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 Outline 

 

Why is this tutorial important? 

 

The number of molecular biology databases continues to explode. Presently, few 

problems in any area of genomic molecular biology can be addressed without 

analyzing data stored in these databases. However, these databases are located in 

many different locations and often use non-standard data formats requiring 

specialized data parsers. As a result integrating and comparing data from multiple 

biological databases is difficult and tedious. 

 

The genome databases at UCSC, Ensembl and NCBI offer solutions to this problem 

by integrating data from multiple databases in a uniform and standardized manner. 

However, effectively using these databases also has a considerable learning curve, 

especially if one wants to query multiple genomic regions in an automated manner 

rather than simply analyzing individual genes via an interactive browser. This tutorial 

is intended to help students and researchers climb this learning curve more 

expeditiously. 

 

The tutorial should be useful for both biology and bioinformatics students and 

researchers. Biologists will learn how to extract a wider range of relevant 

annotations for their genes of interest from the browsers. Bioinformaticians will learn 

how to access the underlying browser databases to perform automated, large scale 

queries across entire genomes. As important, both groups will gain an appreciation 

for the methods by which the browsers and their databases are constructed so that 

they are prepared to take advantage of new features and enhancements that are 

continually being incorporated into these important tools. 



3 

What does the tutorial cover? 

 

The tutorial discusses interactive, batch and automated querying of the three major 

genome databases (UCSC, Ensembl and NCBI). For pedagogical and time 

constraint reasons, most of the focus is on a single database, the UCSC genome 

browser database. 

 

The tutorial begins with a background section that provides motivation why browsers 

have become essential tools for biologists and bioinformaticians. This section also 

introduces the three major browsers, compares some of their specific strengths and 

limitations and explains my motivation for focusing primarily on the UCSC Browser. 

 

The second section describes using the browser in interactive web-based mode, 

which is the most common, and easiest, method of accessing these resources.  

Interactive mode for the UCSC Browser is described, including many of its features 

and controls. This is done in the context of a simple biological example. 

 

Part Three includes a more “behind the scenes” view of some of the tools used to 

build the browser, the understanding of which is necessary to appreciate the 

resources browsers offer, as well as their limitations. Topics include genome 

assemblies and database builds and local and whole-genome sequence alignment 

methodologies.  

 

Part Four introduces batch querying of browser databases and why this can be an 

important tool. Using the UCSC Browser as an example, batch querying using SQL, 

the Table Browser and Galaxy are all introduced. Details of file and table formats 

are discussed as well as potential pitfalls that can fool the novice. The previously 

used biological query example is extended to a situation requiring batch querying. 

Batch querying in Ensembl is also briefly described.  

 

Finally in Part Five, automated program-based querying of the browser database is 

described. Topics include when program-based querying is advantageous, tradeoffs 

between remote login and mirror site development and installation issues. In the last 

section a simple, but complete, working C program for automated querying is 

presented. 
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INTRODUCTION TO GENOME BROWSERS 
 
Integrated genome browsers have become essential tools for the analysis of 

genomic data. They offer the ability to visualize disparate annotations of genes and 

other genomic locations from single or multiple species in ways that are a simply not 

possible with previous tools. These tools have become especially important recently 

because the number of individual biological databases is growing rapidly. Moreover, 

many of these “databases” are downloadable as flat-files only, meaning that 

searching them is slow or else local relational databases need to be set up. Also, 

differing data formats are used, requiring the use of multiple data parsers. Finally 

complex queries require integrating data from multiple databases. 

 

As an example, say you found a synonymous codon polymorphism in a possible 

disease gene and wanted to check its properties such as: is it in dbSNP? Does it 

occur in any known EST? Is the site conserved in other vertebrates? It is possible to 

answer these questions without an integrated browser but it would require finding 

and using multiple different resources (dbSnp, Genbank, BLAST, etc) each with its 

own idiosyncrasies and learning curves. With one of the browsers such queries can 

be accomplished in a simple and straightforward manner. 

 

There are three main browsers: Ensembl, NCBI MapViewer and UCSC. They have 

more similarities than differences. Choosing one or the other is pretty subjective.  

But it is probably most useful to pick one you like and stick mainly with that one, 

since they each have their own learning curve. For this tutorial I focus primarily on 

the UCSC Browser because it has several strengths: 

• Strong comparative genomics capabilities 

• Fast –especially when doing sequence searches with BLAT 

• (Essentially) a single “view” from single base-pair to entire chromosome 

• UCSC system is well suited for batch and automated querying. 

• The UCSC Browser is comprehensive, especially for non-protein coding regions 

• Frequent annotation updates (Genbank/Refseq daily / ESTs weekly). 

 

And, in truth, probably the main reason for my choosing the UCSC Browser is that it 

is the one with which I have by far the most experience. 
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INTERACTIVE QUERYING ON THE UCSC BROWSER 
 

Interactive Querying on the UCSC Browser is straightforward and can be described 

in four simple steps. First you need to go to: http://genome.ucsc.edu. Next choose a 

genome and an assembly. Then pick a genomic region of interest. Finally specify 

what annotations you want 

 

Browser annotations are via “tracks” along the chromosome. Scores of annotation 

tracks can be selected. To help the user navigate among them, they are divided into 

“Groups”.  Examples of track types include chromosome descriptions, gene 

annotations, local paired alignments (mRNAs, ESTs), comparative genomics 

annotations, annotations of species variations. New tracks are being added all the 

time. Some recent tracks include ENCODE annotations, Retroposed genes, 

snoRNAs / miRNAs, RNA fold predictions, segmental duplications, and Affymetrix 

full chromosome transcriptional data. For a more detailed recent update see 

Hinrichs et al in the References. 

 

In addition to the track data there is a wealth of other data available in the UCSC 

browser, which can be found in “Details” pages, the GeneSorter, the Proteome 

Browser, VisiGene, BLAT and the isPCR tool. Examples of the use of these tools 

and resources are given in the tutorial slides. For more detailed examples of 

interactive browser use with the UCSC Browser see the Openhelix website 

(www.openhelix.com). 

 
ASSEMBLIES, ALIGNMENTS AND ALL THAT  

 
Two fundamental issues that are important to understanding the data presented at 

the UCSC Browser are how the database is “built” and how the alignments of 

sequence tracks of differing sequence data from other species are carried out. 

 

In contrast to some systems that describe genomic locations in terms of physical 

“contig” locations, the UCSC browser uses actual chromosome coordinates. As a 

result, each new assembly of a genome will change the positions of most features 

(i.e. annotations). Consequently after a genome reassembly the entire database 

needs to be rebuilt. A browser utility exists to convert coordinates between 

assemblies. 
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One source of confusion is that new builds may not have all the tracks of a previous 

build. This is partly because the “build” process is not completely automated and 

because tracks that are no longer considered important may not be rebuilt in new 

assemblies. Moreover many annotations are updated between builds (in some 

cases nightly).  This can be confusing when comparing with results obtained 

previously from the same build. 

 

Much of the power of the UCSC Browser comes from its comparative genomics 

tools, which in turn are based on its powerful alignment tools. For speed purposes, 

all alignments (except for those resulting from user-initiated BLAT queries) are 

precomputed and stored. However, powerful as it is, the UCSC alignment-tool suite 

has its limitations and those limitations will be reflected in the alignments presented 

in the browser, and therefore need to be understood. 

 

For local paired alignments, UCSC uses BLAT, translated BLAT and BLASTZ. BLAT 

and translated BLAT tools are extremely fast but lower sensitivity than BLAST 

especially for cross-species (i.e. xeno) alignments. BLASTZ is similar to BLASTn 

with an optimised scoring algorithm for cross species comparisons. Local multiple 

alignments are performed with MULTIZ (an extension of BLASTZ) and cross 

species conservation of multiple alignments is scored with phastCons, a 

phylogenetic Hidden Markov Model tool. 

 

For paired genomic alignments, UCSC uses “chains and nets”. This approach has 

the advantages of being not dependent on high quality gene annotations and having 

support for segmental duplications and inversions. Nets and chains are described in 

more detail in the paper by Kent (2003) in the References. Genomic multiple 

alignments are generated by the “threaded blockset aligner” (TBA) tool. TBA starts 

with local multiple alignment “seeds” generated by MULTIZ which are then linked 

together (“threaded”) to form longer alignments. TBA currently cannot handle 

segmental duplications and inversions. For more detail on TBA see the paper by 

Blanchette in the references. 
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BROWSER/DATABASE BATCH QUERYING WITH THE UCSC BROWSER 
 

Interactive querying is difficult if you want to study numerous “interesting” genomic 

regions. Querying each region interactively is tedious, time-consuming and error 

prone. For example, we can extend the example used in Part II and suppose you 

have found hundreds of candidate polymorphisms and you want to know which of 

them are in dbSNP or overlap known ESTs or are at sites conserved in other 

vertebrates. 

 

To answer such questions efficiently requires batch querying of the underlying 

genome database(s). In the UCSC Browser, data for each assembly are typically 

stored in a separate database and auxiliary data, e.g. gene ontology (GO) data, are 

stored in yet other databases. These databases may have hundreds of tables, many 

with millions of entries. The conventional way of querying a relational database is via 

“Structured Query Language” (SQL). However with tools such as the Table Browser, 

you can query the database without using SQL. 

 

Nevertheless, even with the Table Browser, you need some understanding of the 

underlying track, table and file formats. Table formats describe how data is stored in 

the (relational) databases. Track formats describe how the data is presented on the 

browser. File formats describe how the data is stored in “flat files” in conventional 

computer files. Finally, for understanding the underlying the computer code you will 

need to learn about the “C” structures which hold the data in the source code. 

