, any overlap that would be determined by the assembler

also should be detected during the clustering step to ensure the result of processing

each connected component individually is the same as performing the assembly

directly.

Our strategy proceeds as follows: We perform single-linkage clustering approach

on a collection of gene-enriched sequences generated from methyl-filtration (MF)

and/or high C0T selection (HC). Specifically, each sequence belongs to its own

cluster at the start of execution and at the end of clustering sequences belonging to

the same cluster either directly overlap or are transitively related by a chain of

overlaps that lead from one sequence to another. Because these chains may be

inconsistent in the presence of repetitive sequences or chimeric reads, post-

processing may generate more than one contig. We use the union-find data

structure to efficiently combine and search for membership in clusters at any point

during the execution of the algorithm.

Pair Generation [Slides 99-101]

One observation that can be made about clustering is that pairs that already belong

to the same cluster do not need to be evaluated. In fact, it is easy to prove that

although there are O(n2) potential overlaps in the worst case, only O(n) of these can

be used to merge clusters after which all n sequences will belong to the same

cluster. Although we can not guarantee that we will find this linear number of

successful alignments first, we can utilize a greedy clustering heuristic that attempts

to find as many of these good overlaps quickly to eliminate many unsuccessful

alignments. Our algorithm achieves this result by generating promising pairs in non-

increasing order of maximal common substring length using a GST in amortized

O(1) time per pair. We do not need to store previously generated pairs, resulting in

a linear space clustering algorithm for any underlying sequence sampling

distribution.

34

PaCE Methodology [Slides 102-108]

Our PaCE algorithm has four distinct modules. In the first module, a generalized

suffix tree, which is a compacted trie of all of the suffixes of all of the input strings, is

constructed in parallel. There are currently no optimal suffix tree construction

algorithms for distributed memory systems; however, observe that a suffix tree can

be converted into a forest where each tree has a common prefix. In other words, we

chop the suffix tree breadthwise at some arbitrary depth d generating at most 4d

subtrees whose suffixes share a common prefix. By setting the minimum allowable

maximal common substring to be greater than d, we ensure that any promising pair

can be determined on a single processor without utilizing any subsequent

communication. To achieve this distributed GST, we initially bucket the suffixes

based on the first d nucleotides and then allocate the corresponding buckets such

that each processor has O(nl/p) suffixes, where l is the average sequence length

and p is the number of processors. Each substree of the GST is then generated

top-down by successive bucketing, resulting in an O(nl2/p) algorithm, which works

well in practice.

To eliminate additional memory overhead, we construct each subtree on each

processor iteratively. Although this approach is space-efficient on the Blue Gene/L

supercomputer, it requires substantial random access I/O in parallel and the same

sequence may be read from disk as many times as it has suffixes. We addressed

this issue on BG/L by replacing I/O with communication and using the collective

memory of all the processors to store the input sequences.

Pair Generation Algorithm [Slides 109-114]

Maximal common substrings between pairs of sequences can be identified as

follows: The concatenation of edge labels on the path from root a node in the suffix

tree is called the path label of that node. Consider an internal node in the tree and

two leaves in its subtree. The path labels of these leaves correspond to two suffixes.

The path label of the internal node is a common prefix to these suffixes, hence a

shared substring. This common substring is right maximal (i.e., cannot be extended

to the right) if the leaves are in the subtrees of different children of the internal node.

They are left maximal (i.e., cannot be extended to the left) if the respective previous

characters of the two suffixes differ. These rules are used to generate maximal

35

common substrings at every internal node in the tree. By sorting the internal nodes

according to non-increasing order of the lengths of their path labels, and processing

them in that order, the required pair generation is achieved.

Master-Worker Paradigm [Slide 115-117]

The clustering phase of the PaCE algorithm utilizes a master-worker paradigm

where the master processor is responsible for cluster management and the worker

processors generate pairs from their portion of the GST and compute alignments

using banded dynamic programming. As shown in these slides, this approach

scales well and, most importantly, is able to substantially reduce the number of

alignments computed by processing exact matches in non-increasing length order.

Assembly Pipeline [Slide 118]

Our sequence assembly pipeline can be broken down as follows. First, input

sequence data are cleaned by trimming residual vector sequence in addition to low-

quality sequences using the Lucy tool. Then, sequences are masked using a

modified version of the BLAST search algorithm using previously published

methodology and clustered on BG/L. Each of the clusters is then assembled in

parallel by distributing them to individual processors and combining the results after

all clusters have been processed.

Blue Gene Performance [Slides 119-120]

We have applied our parallel framework on up to 8,192 processors of a BG/L

supercomputer as illustrated by these tables. The implementation used for

generating these runtime appears to scale well up until 8,192 processors for the

suffix tree construction phase but only achieves marginal speedup during the

clustering phase when compared to a run on a 1,024 processor system. This is

primarily a result of using a single master processor for clustering that becomes

overwhelmed as the number of processors enters the thousands. A potential

solution to this phenomenon is to utilize multiple master processors; however, this

may require substantial communication to ensure the state of the clusters is

consistent between master processors.

Maize/Sorghum Assembled Genomic Islands [Slides 121-228]

36

The assembly results from our runs on BG/L are actively utilized by the plant biology

community. We currently provide multiple assembly versions of both the gene-rich

regions of the maize and sorghum genomes as builds called Maize Assembled

Genomic Islands (MAGIs) and Sorghum Assembled Genomic Islands (SAMIs). The

latest MAGI build (version 4.0) is based upon 3.2 million input fragments and is

composed of 217,106 contigs and 567,797 non-repetitive sequences that do not

assemble with any other sequence. Significantly, we have shown that the results of

this assembly are highly accurate both with respect to base fidelity as well as contig

formation in a 2005 paper in the Proceedings of the National Academy of Sciences

that involved substantial biological validation. There are very few residual

sequencing errors in our assembly and we estimate that overall this build has an

error once every 10,000 nucleotides. This assembly has led to substantial

advances in maize genetics and one such observation is that genes tend to cluster

together in the maize genome in what we term gene “archipelagoes”. These data in

addition to information about the PaCE software tool can be accessed from our

project website http://magi.plantgenomics.iastate.edu. This site also includes

substantial annotation graphically displayed by GBrowse and is searchable by

BLAST.

Maize Genome Project Future [Slides 129-130]

The U.S. National Science Foundation (NSF), Department of Agriculture (USDA),

and Department of Energy (DOE) have recently announced a $32 million dollar

investment in maize genome sequencing. The goal of this project is to sequence all

genes in the B73 cultivar, determine their order and orientation, and anchor them to

the genetic/physical maps. Washington University in St. Louis will lead this

sequencing consortium that includes the University of Arizona, Iowa State University

and Cold Spring Harbor.

Mouse EST Clustering

Mouse EST [Slides 131-132]

We have also applied our clustering framework to the ~3.8 million mouse EST

sequences, which is the second largest collection of ESTs next to those from

human. To validate our massively parallel strategy we reclustered sequences from

37

a UniGene build downloaded in March 2006 on 1,024 processors of BG/L and

obtained 60,862 clusters with more than one sequence; the original UniGene

collection contained 56,470 clusters. Approximately 83% of these clusters are

composed of members obtained from a single UniGene without postprocessing the

results to eliminate highly similar gene families and/or alternative splice forms.

Validating Accuracy [Slides 133-134]

Validating the accuracy of any clustering algorithm can be performed in different

ways. One method is based on all possible pairs of sequences, and this approach

has been used to test the ability of PaCE to cluster small collections of plant ESTs.

Another approach that we found yielded more information for large collections of

ESTs is comparing the number of correct merges, or decisions, computed by our

algorithm when compared to the UniGene benchmark. Similarly, we can determine

how many additional merges PaCE performed (false positives) that led to two

different UniGenes being placed together as well as the number of merges missed

(false negatives) leading to multiple PaCE clusters per UniGene cluster. As

illustrated on slide 61, over 3.2 million out of 3.3 million decisions were made by

both clustering algorithms, suggesting PaCE recovers many of the valid overlaps

among the maize ESTs processed. Moreover, only 26,125 false positive merges

were made, confirming that many clusters are highly specific.

Blue Gene Performance and Scaling [Slides 135-136]

The scaling of our BG/L clustering algorithm when applied to EST data is similar to

that of maize gene-enriched genomic fragments with near perfect scaling up to

1,024 processors for the largest dataset analyzed (n = 2,000,000) and weak scaling

for smaller datasets. Interestingly, the alignments saved when performing EST

clustering is substantially higher for these sequence data than genomic data with

nearly 1.8 billion alignments ignored for the 3.78 million dataset among a total 2.1

billion (86%). Even so, this run took a total of 9.5 hours, of which 7 hours were

spent clustering.

