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For most biologists hands-on literature mining is currently limited to keyword
searches in PubMed. However, methods for extracting biomedical facts from
literature have improved considerably, and the associated tools will likely soon
be used by many researchers in bioinformatics as well as wet-lab biology. Ad-
vanced literature mining tools will be crucial to successfully analyze the deluge
of high-throughput experimental data sets in the context of the rapidly increas-
ing body of scientific text. New tools will need to that can automatically propose
new hypotheses and thereby catalyze the discovery process. This will require
that high-throughput data and literature become tightly integrated, which en-
courages close collaborations between biologists, bioinformaticians, and com-
putational linguists.

Introduction

The focus in biology is shifting from individual genes and proteins to entire biological
systems, and biologists must therefore be able to systematically compare large-scale
data sets with currently known, that is the scientific literature. As the numbers of
articles published each year is increasing exponentially, it is no longer possible for a
researcher to read all the relevant articles manually, not even on a single, specialized
topic such as the cell cycle (Figure 1).
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Figure 1: Growth of MEDLINE. The counts reflect the number of papers and journals published per year;
a running average of three years was calculated for the Cdc28 curve due to the much lower counts. The
number of new papers published each year continues to increase, especially on certain topics such as
the cell cycle, for which it is no longer possible to read all new papers that are published. In contrast,
specific proteins that are “hot” at one point in time tend to later lose their popularity, as exemplified by
Cdc28.
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Because of these changes, literature mining tools are becoming essential to re-
searchers in the fields of biology and bioinformatics. First, they enable researchers to
identify relevant papers (information retrieval, IR). They also allow the biological en-
tities (for example, genes and proteins) mentioned in these papers to be recognized
(entity recognition, ER) and enable specific facts from papers to be pulled out (infor-
mation extraction, IE). IR tools like PubMed have long been used on a regular basis by
most biologists to find papers of interest. In contrast, automatic methods for extracting
facts from text (IE) have only very recently become sufficiently accurate to be useful in
practice (Rebholz-Schuhmann, 2005). It is obvious how both IR and IE can be used
for curation efforts; however, they are often dismissed as being useless for discovery
purposes as they can only extract what has already been published.

More advanced tools based on these methods facilitate systematic searches of
the scientific literature for overlooked connections (text mining) and integration of the
literature with other data types to make new discoveries. Although some text mining
methods are indeed capable of making novel hypotheses by combining information
from multiple papers, we believe that the full discovery potential will only be realized
with data mining approaches that integrate literature and data from high-throughput
experiments such as genome sequencing, microarray expression studies, or protein—
protein interaction screens.

Here, we will briefly describe the aim of each field described above, give an
overview of the methods employed, and discuss what can currently be achieved. We
first give an overview the most important IR, ER and IE methodologies subsequently
give examples of how the results can be mined and integrated with other data types to
make new biological discoveries. For more details, the reader is referred to the numer-
ous reviews on these topics (Manning and Schitze, 1999; Andrade and Bork, 2000;
Hirschman et al., 2002; Yandell and Majoros, 2002; Krallinger and Valencia, 2005;
Scherf et al., 2005; Shatkay, 2005; Skusa et al., 2005; Cimiano et al., 2006; Jensen
et al., 2006).

To exemplify the goals of each sub-field within biomedical literature mining, we will
use the following example sentence: “Mitotic cyclin (Clb2)-bound Cdc28 (Cdk1 ho-
molog) directly phosphorylated Swe1 and this modification served as a priming step
to promote subsequent Cdc5-dependent Swe1 hyperphosphorylation and degrada-
tion” (Asano et al., 2005). Its context is the cell cycle of the yeast Saccharomyces
cerevisiae, and it allows us illustrate the powers and pitfalls of current literature mining
approaches.
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Information retrieval

Information retrieval (IR) systems aim to identify the text segments (be it full articles,
abstracts, paragraphs, or sentences) pertaining to a certain topic—in our example,
the yeast cell cycle. The topic can be defined in one of two ways: either by a user-
provided query (ad hoc IR) or by a set of papers that has been manually selected as
being relevant to the topic (text categorization). Both types of IR system should ideally
recognize our example sentence as being related to the yeast cell cycle, although
neither “yeast” nor “cell cycle” is explicitly mentioned.

The best known biomedical IR system, PubMed, is an ad hoc system that uses
two well established IR methodologies, the Boolean model and the vector model. The
former enables the user to retrieve all documents that contain certain combinations
of terms, for example “yeast AND cell cycle”. In contrast, the vector model represents
each document by a term vector, in which each term is assigned a value according to
a frequency-based weighting scheme. These document vectors can subsequently be
compared to a query vector that specifies the relative importance of each query term
(Wilbur and Yang, 1996). Alternatively, they can be compared to each other to calcu-
late document similarity, which is used by PubMed’s related articles function (Wilbur
and Coffee, 1994) and other document clustering methods (Renner and Aszodi, 2000;
lliopoulos and Ouzounis, 2001; Glenisson et al., 2003). The vector representation is
also used as input for machine learning methods, which are trained to discriminate be-
tween known relevant (positive) and irrelevant (negative) papers based on their word
content (Usuzaka et al., 1998; Marcotte et al., 2001; Bhalotia et al., 2003; Donaldson
et al., 2003; Kayaalp et al., 2003; Aronson et al., 2004; Goetz and von der Lieth, 2005;
Shah et al., 2005; Suomela and Andrade, 2005). Such methods are able to learn
fairly complex rules; for example, a method trained to identify sentences related to the
yeast cell cycle would have learned that the word “Cdc28” in our example sentence is
a strong hint, whereas the words “Cdk1” and “Clb2” could be related to the cell cycle
of other organisms as well.

Ad hoc IR systems like PubMed generally have more difficulty than text catego-
rization systems in dealing with the many abbreviations, synonyms, and ambiguities
in the biomedical terminology, although blind assessments have shown that most of
the lessons learned from IR in other research fields carry over to biomedicine (Glenis-
son et al., 2003; Hersh and Bhuptiraju, 2003; Hersh et al., 2004a,b). These include
removing so-called stop words like “the” and “it”, which occur in almost every docu-
ment, and truncating common word endings like “-ing” and “-s” to allow different forms
of the same word to be matched, for example “yeast” and “yeasts” (Bhalotia et al.,
2003). PubMed and many other good biomedical IR systems also make use of the-
sauri to automatically expand the query with additional related terms (Bhalotia et al.,
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2003; Hersh and Bhuptiraju, 2003; Bulttcher et al., 2004; Hersh et al., 2004b). For
example the Boolean query “yeast AND cell cycle” might be expanded to “(yeast OR
Saccharomyces cerevisiae) AND cell cycle”). Many advanced methods, such as Med-
Miner (Tanabe et al., 1999) and Textpresso (Muller et al., 2004), also use ER methods
(see below) to better identify documents that mention a certain gene or protein and/or
part-of-speech tagging to disambiguate whether a word such as “wingless” occurs as
a noun or an adjective. As many documents may be retrieved by a single query, sim-
ply presenting them as a long list gives poor overview. Alternative ways to present
and summarize IR results are thus being actively explored (Perez-Iratxeta et al., 2001,
2003; Hoffmann and Valencia, 2004; Doms and Schroeder, 2005; Hoffmann et al.,
2005).

Even with these improvements, current ad hoc IR systems are not able to retrieve
our example sentence given the query “yeast cell cycle”. This could be achieved by
realizing that “yeast” is a synonym for S. cerevisiae, that “cell cycle” is a Gene Ontology
term, that the word “Cdc28” refers to a S. cerevisiae protein, and finally looking up the
Gene Ontology terms of Cdc28 to connect the two. Although this will by no means be
easy to make work, we see this type of ontology-based reasoning as the next logical
step for ad hoc IR.
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Entity recognition and identification

The seemingly modest goal of ER is to find the biological entities mentioned within a
text, in particular the names of genes and proteins. This task is often divided into two
sub-tasks: i) the recognition of words that refer to entities and ii) the unique identifica-
tion of the entities in question. In our example sentence, the terms “Clb2”, “Cdc28”,
“Cdk1”, “Swe1”, and “Cdc5” should thus all be recognized as gene/protein names
and uniquely identified by, for example, their respective Saccharomyces Genome
Database (SGD) accession numbers.