 

These classes of formats can be confusing because they are typically similar to one 

another but may differ in subtle ways. However, at least in the case of the UCSC 

Browser, the situation is simplified because there are utility programs available for 

converting files to tracks to tables and to C- structures and back again. In some 

cases the files are actually converted automatically between table (SQL) format and 

code ( C ) format by a dedicated program called autoSQL. autoSQL is described in 

detail at http://www.linuxjournal.com/article/5949.           

 

The principle file and table formats are: BED (“Browser extensible data”) – for gene 

and chromosome annotations, PSL (“Pattern space layout”) – for pair-wise 

alignments, MAF (“Multiple alignment format”) – for multiple alignments and WIG 

(“Wiggle format”) - for numerical data. Although the design of these structures is 
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quite logical, they do have some subtleties (especially for representing negative 

strand data) that can create pitfalls for those not used to them. More detailed 

descriptions of database tables can be found at: 

  http://genome.ucsc.edu/goldenPath/gdbDescriptions.html 

 

In most cases, using SQL is not necessary to obtain the information you need from 

the Browser Database. The Table Browser can accomplish this task for you. 

Retrieving specific subsets of data can be accomplished with the table filtering and 

intersection tools. Moreover the data can be retrieved in a variety of useful output 

formats. A particularly useful output format is as a custom track, which then can be 

displayed on the browser or intersected with other tables. Direct SQL querying of the 

UCSC databases is also supported. This can be accomplished either via the Table 

Browser itself, through the public UCSC mirror database at genome-

mysql.cse.ucsc.edu or by setting up one’s own mirror database. 

 
GALAXY 

 
The Galaxy Website (http://g2.bx.psu.edu) was developed for several reasons. 

Ultimately its intent is to provide an easy interface to sequence and data 

manipulation tools (a la SRS or the UCSD Biology Workbench) that are capable of 

being applied to genomic data. It offers varied output formats and is intended to 

work with data from multiple browsers / databases. 

 

First released in 2005, Galaxy is still somewhat of a “work in progress”. To date, it 

supports the UCSC Table Browser, EBI EnSmart and NHGRI databases  and offers 

only a few sequence manipulation tools (e.g. GC%, Ka/ Ks calculations). However, 

Galaxy does already offer an interface to the UCSC Table Browser that is arguably 

more “user friendly” than UCSC’s, especially in cases where table intersection, 

union or similar manipulations need to be performed. 

 

Galaxy is likely to add more useful tools in the near future and is probably worth 

monitoring as an alternative entry point to the browser databases for batch querying. 

More details on Galaxy can be found in the paper by Giardine et al in the 

references. 
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BROWSER “GOTCHAS” 
 

Although the UCSC Databases are generally configured in a very straightforward 

and logical manner there are situations where the system interface works in an 

unexpected manner to those inexperienced with it.  Some of these situations reflect 

intrinsic difficulties or ambiguities in describing genomic sequence data. Others are 

specific to the conventions used in the UCSC system. 

 

General pitfalls in interpreting stored genomic data include the fact that a gap in an 

alignment of an mRNA to the genome may not be intron, but rather an insertion in 

the genome sequence or a deletion in the mRNA. Also sequence differences 

between an mRNA and the genome may not represent polymorphisms, but rather 

sequencing artifacts. Another potential source of confusion is that the number of 

blocks in an alignment between an mRNA and the genome may not be the same as 

the number of “blocks” (i.e. exons) in the gene that is predicted to be represented by 

that mRNA. 

 

Subtleties to watch out for that are relatively specific to the UCSC data 

representation include the fact that UCSC uses a “half open” numbering system and 

that the data is stored internally starting at position “0” while it is displayed as if it 

started at position “1”. Issues of speed cause the database to use various indexing 

fields, including “bin” fields and MAF index fields for searching in external files that 

can cause confusion if one is not expecting to see them. Also, block (e.g. exon) and 

strand data is stored in different ways in different kinds of tables. Although these 

varying kinds of representations all make sense once they are brought to one’s 

attention, they can be quite puzzling if one is not prepared for them. 

 

To find out more information about these aspects of the UCSC data representation 

as well as to find several other examples of possibly unexpected behavior within the 

browser database, a good place to look are the “Frequently Asked Questions” 

section of the browser documentation located at: http://www.genome.ucsc/FAQ/ 

 
ENSEMBL’S APPROACH TO BATCH QUERIES AND CUSTOM TRACKS 

 
Performing batch queries and creating custom tracks is also possible in Ensembl. 

Specifically Ensembl’s version of the UCSC Table Browser is called “BioMart”. It is 
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more “gene oriented” than the Table Browser with somewhat different features. In 

particular, BioMart offers a tight interface with the R/Bioconductor project for the 

analysis of microarray data. 

 

The Ensembl track display system uses “DAS” (Distributed Annotation System) a 

widely used system for using multiple remotely located servers for displaying 

genomic annotation information. Local DAS client software integrates the results 

from the various servers. DAS is intended to be more scalable, since maintaining 

tracks is not responsibility of single group. To find out what annotations are available 

from the Ensembl DAS system, the user can check the DAS registry at: 

http://das.sanger.ac.uk/registry 
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AUTOMATED QUERYING PROCEDURES 
 

Using the Table Browser or Galaxy or BioMart is still a partly interactive process. 

Consequently, when performing multiple, large scale queries this approach 

becomes time-consuming and error prone. Moreover, complex data analyses often 

require performing data manipulation in software, anyway, and it may be more 

efficient to integrate this analysis with the data retrieval. In such cases, it is often 

desirable to be able to perform database querying in a fully automated manner. 

 

A typical case arises by modifying our polymorphism-analysis example. Specifically, 

assume that instead of experimental data, we have a computer algorithm to predict 

candidate disease polymorphisms and we want to know whether the predicted 

polymorphisms are in dbSNP or in known ESTs or at vertebrate conserved sites. 

Furthermore, let’s assume that our computer algorithm has several adjustable 

parameters and each time we change them we would get a new list of putative 

biological polymorphisms. We will NOT want to interactively perform all the Table 

Browser table-intersections every time we modify a parameter. Although this specific 

example is made-up, it is not unlike more realistic ones, such as characterizing the 

introns of genes that host snoRNAs (see Schattner et. al in the References) or 

characterizing regions of extreme codon conservation (see Schattner and Diekhans) 

 

Although fully automated database querying is very powerful, it does require certain 

prerequisites not needed by the interactive and batch-querying methods described 

so far. Specifically you’ll need: general programming skills, database programming 

skills, and direct (SQL) access to a browser database.  

 

In principle automated database querying is feasible with any of the three major 

browser databases. The choice of which to use is likely to be largely motivated by 

which computer and database languages you are most comfortable with. Although 

for commercial users, licensing considerations may also be of importance. 

 

In this tutorial, I discuss automated querying of the UCSC database, which uses the 

C language and the mySQL database architecture. My reasons for focusing on the 

UCSC database are (besides that it is the one with which I am most familiar) the 

availability of an extraordinary code base on which to build writing ones own 
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programs, the comprehensive nature of the database and the fact that “C” code is 

fast. 

 

Without question, for me the biggest advantage of using the UCSC database is the 

availability of the code in the kent source tree. The code is clearly written, 

extensively tested and fast. It is also open source so you can learn from it and 

modify it for your own use and free for academic, government and personal use 

(core routines are even free for commercial use).  

 

With the kent source code, many important utilities are usable “right out of the box”. 

Built-in library functions provide almost any sequence and data manipulation 

capability you might want. These library functions are located primarily in the “lib” 

and “hg/lib” subdirectories of kent/src/. Plenty of code examples illustrate exactly 

how to use the library effectively. There are CGI-based programs to perform all the 

sequence and data manipulations performed by the browser. In general, if the 

browser performs some data manipulation, with a little detective work, you can find 

the code to insert in your program. Sometimes the appropriate program can be 

identified by simply looking after the “cgi-bin” in the web address as in 

genome.ucsc.edu/cgi-bin/hgTracks. Moreover, many browser cgi-programs can be 

run in stand-alone mode.  You just need to give it the proper arguments, which are 

stored in the “CART”. Current CART arguments can be examined by running: 

http://genome.cse.ucsc.edu/cgi-bin/cartDump. 

 

The browser code is largely object oriented. A “C” structure is defined for each type 

of track and table. Associated functions (i.e. methods) are defined to implement the 

various manipulations that can be performed on the data in the structure. In addition, 

functions are available for loading and writing data to and from the database. 

 

However, before you can run automated queries on the UCSC database you need a 

database-copy on which to run them. This can be either the public UCSC database 

at genome-mysql.cse.ucsc.edu or one’s own mirror database. The advantages of 

using the public database are that it does not require up to 1.2 Tbyte or more of disk 

space and there is no database installation or maintenance required. (You will need 

to modify the .hg.conf files and the library routine sqlConn.c because the public 

database does not use a password whereas the routines in the library do.) In 

contrast, having your own mirror has the advantages of not being a shared 

resource. Consequently, you can run it as heavily as you like. Performance doesn’t 
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depend on usage by others. And the database can be modified / customized to meet 

your specific needs. 

 

Detailed instructions for setting up a mirror of the UCSC database and browser can 

be found at: http://genome.ucsc.edu/admin/mirror.html. If you have more than 1.2 

TBytes of free space then simply following the instructions there should work fine. 

However, if you have less available space, it is works perfectly well to only install the 

databases for the species you need to work on. In fact, you may well choose to only 

install a subset of the tables and files of a database. Also you do not need to install 

Apache or any CGI or HTML files if you are only doing database querying.  

 

In any case you will need to download and compile the kent source code. It’s a good 

idea to compile the kent code with the “debug” option enabled (not the default). This 

is not because the kent code is buggy (it is not) but rather because it makes it easier 

to track problems in your own code later using an interactive debugger such as gdb.   