Closing Remarks

Blue Gene Consortium [Slide 139]

38

There are several places to learn more about how to use Blue Gene and how you

might access it. One such place is to visit the Blue Gene Consortium Website,

http://www.mcs.anl.gov/bgconsortium . One can learn about other activities at this

Website.

Final Remarks [Slide 140]

While we are starting to see Blue Gene impacting computational biology, much work

remains to be done. In closing, it will be up to computational biology community to

determine how a resource like Blue Gene will really have impact. Hopefully, this

tutorial sparked your interest and your imagination on problems you might now

tackle using a resource such as Blue Gene.

39

REFERENCE LIST/ADDITIONAL READING

Adiga N. R., et al, "An Overview of The Blue Gene/L Supercomputer", IBM Journal
of Research and Development, Volume 40, Number 2, 2001, p. 310

Adiga N. R. et al. Blue Gene/L torus interconnection network. IBM Journal of

Research and Development, 49(2/3):265–276, 2005

Allen, F. et al. Blue Gene: a vision for protein science using a petaflop

supercomputer. IBM Systems Journal, 40(2):310–327, 2001.

Allsopp, N. et. al., Unfolding IBM eServer Blue Gene Solution, IBM Redbooks

(http://www.ibm.com/redbooks/), September 2005.

Almasi G. et al , "Unlocking the Performance of the BlueGene/L Supercomputer",
IEEE Comp. Soc. 57 2004.

Almasi G et al. Design and implementation of message-passing services for the

Blue Gene/L supercomputer. IBM Journal of Research and Development,

49(2/3):393–406, 2005.

Bhanot, G, J. M. Dennis , J. Edwards , W. Grabowski, M. Gupta , K. Jordan, R. D.
Loft , J. Sexton , A. St-Cyr , S. J. Thomas, H. M. Tufo , T. Voran, R. Walkup , and A.
A. Wyszogrodski, " An Atmospheric General Circulation Model for BG/L", 2005
Gordon Bell Award submission (Special Category).

Bhanot G., D. Chen, A.Gara, J. C. Sexton, P.Vranas, 2005 Gordon Bell Award
submission (Special Category)

Bhanot G., A. Gara P. Heidelberger E. Lawless,J. C. Sexton, R. Walkup, “Optimizing
task layout on the Blue Gene/L Supercomputer” IBM Journal of Research and
Development, Vol 49, No. 2/3, March/May, 2005.

Boczko, E.M. and C.L. Brooks. First-Principles Calculation of the Folding Free-

Energy of a 3-Helix Bundle Protein. Science, 269(5222): 393-396, 1995

Duan, Y. and P.A. Kollman. Pathways to a protein folding intermediate observed in a

1-microsecond simulation in aqueous solution. Science, 282: 740, 1998.

40

Deserno, M. and Holm, C. How to mesh up ewald sums. i. a theoretical and

numerical comparison of various particle mesh routines. J. Chem. Phys.,

109(18):7678–7693, 1998.

Dobson, C.M., Protein folding and its links with human disease, in From Protein

Folding to New Enzymes. 2001. p. 1-26.

Eleftheriou, M., et al. Scalable framework for 3d FFTs on the Blue Gene/L

supercomputer: Implementation and early performance measurements. IBM Journal

of Research and Development, 49(2/3):457–464, 2005.

Fitch, B.G. et al. Blue Matter, an application framework for molecular simulation on

Blue Gene. Journal of Parallel and Distributed Computing, 63:759–773, 2003.

Gara, A. et al. Overview of the Blue Gene/L system architecture. IBM Journal of

Research and Development, 49(2/3):195–212, 2005.

Germain, R.S. et al. Early performance data on the Blue Matter molecular simulation

framework. IBM Journal of Research and Development, 49(2/3):447–456, 2005.

Giampapa, M.E. et al. Blue Gene/L advanced diagnostics environment. IBM Journal

of Research and Development, 49(2/3):319–332, 2005.

Hansmann, U.H.E. Parallel tempering algorithm for conformational studies of

biological molecules. Chemical Physics Letters, 281(1-3): 140-150, 1997.

Lakner, G., Mullen-Schultz, G.L., Barnard, E. W, Blue Gene/L: System

Administration, IBM Redbooks (http://www.ibm.com/redbooks/), Draft June 2006.

McCammon, J.A., B.R. Gelin, and M. Karplus. Dynamics of folded proteins. Nature,

267(5612): 585-590, 1977

Mullen-Schultz, G.L., Blue Gene/L: Application Development, IBM Redbooks

(http://www.ibm.com/redbooks/), Draft June 2006.

Mullen-Schultz, G.L., Blue Gene/L: Performance Analysis Tools, IBM Redbooks

(http://www.ibm.com/redbooks/), Draft June 2006.

41

Munoz, V., et al. Folding dynamics and mechanism of beta-hairpin formation.

Nature, 390: 196-198, 1997.

Nyland, L., et al. Achieving scalable parallel molecular dynamics using dynamic

spatial decomposition techniques. Journal of Parallel and Distributed Computing,

47(2):125–138, December 1997.

Phillips, J.C., et al. NAMD: biomolecular simulation on thousands of processors. In

Supercomputing 2002 Proceedings, 2002.

http://www.sc2002.org/paperpdfs/pap.pap277.pdf.

Pitman, M.C., et al. Molecular-Level Organization of Saturated and Polyunsaturated

Fatty Acids in a Phosphatidylcholine Bilayer Containing Cholesterol. Biochemistry,

43(49): 15318-15328, 2004.

Pitman, M.C., et al. Role of Cholesterol and Polyunsaturated Chains in Lipid-Protein

Interactions: Molecular Dynamics Simulation of Rhodopsin in a Realistic Membrane

Environment J. Am. Chem. Soc.127(13) : 4576 – 4577, 2005 DOI:

10.1021/ja042715y

Plimpton, S. and Hendrickson, B. A new parallel method for molecular dynamics

simulation of macromolecular systems. Journal of Computational Chemistry,

17(3):326–337, 1996.

Shaw, D.E. An asymptotic improvement in the parallel evaluation of pairwise particle

interactions. Presented at Philadelphia American Chemical Society meeting,

September 2004.

Sheinerman, F.B. and C.L. Brooks III. Molecular picture of folding of a small

alpha/beta protein. PNAS, 95: 1562-1567, 1998.

Simmerling, C., B. Strockbine, and A.E. Roitberg. All-atom structure prediction and

folding simulations of a stable protein. Journal of the American Chemical Society,

124(38): 11258-11259, 2002.

Snir, M. A note on n-body computations with cutoffs. Theory of Computing Systems,

37:295–318, 2004.

42

Snow, C.D., et al. Absolute comparison of simulated and experimental protein-

folding dynamics. Nature, 420(6911): 102-106, 2002.

Straatsma, T.P. and McCammon, J.A. Load balancing of molecular dynamics

simulation with NWChem. IBM Systems Journal, 40(2):328–341, 2001.

Suits, F. et al. Overview of molecular dynamics techniques and early scientific

results from the Blue Gene project. IBM Journal of Research and Development,

49(2/3):475–488, 2005.

Swope, W.C. et al. A computer simulation method for the calculation of equilibrium

constants for the formation of physical clusters of molecules: Application to small

water clusters. Journal of Chemical Physics, 76:637–649, 1982.

Swope, W.C., J.W. Pitera, and F. Suits. Describing protein folding kinetics by

molecular dynamics simulations. 1. Theory. Journal of Physical Chemistry B,

108(21): 6571-6581, 2004

Swope, W.C., et al. Describing protein folding kinetics by molecular dynamics

simulations. 2. Example applications to alanine dipeptide and beta-hairpin peptide.

Journal of Physical Chemistry B, 108(21): 6582-6594, 2004.

Top500 Supercomputer Sites, 28th Top500 List, (http://www.top500.org/), June

2006.

Zhou, R.H., B.J. Berne, and R. Germain. The free energy landscape for beta hairpin

folding in explicit water. Proc. Natl. Acad. Sci. USA, 98(26): 14931-14936, 2001.

43

Additional WEB Sites

Here are some additional websites, in addition those included in the text, where one

can find additional information on the topics described in this tutorial.