While ER may at first glance appear neither challenging nor particularly useful,
it is possibly the most difficult task in biomedical text mining and is prerequisite for
constructing both IE and advanced IR systems. When used alone, ER is useful for
molecular biologists to search and structure the biomedical literature based on the
genes og interest (Hoffmann and Valencia, 2004).

The early ER methods relied on hand-crafted rules that look for typical features of
names, such as letters followed by numbers or the ending “-ase”, as well as contextual
information from nearby words like “gene” or “receptor” (Fukuda et al., 1998; Proux
et al., 1998; Franzen et al., 2002; Tanabe and Wilbur, 2002; Bhalotia et al., 20083;
Narayanaswamy et al., 2003; Tamames, 2005). As several corpora in which gene and
protein names have been tagged are now available for download (Kim et al., 2003;
Tanabe et al., 2005), this approach is no longer so attractive and most newer systems
instead rely on machine learning algorithms such as hidden Markov models (HMM),
support vector machines(SVM), or a mixture of both to recognize names based on their
characteristic features (Coller et al., 2000; Hatzivassiloglou et al., 2001; Collier et al.,
2002; Tanabe and Wilbur, 2002; Chang et al., 2004; Zhou et al., 2004; Hakenberg
et al., 2005; McDonald and Pereira, 2005; Settles, 2005; Zhou et al., 2005).

In contrast to these systems, a number of dictionary-based methods instead rely
on a comprehensive list of synonymous gene names that are matched against the doc-
uments using algorithms that allow variation in how the names are written, for example
“CDC28”, “Cdc28”, “Cdc28p”, or “cdc-28” (Krauthammer et al., 2000; Leonard et al.,
2002; Bhalotia et al., 2003; Hanisch et al., 2003; Chang et al., 2004; Mika and Rost,
2004; Finkel et al., 2005; Crim et al., 2005; Fundel et al., 2005; Hanisch et al., 2005).
These methods are aided by the availability of databases of synonymous gene/protein
names (Bussey et al., 2003; Pillet et al., 2005; Shi and Campagne, 2005) as well as
tools that can help in constructing these (Pustejovsky et al., 2001; Yoshida et al., 2000;
Yu and Agichtein, 2003). Many systems combine dictionary matching with either rule-
based or statistical methods to reduce the number of false positive hits caused by
homonyms (Leonard et al., 2002; Chang et al., 2004; Seki and Mostafa, 2005; Tsu-
ruoka and Tsuijii, 2003; Mika and Rost, 2004; Finkel et al., 2005; Kou et al., 2005;
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Mitsumori et al., 2005).

The many different methods for doing named entity recognition were evaluated in
the blind assessment BioCreAtlvE task 1 (Colosimo et al., 2005; Hirschman et al.,
2005; Yeh et al., 2005). It revealed that best performing ER methods all rely on careful
curation of the gene name lists to remove aliases that cause many false positives (Fun-
del et al., 2005; Hanisch et al., 2005). In addition, dictionary-based approaches have
the crucial advantage over feature-based ones that they not only recognize names as
such, but also identify the accession number of the genes or proteins to which they
refer.

The major difficulty in ER arises from the lack of standardization of names.
Each gene or protein typically has several different names and abbreviations thereof
(“Cdc28” is also known as “Cyclin-dependent kinase 1” or just “Cdk1”), some of
are also common English words (“hairy”), biological terms (“SDS”), or names of
other genes (“Cdc2” refers to two completely unrelated genes in budding and fission
yeast) (Chen et al., 2005). The recent development of methods for disambiguating
gene/protein names is thus an important advance for ER as well as IR (Gaudan et al.,
2005; Hanisch et al., 2005; Schijvenaars et al., 2005).

Instead of focusing on this important problem, many methods have instead at-
tempted to recognize whether a particular mention of a name refers to a gene or
its protein product (Fukuda et al., 1998; Coller et al., 2000; Mika and Rost, 2004).
However, this distinction is not always clear as, for example, “Cdc5-dependent Swe1
hyperphosphorylation” depends on both the Cdc5 protein but also the gene that en-
codes it. Indeed, human annotators only agree with each other in 77% of cases when
asked to distinguish between genes, RNAs, and proteins (Tanabe et al., 2005). Fortu-
nately, the ability to discriminate between genes and proteins is of little consequence
for down-stream IE applications.
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Information extraction

In contrast to IR systems that identify texts concerning certain topics, |E systems aim
to extract pre-defined types of facts, in particular relations between biological entities.
From our example sequence, an |IE system should deduce that i) Cdc28 binds CIb2, ii)
Swe1 is phosphorylated by the Cdc28—CIb2 complex, and iii) Cdc5 is involved in Swe1
phosphorylation. These facts can subsequently be stored in a database, with the
option of being verified by a curator reading the paper in question. Two fundamentally
different approaches to extracting relations from biological texts are currently being
used extensively, namely co-occurrence and natural language processing (NLP).

Statistical co-occurrence methods

The simplest approach is to identify entities that co-occur within abstracts or sen-
tences. As two entities might be mentioned together without being in any way related,
most systems use a frequency-based scoring scheme to rank the extracted relations
(Donaldson et al., 2003; Hoffmann and Valencia, 2004; Craven, 1999; Cooper and
Kershenbaum, 2005; Ramani et al., 2005; Stephens et al., 2001; Blaschke and Valen-
cia, 2002; Stapley and Benoit, 2000; Jenssen et al., 2001; Becker et al., 2003; Bowers
et al., 2003; Chen and Sharp, 2004; von Mering et al., 2005; Schlitt et al., 2003; Wren
and Garner, 2004; Alako et al., 2005; Maier et al., 2005; Tiffin et al., 2005). If two
entities are repeatedly mentioned together, it is highly likely that they are somehow
related, although the type of relation is not known (Jenssen et al., 2001; Stephens
et al., 2001). Co-occurrence methods tend to give better recall but worse precision
than NLP methods (Ding et al., 2002; Wren and Garner, 2004). Due to their ability to
identify relations of almost any type, co-occurrence methods are well suited as parts
of exploratory tools (Bowers et al., 2003; von Mering et al., 2005).

Co-occurrence methods can also be used to extract only relations of a certain type,
such as physical protein—protein interactions, by combining them with a customized
text categorization system to identify the relevant abstracts or sentences (Craven,
1999; Stephens et al., 2001; Blaschke and Valencia, 2002; Donaldson et al., 20083;
Cooper and Kershenbaum, 2005; Ramani et al., 2005; Ray and Craven, 2005). This
setup is particularly attractive for database curation as the custom-made text cate-
gorization system can also be used on its own, and because high coverage can be
attained (Donaldson et al., 2003; Ramani et al., 2005). However, complex sentences
that contain multiple relations give rise to additional, erroneous relations (our example
sentence might link Cdc5 to ClIb2). This approach is also unable extract directional
relations (is Cdc5 involved in Swe1 phosphorylation or vice versa) and has difficulty
distinguishing between direct and indirect relations, for example whether or not Swe1
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is directly phosphorylated by Cdc5).

Natural language processing (NLP)

These issues can all be addressed by NLP methods that combine analysis of syntax
and semantics. The text is first tokenized to identify sentence and word boundaries,
and a part-of-speech tag (noun, verb, etc.) is assigned to each word. A syntax tree is
then derived for each sentence to delineate noun phrases (for example, “Mitotic cyclin
(Clb2)-bound Cdc28 (Cdk1 homolog)”) and represent their interrelations. ER meth-
ods and simple dictionaries are subsequently used to semantically tag the relevant
biological entities (genes, proteins, etc.) and other keywords (activation, repression,
phosphorylation, etc.). Finally, a rule set is used to extract relations based on the syn-
tax tree and the semantic labels. Very few NLP systems attempt to resolve anaphoric
relations and most systems are thus unable to extract relations that span multiple sen-
tences (Narayanaswamy et al., 2005). This is not as big a limitation as it might seem
since most relations are in fact mentioned within a single sentence (Ding et al., 2002;
Cooper and Kershenbaum, 2005).