 

Once you are configured for remote access to the public database or have installed 

a local mirror of the databases you will be querying, writing programs to actually do 

the database querying is straightforward. In the next section is a “toy” program, 

demonstrating both approaches. The program is pretty simple, but it illustrates the 

main ideas, is complete and does work (tested under Mac OS X and linux). The 

source and input data files can be found at: http://www.soe.ucsc.edu/~schattner/ (Or 

if you want to try them by cutting and pasting them, be careful of “line breaks” that 

might have been introduced during reformatting). 
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/* gbdExample - illustrates accessing data from public UCSC 

 * database or a locally installed mirror or downloaded file */ 

#include "common.h" 

#include "options.h" 

#include "jksql.h" 

#include "bed.h" 

#include "binRange.h" 

#include "genePred.h" 

#include "genePredReader.h" 

#include "hdb.h" 

 

/**********Globals************/ 

struct slDouble *overlapList = NULL; 

struct slDouble *otherList = NULL; 

 

/**********Globals************/ 

void usage() 

/* Explain usage and exit. */ 

{ 

errAbort( 

  "gbdExample - find median length of introns overlapping ranges in 

input file\n" 

  "usage:\n" 

  "   gbdExample db dbTable myBedFile method\n" 

  "       where db is the database name \n" 

  "       where dbTable is tableFileName in 'file' mode or else\n" 

  "              name of table to use in 'public' or 'localDb' modes 

\n" 

  "       where myBedFile is a bed file of genomic ranges \n" 

  "       where method is either 'public' or 'localDb' or 'file' \n" 

  "\n"); 

} 

 

/****************************************/ 

void binKeeperGpHashFree(struct hash **hash) 

/* adapted from binKeeperPslHashFree in pslPseudo.c  */ 

{ 

if (*hash != NULL) 

    { 

    struct hashEl *hashEl = NULL; 

    struct hashCookie cookie = hashFirst(*hash); 

    while ((hashEl = hashNext(&cookie)) != NULL) 

        { 

        struct binKeeper *bk = hashEl->val; 

        struct binElement *elist = NULL, *el = NULL;; 

        elist = binKeeperFindAll(bk) ; 
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        for (el = elist; el != NULL ; el = el->next) 

            { 

            struct genePred *gp = el->val; 

            genePredFree(&gp); 

            } 

        binKeeperFree(&bk); 

        } 

    hashFree(hash); 

    } 

} 

 

/****************************************/ 

struct hash *readGpToBinKeeper(char *gpFileName) 

/* adapted from readPslToBinKeeper in psl.c */ 

{ 

#define MAX_CHROM_SIZE 400000000 

struct binKeeper *bk;  

struct genePred *gp; 

struct lineFile *pf = lineFileOpen(gpFileName , TRUE); 

struct hash *hash = newHash(0); 

char *row[21] ; 

int genePredLineCtMin = 10; 

while (lineFileNextRow(pf, row, genePredLineCtMin)) 

    { 

    gp = genePredLoad(row); 

    if (hashLookup(hash, gp->chrom) == NULL) 

     { 

        bk = binKeeperNew(0, MAX_CHROM_SIZE); 

        hashAdd(hash, gp->chrom, bk);      

     } 

    bk = hashMustFindVal(hash, gp->chrom); 

    binKeeperAdd(bk, gp->txStart, gp->txEnd, gp); 

    } 

lineFileClose(&pf); 

return hash; 

} 

 

/****************************************/ 

struct genePred *bkToGenePreds(struct hash *gpHash, char *chrom, int 

start, int end) 

/*  */ 

{ 

struct genePred *gpList = NULL; 

struct genePred *gp; 

struct binKeeper *bk = hashFindVal(gpHash, chrom); 

struct binElement *el, *elist = binKeeperFind(bk, start, end) ; 
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for (el = elist; el != NULL ; el = el->next) 

 { 

 gp = el->val; 

 if (gp != NULL) 

  { 

  slSafeAddHead(&gpList, gp); 

  } 

 } 

slFreeList(&elist); 

return gpList; 

} 

 

/****************************************/ 

struct sqlConnection *getHgdbtestConn(char *db)  

/* Read .hg.conf and return connection. */ 

{ 

char *host = "genome-mysql.cse.ucsc.edu"; 

char *user = "genome"; 

char *password = NULL; 

hSetDbConnect(host,db,user,password); 

return sqlConnectRemote(host, user,password, db); 

} 

/****************************************/ 

int genePredLongestCmp(const void *va, const void *vb) 

/* Compare to sort based sizes of txEnd - txStart, largest first. */ 

{ 

const struct genePred *a = *((struct genePred **)va); 

const struct genePred *b = *((struct genePred **)vb); 

int lengthA = a->txEnd - a->txStart;  

int lengthB = b->txEnd - b->txStart; 

int dif = lengthB - lengthA; 

return dif; 

} 

/****************************************/ 

void doOneGene(struct genePred *gp, int qStart, int qEnd) 

/* get intron statistics for longest gene in range */ 

{ 

int i, intronStart, intronEnd; 

for (i=1; i< gp->exonCount; ++i) 

 { 

 intronStart = gp->exonEnds[i - 1]; 

 intronEnd = gp->exonStarts[i]; 

 double intronLength = (double) (intronEnd - intronStart); 

 struct slDouble *slIntronLength = slDoubleNew(intronLength); 

 if (positiveRangeIntersection(qStart, qEnd, intronStart, 

intronEnd)) 
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  { 

  slSafeAddHead(&overlapList, slIntronLength); 

  } 

 else 

  { 

  slSafeAddHead(&otherList, slIntronLength);   

  } 

 } 

} 

 

/****************************************/ 

void doOneBed(struct bed *bed, struct sqlConnection *conn, 

 char *geneTable, struct hash *gpHash) 

/* get intron statistics for longest gene in range */ 

{ 

int bStart = bed->chromStart; 

int bEnd = bed->chromEnd; 

struct genePred *gp = NULL; 

if (gpHash == NULL) 

 gp = genePredReaderLoadRangeQuery(conn, geneTable, bed->chrom, 

bStart, bEnd, NULL); 

else 

 gp = bkToGenePreds(gpHash, bed->chrom, bStart, bEnd); 

slSort(&gp, genePredLongestCmp); 

if (gp == NULL) 

 { 

 errAbort("No gene found in %s overlapping %s:%d-%d\n",  

  geneTable, bed->chrom, bStart, bEnd); 

 } 

doOneGene(gp, bStart, bEnd); 

if (gpHash == NULL) 

 genePredFreeList(&gp); 

} 

 

/****************************************/ 

void processBedFile(char *bedFile, struct sqlConnection *conn,  

 char *geneTable, struct hash *gpHash) 

/* Read file and process */ 

{ 

struct bed *bedList=NULL, *bed=NULL; 

bedList = bedLoadAll(bedFile); 

for(bed = bedList; bed != NULL; bed = bed->next) 

 { 

 doOneBed(bed, conn, geneTable, gpHash); 

 } 
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printf("Median value of lengths of overlapping introns = %f\n", 

slDoubleMedian(overlapList)); 

printf("Median value of lengths of other introns = %f\n", 

slDoubleMedian(otherList)); 

bedFreeList(&bedList); 

} 

 

/****************************************/ 

/* gbdExample.c */ 

int main(int argc, char *argv[]) 

/* Find median value of lengths of introns overlapping ranges in 

input file  

 * and compare with lengths of other introns in those genes  

 * Program reads 'bed fileÕ of genomic regions and  

 * extracts longest gene overlapping each region. For each 

 * gene, lengths of introns overlapping the region as well 

 * as those not overlapping the region are computed. Medians 

 * of each set of intron lengths is printed out. 

 * Program is compiled with: 

gcc -g -Wall -Werror -I${KENTSRC}/inc -I${KENTSRC}/hg/inc -o 

gbdExample gbdExample.c $KENTSRC/lib/$MACHTYPE/jkhgap.a 

$KENTSRC/lib/$MACHTYPE/jkweb.a $MYSQLLIBS •lm 

 * where $KENTSRC is the local location of the kent source 

 * tree, $MYSQLLIBS is location of the local mySQL libraries 

 * and $MACHTYPE is the machine type environmental variable 

 * Once compiled and linked, the program is run as e.g.: 

./gbdExample sacCer1 sgdGene myYeastBedFile localDb 

 * or 

./gbdExample hg17 refGene myHumanBedFile public 

* or 

./gbdExample sacCer1 sgdGene.txt myYeastBedFile file 

 * where the first argument is the db to use (this parameter is 

 * ignored in 'file' mode, the second argument is the name of  

 * the db or file gene table, third program argument is the location  

 * file of (bed) locations to be screened for intron lengths,  

 * and the fourth argument indicates whether to use 

 * the public UCSC database at genome-mysql.cse.ucsc.edu 

 * or a locally installed mirror or a downloaded file. 

 */ 

{ 

char *db = argv[1]; 

char *geneTable = argv[2]; 

char *bedFile = argv[3]; 

char *method = argv[4]; 

if (argc != 5) 

    usage(); 



20 

struct sqlConnection *conn = NULL; 

struct hash *gpHash = NULL;  

if (sameWord(method, "file")) 

 gpHash = readGpToBinKeeper(geneTable); 

else 

 { 

 conn = sameWord(method, "public") ?  

    getHgdbtestConn(db) : sqlConnect(db);  

   } 

processBedFile(bedFile,conn, geneTable, gpHash); 

slFreeList(&overlapList); 

slFreeList(&otherList); 

sqlDisconnect(&conn); 

binKeeperGpHashFree(&gpHash); 

return 0; 

} 
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FINDING MORE INFORMATION 
 

There are numerous excellent sources of additional material describing the three 

browsers and their underlying databases. Unfortunately much of this material is 

distributed in numerous articles and web pages that are located in different places. 

A good place to start is Openhelix at www.openhelix.com. They have excellent free 

on-line tutorials and powerpoint presentations that cover much of the material from 

Part II of the present tutorial (i.e. on interactive browsing with the UCSC browser) in 

more detail than I do.  