IBM Deep Computing website contains other information on Blue Gene. The

Website is:

http://www.ibm.com/servers/deepcomputing/

Information on the IBM Computational Biology Center can be found at:

http://domino.research.ibm.com/comm/research.nsf/pages/r.compbio.html

IBM’s Healthcare and Life Sciences Industry details can be found at the following;

http://www.ibm.com/industries/healthcare/

IBM Redbooks are handy references guides on many topics. All IBM Redbooks are

available as pdf files. The IBM redbook website is:

http://www.ibm.com/redbooks

Information on the Bioinformatics and Computational Biology Program at Iowa State

is available at:

http://www.bcb.iastate.edu/

Information on the Department of Biomedical Engineering at Boston University is

available at:

http://www.bu.edu/dbin/bme

Srinivas Aluru’s home page is:

http://www.ee.iastate.edu/~aluru/home.html

Kirk Jordan’s home page is:

http://www.ibm.com/software/info/university/people/kjordan.html

45

Exploring Computational Biology with a
Massively Parallel High Performance

Computing Environment
Kirk E. Jordan

IBM, USA
kjordan@us.ibm.com

Srinivas Aluru
Iowa State University, USA

aluru@iastate.edu
178

Outline
• Background
• Brief overview example

– Transcription Factor Binding Site Identification
• Architecture of a massively parallel environment

– Hardware & Software Philosophy
• Performance Tools & Compilers
• Application Performance
• What might we do?
• Large-Scale Computational Genomics
• Specific Applications:

– Maize Genome Assembly
– Mouse EST Clustering

• Remarks

Background

Trends in parallel computing

180

What is the roadblock to more compute cycles?

0

10

20

30

40

50

60

70

80

90

100

1970 1980 1990 2000 2010

C
P

U
 C

h
ip

 H
e
a
t

F
lu

x
 (

W
a
tt

s/
sq

cm
)

Bipolar Technology CMOS Technology Blue Gene
Technology

Steam Iron

5W/sqcm

Blue Gene is an evolutionary, innovative technology which reduces “time to solution” for
many computational science problems through ultrascalability and modularity with the

lowest power consumption, smallest footprint, highest reliability and easiest
manageability in the industry.

46

181

Trends in HPC Architecture

x86 (Intel & AMD)

C
om

pl
et

el
y

C
O

TS

Hybrid Custom

Cray X1

NEC SX-8
Cray T3E SGI Altix

IBM p575
IBM Blue Gene

Cell

Clearspeed
FPGAs

HP Cluster 3000 (EM64T)

HP Cluster 4000 (Opteron)

HP Cluster 6000 (Itanium)
IBM BladeCenter JSxx & System p5 (POWER)

Linux NetWorx (EM64T or Opteron)

Dell PowerEdge (EM64T)

Sun Fire V490, V890, E2900, E4900, E6900, E20K, E25K (SPARC)

Sun Fire x2100, x4100, x4200, V202, V402 (Opteron)

IBM BladeCenter HSxx, x336, x346 (EM64T)

IBM BladeCenter LSxx, e326

RISC / Itanium

Completely COTS

Commercial off-the-
shelf (COTS)
processors

Standard packaging
(rack-optimized or
blade)

PCI-Express or
HTX-based
interconnects

Often vendor
integrated

Largest & fastest
growing segment

• Best
price/perf.

• “good
enough”
technology

Hybrid

Combines commodity
processors with custom high
speed interconnect and/or
accelerators to enhance
performance

Standard or custom
packaging

Growth limited by program
model difficulties & lack of
enablement tools

Custom

Specialized processors,
interconnects &
processor-memory
interfaces

182

B
inary

B
inary C

om
patibility

ServersServersPOWER3
POWER4 POWER4+

POWER2

POWER5

POWER : The Most Scaleable Architecture

EmbeddedEmbedded
PPC
401

PPC
405GP

PPC
440GP

PPC
440GX

Desktop
Games

PPC
603e

PPC
750

PPC
750CXe

PPC
750FX

PPC
750GX

PPC
970FX

183

IBM Systems – Industry Leadership and Choice

e326
• 1U Opteron-based

Large SMP

Sc
al

e
U

p
/ S

M
P

C
om

pu
tin

g
Sc

al
e

U
p

/ S
M

P
C

om
pu

tin
g

x336
• 1U/2p density
• Intel EM64T

p5 590/595
• High BW
• SSI
• LPAR
• RAS

High Performance Switch

BladeCenter™
• Denser form factors
• Rapid deployment
• Flexible architectures
• Switch integration

Linux Cluster (1350)
AIX Clusters (1600)

p5 570/575
• High density

Scale Out / Distributed ComputingScale Out / Distributed Computing

LINUX

IntelliStation
• Pro (Intel/Opteron)
• POWER

High Density
Rack Mount

Blue Gene
•Massive parallelism
•Low power,
cooling, floor space

Clusters / Virtualization

184

IBM HPC Server Portfolio

(Standalone) SMP
• 2-way to 64-CPU (or bigger) SMP servers
• Single system simplicity, uniform memory programming

model, and high SMP scalability for a broad range of
problem sizes and throughput objectives

• Broad ISV support (Unix and Linux)

Scale-out (commodity)
• Clusters of 1, 2, and 4-way blade or rack-optimized servers
• Based on “merchant” or low-cost technology
• Standard or OEM high performance interconnects &

graphics adapters
• Standard packaging
• Broad ISV support with concomitant availability (Linux

and Windows)
• Often vendor integrated

Purpose-built
• Specifically designed for HPC capability workloads
• Usually custom microprocessors, usually employ vectors

and streaming
• Custom interconnect
• Custom packaging
• Vendor integrated

Scale-out (high-value)
• Tightly coupled clusters
• RISC- or Itanium-based SMP servers;
• Optional high performance interconnect (industry-

standard, OEM or custom)
• Industry standard or custom packaging
• Vendor integrated

System p5 575

IBM BladeCenter ® JS21*

IBM BladeCenter ® HS20 & LS20*

IBM System xTM*

IBM System p5TM

IBM System xTM

*Cluster 1350 Building Blocks

IBM System

Blue Gene®

Solution

47

Example Using Blue Gene

186

Biology of Transcriptional Regulation
• Transcription Factors (TFs) bind DNA upstream of a gene

and promote or inhibit RNA transcription

• Genes bound by the same TF can be co-regulated

Goal

• Identify both the TFs and the places they bind (i.e. the genes they regulate)

• Identify sets of gene regulated by the same TF

187

Gibbs Sampling
• Pick initial positions in
promoter hypothesized to
contain a common binding
site

• Calculate a PWM

• In general, the score we want to optimize
is the conservation of the PWM

• Iteratively update
positions, optimizing PWM

188

GibTigs BlueGene/L Implementation
•GibTigs analysis requires the
compilation of millions of
Gibbs sampling iterations.

•Each iteration is
independent, and allowing
broad distribution of jobs with
minimal interprocessor
communication

•GibTigs also takes full
advantage of both the tree
and torus networks
connecting processors.

•Thus, linear scalability is
maintained through the use of
thousands of CPUs.

48

189

GibTigs on the S. cerevisiae genome
• Study set:

Genome location data for 203 TFs in numerous conditions.
310 sets of genes to be analyzed in all.

• Using a single BlueGene/L rack, completed whole genome GibTig analysis
in less than 2 weeks.

• Potential for comparative genomic studies?
(genomic sequences exist for 15 yeast species)

• Will be possible with multi-rack
BlueGene/L systems
(16 racks ~ 1 yeast genome per day)

190

Blue Gene/L - Insight into Genomic Regulation
• Redeployment of GibTigs on BlueGene/L

systems redefines Boston University’s
Biomolecular Systems Lab development cycle.

– One BG/L rack represents nearly a twenty fold increase
in available compute power, of which we have taken full
advantage.

– GibTigs showing linear scalability up through 2048 CPUs,
one BG/L rack in virtual-node mode - sped our
development cycle from a few runs a week to many runs a
day.

• Doing so has enabled large scale parameter searches, and
regular production grade performance evaluations.

• The results are drastic improvements in sensitivity and
specificity of our algorithm, none of which would have been
possible at our previous development pace.

• Rather than making conservative modifications to GibTigs, the
power of BlueGene has given us the freedom to take risks in
trying new ideas, many of which have failed, but some of
which have provided new insight and new power to
GibTigs.

– GibTigs has recently proved to be, according to
published measures, the most powerful predictor of
DNA transcription regulatory sites to date.