Several programs exist for tokenization and part-of-speech tagging of English texts,
most of which are easily adapted to biomedical texts by retraining them on a manually
tagged corpus such as GENIA or PennBiolE (Saric et al., 2004a,b, 2006; Finkel et al.,
2005). Semantic tagging is more complicated, but it can be greatly simplified by using
existing ER methods. In contrast, development of grammars and extraction rules that
can correctly parse the sentences and extract the facts remains challenging.

The idealized workflow described above suggests that syntactic parsing of the sen-
tences and their semantic interpretation is performed as two separate steps (Rind-
flesch et al., 2000; Proux et al., 2000; Yakushiji et al., 2001; Novichkova et al., 20083;
Daraselia et al., 2004). However, most generic English parsers perform poorly if ap-
plied directly to biomedical texts due to the technical terminology, and particularly the
use of long complex noun phrases. Better results can be obtained by first tagging the
noun phrases (Yakushiji et al., 2001). However, many biomedical NLP systems have
merged the syntactic parser and the semantic extraction rules in a customized partial
parser that specifically targets only the relevant parts of sentences and directly extracts
the facts (Blaschke et al., 1999; Friedman et al., 2001; Ono et al., 2001; Wong, 2001;
Leroy and Chen, 2002; Pustejovsky et al., 2002; Gaizauskas et al., 2003; Koike and
Takagi, 2004; Rzhetsky et al., 2004; Saric et al., 2004a,b, 2006; Temkin and Gilder,
2003). The major drawback of this approach is that a large number of extraction rules
is needed to cover the many slightly different ways of expressing a certain on. These
rules may be either developed manually (Blaschke et al., 1999; Friedman et al., 2001;
Ono et al., 2001; Wong, 2001; Leroy and Chen, 2002; Gaizauskas et al., 2003; Huang
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et al., 2004; Koike and Takagi, 2004; Rzhetsky et al., 2004; Temkin and Gilder, 2003;
Saric et al., 2004a,b, 2006) or learned automatically from a corpus (Craven, 1999; Hao
et al., 2005). Both approaches are very labor intensive as the latter requires the prior
manual tagging of a large training corpus.

An example NLP system

To give a more detailed idea of how an NLP-based IE system works, we here show by
examples how relations are extracted by our own system (Saric et al., 2004a,b, 2006).
The system is organized in cascaded modules where the output of one module is the
input of the next module. The input text is first segmented into a sentences and tokens
using a tokenizer developed by Helmut Schmid. Each token is subsequently assigned
a part-of-speech tag using TreeTagger, which correctly tagged 96.4% of tokes after be-
ing retrained on a corrected/revised version of the GENIA corpus (Saric et al., 2004a).
Terms of particular interest (for example, kinase or phosphorylates) were subsequently
assigned semantic tags based on a lookup table.

To be able to recognize gene/protein names as such, and to associate them with
the appropriate database identifiers, a synonyms list was compiled from UniProt
(Bairoch et al., 2005) and SGD (Christie et al., 2004). The name lists is expanded
to include orthographic variants of each name and is then matched against the text.
Noun-phrases containing one or more named entities are subsequently identified
using finite state automata in the form of a CASS grammar (Abney, 1996). The
following simplified example shows how we recognize and semantically categorize a
complex, nested noun chunk:

[nx_expr
[exor €Xpression] [o of]
[nx_geneprod

[nx_gene

[at the] [nnpg argF] [gene geNne]]
[proa Product]]]

Various type of relations between genes and proteins are subsequently extracted
using separate grammar modules, which work on top of the entity recognition mod-
ule just described. The following series of examples illustrates how the rules operate
to extract the relations shown in Figure 2. All examples show a simplified bracketed
structure illustrating the major principles of our rules; the internal structure is highly
complex and derives from a pass through a number of cascading finite state transduc-
ers. Within the following examples the first line always indicates the type of relation
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that we extract, which is either phosphorylation, dephosphorylation, or regulation of
expression.

The first example shows a phosphorylation relation phrased in active voice. The
participating proteins are shown in bold-faced letters, the relational word is underlined,
and the selective negation is also marked by the negation-bracket. The NLP system
correctly extracts that Lyn phosphorylates CrkL from the following example:

[phosphorylation_active

Lyn, [negaﬁon bUt nOt Jak2 ]
phosphorylated
CrkL ]

This active-voice phosphorylation construct below is detected through the rela-
tional noun phosphorylation as argument of participates. The phosphorylation bracket
is triggered through the key word phosphorylation, enabling the system to extract that

Lyn

Phosphjryla}@@i\orylates
Phospho-
sho( e

CrkL

Phosph:rylak Q
wsphorylates
Q SHP-1

Dephosphorylates
o)

Regulates
expression
Represses Q Activates
expression expression
IL-2
iL10( ) Ik
Represses Activates
expression expression
IL-6 IL-18

Figure 2: An example network for mouse proteins. The network exemplifies the multiple types of
relations extracted by our rule based approach; the phrases from which these relations were extracted
are discussed in the main text.
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Lyn phosphorylates syk:

[phosphorylation_active
Lyn
also participates in
[phosphorylation the tyrosine phosphorylation
and activation of syk ]

The following two examples illustrate nominalization for phosphorylation. The
arguments are attached through the of and by prepositional phrases, where the latter

identifies the agent role:

[phosphorylation_nominal
the phosphorylation of

the adapter protein SHC
by the Src-related kinase Lyn ]

[phosphorylation_nominal

phosphorylation of Shec by
the hematopoietic cell-specific
tyrosine kinase Syk ]

The system is also able to identify dephosphorylation relations, as exemplified by
the following nominalisation example, from which we extract that both Syk and Btk

are dephosphorylated by SHP-1:

[dephosphorylation _nominal

Dephosphorylation of
Syk and Btk
mediated by

SHP-1]

The following examples shows gene expression relations. The first of these
illustrates the ability of our system to deal with passive voice. Based on the verb
(“induce”) and the relational noun (“expression”) we conclude that IL-2 and IL-18

activate expression of IL-13:
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[expression_activation_passive

[expression IL-13 expression |
induced by
IL-2 + IL-18 ]

Repression of gene expression relation be the next example, where one protein
(IL-10) represses the expression of two other genes (IL-2 and IL-6):

[expression_repression_active
IL-10
also decreased
[expression MRNA expression of
IL-2 and IL-6 cytokine receptors ]]

In the final example, it is only possible to extract that Btk regulates the expression
of the IL-2 gene, not whether it activates or represses it:

[expression_regulation_active

Btk

reguiates

[expression the transcription of
the IL-2 gene ||

Applications of IE

Most studies so far have focused on extracting very few types of relations. These in-
clude physical protein—protein interactions (Blaschke et al., 1999; Thomas et al., 2000;
Friedman et al., 2001; Ono et al., 2001; Stephens et al., 2001; Yakushiji et al., 2001;
Donaldson et al., 2003; Temkin and Gilder, 2003; Novichkova et al., 2003; Daraselia
et al., 2004; Huang et al., 2004; Rzhetsky et al., 2004; Cooper and Kershenbaum,
2005; Hao et al., 2005; Ramani et al., 2005) and interactions that involve unspeci-
fied molecular mechanisms among proteins (Sekimizu et al., 1998; Blaschke et al.,
1999; Proux et al., 2000; Stapley and Benoit, 2000; Friedman et al., 2001; Jenssen
etal., 2001; Stephens et al., 2001; Yakushiji et al., 2001; Blaschke and Valencia, 2002;
Pustejovsky et al., 2002; Novichkova et al., 2003; Schlitt et al., 2003; Bowers et al.,
2003; Chen and Sharp, 2004; Chiang et al., 2004; Daraselia et al., 2004; Hoffmann
and Valencia, 2004; Koike and Takagi, 2004; Rzhetsky et al., 2004; Domedel-Puig
and Wernisch, 2005; von Mering et al., 2005). Relations have also been extracted for
concepts such as disease names, Gene Ontology terms or nouns in general (Craven,
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Hsp104 Ino2