 

Additional tutorials, userguides and FAQs can be found at the respective browser 

websites:  

genome.cse.ucsc.edu/goldenPath/help/hgTracksHelp.html 

www.ensembl.orgs/Docs 

www.ncbi.nlm.nih.gov/mapview/static/MapViewerHelp.html 

 

To understand the methods underlying the design and development of the browsers 

themselves, one needs to go to the original research literature and subsequent 

reviews. Recent articles that I have found most helpful in understanding the 

workings of the browsers are listed in the References section. 

 

To really understand the detailed workings of the browsers, it is often necessary to 

go to the code itself. This code is typically open source and relatively well 

documented. For the UCSC Browser, all the code is in the kent “source tree” which 

can be freely downloaded at http://www.soe.ucsc.edu/~kent/src/. If you want to see 

in detail how a large database, like hg17, is built, look at makeHg17.doc in 

kent/src/hg/makeDb/. 

 

Finally, you may want to join a mailing list where you can ask questions. The UCSC 

Browser mailing list is at: http://www.cse.ucsc.edu/mailman/listinfo/genome 
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Overview

• Introduction to Genome Browsers 
• Basics of the UCSC Browser
• Assemblies, Alignments and all that
• Batch Browser/Database Querying
• Automated Procedures for Database 

Querying

99

“Disclaimer”
• I have tried to be fair in my descriptions of 

browser and database tools and capabilities, 
but any evaluation of features like ease of use 
or tool utility are inherently subjective.

• All opinions are solely mine, from the 
perspective of an “end user”, and may well not 
be those of the UCSC Browser Team (of which 
I am not a member.)

100

Part I - Introduction to 
Genome Browsers
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What browsers provide
• Data visualization
• Annotation of genes and genomic locations
• Comparisons / alignments of genes and 

genomic locations
• Interactive and automated access to 

integrated databases

102

Why integrated browsers are 
important

• Visualizing data from multiple sources simultaneously can 
be critical to understanding.

• The number of databases is growing rapidly.
• Many “databases” are downloadable as flat-files only.

– Searching is slow or
– Local relational databases need to be set up

• Differing data formats are used.
– Consequently, multiple data parsers are often required.

• Complex queries require integrating data from multiple 
databases.
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A simple example

You have found a synonymous codon polymorphism in a 
possible disease gene and you want to know:

– Is the polymorphism in dbSNP?
– Does it occur in any known EST?
– Is the site conserved in other vertebrates?
– Is it near any “LINE” repeat sequences?
– Is the exon involved alternatively spliced?

104

What we might do without a 
browser

– Go to dbSNP & search for SNPs at that location.
– Blast Genbank and retrieve ESTs and parse for 

polymorphism.
– Blast Genbank and cross-species (xeno) MRNAs and parse 

for conservation.
– Retrieve sequence near location and check for presence of 

LINEs (eg with BLAST).
– Go to ASDB (Alternatively Spliced Database) and check for 

evidence of alternative splicing.
This approach is slow and tedious. Browsers enable a much 
better way…
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An introduction to the 
browsers and their relative 
strengths and limitations

106

The three genome browsers
• There are three main browsers:

– Ensembl
– NCBI MapViewer
– UCSC 

• At first glance their main distinguishing features 
are:
– MapViewer is arranged vertically.
– Ensembl has multiple (22) different “Views”.
– UCSC has a single “View” for (almost) 

everything.

107

Choosing a browser
• In general, the browsers have more 

similarities than differences.
• Also, the development teams are competitive 

(in a cooperative way); if a site doesn’t have a 
feature now, it may have it soon.

• But the browsers do have different strengths. 
In particular, some species are covered by 
only one browser.

• It’s probably best to find one browser you like 
and stick with it for most tasks.

108

NCBI MapViewer



28

109

MapViewer
Home

http://www.ncbi.nlm.nih.gov/mapview/ 110

MapViewer Master Map

111

Selecting tracks on MapViewer

112

MapViewer strengths
• Good coverage of plant and fungal genomes.
• Close integration with other NCBI tools and 

databases, such as Model Maker, trace archives 
or Celera assemblies.

• Vertical view enables convenient overview of 
regional gene descriptions.

• Discontiguous MEGABLAST is probably the 
most sensitive tool available for cross-species 
sequence queries.

• Ability to view multiple assemblies (e.g. Celera 
and reference) simultaneously.
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MapViewer limitations
• Little cross-species conservation or alignment 

data.
• Inability to upload custom annotations and data.
• Limited capability for batch data access.
• Limited support for automated database 

querying.
• Vertical view makes base-pair level annotation 

cumbersome.

114

Ensembl

115

Ensembl Home 

http://www.ensembl.org/

Ensembl ContigView
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Ensembl ContigView
Detail and 
Basepair

view

119

Changing tracks in Ensembl

120

Ensembl strengths (I)
• Multiple view levels shows genomic context.

• Some annotations are more complete and/or 
are more clearly presented (e.g. snpView of 
multiple mouse strain data.)

• Possible to create query over more than one 
genome database at a time (with BioMart).
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Ensembl 
snpView

122

Ensembl strengths (II)
• Batch and automated querying well 

supported and documented (especially for 
perl and java).

• API (programmer interface) is designed to be 
identical for all databases in a release.

• Ensembl tends to be more “community 
oriented” - using standard, widely used tools 
and data formats.

• All data and code are completely free to all.

123

Ensembl is “community oriented”

• Close alliances with Wormbase, Flybase, SGD
• “support for easy integration with third party data and/or 

programs” – BioMart
• Close integration with R/ Bioconductor software 
• More use of community standard formats and programs, e.g. 

DAS, GFF/GTF, Bioperl

( Note: UCSC also supports GFF/GTF and is compatible with 
R/Bioconductor and DAS, but UCSC tends to use more 
“homegrown” formats, e.g. BED, PSL, and tools.)

124

Ensembl limitations

• Limited data quantifying cross-species 
sequence conservation.

• Batch queries for intergenic regions 
with BioMart are difficult.

• BioMart offers less complete access to 
database than UCSC Table Browser. 
(However, the user interface to 
BioMart is easier.)
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UCSC Genome Browser
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http://genome.ucsc.edu/

127

UCSC Genome Browser

128

Strengths of the UCSC Browser (I)
For this course I will be focusing primarily on the 
UCSC Browser for several reasons:

• Strong comparative genomics capabilities.
• Fast response

– sequence searches performed with BLAT.
– code is written in speed-optimized C.
– Multiple indexing and non-normalized tables for fast 

database retrieval.
• (Essentially) single “view” from single base-pair to 

entire chromosome.
• Easiest interface for loading custom annotations.
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UCSC Browser Strengths (II)

• Well suited for batch and automated querying of 
both gene and intergenic regions.

• Comprehensive: tends to have the most 
species, genes and annotations.

• Annotations frequently updated 
(Genbank/Refseq daily / ESTs weekly).

• Able to find “similar” genes easily with 
GeneSorter.

• Rapid access to in situ images with VisiGene.

130

UCSC browser limitations
• Lack of “overview” mode can make it harder to see 

genomic context.
• Syntenic regions cannot be viewed simultaneously.
• Cross species sequence queries with BLAT are 

often insensitive.
• Comprehensiveness of database can make user 

interface intimidating. 
• Code access for commercial users requires 

licensing.

131

Human, mouse,rat synteny in 
MapViewer

132

Part II – Interactive 
Querying on the UCSC 

Browser
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Getting data from the UCSC 
browser

• You first need to go to: 
http://genome.ucsc.edu

• Next choose a genome and an assembly.
• Then pick a region.
• Finally specify what annotations you want.

134
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Ways to specify location
• Directly (chr5:1000000-2000000)

• Via name or term (e.g. BRCA1)
– Many, more complex query terms are possible
– See the Genome “Gateway” page for examples.

• Via BLAT query
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139

Genome Browser Navigation

Track Descriptions and Controls

Navigation, Species, and Assembly

Zoom and Position

Mapping and Sequence
Base Position, Chromosome Band, STS markers, Gap

Genes and Gene Predicitons
Known Genes, RefSeq, Ensembl, Acembly, Genscan

mRNAs and ESTs
Human mRNAs from GenBank, Human ESTs that have been spliced

Gene Expression and Regulation
GNF Ratios on Affymetrix GeneChips

Comparative Genomics
Multiple Alignments, Conservation Scores, Chain / Net

Variation and Repeats
Start / End Position Adjustment

Reset / Hide / Refresh
Color Key for Chain / Net / Self tracks

Modified from D. Thomas, IEEE CSB Tutorial (2004) 140

Track overview
• Annotations are via “tracks” along the chromosome.

• Annotations are divided in track “Groups.”

• Track availability will vary depending on the organism 
and assembly.

• Scores of tracks exist and new tracks are being 
added all the time (see Hinrichs, NAR 2006 for a 
recent update).



36

141

Track types:
• Chromosome descriptions
• Genes & gene predictions
• Gene annotations
• Local paired alignments (mRNAs, ESTs)
• Comparative genomics

– Genomic paired alignments 
– Genomic multiple alignments

• Sequence variations 

142

Recently added tracks
– ENCODE annotations
– Consensus CDS annotations
– Retroposed genes
– snoRNAs / miRNAs
– RNA fold predictions
– Segmental duplications
– Copy number polymorphisms
– Affymetrix full chromosome transcriptional data
– Mammalian Gene Consortium data

143 144
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Annotation “Details”
• Every annotation has an associated 

“Details” page.
• What is included depends on:

– Genome
– Assembly
– Track type
– Data available

146

Genome Browser Navigation

Navigation, Species, and Assembly

Zoom and Position

Mapping and Sequence
Base Position, Chromosome Band, STS markers, Gap

Genes and Gene Predicitons
Known Genes, RefSeq, Ensembl, Acembly, Genscan

mRNAs and ESTs
Human mRNAs from GenBank, Human ESTs that have been spliced

Gene Expression and Regulation
GNF Ratios on Affymetrix GeneChips

Comparative Genomics
Multiple Alignments, Conservation Scores, Chain / Net

Variation and Repeats
Start / End Position Adjustment

Reset / Hide / Refresh
Color Key for Chain / Net / Self tracks

Modified from D. Thomas, IEEE CSB Tutorial (2004)
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Details Page of a Known Gene 
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Known Gene Details (continued)
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Known Gene Details (continued)

150

Known Gene Details (continued)

151

Quick look at other features of 
the UCSC browser

• GeneSorter
• Protein Browser
• VisiGene
• isPCR

152

The Gene Sorter
• Finds genes that are “closely related” to 

specified gene.
• “Closeness” can be specified by:

– Protein homology
– Expression patterns
– Chromosome location
– Gene function (GO annotations) etc.