• “Having achieved a performance milestone, the
scalability of BlueGene/L has encouraged us to
think even bigger in our research. “

Blue Gene Architecture

Hardware
Software

192

What is Blue Gene?

Blue Gene SoC is implemented in 0.13 µm
technology integrating L1, L2, L3 (4MB) cache;

quad-word memory controller; and five networks
(torus, tree, interrupt, JTAG, Ethernet)

Dual PowerPC
System-on-Chip (SoC)

49

193

Blue Gene system modularity

Blue Gene Rack(s)
Up to 1024 Compute Nodes / Rack

Up to 128 IO Nodes / Rack

Host System
Service and Front End Nodes
(P5/SLES9), Storage System,

Ethernet Switch, Cabling, SuSE
SLES9, DB2, XLF/C Compilers

194

195

BlueGene/L Interconnection Networks
3 Dimensional Torus

– Interconnects all compute nodes (65,536)
– Virtual cut-through hardware routing
– 1.4Gb/s on all 12 node links (2.1 GB/s per node)
– Communications backbone for computations
– 0.7/1.4 TB/s bisection bandwidth, 67TB/s total

bandwidth
Global Tree

– One-to-all broadcast functionality
– Reduction operations functionality
– 2.8 Gb/s of bandwidth per link
– Latency of tree traversal 2.5 µs
– ~23TB/s total binary tree bandwidth (64k machine)
– Interconnects all compute and I/O nodes (1024)

Ethernet
– Incorporated into every node ASIC
– Active in the I/O nodes (1:64)
– All external comm. (file I/O, control, user interaction,

etc.)
Low Latency Global Barrier and Interrupt

Control Network

196

BlueGene/L Compute ASIC

PLB (4:1)

“Double FPU”

Ethernet
Gbit

JTAG
Access

144 bit wide
DDR
256/512MB

JTAG

Gbit
Ethernet

440 CPU

440 CPU
I/O proc

L2

L2

Multiported
Shared
SRAM
Buffer

Torus

DDR
Control
with ECC

Shared
L3 directory
for EDRAM

Includes ECC

4MB
EDRAM

L3 Cache
or
Memory

6 out and
6 in, each at
1.4 Gbit/s link

256

256

1024+
144 ECC256

128

128

32k/32k L1

32k/32k L1

“Double FPU”

256

snoop

Tree

3 out and
3 in, each at
2.8 Gbit/s link

Global
Interrupt

4 global
barriers or
interrupts

128

• IBM CU-11, 0.13 µm
• 11 x 11 mm die size
• 25 x 32 mm CBGA
• 474 pins, 328 signal
• 1.5/2.5 Volt

50

197

Powerpc-440 Processor
• 32-bit architecture at 700 MHz
• single integer unit (fxu)
• single load/store unit
• special double floating-point unit (dfpu)
• L1 Data cache : 32 KB total size, 32-Byte line size, 64-way associative,

round-robin replacement
• L2 Data cache : prefetch buffer, holds 16 128-byte lines
• L3 Data cache : 4 MB, ~35 cycles latency, on-chip
• Memory : 512 MB DDR at 350 MHz, ~85 cycles latency
• Double FPU has 32 primary floating-point registers, 32 secondary floating-

point registers, and supports :
– standard powerpc instructions, which execute on fpu0 (fadd, fmadd, fadds,

fdiv, …), and
– SIMD instructions for 64-bit floating-point numbers (fpadd, fpmadd, fpre, …)

• Floating-point pipeline : 5 cycles
• Floating-point load-to-use latency : 4 cycles

198

Dual FPU Architecture
• Two 64 bit floating point units
• Designed with input from compiler and

library developers
• SIMD instructions over both register

files
– FMA operations over double precision data
– More general operations available with

cross and replicated operands
• Useful for complex arithmetic, matrix multiply,

FFT

• Parallel (quadword) loads/stores
– Fastest way to transfer data between

processors and memory
– Data needs to be 16-byte aligned
– Load/store with swap order available

• Useful for matrix transpose

199

Double FPU Code
For double FPU code generation, 16-byte alignment is required; should work
from –qarch=440d but may need alignment assertions:

Fortran :
call alignx(16,x(1))
call alignx(16,y(1))

!ibm* unroll(10)
do i = 1, n

y(i) = a*x(i) + y(i)
end do

C :
double * x, * y;
#pragma disjoint (*x, *y)
__alignx(16,x);
__alignx(16,y);
#pragma unroll(10)
for (i=0; i<n; i++) y[i] = a*x[i] + y[i];

Try : -O3 -qarch=440d -qlist –qsource

Easiest approach to double FPU is to use optimized math library routines.

200

BG/L Daxpy Performance

0

0.2

0.4

0.6

0.8

1

1.2

1.0E+02 1.0E+03 1.0E+04 1.0E+05 1.0E+06 1.0E+07 1.0E+08

Bytes

Fl
op

s
pe

r C
yc

le

440d+alignx

440

440d

Performance of compiler-generated code is shown.
-qarch=440 => single FPU code, theoretical limit is 2/3 flops per cycle.
-qarch=440d => double FPU code, theoretical limit is 4/3
flops per cycle, data in-cache, 2/3 flops per cycle otherwise

call alignx(16,x(1))
call alignx(16,y(1))
do i = 1, n

y(i) = a*x(i) + y(i)
end do

Alignment Performance

51

201

The Software Solution Philosophy
• Simplicity

– Avoid features not absolutely necessary for high
performance computing

– Using simplicity to achieve both efficiency and reliability

• New organization of familiar functionality
– Same interface, new implementation
– Hierarchical organization
– Message passing provides foundation

• Research on higher level programming models using that base

202

BlueGene/L Software Hierarchical
Organization

• Compute nodes dedicated to running user application, and
almost nothing else - simple compute node kernel (CNK)

• I/O nodes run Linux and provide a more complete range of
OS services – files, sockets, process launch, signaling,
debugging, and termination

• Service node performs system management services (e.g.,
heart beating, monitoring errors) - transparent to application
software

203

BlueGene/L System Architecture

Functional
Gigabit

Ethernet

I/O Node 0

Linux

ciod

C-Node 0

CNK

I/O Node 1023

Linux

ciod

C-Node 0

CNK

C-Node 63

CNK

C-Node 63

CNK

Control
Gigabit

Ethernet

IDo chip

LoadLeveler

System
Console

CMCS

JTAG

torus

tree

DB2

Front-end
Nodes

Pset 1023

Pset 0

I2C

File
Servers

fs client

fs client

Service Node

app app

appapp

204

Programming Models and Development
Environment

• Familiar Aspects
– SPMD model - Fortran, C, C++ with MPI (MPI1 + subset of MPI2)

• Full language support
• Automatic SIMD FPU exploitation

– Linux development environment
• User interacts with system through FE nodes running Linux – compilation, job

submission, debugging
• Compute Node Kernel provides look and feel of a Linux environment – POSIX system

calls (with restrictions)
– Tools – support for debuggers (Etnus TotalView), MPI tracer, profiler,

hardware performance monitors, visualizer (HPC Toolkit, Paraver, Kojak)
• Restrictions (lead to significant scalability benefits)

• Strictly space sharing - one parallel job (user) per partition of machine, one process
per processor of compute node

• Virtual memory constrained to physical memory size
– Implies no demand paging, only static linking

• Other Issues: Mapping of applications to torus topology
– More important for larger systems (multi-rack systems)
– Working on techniques to provide transparent support

52

205

Execution Modes for Compute Node
• Communication coprocessor mode: CPU 0 executes

user application while CPU 1 handles communications
– Preferred mode of operation for communication-intensive and

memory bandwidth intensive codes
– Requires coordination between CPUs, which is handled in

libraries
– Computation offload feature (optional): CPU 1 also

executes some parts of user application offloaded by CPU 0
• Can be selectively used for compute-bound parallel regions
• Asynchronous co-routine model (co_start / co_join)
• Need careful sequence of cache line flush, invalidate, and copy

operations to deal with lack of L1 cache coherence in hardware

• Virtual node mode: CPU0 and CPU1 handle both
computation and communication
– Two MPI processes on each node, one bound to each

processor
– Distributed memory semantics – lack of L1 coherence not a

problem

CPU0

CPU1

CPU0

CPU1

Performance

Compilers
Libraries

Tools
Running

207

HPC Tools Available for Blue Gene
• XL Compilers

Externals preserved
New options to optimize for specific
Blue Gene functions

• LoadLeveler
Same externals for job submission
and system query functions
Backfill scheduling to achieve
maximum system utilization