Figure 3: A literature derived network for yeast. A) The complete yeast network. The protein network
was derived from MEDLINE using both a statistical co-occurence method (von Mering et al., 2005) and
an NLP-based one (Saric et al., 2004a,b, 2006). Functional associations derived from co-occurrence are
shown in shades of gray according to the level of confidence. The NLP method extracts four types of
relations: stable physical interactions (green), regulation of expression (red), phosphorylation (dark blue),
and dephosphorylation (light blue). The proteins (circles) are colored according to their functional anno-
tation: (co-)regulators of expression (red), kinases and cyclins (dark blue), phosphatases (light blue), and
other proteins (gray). A version of this figure that includes all protein names is available as supplementary
information. B+C) Examples of unpublished relations that can be inferred from the network. From the
network we can infer that Ssn3 likely influences Hsp104 expression through phosphorylation of Msn2,
that Ume6 likely regulates Erg9 expression, and that Rim11 regulates the expression of both Ino2 and
Erg9. None of these hypotheses have been tested experimentally.
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1999; Humphreys et al., 2000; Rindflesch et al., 2000; Hahn et al., 2002; Leroy and
Chen, 2002; Raychaudhuri et al., 2002a; Becker et al., 2003; Chen and Sharp, 2004;
Wren and Garner, 2004; Alako et al., 2005; Bajdik et al., 2005; Couto et al., 2005;
Ehrler et al., 2005; Krallinger et al., 2005; Maier et al., 2005; Ray and Craven, 2005;
Rice et al., 2005; Tiffin et al., 2005; Verspoor et al., 2005). Recently, NLP meth-
ods have been developed for extracting information on gene regulation (Saric et al.,
2004a,b, 2006), protein phosphorylation (Friedman et al., 2001; Rzhetsky et al., 2004;
Hu et al., 2005; Narayanaswamy et al., 2005; Saric et al., 2006), and tissue specificity
of alternative transcripts (Shah et al., 2005). Probably because of the inherent com-
plexity of the task, only a few systems have been designed that are able to extract
multiple types of relations (Friedman et al., 2001; Novichkova et al., 2003; Daraselia
et al., 2004; Rzhetsky et al., 2004; Saric et al., 2006).

Using the NLP-based system described in the previous section, all the relations
mentioned in our example sentence can be correctly extracted (Saric et al., 2006).
To illustrate how |IE can be used at a larger scale, we have applied this method to all
MEDLINE abstracts, extracting more than 5000 binary relations (which may each be
mentioned multiple times) of which 370 are among yeast proteins. These are shown
as a network in Figure 3A along with the interactions identified by co-occurrence (von
Mering et al., 2005). The latter method identifies almost 3000 interactions among
these proteins, however, only 150 are of comparable reliability to those obtained by
NLP. With the growing interest in systems biology, IE will likely become a mainstream
tool for biologists in the near future, as it is one of the only ways to identify diverse
types of relations on a large scale.
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Text mining

Often used as a catch-all term for computational text analysis, text mining is more
strictly defined as “the discovery by computer of new, previously unknown information,
by automatically extracting information from different written resources” (M. Hearst,
personal communication; see also Ref. (Hearst, 1999)). IE methods do thus not qualify
as text mining tools themselves since they can only extract what has already been
published; rather, they form the basis for text mining much like ER does for IE (Hearst,
1999).

Mining text for overlooked “golden nuggets”

It may at first seem impossible to have a computer make discoveries based on litera-
ture alone; afterall, IE is only able to extract the facts that have already been published.
The trick is to use facts extracted from several different publications (A leads to B, B
leads to C) to infer new, indirect relations (A leads to C). Since the literature is so vast
that each researcher can only read a small subset, it may well be that no person is
aware of all the facts required to make this logical inference. This is plausible espe-
cially if the facts were published within two disconnected research areas (Swanson,
1986b,a; Hearst, 1999) or if an overwhelming number of papers is published on a
single topic (Blagosklonny and Pardee, 2002).

For almost two decades, Don Swanson has argued along these lines and used
a simple semi-automated method (ARROWSMITH (Smalheiser and Swanson, 1998;
Swanson and Smalheiser, 1999)) to infer the following novel relations: fish oil can help
patients suffering from Reynaud’s disease (Swanson, 1986a), magnesium deficiency
plays a role in migraine headache (Swanson, 1988b), arginine intake has an effect
on somatomedin C blood levels (Swanson, 1990), and that estrogen protects against
Alzheimer’s disease (Smalheiser and Swanson, 1996). These predictions have since
then been re-examined by others (Gordon and Lindsay, 1996; Lindsay and Gordon,
1999) and the two first have both been experimentally confirmed (Swanson, 1988a;
Smalheiser and Swanson, 1994). However, these early predictions were all made
using a “closed” framework where the user provides the hypothesis (A is related to C),
which is then tested by a computational search for shared, related words (B) that could
support the hypothesis; it can thus be argued that the computer did not actually make
the discovery.

The corresponding “open” discovery problem is more challenging, but also poten-
tially more rewarding, as one starts from only a single entity (A, for example a disease)
and attempts to find indirect, undiscovered relations to other entities (C, for example
chemicals or genes). Several different methods exist that all rely on the same strat-
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egy: i) identify the terms B that co-occur with A, ii) identify the terms C that co-occur
with B but not with A (Weeber et al., 2000; Hristovski et al., 2001; Srinivasan and
Libbus, 2004; Wren, 2004; Wren et al., 2004; Hristovski et al., 2005). More recently,
alternative methods based on latent semantic indexing (Homayouni et al., 2005) or
cross-subspace analysis (Matsunaga and Muramatsu, 2005) have been proposed.
The major problem with all of these approaches is that inferences are made from
undirected relations of unknown type, for which reason causality cannot be taken for
granted. For example, many Cdc28 cooccurs with many of its substrates in MEDLINE
abstracts, which would cause most existing methods to propose novel but incorrect
relations between unrelated Cdc28 substrates.

To our knowledge, no published studies have made use of NLP-based IE as the
basis for text mining, although this could ensure that the novel relations are inferred
from causal chains of relations. A likely reason is that very few NLP systems are
able to accurately extract a sufficiently large number of directed relations to enable
this approach. By using the yeast network of phosphorylation and gene expression
that we derived using IE (Figure 3A) to indirectly link 64 pairs of proteins that do not
co-occur in MEDLINE abstracts, we here show the feasibility of using NLP-based text
mining to discover novel relations. Manual inspection of the literature suggests that
over 90% of the inferred relations are correct. For example, the network suggests
that the cyclin-dependent kinase Ssn3 (also known as Srb10) influences expression
of the stress response protein Hsp104 through phosphorylation of Msn2 (Figure 3B).
It is known that Hsp104 expression is activated by the zinc finger protein Msn2 (Grably
et al., 2002) and that Msn2 is phosphorylated by Ssn3 (Chi et al., 2001). Ssn3 was
recently shown to be a repressor of general stress response, however, it remains
controversial if and how this is mediated by Msn2 phosphorylation (Figure 3B) (Bose
et al., 2005; Lenssen et al., 2005). It is thus likely that Ssn3 regulates Hsp104 ex-
pression, although it has not been experimentally verified. Similarly, it is known that
Rim11 phosphorylates Ume6 (Xiao and Mitchell, 2000) that regulates the expression
of another transcription factor, Ino2 (Eiznhamer et al., 2001), which in turn regulates
Erg9 expression (Kennedy et al., 1999). It can thus be inferred that Ume6 likely regu-
lates Erg9 expression and that Rim11 regulates the expression of both Ino2 and Erg9.
Remarkably, however, neither of these relations appear to have been described in the
published literature (Figure 3C).