• The gene properties displayed by the Gene 
Sorter are also highly configurable.
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Gene Sorter Interface

154

Typical Gene Sorter Results

155

Proteome Browser

• The Proteome Browser displays 
annotations that are protein specific.

• Its format is analagous to Ensembl’s gene-
and protein-oriented “Views”.

156

Proteome Browser -
amino acid structure

Modified from F. Hsu, NAR (2005)
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Proteome Browser -
physical / chemical properties

Modified from F. Hsu, NAR (2005) 158

Protein structure and links

Modified from F. Hsu, NAR (2005)
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VisiGene

160
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In-Silico PCR Input

162

Back to our example:

• We now return to our example of using the browser to 
characterize the region around the putative disease 
polymorphism.

• We need to:
– Find the specific region with BLAT
– Set up the tracks to display SNPs, ESTs, repeats, 

alternative splicing patterns and alignments with other 
vertebrates

– Download EST sequences or view with browser
– View the results

163 164
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snp, repeat and conservation 
results at polymorphism site

166

Part III 
Assemblies, alignments and 
all that - a glimpse inside the 

browsers

167

Part III - overview

• Assemblies, builds and tracks
• Local alignment tools
• Genomic alignment tools
• Preview, Auxiliary and Development 

Browsers 

168

Assemblies, builds and tracks

• The UCSC browser uses chromosome 
coordinates.

• As a result, each new assembly of a 
genome will change the positions of 
most features (i.e. annotations).

• Consequently after a genome 
reassembly the entire database needs 
to be rebuilt.
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Assemblies, builds and tracks
• A browser utility exists to convert coordinates 

between assemblies.
• One source of confusion is that new builds 

may not have all the tracks of a previous build. 
• Moreover many annotations are updated 

between builds (in some cases daily).  This 
can be confusing when comparing with results 
obtained previously from the same build.

170
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UCSC Alignment Algorithms
• Much of the power of the UCSC Browser 

comes from its comparative genomics 
tools.

• These in turn come from its alignment tools, 
including tools for:
– Paired and multiple sequence alignment
– Local and genomic alignment

• Except for user-initiated BLAT queries, all 
alignments are precomputed and stored.

172

Local alignment tools
UCSC Tools for local paired alignments are:

• BLAT / translated BLAT
– Very fast
– Lower sensitivity than BLASTZ/ Discontiguous

MegaBLAST for xeno sequences

• BLASTZ - similar to BLASTn with different 
scoring
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Local alignment (continued)
• Local paired alignments are used for:

– mRNA /EST annotations (BLAT)
– Seeds for genomic alignments (BLASTZ)
– Initial clusterings for multiple alignments (BLASTZ)

• Multiple-species local alignments are performed with 
MULTIZ (an extension of BLASTZ).

• Cross species conservation of multiple alignments is 
scored with phastCons.

174

Genomic alignment tools

• Importance – chromosomal evolution, homolog 
identification

• Synteny – traditional method, gene order
• For paired genomic alignments, UCSC uses “chains 

and nets”
– Not dependent on high quality gene annotations
– Important for genomes with limited annotation
– Support for segmental duplications and inversions

175

Chains
• A chain is an alignment assembled from smaller, local 

alignments that have been  linked (“chained”) 
together.

• Chains tolerate larger gaps than conventional 
alignments.

• Chains are created with the axtChain program from 
BLASTZ alignments.

176

Nets
• Nets are generated by filtering chains such that 

each nucleotide is covered by at most one 
chain.

• chainNet program picks the “best” set of chains 
created by axtChain program to create the net 
track.

• Nets and chains are described in more detail in 
Kent PNAS v100 (2003).
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Chains and nets - example

178

Genomic Multiple Alignments

• Genomic multiple alignments are generated by the 
“threaded blockset aligner” (TBA) tool (Blanchette
Genome Research 2004).

• TBA starts with local multiple alignment “seeds” 
generated by MULTIZ which are then linked 
together (“threaded”) to form longer alignments.

• TBA currently can not handle segmental 
duplications and inversions.

179

Chains, nets and 
MULTIZ alignments

180

Preview, Auxiliary and 
Development Browsers
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Ensembl’s Pre! and Genome 
Reviews browsers

• Ensembl’s “Pre!” browsers provide previews, 
with limited annotations, of genomes being 
added to the Ensembl site.

• Ensembl’s “Genome Reviews” Auxiliary 
Browser provides access to Ensembl’s
bacterial and archaeal browsers.

• Both Pre! And Genome Reviews browsers are 
accessible from the Ensembl home page.

182

The UCSC development 
browser and why NOT to use it

• http://genome-test.cse.ucsc.edu is the development 
site for the UCSC browser. 

• Superficially, the site looks quite similar to the main 
UCSC genome browser.

• Moreover, in function, the site seems similar to the 
Ensembl Pre! Browser. 

• However, the site is slow, can be confusing, is not well 
documented and is not supported for the external 
user.

183

The UCSC development browser 
and why NOT to use it (continued)

• Moreover, data and features have been 
much less tested, and data can disappear 
from the browser without any notice.

• Indeed, a leading UCSC developer has 
said that “everything on genome-test 
should be considered broken unless proven 
otherwise.”

184

…except in very special 
circumstances

• However, the test site often covers species and 
assemblies not yet available on the main site, for 
example:
– As of March 2006, UCSC main site covered 34 species. 

Test site had 80.
– In particular, the test site had 40 bacterial and archaeal 

genomes. The main site had none.
– Test site had ancestral “Boreoeutherian” genome.
– Most recent human assembly on main site was from May 

2004. Test site had the build from March 2006 (which has 
since been added to the main UCSC browser).
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…except in very special 
circumstances (continued)

– genome-test has more annotation tracks. 
– Although most are experimental and of little 

outside interest, occasionally interesting 
annotation tracks can be found on genome-test 
before they appear on the main browser.

The “bottom line” is that if your species is not 
available or you want a “sneak peek” at future 
annotations, genome-test may be useful. Just 
remember that the data may be transient, and the 
site is unsupported and has limited server 
resources so access it “gently”.

186

Part IV – Browser/Database 
Batch Querying

187

Batch querying overview
• Introduction / motivation
• UCSC table browser
• Custom tracks and frames
• Galaxy and direct SQL database querying
• A batch query example
• UCSC Database “gotchas”
• Batch querying on Ensembl 

188

Why batch querying

• Interactive querying is difficult if you want 
to study numerous “interesting” genomic 
regions.

• Querying each region interactively is:
– Tedious
– Time-consuming
– Error prone
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Batch  querying examples

• As an example, say you have found one hundred
candidate polymorphisms and you want to know:
– Are they in dbSNP?
– Do they occur in any known ESTs?
– Are the sites conserved in other vertebrates?
– Are they near any ”LINE” repeat sequences?

Of course you could repeat the procedures described in 
Part II one hundred times but that would get “old” very 
fast…

190

Other examples

• Other examples include characterizing 
multiple:
– Non-coding RNA candidates
– ultra-conserved regions
– introns hosting snoRNA genes

191

Browsers and databases
• Each of the genome browsers is built on top of 

multiple relational databases.

• Typically data for each genome assembly are 
stored in a separate database and auxiliary data, 
e.g. gene ontology (GO) data, are stored in yet 
other databases.

• These databases may have hundreds of tables, 
many with millions of entries.
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The UCSC Table Browser
• For batch queries, you need to query the 

browser databases.

• The conventional way of querying a relational 
database is via “Structured Query Language” 
(SQL).

• However with the Table Browser, you can 
query the database without using SQL.
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Browser Database Formats
Nevertheless, even with the Table Browser, you need 
some understanding of the underlying track, table 
and file formats.
– Table formats describe how data is stored in the (relational) 

databases.
– Track formats describe how the data is presented on the 

browser.
– File formats describe how the data is stored in “flat files” in 

conventional computer files.
– Finally, for understanding the underlying the computer code 

(as we will do in the last part of this tutorial) you will need to 
learn about the “C” structures which hold the data in the 
source code.
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Database formats and autoSQL
• Programs in the kent source tree make converting 

among table,file,track and “C” formats easier.
• In particular, the autoSQL program takes a general 

specification to automatically create C and SQL 
code to convert between C structures and SQL 
tables.

• autoSQL is described in detail at:
http://www.linuxjournal.com/article/5949          
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Main UCSC Data Formats
• GFF/GTF 
• BED (Browser Extensible Data)  

– lists of genomic blocks
• PSL

– RNA/DNA alignments
• .chain 

– pair-wise cross species alignments
• .maf

– multiple genome alignments
• .wig

– numerical data

196

Basic BED (in autoSQL format)

• BED4 is the basic BED format and consists of:

string chrom; “Reference sequence chromosome or scaffold”
uintchromStart; “Start position in chromosome”
uintchromEnd; “End position in chromosome”
string name; “Name of item”
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BED6 format

string chrom; “Reference sequence chromosome or scaffold” 

uintchromStart; “Start position in chromosome”

uintchromEnd; “End position in chromosome”

string name; “Name of item” 

uintscore; “Score from 0 -1000”

Char[1] strand; “+ or -” 
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BED12 format
• BED12 consists of the six fields of BED6 plus:

uintthickStart; “Start of where display is thick (start codon)”
uintthickEnd; “End of where display is thick (stop codon)”

uintreserved; “used for RGB”

int blockCount; “Number of blocks”

int[blockCount] blockSizes; “Com ma separated list of block sizes”
int[blockCount] chromStarts; “Start positions relative to chromStart”
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PSL in table format

200

PSL format subtleties
• PSL format effectively represents an alignment as 

a set of “blocks” that are gapless in both 
sequences.