• GPFS
Provides high performance file
access, as in current pSeries and
xSeries clusters
Runs on IO nodes and disk servers

• ESSL/MASSV
Optimization library and intrinsics for
better application performance
Serial Static Library supporting 32-bit
applications
Callable from FORTRAN, C, and C++

• Etnus TotalView
– Parallel Debugger

• Lustre File System
– Enablement underway at LLNL

• FFT Library
– FFTW Tuned functions by TU-Vienna

• Performance Tools
– Total View
– HPC Toolkit
– Paraver
– Kojak

IBM Software Stack Other Software

208

Scalar and Vector MASS Routines
Approximate cycle-counts per evaluation on BGL processor

libm.a libmass.a libmassv.a
exp 185 64 22
log 320 80 25
pow 460 176 29 - 48
sqrt 106 46 8-10
rsqrt 136 … 6-7
1/x 30 … 4-5

53

209

Performance Decision Tree

Total Performance

Computation Communication

Xprofiler HPM

Routines/Source Summary/Blocks

Compiler

Source Listing

MP_Profiler

Summary/Events

I/O

MIO Library

210

Using IBM XL Compilers – Switches
Optimization levels:

Default optimization = none (very slow)
-O : good place to start, use with -qmaxmem=64000
-O2: same as -O
-O3 -qstrict : less aggressive, must strictly obey program semantics

-O3: aggressive, allows re-association, will replace division by multiplication with the
inverse

-qhot : turns on high-order transformation module, will add vector routines, unless -
qhot=novector
check listing: -qreport=hotlist

-qipa : inter-procedure analysis; many suboptions such as: -qipa=level=2

Architecture flags:
-qarch=440 : generates standard powerpc floating-point code
-qarch=440d : will try to generate double FPU code

Recommendation:
On BG/L start with : -g -O -qarch=440 -qmaxmem=64000
Try : -O3 -qarch=440/440d
Try : -O5 -qarch=440d
-O4 = -O3 -qhot -qipa=level=1 -qarch=auto
-O5 = -O3 -qhot –qipa=level=2 -qarch=auto

211

IBM High Performance Computing Toolkit on BG/L

• MPI performance: MP_Profiler, MP_Tracer
• CPU performance: Xprofiler, HPM
• Visualization and analysis: PeekPerf
• Modular I/O: MIO

HPMMP_Profiler/MP_Tracer MIO

PeekPerf

Xprofiler

212

Structure of the HPC toolkit

pSigma

Binary Application

PeekPerf GUI

Communication Profiler

CPU Profiler

Memory Profiler

Shared-Memory Profiler I/O Profiler

Visualization

Query

Analysis

Instrumented Binary

execution

Binary instrumentation

54

213

Message-Passing Performance:
• MP_Profiler Library

– Captures “summary” data for MPI calls
– Source code traceback
– User MUST call MPI_Finalize() in order to get output

files.
– No changes to source code

• MUST compile with –g to obtain source line number
information

• MP_Tracer Library
– Captures “timestamped” data for MPI calls
– Source traceback

214

MP_Profiler Output with Peekperf

215

MP_Profiler - Traces

216

Xprofiler
• CPU profiling tool similar to gprof

• Can be used to profile both serial and parallel applications

• Use procedure-profiling information to construct a graphical display
of the functions within an application

• Provide quick access to the profiled data and helps users identify
functions that are the most CPU-intensive

• Based on sampling (support from both compiler and kernel)

• Charge execution time to source lines and show disassembly code

55

217

Xprofiler: Main Display
• Width of a bar:

time including
called routines

• Height of a bar:
time excluding
called routines

• Call arrows
labeled with
number of calls

• Overview window
for easy
navigation
(View Overview)

218

Xprofiler: Source Code Window

• Source code
window displays
source code
with time profile
(in ticks=.01 sec)

• Access
– Select function

in main display
– context menu
– Select function

in flat profile
– Code Display
– Show Source

Code

219

Xprofiler - Disassembler Code

220

HPM: What Are Performance Counters
• Extra logic inserted in

the processor to count
specific events

• Updated at every cycle

• Strengths:
– Non-intrusive
– Accurate
– Low overhead

• Weaknesses:
– Specific for each

processor
– Access is not well

documented
– Lack of standard

and documentation
on what is counted

• Cycles
• Instructions
• Floating point

instructions
• Integer instructions
• Load/stores
• Cache misses
• TLB misses
• Branch taken / not

taken
• Branch

mispredictions

• Useful derived metrics

IPC - instructions per cycle
Float point rate (Mflip/s)
Computation intensity
Instructions per load/store
Load/stores per cache miss
Cache hit rate
Loads per load miss
Stores per store miss
Loads per TLB miss
Branches mispredicted %

HPM: Hardware Counters Examples

56

221

LIBHPM

• Supports MPI (OpenMP, threads
on other PowerPC platforms)

• Multiple instrumentation points

• Nested sections

• Supports Fortran, C, C++

• Declaration:
– #include f_hpm.h

• Use:
call f_hpminit(0, “prog”)
call f_hpmstart(1, “work”)
do
call do_work()
call f_hpmstart(22, “more work”)

– call compute_meaning_of_life()
call f_hpmstop(22)

end do
call f_hpmstop(1)
call f_hpmterminate(0)

Go in the source code and instrument different sections independently

222

HPM Data Visualization

223

Blue Gene Check Systems

stdout[20]: MPI: 20/32, Pers: <0,1,1,0>/<4,4,2,1>, Torus? X0Y0Z0, VN? 0, Mem:
512MB(6), Loc: R00-M1-Nf-C:J14-U11

Sanity.rts

stdout[20]: MPI: 20/64, Pers: <0,1,1,0>/<4,4,2,2>, Torus? X0Y0Z0, VN? 1, Mem:
512MB(6), Loc: R00-M1-N2-C:J14-U11

224

Blue Gene PI – Monte Carlo
stdout[0]: #cpus #trials pi(est) err(est) err(abs) time(s) Mtrials/s
stdout[0]: 32 256000000 3.14176 0.00022 0.00017 1.082 236.58
stdout[0]: 16 256000000 3.14164 0.00022 0.00004 2.164 118.29
stdout[0]: 8 256000000 3.14157 0.00022 0.00002 4.328 59.15
stdout[0]: 4 256000000 3.14160 0.00022 0.00000 8.656 29.57
stdout[0]: 2 256000000 3.14155 0.00022 0.00004 17.313 14.79
stdout[0]: 1 256000000 3.14145 0.00022 0.00014 34.625 7.39

57

Application Performance

Brief overview of some
applications

226

BGW at IBM T.J. Watson Research Center
IBM has a team of life sciences researchers developing Blue Matter –
application software used to run simulations of protein dynamics on Blue
Gene. They are now running production science experiments on membrane
proteins. Experiments that were taking a month or more on a conventional
system are now taking a few days on Blue Gene.

G Protein-Coupled Receptors (GPCR)
in a membrane environment

Omega-3 Fatty acids and
cholesterol

Lipids critical to cell division and fusion

227

Blue Matter: RHODOPSIN GPCR

Membrane Proteins
Cell Signaling, Ion/Nutrient Transport, Targets of Many Drugs

Diseases associated with
malfunction of GPCRs are:
Congestive Heart Failure
Hypertension & Stroke
Cancer
Ulcers
Allergies
Asthma
Anxiety
Psychosis
Migraines
Parkinson’s Disease

228

Blue Matter: Lipid Bilayers
• Lipids provide the

environment for
membrane proteins and
enable critical functions
including cell signalling
and cell division.

• Studying lipids is crucial
to understanding
diseases related to these
proteins, including
muscular dystrophy and
Alzheimer's.

• One third of all proteins
in the human body -- and
half of all drug targets --
are membrane proteins

58

229

Blue Matter on BG/L vs. NAMD on PSC
Lemieux

 0.001

 0.01

 0.1

 100 1000 10000 100000

El
ap

se
d

Ti
m

e
(s

ec
on

ds
)

Node/CPU Count

Blue Matter on BG/L (BG/L ADE SPI)
NAMD on Lemieux (Elan/Quadrics)

230

3D-Fast Fourier Transform

 0.001

 0.01

 0.1

 1

 10

 1 10 100 1000 10000

Ti
m

e
(s

ec
.)