While correct, the vast majority of the inferred relations in our study of yeast inter-
actions turn out to be well known, despite the proteins never having been mentioned
together in any abstract. Without full text access to all published papers, it is unfor-
tunately impossible to rule out that an inferred relation has already been published.
Also, some relations are likely considered to be so trivial that no one ever published
them. To avoid flooding the user with trivial hypotheses, text mining methods need
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to integrate other data sources than the text itself, in particular databases of curated
knowledge.

Discovery of global correlations from literature

An established data mining methodology, which has not previously been utilized in text
mining, is to search for correlated events as exemplified by Amazon’s “Customers who
bought this item also bought ...” function. In the field of biology, this can be used to
discover fundamental properties of, for example, regulatory networks.

To test the feasibility of this approach, we compared the lists of yeast proteins
shown in Figure 3 that are regulated through expression and those that are regulated
through phosphorylation. The overlap between the two sets is over four-fold larger
than expected by chance (P < 5 - 10~%), suggesting that phosphorylation and reg-
ulation of expression tend to target the same proteins, as was recently proposed by
de Lichtenberg et al. through integration of several large-scale experimental data sets
(de Lichtenberg et al., 2005). Similarly, data mining of the relations in Figure 3 reveals
that protein kinases preferentially phosphorylate each other (P < 9 - 107°) and that
transcription factors regulate the expression of each other (P < 2-10~7), reflecting the
existence of signaling cascades and transcriptional networks, respectively.

The individual pieces of information required for making other such discoveries are
likely to be present in the literature, and could be combined using a similar systematic,
computational method. A drawback of this methodology is that statistically significant
correlations can arise easily due to study biases; however, this can be overcome by
correlating IE results with genome-wide data sets. We believe that the latter type of
data mining will likely play an important role in unveiling systems-level properties.
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Text/data integration

Although text mining can be used to uncover hitherto overlooked relations, data mining
approaches that integrate literature with other data types have much greater potential
for making biological discoveries. An illustrative example of how this could be achieved
is to use sequence similarity searches to transfer the relations extracted from text
to orthologous proteins (Yandell and Majoros, 2002). Text mining methods can then
be used to make inferences based on relations from multiple model organisms, and
hence bridge communities of researchers who work on different model organisms.
To test this approach, we combined the fruit fly and mouse equivalents of Figure 3
(Saric et al., 2004a,b, 2006) using orthology assignments from the STRING database
(von Mering et al., 2005), whereby we discovered the following indirect relation. In
fruit fly, Suppressor of Hairless (Su(H)) has been shown to be a direct transcriptional
repressor of single-minded (Morel and Schweisguth, 2000). Since the mouse Single-
Minded 1 protein is a transcriptional activator of EPO (Woods and Witelaw, 2002), we
make the hypothesis that one or more of the mural Su(H) orthologs down-regulate
EPO expression, although none of them co-occur with EPO in MEDLINE abstracts.
The power of such approaches will only improve with the growth of both the literature
and the availability of large-scale dataset.

Very early on, researchers attempted to augment sequence similarity searches
with literature mining in order to improve the detection of homologous proteins (Liu
and Rost, 2000; Chang et al., 2001); despite fairly promosing results, however, this
methodology never really took off. The reason for this is likely that these methods
fail to deliver novel results since homologies that are also supported by literature are
precisely the ones that are already known. Recently, literature mining has instead
been proposed as a means to help researches get an overview of the results of a
sequence similarity search (Dieterich et al., 2005).

Today, most attempts to integrate literature and biological data are instead directed
towards the annotation of data obtained from functional genomics studies as manual
in-depth analysis is not feasible due to the amount data (Andrade and Valencia, 1998;
Shatkay et al., 2000; Blaschke et al., 2001; Jenssen et al., 2001; Masys et al., 2001;
Masys, 2001; Chaussabel and Sher, 2002; Raychaudhuri et al., 2002b; Raychaudhuri
and Altman, 2003; Raychaudhuri et al., 2003; Glenisson et al., 2004; Djebbari et al.,
2005). Most approaches use ER methods or database cross-references to first re-
trieve the MEDLINE abstracts that are associated with one or more genes, for example
a protein family or a cluster of genes that are co-expressed in a microarray experiment.
These abstracts are subsequently used either i) to identify significant overrepresenta-
tion of keywords within the text (Andrade and Valencia, 1998; Shatkay et al., 2000;
Blaschke et al., 2001) or of annotated GO/MeSH terms that characterize the genes
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in question (Masys, 2001; Masys et al., 2001; Chaussabel and Sher, 2002; Djebbari
et al., 2005; ?), ii) to evaluate the cluster coherence (a measure of functional similarity
for a group of genes) (Raychaudhuri et al., 2002b; Raychaudhuri and Altman, 2003;
Raychaudhuri et al., 2003; Glenisson et al., 2004), or iii) to construct a functional as-
sociation network of the genes based on either co-occurrence (Jenssen et al., 2001;
Schlitt et al., 2003) or document similarity (Shatkay et al., 2000). Again, although these
methods may be useful tools, they have little to offer in terms of making biological dis-
coveries.

Through their ability to bring together many different types of dage, networks have
the potential to form the basis for text and data integration. Several web-based tools
exist that provide access to protein networks based on both IE and high-throughput
experiments (Bowers et al., 2003; Hoffmann and Valencia, 2004; von Mering et al.,
2005), which have proven valuable both as exploratory tools and as a basis onto
which, for example, expression data can be mapped to visualize how the synthesis
protein complexes is regulated at the transcript level (de Lichtenberg et al., 2005).
Such networks can also be combined with other types of data to provide insight into
the molecular basis of a disease. For example, literature-based protein networks have
been integrated with genetic linkage to identify candidate genes for Alzheimer’s dis-
ease from within a region, based on their interactions with genes that are already
known to have a causal role in the disease (lossifov et al., 2004; Krauthammer et al.,
2004).

The types of networks described above only consider relations at the molecular
level; however, the possibility of making discoveries is greatly improved by integrat-
ing relations at multiple levels. This is exemplified by several literature mining tools
used to prioritize candidate genes with potential roles in inherited diseases for further
study. The first such system, G2D, was published in 2002 (Perez-Iratxeta et al., 2002).
It combines the MeSH annotation in MEDLINE with the Gene Ontology annotation in
RefSeq entries to infer logical chains of connections from disease names, via chem-
icals and drugs, to molecular functions. Combined with functional annotation inferred
from sequence similarity, this allows the genes within a mapped region to be ranked
based on their associations score with the disease in question. The BITOLA method
instead relies pure text mining to find candidate genes that are indirectly linked to a
given disease, and subsequently filters these based on chromosomal mapping data on
the disease (Hristovski et al., 2005). A third approach identifies co-occurring disease
and tissue names in MEDLINE and combines this with tissue expression annotation
from Ensembl to link the tissues to candidate disease genes (Tiffin et al., 2005). While
the original G2D method was limited to Mendelian diseases, these approaches have
recently been been shown to also work for complex genetic diseases (Perez-Iratxeta
et al., 2005; Tiffin et al., 2005).
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Figure 4: Correlating phenotypes with genotypes. Integration of gene occurrence in genomes and
keywords that are overrepresented in the literature in association with certain species (Korbel et al.,
2005). The two trees show the individual clustering of species profiles for genes and keywords, re-
spectively. The association scores between genes and keywords is visualized as a heat map. The insert
shows a cluster that contains 11 groups of orthologous genes with unknown function that are only present
in Staphylococci and certain other hospital bacteria. All these genes are strongly associated with words
that preferably occur in abstracts on those species such as osteomyelitis (a disease related to Staphylo-
cocci), cornea (a part of the eye that can be infected by Staphylocci), Cefazolin (an antibiotic often used
against Staphylococci), and Chlorhexidine (a disinfectant against which Staphylococci are resistant). As
both genes and words seem associated with this species subset, the genes are likely to be directly or
indirectly associated to the corresponding phenotypes. The genes might be directly involved in disease
phenotypes or might only indirectly be involved by contributing to the lifestyle. In any case, the specificity
of these genes to a limited set of infectious bacteria makes them candidates as drug targets.