• However,PSL format does have some subtleties:
– Much of the confusion in PSL stems from the fact that 

two coordinate systems are used:
• Some fields (eg tStart and tEnd) are always

measured in cpordinates of the positive strand 
• Other fields (eg tStarts and qStarts) are measured in 

“strand” coordinates that start at the 3’ end of the 
molecule if it is on the negative strand.
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More PSL format subtleties
• Strand annotation is also a bit tricky:

– For nucleotide (usually same-species) alignments, the PSL strand 
parameter is a single character (‘+’ or ‘-’).

– However, for translated alignments (e.g. xeno alignments), the PSL 
strand parameter is two characters (e.g.‘+-’ ) indicating whether the 
query and/or the target had to be reverse complemented in order to 
perform the protein alignment.

• Finally, insertions usually have different interpretations 
depending on whether they are in the “target” (chromosome) 
or the “query” (mRNA/EST)
– “tBaseInsert” typically is the total length of the mRNA introns.
– In contrast, “qBaseInsert” (if not = 0) represents insertions in the mRNA 

sequence relative to the genome (or artifacts).
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MAF in table format
Note that maf tables really are 
index tables.

Actual mafs are stored in 
external files.

If you obtain the alignments via 
the Table Browser, you don’t 
need to worry about this.

Later, we’ll discuss how to 
download the actual maf files if 
you need them.
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Actual maf alignment (partial)

a score=704.000000
s hg17.chr17               38452979 73 +  78774742 CTCCC-ACCCCATGGAAACAGTTCATGTATTACT
s panTro1.chr19            41637592 73 +  82489036 CTCCC-ACCCCATGGAAACAGTTCATGTATTACT
s rheMac2.chr16            53181258 73 +  78773432 ctCCC-ACCCTATGGAAACAGTTCATGTCTTACTT
s oryCun1.scaffold_206706     93753 66 +    100734 TACTC---TCCATAGAAAAAACTCATGCACTACT
s bosTau2.scaffold1581       188850 73 +    226018 CCGTCCCCCCCGGGGAAACAATTCAGGCACTACT
s canFam2.chr9             41077976 69 -  64418924 CAGGCACATGCCCATGGCCCTCTGAAGCCCTA--
s echTel1.scaffold_310439     57140 63 +    174032 CTCTT-GCACCATGGAAGGAGCTCATGCGTTGTT
s rn3.chr10                90528483 27 + 110733352 -------------------ACCTC----------
s dasNov1.scaffold_1531       48946 45 +    190156 ----------------------TCATGCATTATT

##maf version=1 
a score=-13469.000000 
s hg17.chr1                67108775 249 + 245522847 TTCCAAATCAAGGCTACCTAT---CT 
s panTro1.chr1             65472086 249 + 229575298 TTCCAAATCAAGGCTGCCTAT---CT 
s rheMac2.chr1             69709327 241 + 228252215 TTCCAAATCAAGGCTACCTA--------TTCTTT---CT 
s rn3.chr5                124059293 300 + 173106704 TTCCAAGTCAAAGGTGCCTG----TTATTTATTT---AC 
s mm7.chr4                102496518 305 + 155175443 TTACAAATCAAAGGTGCCTG-----TAATTATTT---AC 
s oryCun1.scaffold_210784     55797 281 +    212082 TACCAAGTCAAAA------------CTTTTTTTT---CC 
s bosTau2.scaffold231        595046 351 +    614762 TTGCGAATCGAGGCTTTCTATTCCTGTCTTTCT---TT 
s canFam2.chr5             45390541 241 -  91976430 TTGAATATTAAGGCTACCTATTATTGTCTT---TT 
s loxAfr1.scaffold_17369      51679 235 -     60659 TTCCAAATCATTACTAACGACTCTAGTCTC---CT 
s echTel1.scaffold_313458      6068 210 -    179910 TCCTAGACCACAGCTA---ACTATAATCTTTTTTAAA 
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Browser Table Descriptions
• Detailed descriptions of database tables at: 

http://genome.ucsc.edu/goldenPath/gdbDe
scriptions.html

• However, often you can obtain  a sufficient 
table description from the Table Browser 
itself.
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Table browser input form

206

Known Genes table description

207

Filter, intersect and correlate tables

208

Filtering,intersecting and 
correlating tables

• You can restrict which table entries you retrieve by:
– Filtering on values of specific fields in the table and/or in 

other tables to which it is linked.
– Retrieving only the records in the intersection of two tables.

• You  can also quickly calculate the amount of overlap 
or correlation between two tracks using the correlation 
output.
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Table Intersect Menu

211

Specifying table query output format

212

Table Browser Fasta Output
• Capable of extracting sequence data from 

multiple genomic region
• Can extract only intron or exons or
• UTRs or upstream / downstream regions
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Gene fasta output options

214

Custom Tracks
• Custom tracks are essentially BED, PSL or GTF files 

with formatting lines so they can be displayed on the 
browser.

• A custom track file can contain multiple tracks, which 
may be in different formats.

• Custom tracks are useful for:
– Display of regions of interest on the browser.
– Sharing custom data with others.
– Input of multiple, arbitrary regions for annotation by the 

Table Browser.

• Custom tracks can be made by the Table Browser, or 
you can make them easily yourself.
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Selecting custom track output

216

Sending custom track to browser
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Adding a custom track

218

Adding a custom track (II)

219

Custom track example
browser position chr22:10000000-10020000
browser hide all
track name=clones description="Clones” visibility=3 
color=0,128,0 useScore=1 
chr22 10000000 10004000 cloneA 960 
chr22 10002000 10006000 cloneB 200 
chr22 10005000 10009000 cloneC 700 
chr22 10006000 10010000 cloneD 600
chr22 10011000 10015000 cloneE 300
chr22 10012000 10017000 cloneF 100 
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Limitations of the table browser
• Can be difficult to create more complex queries.
• With hundreds of tables, finding the one(s) you 

want can be confusing.
• Getting intersections or unions of genomic 

regions is often a multi-step process and can be 
tedious or error prone.

• May be slower than direct SQL query.
• Not designed for fully automated operation.
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The Galaxy Website
• Galaxy website: http://g2.bx.psu.edu

• Galaxy objective: Provide sequence and data 
manipulation tools (a la SRS or the UCSD Biology 
Workbench) that are capable of being applied to 
genomic data.

• The intent is to provide an easy interface to numerous 
analysis tools with varied output formats that can work 
on data from multiple browsers / databases.
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Galaxy - current status
• Galaxy is a new site, still a “work in progress”. 
• So far, supports UCSC Table Browser, EBI EnSmart

and NHGRI EncodeDB. 
• As yet, few sequence manipulation tools are available, 

e.g.
– GC%
– Ka/ Ks calculations

• Galaxy does already provide an effective query and 
result “history” system which makes the Table 
Browser interface more “user friendly”.
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Direct SQL queries of the 
underlying databases

• If you are familiar with SQL, direct 
queries can be:
–much more flexible 
–and sometimes easier or faster than 

using the Table Browser or Galaxy
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SQL code can access the UCSC 
databases via any of:

• Table browser interface

• The public UCSC browser database

• Your own mirror site

226

Table Browser SQL Interface

227

The public UCSC genome 
database

• UCSC has recently made a mirror of its 
genomic databases available for (limited) direct 
SQL queries.

• Access information:
– host=genome-mysql.cse.ucsc.edu
– user=genome
– No password
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The public UCSC genome 
database (II)

• More details on the public database can be found at:
http://genome.ucsc.edu/FAQ/FAQdownloads/download29#download29

• In particular the instructions note:
– “Avoid heavy queries that may impact the server 

performance. 
– “If you plan a query that may be excessive, contact UCSC 

first to avoid the possibility of blocked access.
– “Bot access and excessive program-driven use are not 

permitted.”
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Custom frames
• “Custom frames” are a useful tool for navigating among a 

set of regions of interest.

• A list of all the regions is shown on one side of the screen, 
with a standard genome browser image in the other.

• Writing code to convert a bed file to a custom frame is 
straightforward – or you can use bedToFrame from the 
kent code source tree (described later).
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ENCODE custom frame

231

Batch query example
• Recall our example, where we have one 

hundred candidate polymorphisms and 
you want to know:
– Are they in dbSNP?
– Do they occur in any known ESTs?
– Are the sites conserved in other vertebrates?
– Are they near any “LINE” repeat sequences?
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Batch query example in the 
Table Browser

To answer these questions with the Table Browser 
we could:
– Run BLAT to find the polymorphism locations in the 

genome.
– Convert BLAT psl output to custom track (manually or 

with a simple script).
– Intersect the custom track with tables in the Table 

Browser.
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Batch query example continued

Specifically in the Table Browser we would need to:
• Intersect the custom track with SNP track
• Intersect the custom track with EST track, outputting the 

sequence and writing a program (or manually checking) 
to see if the mutated bases occur.

• Intersect the track with the multiz17way table to 
determine if the site is conserved.

• Extend the range of the custom track and intersect the 
modified track with the repeat-element table (rmsk), 
filtering on LINE elements.
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Browser “gotchas”

• Browser “gotchas” are not bugs but rather situations 
where the system interface works in an unexpected 
manner (at least unexpected, to me!)