Task Count

128^3 FFT

Enabled by optimized MPI Alltoall[v]

231

Applications Performance on Blue Gene

• BG is first HPC system to break barrier of 100+
TeraFlop/s sustained performance on real applications
(Molecular Dynamics)

– ddcMD – 101.5 TeraFlop/s (7 hrs of Uranium atoms on 64 racks)
– CPMD – 110.4 TeraFlop/s

• Several other applications have achieved two orders of
magnitude or more higher performance than previously
possible – successful scaling achieved from 1K to 100K
processors

• Gordon Bell Prize competition at SC 2005
– 4 of 6 finalists based on Blue Gene
– LLNL/IBM team won for “100+ TFlop Solidification Simulations

on Blue Gene/L”
– AIST also captured Best Technical Paper

232

ddcMD - Classical MD
2005 Gordon Bell Prize Winner

• Scalable, general purpose code for
performing classical molecular
dynamics (MD) simulations using
highly accurate MGPT potentials
• MGPT semi-empirical potentials,
based on a rigorous expansion of
many body terms in the total energy,
are needed in to quantitatively
investigate dynamic behavior of
transitions metals and actinides
•Visualization of important scientific
findings already achieved on BG/L:
Molten Ta at 5000K demonstrates
solidification during isothermal
compression to 250 GPa

524 million atom simulations on 64K nodes are orders of magnitude larger than
any previously attempted runs; superb strong and weak scaling expected for full

machine - (“very impressive machine” says PI)

2,048,000 Tantalum atoms

59

233

Excellent scaling of ddcMD on BG/L supports
solidification understanding

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1 10 100 1000 10000 100000

Tasks (logscale)

Ti
m

e
(P

ar
tic

le
/T

as
k)

 p
er

 S
te

p
(m

se
c)

500 Particles/Task
2000 Particles/Task

•Nucleation is initiated at multiple independent sites
in each sample cell
•Growth of solid grains initiates independently, but
soon leads to grain boundaries which span the
simulation cell
•101.5 TF on 64 racks
•The ddcMD team is currently using 131,072 CPUs
of BG/L for unprecedented
•five hundred million atom MGPT simulations

234

Performance of ddcMD on Blue Gene
Weak scaling: MGPT Uranium and Tantalum

0.1

1

10

100

1000

01
02

4
02

04
8

04
09

6
08

19
2

16
38

4
32

76
8

65
53

6
13

10
72

Number of Processors

Tf
lo

p/
s

235

ddcMD Simulation Results
(a) 64K atoms, (b) 256 K atoms, (c) 2,048,000 atoms, (d) 16,384,000 atoms

236

Scaling ddcMD up to 131,072 CPUs
… but allows unprecedented scaling of size or time

• Weak scaling is virtually flat across the entire machine - enables simulation
of tens of billions of atoms (roughly a cubic micron of material)

• Strong scaling shows speedup down to 8 atoms/CPU - enables simulations
involving millions of steps (typically ns of simulated time)

Weak Scaling (Ta and U) Strong Scaling (Ta and U)

60

237

CPMD
Alessandro Curioni, Salomon Billeter, Wanda Andreoni

Developed at IBM Zurich from Car Parinello code
Uses Plane Wave Basis functions, FFT, MPI_Collectives

Ongoing project : IBM/LLNL Pd:H (~900 atoms) Hydrogen Storage
Achieved 110.4 Teraflop/s sustained on 64 racks BG/L (excellent strong scaling)

CPMD Performance on BG/L

0
20
40
60
80

100
120

32768 65536 131072

Number of Processors

Su
st

ai
ne

d
TF

s

238

AIST

One of our biggest research challenges is to
apply data obtained from genome decoding to
protein engineering and drug design. The scale
of simulation this requires cannot be done
without the help of supercomputers. IBM's Blue
Gene/L supercomputer provides us with a
massive supercomputing resource that will
dramatically accelerate our work.

Dr. Yutaka Akiyama, Director, Computational Biology Research
Center, National Institute of Advanced Industrial Science and
Technology (AIST)

239

EPFL
IBM’s Blue Gene supercomputer allows a quantum
leap in the level of detail at which the brain can be
modeled. The time has come to begin assimilating
the wealth of data that has accumulated over the
past century and begin building biologically
accurate models of the brain to aid our
understanding of brain function and dysfunction.

Henry Markram, Laboratory of Neural
Microcircuitry, Brain Mind Institute
Ecole Polytechnique Fédérale de Lausanne
Switzerland

Massively Parallel Computing
Environment

What might we do?

61

241

The Real Question
• What can you do with 130K processors? (8K, 16K, 32K)

– Really BIG problems – Maybe
– Same problems but much finer resolution, refinements, larger

searches in shorter time – Maybe
– Explore parameters – large parameter space – Maybe

• BUT
– Perhaps need to rethink the problem
– Most parallel programs are Single Program Multiple Data

• What if
– Multiple Programs Multiple Data - - Systems of Complex

Systems interacting?
– Handle multi-scale, multi-physics - - Biology is multi-scale?

242Courtesy of Steve Louis @ LLNL

BlueGene/L will allow overlapping
evaluation of models for the first time

243

Grand Challenges for Healthcare & Life Sciences

• E. coli is the most popular target
– It’s simple: “only” ~4000 genes, no

nucleus, unitary genes, no organelles
– It’s well studied

• How might Blue Gene impact
– Atomistic level
– Chemical kinetics
– Continuous modelscell wall

plasma membrane nucleoid

cytoplasm + ribosomes

• Whole cell modeling - e.coli
Genetically engineer e-coli strains to increase drug production by fermentation

• Drug delivery modeling
Develop manufacturing processes that insure the right dose of a drug is effectively delivered

• Inhaler delivery of drugs
– Multi-scale – atomistic, chemical,

fluid flow
– Manufacturing complex model

• How might Blue Gene impact
– Atomistic level
– Chemical kinetics
– Continuous models 244

Spatially explicit model of actin and myosin interaction in the
cardiac myofilament - Possible simulation mapping on BG/L- Jeremy
Rice, Jagir R Hussan, Pieter P. de Tombe, Gustavo Stolovitzky, Yuhai Tu

...but modeling heart requires bridging between organ level and molecular level

Collaborators - University of Auckland, JHU, Loyola, UCSD, UIC,
Oxford, others

Mathematical modeling of heart will allow better therapies for heart disease..

Sarcomere contracts by
cyclical interactions of
myosin on thick filament
(red) and actin in thin
filament (green).

Reconstruction of
whole heart by
Peter Hunter, U. of
Auckland

In each cell of heart, a
lattice of sarcomeres
produce contraction on
every heart beat.

Organ level Cell level Molecular level

62

245

Thick and thin filaments
at molecular level

Moving to a terascale
model of a myofibril

1 full 3-D sarcomere
with hexagonal
lattice

Combine 32 full sarcomeres into 1 myofibril
which is a cell-level structure

246

Increasing Importance of Engineering, Mathematical
and Computational Sciences in Human Disease

Research – Computational Medicine

Goals – How Best To:
• analyze these data sets to gain novel insights regarding disease mechanisms and to perform risk

prediction targeted to the individual (statistical inference, pattern discovery/classification,
computational anatomy)

• synthesize computational models of biological systems and disease processes that provide insights
into disease mechanisms and novel therapies (dynamical systems theory, probability theory,
stochastic processes)

• Distribute multi-scale data, data analysis methods and computational models to basic and clinical
researchers through computational grids (“bio-grids”) – Blue Gene potential compute engine

Genetic Variability Gene
Expression
Profiling

Protein
Expression
Profiling

Multi-Modal
Imaging

Multi-Scale Patient-Specific Data

Data Analysis
And Modeling

Courtesy: Rai Winslow, Johns Hopkins University

247

Multi-scale in Physiome Project

Blue Gene Impact
Atomistic to System Model scales – tightly coupled

Hunter’s Group – converting CMISS (Continuum Mechanics, Image analysis, Signal
processing and System Identification) to potentially use Blue Gene

248

Biomedical and Molecular Imaging – Exploit Parallelism
High Resolution Research Tomograph (HRRT)

Resolution ~ 2.5 mm
Sensitivity ~ 6%
Number of detectors 119,800
Number of Lines of response (LOR) 4.5 Billion !!