Even broader in scope is a recent study that correlates text mining for phenotypic
information with gene occurrences across species (genotype information) to infer phe-
notypic roles for genes of unknown function (Korbel et al., 2005). MEDLINE was first
systematically searched for keywords associated with each prokaryote for which the
genome has been sequenced. The resulting species distributions of keywords were
then matched against the species distributions of genes in order to associate key-
words to genes (Figure 4). The set of keywords associated with a group of genes
can reveal the phenotypic characteristics caused by these genes. For example, genes
unique to Staphylococci and other hospital bacteria clusters together with descrip-
tive keywords such as “osteomyelitis” (a disease related to Staphylococci) and less
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obvious ones like “Chlorhexidine” (a disinfectant against which Staphylococci are re-
sistant) (Figure 4). This suggests putative roles for these genes of unknown function
and highlights them possible drug targets. When applied globally, the approach re-
captured many known genotype—phenotype relations and also predicted several novel
ones, such as enzymes involved in plant degradation and genomic determinants for
food poisoning (Korbel et al., 2005).
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Outlook

The peer reviewed scientific literature will continue to be a prime resource for access-
ing the worldwide scientific knowledge and its ongoing growth and diversification will
require tremendous systematic and automated efforts to utilize the information therein.
In the near future, tools for mining this knowledge base will likely play a pivotal role in
systems biology. So far, more than 90% of all biomedical literature mining has been
based on MEDLINE, mainly because it is freely availably in a convenient format. To
realize the full potential, future methods will need to work on full text papers, including
context such as the citation network. This will require some methodological improve-
ments as not all sections of a paper are equally relevant (Shah et al., 2003; Schuemie
et al., 2004) and because some information must be extracted from figures and ta-
bles. However, it is the restricted access to full text papers and citation information,
not the technology, that is currently the biggest limitation despite encouraging open ac-
cess initiatives like PubMed Central and Highwire Press (Yandell and Majoros, 2002;
Dickman, 2005).

Bridging the gap between biologists and computational linguists will be crucial
to the success of biomedical literature mining in general its integration with high-
throughput experimental data in particular. The field is currently dominated by re-
searchers with a computational background, however, only biologists possess the
knowledge required to properly evaluate methods, to identify specific tasks for which
tools are needed, and to point out other data sources that would be valuable to in-
tegrate with literature. To bring more biologists into the field, tool developers need
to focus more on designing user interfaces that make the tools accessible to non-
specialists. Finally, both sides need to contribute to the diversity and novelty within
this field, where too many researchers currently use the same few methods to solve
the same few tasks. We hope that this review will make more biologists aware of the
importance of literature mining, and that it will inspire the development of new tools for
making the most of the growing bodies of both scientific literature and experimental
data.
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Online tools and resources

Web-based applications

Information retrieval (IR)

E-BioSci (http://www.e-biosci.org)

EBIMed (http://www.ebi.ac.uk/Rebholz-srv/ebimed/)
GenelnfoMiner (http://brainarray.mbni.med.umich.edu/GIM. asp)
Google Scholar (http://scholar.google.com)

GoPubMed (http://www.gopubmed. org)

MedMiner (http://discover.nci.nih.gov/textmining/)
PubMed (http://www.pubmed.org)

PubFinder (http://www.glycosciences.de/tools/PubFinder/)
Textpresso (http://www.textpresso.org)

XplorMed (http://www.ogic.ca/projects/xplormed/)

Entity recognition (ER)
iHOP (http://www.pdg.cnb.uam.es/UniPub/iHOP/)
Whatizit (http://www.ebi.ac.uk/Rebholz-srv/whatizit/)

Information extraction (IE)

BiolE (http://umber.sbs.man.ac.uk/dbbrowser/bioie/)
iProLINK (http://pir.georgetown.edu/iprolink/)
JournalMine (http://textmine.cu-genome.org)

MedLEE (http://lucid.cpmc.columbia.edu/medlee/)
PreBIND (http://prebind.bind.ca)

Protein Corral (http://www.ebi.ac.uk/Rebholz-srv/pcorral/)
PubGene (http://www.pubgene.org)

Text mining
ARROWSMITH (http://arrowsmith.psych.uic.edu)

Integration BITOLA (http://www.mf .uni-1j.si/bitola/)
G2D (http://www.ogic.ca/projects/g2d 2/)

ProLinks (http://dip.doe-mbi.ucla.edu/pronav/)
STRING (http://string.embl.de)
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Text collections

Full text corpora
HighWire Press (http://highwire.stanford.edu)
PubMed Central (http://www.pubmedcentral.org)

Tagged corpora
FetchProt (http://fetchprot.sics.se)
GENETAG (ftp://ftp.ncbi.nlm.nih.gov/pub/tanabe/)
GENIA (http://www-tsujii.is.s.u-tokyo.ac.jp/GENIA/)
PennBiolE (http://bioie.1ldc.upenn.edu)
Yapex (http://www.sics.se/humle/projects/prothalt/)

IE modules

Entity taggers
ABNER (http://www.cs.wisc.edu/~bsettles/abner/)
GAPSCORE (http://bionlp.stanford.edu/gapscore/)

Part-of-speech taggers

Brill Tagger (http://www.cs. jhu.edu/~brill/)

TNT Tagger (http://www.coli.uni-saarland.de/~thorsten/tnt/)
TreeTagger (http://www.ims.uni-stuttgart.de/~schmid/)

Parsers

CASS (http://www.vinartus.net/spa/)

Collins Parser (http://people.csail.mit.edu/mcollins/)
LTG Software (http://www.ltg.ed.ac.uk/software)
SNOW (http://12r.cs.uiuc.edu/~cogcomp/software.php)
Stanford Parser (http://nlp.stanford.edu/software/)



Literature mining for the biologist 27

References

Abney, S. (1996). Partial parsing via finite-state cascades. In Proceedings of the
ESSLLI 96 Robust Parsing Workshop, pages 8-15, Prague, Czech Republic.

Alako, B. T., Veldhoven, A., van Baal, S., Jelier, R., Verhoeven, S., Rullmann, T.,
Polman, J., and Jenster, G. (2005). CoPub Mapper: mining MEDLINE based on
search term co-publication. BMC Bioinformatics, 6:51.

Andrade, M. A. and Bork, P. (2000). Automated extraction of information in molecular
biology. FEBS Letters, 476:12-17.

Andrade, M. A. and Valencia, A. (1998). Automatic extraction of keywords from sci-
entific text: application to the knowledge domain of protein families. Bioinformatics,
14:600-607.

Aronson, A. R., Demner, D., Humphrey, S. M., Ide, N. C., Kim, W., Liu, H., Loane,
R. R., Mork, J. G., Smith, L. H., Tanabe, L. K., Wilbur, W. J., and Xie, N. (2004).
Knowledge-intensive and statistical approaches to the retrieval and annotation of
genomics MEDLINE citations. In Proceedings of TREC 2004, volume 13.

Asano, S., Park, J. E., Sakchaisri, K., Yu, L. R., Song, S., Supavilai, P., Veenstra, T. D.,
and Lee, K. S. (2005). Concerted mechanism of swe1/wee1 regulation by multiple
kinases in budding yeast. EMBO J., 24:2194-2204.

Bairoch, A., Apweiler, R., Wu, C. H., Barker, W. C., Boeckmann, B., Ferro, S.,
Gasteiger, E., Huang, H., Lopez, R., Magrane, M., Martin, M. J., Natale, D. A,
O’Donovan, C., Redaschi, N., and Yeh, L. S. (2005). The universal protein resource
(UniProt). Nucleic Acids Res., 33:D154-D159.