• Some gotchas are the result of intrinsic difficulties in 
describing genomic sequence data.

• Other gotchas are specific to the conventions used in 
the UCSC browser and database systems.
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Subtleties inherent to genomic 
data representation

• A gap in an mRNA alignment to the genome may not be an 
intron, but rather an insertion in the genome sequence or a 
deletion in the mRNA.

• A sequence difference between an mRNA and the genome 
may not be a polymorphism or post-transcriptional editing, 
but rather a sequencing artifact (especially if the mRNA 
record is old).

• The number of blocks in an alignment between an mRNA 
and the genome may not be the same as the number of 
“blocks” (i.e. exons) in the the gene that is predicted to be 
represented by that mRNA. 
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Gotchas specific to the UCSC 
data representation

• UCSC uses a [1,n) numbering system.
– That is, the region 1000-2000 includes base 

1000 but not base 2000.
• Database tables use a nucleotide numbering 

system that is 0-based. But the browser display 
uses genomic numbering that is 1-based.

• Many tables can be accessed in Table Browser 
only by using “all tables”.
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UCSC data representation 
gotchas (II)

• Multiple alignments (MAF records) are stored in 
separate files.

• Block start surprises:
– In BED the block start is relative to the start location of the 

bed (chromStart)
– in genePred, the exon start/end are absolute chromosome 

locations.
• Many tables have an extra “bin” field, used for fast 

indexing. This field must be stripped away (e.g. using 
the Unix “cut” utility) before the data can be input to 
C-code from the kent source tree.
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UCSC data representation 
gotchas (III)

• Translated BLAT has difficulty with intron-exon 
boundaries in xeno alignments, which are sometimes 
less accurate than those found by other approaches.

• As described earlier, interpreting PSL negative strand 
data can be tricky. In fact, even on the browser, 
negative strand genes may appear incorrect if you 
are not careful (example on next page).

• These “gotcha” examples are just those that have 
personally tripped me up. To find more, look at the 
UCSC FAQ pages: http://www.genome.ucsc/FAQ/
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Apparent inconsistency with 
negative strand genes

240

Apparent inconsistency 
resolved
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Custom tracks in Ensembl

• In Ensembl, custom tracks are implemented using 
either a variant of UCSC’s custom track system or 
using the “Distributed Annotation System” (DAS).

• However using the UCSC syntax on Ensembl 
requires access to a local webserver.

• The DAS approach does not require a server (but 
does require an understanding of DAS syntax).
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BioMart
• BioMart - the Ensembl “Table browser” 
• Similar to the Table Browser and Galaxy tools.
• Previous version was called EnsMart.
• Fewer tables can be accessed with BioMart than 

with UCSC Table Browser. In particular, non-
gene oriented queries may be difficult.

• However, the user interface is simpler.
• Tight interface with Bioconductor project for 

annotation of microarray genes.
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DAS

• DAS stands for “Distributed Annotation 
System”

• DAS consists of:
– a   single “sequence server”
– Multiple “annotation servers”
– DAS client software to integrate results
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DAS - pros and cons
• DAS is intended to be scalable in the face of 

hundreds of annotation tracks.
• Maintaining tracks is not responsibility of single 

group (as with UCSC’s or NCBI’s browsers).
• However, response time may be slow since data 

must be retrieved from multiple servers.
• Also. It may be difficult to keep track of what’s 

available, so there is a DAS “registry” where user 
can find annotation availability: 
http://das.sanger.ac.uk/registry
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Part V – Automated Querying 
Procedures

246

Automated querying overview
• Introduction / motivation
• What you’ll need to get started
• Choice of languages and databases
• Using the kent code tree to access the 

UCSC database
• Example 
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Introduction / motivation
• Using the table browser is still a partly interactive 

process.
• Consequently, when performing multiple, large scale 

queries this approach becomes time-consuming and 
error prone.

• More complex data analyses usually require 
developing data manipulation software, anyway, 

• It is usually more efficient to develop this software 
using tools and routines already developed by the 
genome-browser teams.
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An example
• Let’s imagine that, instead of experimental data, we have a 

computer algorithm to predict candidate disease 
polymorphisms and we want to know:
– Are they in dbSNP?
– Do they occur in any known ESTs?
– Are the sites conserved in other vertebrates?
– Are they near any “LINE” repeat sequences?

• In addition, we want to test our algorithm with many different 
parameters and options. 

• We will NOT want to interactively perform all the Table Browser 
table-intersections every time we modify a parameter.



63

249

More examples
Although the previous example is a bit contrived, it is not unlike 
more realistic ones, e.g.:

– Characterizing the introns of genes that host snoRNAs and 
determining whether the host genes of homologous 
snoRNAs are homologous themselves (Schattner et. al, 
RNA, 2006).

– Characterizing regions of extreme codon conservation 
among mammalian genes in terms of SNPs, conserved 
alternative splicing, exon splicing enhance motifs, etc. 
(Schattner and Diekhans, NAR, 2006).
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What you’ll need to get started
• General programming skills
• Database querying skills
• Access to the data files used by one 

of the browsers.
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Design Choices
• Before developing data querying software, one 

needs to choose which language, databases and 
data-retrieval strategy to use. 

• Criteria include:
– Ease of data access and/or installation 

requirements.
– Your experience with relevant language and 

database.
– Capabilities & features of language, database 

and associated tools and software.
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Main Supported Languages
Although, in principle, any of the databases 
can be accessed by any computer language 
the best supported interfaces (APIs) are:

• UCSC: Main API uses C
• Ensembl: Primary APIs use Perl and Java
• NCBI: API in C/C++ via the NCBI toolkit
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Why I use the UCSC databases

• Library routines in the kent code base do 
most of the work for me.

• The databases are comprehensive.
• C is fast.

254

Data access strategies
• Downloading one or more database 

tables or files.

• Remote login to a public mirror.

• Mirroring all or part of an entire 
database.
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No bots!
• In principle, one can also access a genome 

database using a “bot”, or web robot.
• A bot is a computer program which generates code 

to “look like” a user to an interactive website (such 
as a genome browser site.)

• However, interactive sites are typically not designed 
to handle programmed “hits”. Consequently, you 
will be denied site access if you use a bot.

• So, don’t do it. The methods described here are 
easier ways of making automated database queries 
than using bots, anyway.
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Option 1:Downloading individual 
database tables or files

• Generally simplest approach for limited 
automated querying.

• You can download data with the Table Browser or 
directly from:

http://hgdownload.cse.ucsc.edu/goldenPath/hg18/database/
(substitute the name of the database you are interested in for “hg18”)

• You can download both the table data files and 
files with SQL code to load the data into a local 
mySQL database.
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Advantages of downloading individual 
files and tables

• Simplest method.
• Limited disk space required.
• Can be quite fast (especially if you take 

advantage of the kent code routines).
• Don’t need to set up SQL database.
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Disadvantages of downloading 
individual files and tables

• Limited to accessing small number of tables and 
files.

• Need to repeat procedure if you need additional 
tables.

• Need to separately download sequence and 
genomic alignment files and understand how to 
access them (if you need this data).
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Finding external UCSC database files
For build hg18:
• Genome sequences are located at:
http://hgdownload.cse.ucsc.edu/goldenPath/hg18/chromosomes/
• Multiple genome alignments are located at:
http://hgdownload.cse.ucsc.edu/goldenPath/hg18/multiz17way/
• mRNA, EST, refseq and other large sequence data are at:
http://hgdownload.cse.ucsc.edu/goldenPath/hg18/bigZips/

Offsets to individual sequences within these files are found
in the database tables:
– multiz17way
– gbSeq
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Loading Standard Formats
• If you do choose to build a small local mySQL database for 

your downloaded files, there are command line tools in 
src/hg/makeDb to load them:
– ldHgGene (GTF), hgLoadPsl, hgLoadBed, hgLoadChain, 

hgLoadMaf, hgGenericMicroarray
• This directory also has source for 60 other database loaders 

for more specialized situations.
• Typical database loader is about 200 lines, using SQL and 

text parsing routines in src/lib.
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Option 2: Remote login to the 
UCSC or Ensembl databases

• UCSC site: 
genome-mysql.cse.ucsc.edu

• Ensembl site: 
ensembldb.ensembl.org
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Advantages / disadvantages of 
remote login to a public mirror

• Does not require local disk space allocation.
• No installation or database maintenance.
• Kent source code routines not requiring auxiliary 

sequence files run without any modifications.
• The biggest disadvantage is that a public mirror is a 

shared resource that may be slow, can’t be modified 
and shouldn’t be overused by a single user.

263

Option 3:Setting up a mirror database

• A complete install of the UCSC genome database 
requires 1.2+ terabytes, but you do not need to do a 
complete install for automated database querying.

• You do not need Apache or any CGI or HTML files.
• You only need to download the species databases 

you actually want to use.
– Human genome database requires ~ 200 - 250 GB
– Most other species databases are significantly smaller.
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Advantages of setting up a mirror 
database

• The database will not be a shared resource. 
• You can run it as heavily as you like. 
• Performance doesn’t depend on usage by 

others.
• Accessing sequence and alignment datafiles

is significantly easier.
• You can be modify or customize the database 

as desired.
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Overview of mirror database 
installation

• Install mysql if not already present.
• Download sequence and annotation data for 

genomes of interest.
• Load annotation data into local mysql database.
• Download and compile kent source code.
• Detailed instructions at:

– http://genome.ucsc.edu/admin/mirror.html

• Note that these procedures may not work on 
Windows machines (cygwin has worked). 

• Unix, Linux, OS X are all OK
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Using the kent code base
…or why I no longer miss Perl and Bioperl!