Dynamic (4D) PET Imaging
Quantity measured in PET: in vivo regional concentration of the
radiotracer
• Use multiple time frames to “measure” the physiologic or
metabolic process
• Can extract how various compartments interact

Radiology - Storage/Computational Issues
•~30GB of raw/list-mode data per study
•Each study divided into ~30 frames and reconstructed
•Currently, computation takes:

•15 hours (span3), 7 hours (span9:lower-res) per study!
•8 nodes/frame, 4 frames processed at a time
•Each reconstructed image is 50MB (i.e. 1.5GB /study)

Goal: 20 studies/week: clearly not achieved in span3

63

249

Acknowledgements
• Heart Models

– John Jeremy Rice, Jagir R Hussan, Gustavo
Stolovitzky, Yuhai Tu – IBM and Pieter P. de
Tombe - University of Illinois Chicago

– Rai Winslow – Johns Hopkins
– Peter Hunter – U. of Auckland

• Multi-scale
– Steve Louis - LLNL

• PET Imaging
– Dean Wong, Arman Rahmim – Johns Hopkins

• Transcription Factors
– Charles DeLisi, Boris Shakhnovich, Tim Reddy, J.

Max Harvey – Boston University

In-Depth look at
Large-Scale Computational
Genomics on the IBM Blue

Gene/L Supercomputer

251

Genome Assembly
Input: Multiple copies of the same genome

Process: Randomly fragment each copy

Output: Unordered genome fragments

252

Sequence Assembly Required!

64

253

5’ 3’AAAAAAAmRNA

3’ 5’TTTTTTTcDNA

ESTs

EST Clustering

254

Genes Are Not Uniformly Sampled

Gene 1 Gene 3Gene 2

High expression

Low expression

No expression

255

EST Based Gene Discovery

genomic
DNA

ESTs

exon1 intron1 exon2 intron2 exon3

mRNA
exon1 exon2 exon3

3’
5’

5’
3’

cDNA

256

Single Nucleotide Polymorphisms
(SNPs)

ATGTTTAAAGACTACCATGATGGTTATG

ATGTTTAAAGACTACCATGATGGTTATG

ATGTTTAAAGACTGCCATCATGGTTATG

ATGTTTAAAGACTGCCATCATGGTTATG

ATGTTTAAAGACTGCCATCATGGTTATG

ATGTATAAAGACTGCCATGATGGTTATG

ATGTATAAAGACTGCCATGATGGTTATG

Allele 1

Allele 2

Allele 3

65

257

SNPs Based on Assembly

ATGTTTAAAGACTACCATGATGGTTATG

ATGTTTAAAGACTACCATGATGGTTATG

ATGTTTAAAGACTGCCATCATGGTTATG

ATGTTTAAAGACTGCCATCATGGTTATG

ATGTATAAAGACTGCCATGATGGTTATG

ATGTATAAAGACTGCCATGATGGTTATG

ATGT?TAAAGACT?CCAT?ATGGTTATG Consensus

Alignment of
related genomic
sequences

258

SNPs Based On Clustering

ATGTTTAAAGACTACCATGATGGTTATG

ATGTTTAAAGACTACCATGATGGTTATG

ATGTTTAAAGACTGCCATCATGGTTATG

ATGTTTAAAGACTGCCATCATGGTTATG

ATGTATAAAGACTGCCATGATGGTTATG

ATGTATAAAGACTGCCATGATGGTTATG

ATGTTTAAAGACTGCCATGATGGTTATG

Samples that
are aligned
to the consensus

Genome

259

Naïve Approach

All vs. All alignments + post processing
Compute-intensive and wasteful!

• 33 million fragments for mouse assembly

• 7+ million human ESTs

260

Typical Methodology

• Identify pairs of fragments that have a
good exact match (promising pairs).

• Restrict alignment computations to
promising pairs.

• Perform post-processing.

66

261

Lookup Table Pair Generation

12 3

6

4

75

8 910

AA AC AG AT CA CC CG CT GA GC GG GT TA TC TG TT
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

CATTATTAGGA

262

Problems for Large-scale Analysis

• Longer matches are revealed as multiple
short matches.

• Matches are arbitrarily generated.

• Linear space for uniformly random
overlaps with constant coverage but worst-
case quadratic in the non-uniform case.

263

PaCE Methodology
• Reduce space requirement from quadratic to

linear.
• Generate promising pairs in decreasing order of

maximal common substring length.
• Constant time per generation of a pairwise

maximal common substring.
• Significantly reduce number of alignments

without affecting quality.
• Massively parallel processing – reduce run-time;

increase available memory.

A Specific Application: Maize
Genome Assembly

67

265

Why sequence the maize genome?

• Maize (i.e., corn) is an economically important crop.

• Best studied model organism for the cereal crops.

• Just as the human genome project will intensify
upcoming medical advances, cereal genomes (rice
and maize) will help improve worldwide food
production.

266

Typical Assembly Strategy

pairs

≡θ(n2l2) run-time

Exact
Matching Filter

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
2
n

Directly detect
promising pairs

O(n) pairs
O(nl2) run-time

267

Genome Assembly Example

• Human Genome Assembly (Venter et al.
2001):
– Input: 27 million fragments
– Program: Celera Assembler
– 10,000 CPU hours for detecting overlaps

• Parallelized to run on 64 GB shared memory
machine + 10 4-processor SMPs with 4-GB
memory

– 10,000 CPU hours for the rest

268

Maize Genome Assembly

• Maize genome is comparable in size to the
human genome (2.5 GB) but is highly
repetitive (65-80%). About 15-20% is gene
space.

• NSF Workshop in July 2001 to debate
sequencing strategies

68

269

Maize Genome Assembly
NSF funded pilot projects (2002; $10.2 million):

• “gene-enrichment” – Consortium for Maize
Genomics (Danforth Center, TIGR, Purdue &
Orion Genomics)
– Methylation filtration (MF)

– High Cot selection (HC)

• BAC sequencing – Rutgers & Univ. of Arizona.

• Dept. of Energy (DOE) added about 2.4 million
fragments.

270

Methylation Filtration

ATATGTGACCA TTGTGAACCTT

methylated region methylated region

1.) Fragment

2.) Clone into
special
bacteria

3.) Sequence

271

High Cot Selection
repeat region repeat region

1.) Fragment
dsDNA

2.) Denature
into ssDNA

4.) Sequence
remaining ssDNA

3.) Slowly reform
dsDNA

272

Random vs. Biased Sampling

• Uniform case – O(n) overlaps

• Non-uniform case – O(n2) overlaps

Uniform layout Nonuniform layout

69

273

PaCE Methodology

• First cluster, then assemble.

• Two sequences fall in the same cluster if there is
a chain of overlaps that leads from one sequence
to the other.

• Each cluster can be assembled into a contig.

274

Clustering Strategy

• Initially, treat each sequence as a cluster
by itself.

• If two sequences from two different
clusters show significant overlap, merge
the clusters.

• Use union-find data structure.

275

Processing High-quality Overlaps
first is important!

Successful overlap results in

• Merging of two clusters.

• No need to test other promising pairs of
fragments where a member of the pair
comes from each constituent cluster.

276

Clustering Heuristic
. . .

i
j

. . .
. . .

Promising pairs:

k
l

i

j

Pairs aligned: Clustering:

k
l

k

i
k

i
k

i
l

j
l

j
l

i
l

Pair generation
order matters !

i
j

l

70

277

Pair Generation Methodology
• Generate pairs

– In non-increasing order of maximal common substring
length

– On-demand without storing previously generated
pairs

– O(1) amortized time per pair

– Using linear space

278

PaCE Software Architecture

GST Construction On-demand pair
generation

Pair
Selection

Alignment
Evaluation

Cluster
Management

Constructio
n Phase

Parallel Clustering Phase

279

Generalized Suffix Tree (GST)

$

O

ND

W

I$OG
D

$O
G

I

O
W

$

$O
G

N
D

$O
G

I O
W

$

$O
G

I O
W

$ $W

$

IN
D

O
W

$

$

(2, 3) (1, 4)

(2, 5)

(2, 4)

(2, 1) (1, 2)

(2, 2) (1, 3) (1, 5) (2, 6)

(1, 6) (1, 1)

(1, 7)
(2, 7)

WINDOW$ INDIGO$
1234567 1234567

280

Parallel Construction of GST

.

Proc #1 Proc #2 Proc #p. . .

Virtual root
Exact
word length

O(nl/p) leaves O(nl/p) leaves O(nl/p) leaves. . .

71

281

Parallel Construction of GST

• Bucket the suffixes of the sequences
based on the first k bases.

• Redistribute the suffixes in parallel such
that each processor owns a set of buckets.