Bajdik, C. D., Kuo, B., Rusaw, S., Jones, S., and Brooks-Wilson, A. (2005). CGMIM:
Automated text-mining of Online Mendelian Inheritance in Man (OMIM) to identify
genetically-associated cancers and candidate genes. BMC Bioinformatics, 6:78.

Becker, K. G., Hosack, D. A., Dennis, G., J., Lempicki, R. A., Bright, T. J., Cheadle,
C., and Engel, J. (2003). PubMatrix: a tool for multiplex literature mining. BMC
Bioinformatics, 4:61.

Bhalotia, G., Nakov, P. I., Schwartz, A. S., and Hearst, M. A. (2003). BioText team
report for the TREC 2003 genomics track. In Proceedings of TREC 2003, volume 12.

Blagosklonny, M. V. and Pardee, A. B. (2002). Unearthing the gems. Nature, 416:373.

Blaschke, C., Andrade, M. A., Ouzounis, C., and Valencia, A. (1999). Automatic ex-
traction of biological information from scientific text: protein—protein interactions. In



28 Literature mining for the biologist

Proc. Int. Conf. Intell. Syst. Mol. Biol., volume 7, pages 60—67, Menlo Park, CA.
AAAI Press.

Blaschke, C., Oliveros, J. C., and Valencia, A. (2001). Mining functional information
associated with expression arrays. Funct. Integr. Genomics, 1:256—268.

Blaschke, C. and Valencia, A. (2002). The frame-based module of the SUISEKI infor-
mation extraction system. |EEE Intelligent Systems, 17:14-20.

Bose, S., Dutko, J. A., and Zitomer, R. S. (2005). Genetic factors that regulate the
attenuation of the general stress response of yeast. Genetics, 169:1215-1226.

Bowers, P. M., Pellegrini, M., Thompson, M. J., Fierro, J., Yeates, T. O., and Eisen-
berg, D. (2003). Prolinks: a database of protein functional linkages derived from
coevolution. Nucleic Acids Res., 5:R35.

Bussey, K. J., Kane, D., Sunshine, M., Narasimhan, S., Nishizuka, S., Reinhold, W. C.,
Zeeberg, B., Ajay, W., and Weinstein, J. N. (2003). MatchMiner: a tool for batch
navigation among gene and gene product identifiers. Genome Biology, 4:R27.

Buttcher, S., Clarke, C. L. A., and Cormack, G. V. (2004). Domain-specific synonym
expansion and validation for biomedical information retrieval. In Proceedings of
TREC 2004, volume 13.

Chang, J. T., Raychaudhuri, S., and Altman, R. B. (2001). Including biological literature
improves homology search. In Pac. Symp. Biocomput., volume 6, pages 374—383,
Hawaii. World Scientific.

Chang, J. T., Schutze, H., and Altman, R. B. (2004). GAPSCORE: finding gene and
protein names one word at a time. Bioinformatics, 20:216—-225.

Chaussabel, D. and Sher, A. (2002). Mining microarray expression data by literature
profiling. Genome Biol., 3:RESEARCHO0055.

Chen, H. and Sharp, B. M. (2004). Content-rich biological network constructed by
mining PubMed abstracts. BMC Bioinformatics, 5:147.

Chen, L., Liu, H., and Friedman, C. (2005). Gene name ambiguity of eukaryotic
nomenclatures. Bioinformatics, 21:248—-256.

Chi, Y., Huddleston, M. J., Zhang, X., Young, R. A., Annan, R. S., Carr, S. A., and
Deshaies, R. J. (2001). Negative regulation of Gecn4 and Msn2 transcription factors
by Srb10 cyclin-dependent kinase. Genes Dev., 15:1078—-1092.

Chiang, J.-H., Yu, H.-C., and Hsu, H.-J. (2004). GIS: a biomedical text-mining system
for gene information discovery. Bioinformatics, 20:120-121.



Literature mining for the biologist 29

Christie, K. R., Weng, S., Balakrishnan, R., Costanzo, M. C., Dolinski, K., Dwight,
S. S, Engel, S. R., Feierbach, B., Fisk, D. G., Hirschman, J. E., Hong, E. L., Issel-
Tarver, L., Nash, R., Sethuraman, A., Starr, B., Theesfeld, C. L., Andrada, R., Bink-
ley, G., Dong, Q., Lane, C., Schroeder, M., Botstein, D., and Cherry, J. M. (2004).
Saccharomyces Genome Database (SGD) provides tools to identify and analyze
sequences from Saccharomyces cerevisiae and related sequences from other or-
ganisms. Nucleic Acids Res., 32:D311-D314.

Cimiano, P., Reyle, U., and Saric, J. (2006). Status of text-mining techniques applied
to biomedical text. Drug Discovery Today, 11:315-325.

Coller, N., Nobata, C., and Tsujii, J. (2000). Extracting the names of genes and gene
products with a hidden Markov model. In Int. Conf. Comput. Linguistics, volume 18,
pages 201-207.

Collier, N., Nobata, C., and Tsuijii, J. (2002). Automatic acquisition and classification of
terminology using a tagged corpus in the molecular biology domain. Terminology,
7:239-257.

Colosimo, M. E., Morgan, A. A, Yeh, A. S., Colombe, J. B., and Hirschman, L. (2005).
Data preparation and interannotator agreement: BioCreAtlvE Task 1B. BMC Bioin-
formatics, 6:S12.

Cooper, J. W. and Kershenbaum, A. (2005). Discovery of protein—protein interactions
using a combination of linguistic, statistical and graphical information. BMC Bioin-
formatics, 6:143.

Couto, F. M., Silva, M. J., and Coutino, P. M. (2005). Finding genomic ontology terms
in text using evidence content. BMC Bioinformatics, 6:S21.

Craven, M. Kumlien, J. (1999). Constructing biological knowledge bases by extracting
information from text sources. In Proc. Int. Conf. Intell. Syst. Mol. Biol., volume 7,
pages 77-86, Menlo Park, CA. AAAI Press.

Crim, J., McDonald, R., and Pereira, F. (2005). Automatically annotating documents
with normalized gene lists. BMC Bioinformatics, 6:S183.

Daraselia, N., Yuruev, A., Egorov, S., Novichkova, S., Nikitin, A., and Mazo, I. (2004).
Extracting human protein interactions from MEDLINE using a full-sentence parser.
Bioinformatics, 20:604—611.

de Lichtenberg, U., Jensen, L. J., Brunak, S., and Bork, P. (2005). Dynamic complex
formation during the yeast cell cycle. Science, 307:724-727.



30 Literature mining for the biologist

Dickman, S. (2005). Tough mining. PLoS Biology, 1:144—147.

Dieterich, G., Karst, U., Wehland, J., and Jansch, L. (2005). MineBlast: a literature
presentation service supporting protein annotation by data mining of BLAST results.
Bioinformatics, 21:3450—3451.

Ding, J., Berleant, d., Nettleton, D., and Wurtelle, E. (2002). Mining Medline: Abstracts,
sentences, or phrases? In Pac. Symp. Biocomput., volume 7, pages 326-337,
Hawaii. World Scientific.

Djebbari, A., Karamycheva, S., Howe, E., and Quackenbush, J. (2005). MeSHer:
identifying biological concepts in microarray assays based on PubMed references
and MeSH terms. Bioinformatics, 21:3324—3326.

Domedel-Puig, N. and Wernisch, L. (2005). Applying GIFT, a Gene Interactions Finder
in Text, to fly literature. Bioinformatics, 21.

Doms, A. and Schroeder, M. (2005). GoPubMed: exploring PubMed with the Gene
Ontology. Nucleic Acids Res., 33:W783-W786.