Whatever data access method you use, you will want to take 
advantage of the kent source code base…

• Code is clearly written, extensively tested and fast.
• Code is open source so you can learn from it and modify it 

for your own use.
• Code is free for academic, government and personal use 

(core routines are even free for commercial use).
• Even if you run Windows or never plan to set up a database 

mirror, taking advantage of the kent code libraries can save 
you hundreds of hours of time.
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Using the kent code base 
(continued)

• Many important utilities are usable “right out of the 
box”. 

• If you don’t immediately see what you want, using 
“grep”, “find” or “tags” on the source tree will often 
find it.

• Built-in library functions provide almost any 
sequence and data manipulation capability you might 
want.

• Plenty of code examples illustrate exactly how to 
use the library effectively.
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Built-in utilities
There are over 100 utility programs available for tasks such 

as:
– Sorting, splitting, merging, counting and getting lengths of 

fasta sequences.
– Record parsing and data conversion utilities for handling 

genbank, fasta, nib, blast and other records.
– Programs for sequence alignment, motif searching, 

hidden Markov models, etc.
– Programs for automatically generating SQL or XML code 

from user specifications (AutoSQL and AutoXML).
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Properties of the kent source 
code

• In addition to stand-alone programs, there are CGI-
based programs to perform all the sequence and data 
manipulations performed by the browser.

• In general, if the browser performs some data 
manipulation, with a little detective work, you can find 
the code to insert in your program.

• Sometimes the appropriate program can be identified 
by simply looking after the “cgi-bin” in the web address 
as in genome.ucsc.edu/cgi-bin/hgTracks
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Using code from browser 
routines

• To understand the functioning of browser cgi-
programs, it can be helpful to know what 
arguments they are being passed. 

• These CGI input arguments are stored in the 
“CART”.

• Current CART arguments can be examined by 
running:
– http://genome.cse.ucsc.edu/cgi-bin/cartDump
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cartDump screenshot
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kent library functions
There are many extremely useful routines including:

– Memory allocation and error handling 
– String and array manipulation
– Data structures for singly and doubly linked lists, 

balanced trees, directed graphs etc.
– Code for very fast hashing, indexing and data retrieval 

using “binkeeper” and related programs
– Powerful code “wrappers” for SQL, CGI and HTML code 

generation
– Sequence manipulation routines including:

• Reverse complementation
• Codon and amino acid lookup
• Sequence translation
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UCSC Source Important Dirs
src -

inc - interface to general purpose routines.  
lib - implementation of general purpose routines. Freeware.
hg - genome project specific code

inc - interface to shared genome code
lib - implementation of shared genome code
hgTracks - genome browser
hgTables - table browser
hgNear - for gene sorter
makeDb - database building

hgLoadBed - load bed files
makeHg18.doc - how to build latest human genome database
schema - contains all.joiner that describes table relationships

jkOwnLib - BLAT and other stuff Jim Kent personally owns
utils - stand alone utility programs
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Databases and program objects
• The kent library and database code is largely 

object oriented.
• Browser tracks and tables often have associated  

C structures defined in a .h “include” file.
• Typically the .h file will describe the functions that 

can be performed on the structure.
• Associated “.c” files describe their implementation.
• Much of this software is automatically generated 

by the autoSql program.
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Gene-prediction C- Structure 
(slightly simplified)

struct genePred    /* A gene prediction */ 
{ 
    struct genePred *next;   /* Next in singly linked list. */ 
    char *name;       /* Name of loci, transcript, mRNA, etc */ 
    char *chrom;       /* Chromosome name */ 
    char strand[2];       /* + or - for strand */ 
    unsigned txStart;       /* Transcription start position */ 
    unsigned txEnd;       /* Transcription end position */ 
    unsigned cdsStart;       /* Coding region start */ 
    unsigned cdsEnd;       /* Coding region end */ 
    unsigned exonCount;    /* Number of exons */ 
    unsigned *exonStarts;   /* Exon start positions */ 
    unsigned *exonEnds;    /* Exon end positions */ 
} 
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A simple C program illustrating 
automated database querying

• Program objective: to determine whether specific introns (e.g. 
those containing snoRNAs) have different median length than 
other introns of the same genes.

• Approach:
– Read in list of snoRNA coordinates.
– Extract genes “hosting” these snoRNAs.
– Compute lengths of host introns and (for comparison) other 

introns of the host genes. 
(For more realistic code examples of automated UCSC 
database querying see: 
http://nar.oxfordjournals.org/cgi/data/34/6/1700/DC1/1X)
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int main(int argc, char *argv[])
{
char *db = argv[1]; char *geneTable = argv[2];
char *bedFile = argv[3]; char *method = argv[4];
if (argc != 5) usage();
struct sqlConnection *conn = NULL;
struct hash *gpHash = NULL; 
if (sameWord(method, "file"))

gpHash = readGpToBinKeeper(db, geneTable);
else

{
conn = sameWord(method, "public") ? 

getHgdbtestConn(db) : sqlConnect(db); 
}

processBedFile(bedFile,conn, geneTable, gpHash);
slFreeList(&overlapList); slFreeList(&otherList);
sqlDisconnect(&conn); binKeeperGpHashFree(&gpHash);
return 0;
}
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struct slDouble *overlapList = NULL;
struct slDouble *otherList = NULL;

/****************************************/
struct sqlConnection *getHgdbtestConn(char *db) 
/* Read .hg.conf and return connection. */
{
char *host = "genome-mysql.cse.ucsc.edu";
char *user = "genome";
char *password = NULL;
hSetDbConnect(host,db,user,password);
return sqlConnectRemote(host, user,password, 
db);
}

struct hash *readGpToBinKeeper(char *gpFileName)
{
#define MAX_CHROM_SIZE 400000000
struct binKeeper *bk; struct genePred *gp;
struct lineFile *pf = lineFileOpen(gpFileName , TRUE);
struct hash *hash = newHash(0);
char *row[21] ; int genePredLineCtMin = 10;
while (lineFileNextRow(pf, row, genePredLineCtMin))

{
gp = genePredLoad(row);
if (hashLookup(hash, gp->chrom) == NULL)

{
bk = binKeeperNew(0, MAX_CHROM_SIZE);
hashAdd(hash, gp->chrom, bk);    
}

bk = hashMustFindVal(hash, gp->chrom);
binKeeperAdd(bk, gp->txStart, gp->txEnd, gp);
}

lineFileClose(&pf);
return hash;
}
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void processBedFile(char *bedFile, struct
sqlConnection *conn, char *geneTable, struct hash 
*gpHash)

/* Read file and process */
{
struct bed *bedList=NULL, *bed=NULL;
bedList = bedLoadAll(bedFile);
for(bed = bedList; bed != NULL; bed = bed->next)

{
doOneBed(bed, conn, geneTable, gpHash);
}

printf("Median value of lengths of overlapping 
introns = %f\n", slDoubleMedian(overlapList));

printf("Median value of lengths of other introns = 
%f\n", slDoubleMedian(otherList));

bedFreeList(&bedList);
}
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void doOneBed(struct bed *bed, struct sqlConnection *conn,
char *geneTable, struct hash *gpHash)

{
int bStart = bed->chromStart;
int bEnd = bed->chromEnd;
struct genePred *gp = NULL;
if (gpHash == NULL)

gp = genePredReaderLoadRangeQuery(conn, geneTable, 
bed->chrom, bStart, bEnd, NULL);

else
gp = bkToGenePreds(gpHash, bed->chrom, bStart, bEnd);

slSort(&gp, genePredLongestCmp);
if (gp == NULL)

{
errAbort("No gene found in %s overlapping %s:%d-%d\n", 

geneTable, bed->chrom, bStart, bEnd);
}

doOneGene(gp, bStart, bEnd);
if (gpHash == NULL) genePredFreeList(&gp);
}
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Sort comparison function

int genePredLongestCmp(const void *va, const void *vb)
/* Compare to sort based sizes of txEnd - txStart, 
largest first. */
{
const struct genePred *a = *((struct genePred **)va);
const struct genePred *b = *((struct genePred **)vb);
int lengthA = a->txEnd - a->txStart; 
int lengthB = b->txEnd - b->txStart;
int dif = lengthB - lengthA;
return dif;
}
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void doOneGene(struct genePred *gp, int qStart, int qEnd)
/* get intron statistics for longest gene in range */
{
int i, intronStart, intronEnd;
for (i=0; i< gp->exonCount; ++i)

{
intronStart = gp->exonEnds[i];
intronEnd = gp->exonStarts[i + 1];
double intronLength = (double) (intronEnd -
intronStart);
struct slDouble *slIntronLength =  
slDoubleNew(intronLength);
if (positiveRangeIntersection(qStart, qEnd, 
intronStart, intronEnd))

slSafeAddHead(&overlapList, slIntronLength);
else

slSafeAddHead(&otherList, slIntronLength);

}
}
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Downsides of automated 
database querying

Although automated querying is very helpful when requiring 
multiple complex queries, it does have disadvantages:

• Installation is a (one time) pain and requires significant disk 
space. 

• Conversely queries to the public database are restricted in 
scope.

• Writing and testing code takes time.
• Data sets stored in external files (e.g. maf file alignments) may 

be easier to obtain through the Table Browser.
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Finding more information

• Articles in the literature: see handout
• Openhelix - excellent (introductory) on-line tutorials 

at: www.openhelix.com
• Tutorials / userguides / FAQs at the browser websites

– www.ensembl.orgs/Docs
– genome.cse.ucsc.edu/goldenPath/help/hgTracksHelp.html
– www.ncbi.nlm.nih.gov/mapview/static/MapViewerHelp.html
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Some UCSC Resources
• Home page genome.ucsc.edu
• Pre-release genome-test.cse.ucsc.edu
• Mailing list genome-www@soe.ucsc.edu
• Download hgdownload.cse.ucsc.edu
• Src CVS genome.ucsc.edu/admin/cvs.html
• MySQL DB genome-mysql.cse.ucsc.edu
• List of progs:

– http://genome-test.cse.ucsc.edu/eng/useMessageIndex.html
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