• Build GST locally in each processor.
• In each processor, #leaves = O(nl/p)
• Run-time = O(nl2/p)

282

GST Construction: Scaling Issues

• How to acquire sequences corresponding to the
suffixes contained in the local buckets ?

• Approach (a): Acquire sequences from disk
before constructing each subtree

• Issues: (i) Requires random access I/O in
parallel, and (ii) the same sequence can be read
multiple times for different buckets

283

BG/L-Specific Optimizations
• Approach (b): Process buckets in batches and acquire

sequences by communicating before every batch
construction

.

Processor i Processor j

Round #2Round #1 Round #2Round #1Round #3 Round #3

• Each communication round is an Alltoallv
• Number of rounds and data communicated half for every

doubling of processors

284

GST Construction on BlueGene/L

Input: 250 million bases

0

100

200

300

400

500

600

700

256 512 768 1024
Number of processors

R
un

-t
im

e
in

 s
ec

on
ds

Computation
Communication

Input: 500 million bases

0

200

400

600

800

1000

1200

1400

256 512 768 1024
Number of processors

R
un

-t
im

e
in

 s
ec

on
ds

Computation
Communication

72

285

Pair Generation Algorithm

• Process the nodes in the local GST in the
decreasing order of string-depth and
generate pairs at each node.

• Generate a pair at a node only if the
corresponding overlap is maximal.

286

Main Idea of the Algorithm

• Maximal common substring

c1 α c2

c3 α c4

s1

s2

α

v

root

(s1,i)

…
c 2 c

4 . . .

α =xβ
i

j

(s2,j)

β

…
c 2 c

4 . . .

(s1,i+1) (s2,j+1)

287

Left Character Sets (lsets)

• leaf-set(v) = set of strings whose suffixes
are present in the subtree of v.

• lset (v) = partition of leaf-set(v) into |Σ|+1
subsets, lA(v), lC(v), lG(v), lT(v), lλ(v).

288

α A
G

T
GS’ α

• Right Maximality
≡ s(i) and s’(j) are in

subtrees of two
different children of u

• Left Maximality
≡ s[i-1] ≠ s’[j-1], if i>1 and

j>1

i

j

lset (A)

lset (C)

lset (G)

lset (T)

u

α

u1 u4u3u2

Pair generation at an internal node u

… A G
…

T…

…
C

s(i)
s’(j)

Maximal Match Detection

S

Run-time: O(1) per pair

73

289

Run-time for Pair Generation

• Sorting of nodes in the local GST
= O(nl/p)

• Processing of all nodes in the local GST
= O(# pairs generated)

290

Number of Duplicates

αα

α β

β

F1

F2

of times a pair is generated

≤ # of distinct maximal common substrings
(of length ≥ ψ)

eg., (F1,F2) is generated at most twice.

|α|, |β | ≥ ψ

291

Possible Fragment Overlaps
F1

F2

b

a

c

d

F1F2

F1F2

F1F2

F1F2

a . . . c b . . . c

b . . . d a . . . d

– Compute only lower and upper rectangles

– Do banded dynamic programming

292

Parallel Clustering Phase

Clusters

Send promising pairs
for alignment

Send new promising
pairs and results of

alignment

Local GST

Master Processor

Slave #1

Local GST

Slave #p

. . .

74

293

Clustering Phase Performance on
BlueGene/L

Run-time for clustering phase

0

200

400

600

800

1000

256 512 768 1024
Number of processors

Ru
n-

tim
e

in
 s

ec
on

ds 250 million bases

500 million bases

Promising Pairs and Alignment

0

10

20

30

40

50

60

250 500 1000 1252
Input (in million bases)

Pr
om

is
in

g
pa

irs

ge
ne

ra
te

d
(in

 m
ill

io
ns

) Aligned and accepted
Aligned and rejected
Unaligned

294

Overview of Assembly Pipeline

1.) Collect data

2.) Clean up data

3.) Mask repeats

4.) Cluster data

5.) Assemble smaller
subproblems

295

Maize Assembly on BlueGene/L

10289131,0241.25

TotalClusteringTree
Construction

PaCE Runtimes (in minutes)Number of
nodes

Number of
Input Bases
(in billions)

296

Maize Assembly on BlueGene/L

75722.38,1921.15

13111.28,1920.5

TotalClusteringTree
Construction

PaCE Runtimes (in minutes)Number of
processors

Number of
Input Bases
(in billions)

75

297

Maize Assembled Genomic Islands
(MAGIs)

217,106Contigs

44.9%GC Content

329.61 MBAssembly Size

4.78Avg GSS per
contig

1,518Avg contig len

567,797Non-repetitive
Singletons

3,202,268Input Sequences

MAGI v4.0

298

MAGI 3.1 quality and coverage

1e-4

0.0

4.5e-4

0.0

0.0

0.0

3e-4

0.0

3.5e-4

0.0

0.0

Error
Rate

314503152rth3

27 846372 720Sum

2190114 350rth1

176504739rf2e

388007415rf2d

389807257rf2c

331514311rf2b

1886011 520rf2a

279317773pdc3

346205443pdc2

151206760gl8a

Alignment
Length

ErrorsLengthGene

299

Gene “archipelagoes”
MAGI3.1_4593 (12,498 bp)

300

Gene “archipelagoes”

76

301

Maize assembly Portal

302

Sorghum Assembled genomic Islands
(SAMIs)

74,673Contigs

45.12%GC Content

98.46 MBAssembly Size

5.08Avg GSS per
contig

1,319Avg contig len

131,610Singletons

511,512Input Sequences

SAMI v1.0

303

More Information …
Publications:
• On Maize Assembly

– Bioinformatics, January 2004.
– International Parallel and Distributed Processing Symposium,

April 2006.

• On PaCE
– IEEE Transactions on Parallel and Distributed Systems,

December 2003.
– Nucleic Acids Research, March 2003.

• On Maize Genomics
– Proc. National Academy of Sciences, August 2005.

304

More information …

• PaCE software download
http://www.ece.iastate.edu/~aluru/software/PaCE

– Over 45 academic/governmental/non-profit users
from 10 countries.

– 2 companies.

• Maize Assembly Website
http://www.plantgenomics.iastate.edu/maize

– Used by researchers from Berkeley, Cornell, Purdue,
Penn State, Dupont, BASF etc.

77

305

• US $32 million project by NSF, DOE, and USDA
for large-scale sequencing.

• Goal is to sequence all genes, determine their
order and orientation, and anchor them to
genetic/ physical maps.

• Projects started November 15, 2005.

Future of Maize Genome
Sequencing Project

306

$32 million B73 maize genome
sequencing consortium

Courtesy of the NSF

Washington University*

University of Arizona

Iowa State University

Cold Spring Harbor

Another Application: Mouse
EST Clustering

308

Mouse EST clustering
• Input:

– A random subset of 56,470 UniGene clusters
downloaded in March 2006

– 3.78 million total entries including ESTs and full-
length cDNAs

• Output:
– 60,862 clusters with more than one sequence
– Average cluster = 55; Largest = 807,671
– 83% of clusters are composed of a single UniGene

78

309

Validation
• Single-linkage clustering performs at most n

merges.

• When comparing to UniGene, one measure of
accuracy is the number of additional or missed
merges performed.

• Ignoring clusters of size 1, our data suggest that
over 98% of the links in UniGene were correctly
determined by PaCE.

310

Clustering accuracy

UniGene clustering
decisions

PaCE clustering
decisions

45,0583,213,87826,125

False negativesFalse positives

311

Run-time Scaling: Mouse EST
Clustering

312

PaCE: Promising Pairs Statistics

79

313

Acknowledgements

Closing Remarks

Getting Started

315

http://www.mcs.anl.gov/bgconsortium & Activities
• Working Groups meetings:

– Application Working Group
• Help sponsor Porting Workshops

– will continue
• Technical meetings
• Some access to ANL BG/L

Machine
– Systems Software Group

• Help sponsor technical
meetings/workshops

• Community building through web presence
– BG Consortium Website
– BG Consortium Wiki
– BG Consortium email discussion

• Opportunities with IBM
– BGW Consortium Days
– Breakthrough science meeting

316

Remarks
• Is Blue Gene a systems for

computational Biology?
– Starting to see effective use of lots
of processors in this domain

• Still need to re-think how tackle
problems - -

• Think of problems might tackle that
until now would not dream of - -

• Systems of complex systems will
need multi-disciplinary teams - -

• The answers remains left to
the audience/the reader/the
users - - you!!

Thank you for your

attention