Donaldson, I., Martin, J., de Bruijn, B., Wolting, C., Lay, V., Tuekam, B., Zhang, S.,
Baskin, B., Bader, G. D., Michalickova, K., Pawson, T., and Hogue, C. W. V. (2003).
PreBIND and Textomy—mining the biomedical literature for protein—protein interac-
tions using a support vector machine. BMC Bioinformatics, 4:art. 11.

Ehrler, F., Geissbihler, A., Jimeno, A., and Ruch, P. (2005). Data-poor categorization
and passage retrieval for gene ontology annotation in swiss-prot. BMC Bioinformat-
ics, 6:S23.

Eiznhamer, D. A., Ashburner, B. P.,, Jackson, J. C., Gardenour, K. R., and Lopes,
J. M. (2001). Expression of the INO2 regulatory gene of Saccharomyces cerevisiae
is controlled by positive and negative promoter elements and an upstream open
reading frame. Mol. Microbiol., 39:1395-1405.

Finkel, J., Dingare, S., Manning, C. D., Nissim, M., Alex, B., and Grover, C. (2005).
Exploring the boundaries: gene and protein identification in biomedical text. BMC
Bioinformatics, 6:S5.

Franzen, K., Eriksson, G., Olsson, F,, Asker, L., Liden, P., and Coster, J. (2002). Pro-
tein names and how to find them. Int. J. Med. Inform., 67:49—-61.

Friedman, C., Kra, P, Yu, H., Krauthammer, M., and Rzhetsky, A. (2001). GENIES: a
natural-language processing system for the extraction of molecular pathways from
journal articles. Bioinformatics, 17 Suppl. 1:S74-S82.



Literature mining for the biologist 31

Fukuda, K., Tamura, A., Tsunoda, T., and Takagi, T. (1998). Toward information extrac-
tion: identifying protein names from biological papers. In Pac. Symp. Biocomput.,
volume 3, pages 707-718, Hawaii. World Scientific.

Fundel, K., Guttler, D., Zimmer, R., and Apostolakis, J. (2005). A simple approach for
protein name identification: prospects and limits. BMC Bioinformatics, 6:S15.

Gaizauskas, R. J., Demetriou, G., Artymiuk, P. J., and Willett, P. (2003). Protein struc-
tures and information extraction from biological texts: The PASTA system. Bioinfor-
matics, 19:135—-143.

Gaudan, S., Kirsch, H., and Rebholz-Schuhmann, D. (2005). Resolving abbreviations
to their senses in Medline. Bioinformatics, 21.

Glenisson, P., Antal, P., Mathys, J., Moreau, Y., and De Moor, B. (2003). Evaluation
of the vector space representation in text-based gene clustering. In Pac. Symp.
Biocomput., volume 8, pages 391-402, Hawaii. World Scientific.

Glenisson, P., Coessens, B., Van Vooren, S., Mathys, J., Moreau, Y., and De Moor, B.
(2004). TXTGate: profiling gene groups with text-based information. Genome Biol.,
5:R43.

Goetz, T. and von der Lieth, C.-W. (2005). PubFinder: a tool for improving retrieval
rate of relevant PubMed abstracts. Nucleic Acids Res., 33:W774-W778.

Gordon, M. D. and Lindsay, R. K. (1996). Toward discovery support systems: A replica-
tion, re-examination, and extension of Swanson’s work on literature-based discovery
of a connection between Raynaud’s and fish oil. J. Am. Soc. Inf. Sci., 47:116—-128.

Grably, M. R., Stanhill, A., Tell, O., and Engelberg, D. (2002). HSF and Msn2/4p
can exclusively or cooperatively activate the yeast HSP104 gene. Mol. Microbiol.,
44:21-35.

Hahn, U., Romacker, M., and Schulz, S. (2002). Creating knowledge repositories
from biomedical reports: the MEDSYNDIKATE text mining system. In Pac. Symp.
Biocomput., volume 7, pages 338—349, Hawaii. World Scientific.

Hakenberg, J., Bickel, S., Plake, C., Brefeld, U., Zahn, H., Faulstich, L., Leser, U., and
Scheffer, T. (2005). Systematic feature evaluation for gene name recognition. BMC
Bioinformatics, 6:S9.

Hanisch, D., Fluck, J., Mevissen, H. T., and Zimmer, R. (2003). Playing biology’s
name game: identifying protein names in scientific text. In Pac. Symp. Biocomput.,
volume 8, pages 403—-414, Hawaii. World Scientific.



32 Literature mining for the biologist

Hanisch, D., Fundel, K., Mevissen, H. T., Zimmer, R., and Fluck, J. (2005). ProMiner:
rule-based protein and gene entity recognition. BMC Bioinformatics, 6:514.

Hao, Y., Zhu, X., Huang, M., and M., L. (2005). Discovering patterns to extract protein-
protein interactions from the literature: part Il. Bioinformatics, 21.

Hatzivassiloglou, V., Duboue, P. A., and Rzhetsky, A. (2001). Disambiguating proteins,
genes, and RNA in text: a machine learning approach. Bioinformatics, 17 Suppl.
1:597-5106.

Hearst, M. A. (1999). Untangling text data mining. In Proceedings of the 37th Annual
Meeting of the Association for Computational Linguistics.

Hersh, W., Bhupatiraju, R. T., and Corley, S. (2004a). Enhancing access to the bib-
liome: the TREC genomics track. Medinfo., 11:773-777.

Hersh, W. and Bhuptiraju, R. T. (2003). TREC genomics track overview. In Proceed-
ings of TREC 2003, volume 12.

Hersh, W. R., Bhuptiraju, R. T., Ross, L., Johnson, P, Cohen, A. M., and Kraemer,
D. F. (2004b). TREC 2004 genomics track overview. In Proceedings of TREC 2004,
volume 13.

Hirschman, L., Colosimo, M., Morgan, A., and Yeh, A. (2005). Overview of BioCreAtlvE
task 1B: normalized gene lists. BMC Bioinformatics, 6:S11.

Hirschman, L., Park, J. C., Tsujii, J., Wong, L., and Wu, C. H. (2002). Accomplishments
and challenges in literature data mining for biology. Bioinformatics, 18:1553—1561.

Hoffmann, R., Krallinger, M., Andres, E., Tamames, J., Blaschke, C., and Valencia,
A. (2005). Text mining for metabolic pathways, signaling cascades, and protein
networks. Sci. STKE, 283:pe21.

Hoffmann, R. and Valencia, A. (2004). A gene network for navigating the literature.
Nature Genetics, 36:664.

Homayouni, R., Heinrich, K., Wei, L., and Berry, M. W. (2005). Gene clustering by
Latent Semantic Indexing of MEDLINE abstracts. Bioinformatics, 21:104—115.

Hristovski, D., Peterlin, B., Mitchell, J. A., and Humphrey, S. M. (2005). Using literature-
based discovery to identify disease candidate genes. Int. J. Med. Inform., 74:289—
298.

Hristovski, D., Stare, J., Peterlin, B., and Dzeroski, S. (2001). Supporting discovery in
medicine by association rule mining in MEDLINE and UMLS. Medinfo., 10:1344—
1348.



Literature mining for the biologist 33

Hu, Z. Z., Narayanaswamy, M., Ravikumar, K. E., Vijay-Shanker, K., and Wu, C. H.
(2005). Literature mining and database annotation of protein phosphorylation using
a rule-based system. Bioinformatics, 21:2759-2765.

Huang, M., Zhu, X., Hao, Y., Payan, D. G., Qu, K., and Li, M. (2004). Discover-
ing patterns to extract protein-protein interactions from full texts. Bioinformatics,
20:3604-3612.

Humphreys, K., Demetriou, G., and Gaizauskas, R. (2000). Two applications of in-
formation extraction to biological science journal articles: Enzyme interactions and
protein structures. In Pac. Symp. Biocomput., volume 5, pages 505-516, Hawaii.
World Scientific.

lliopoulos, I. Enright, A. J. and Ouzounis, C. A. (2001). Textquest: document cluster-
ing of medline abstracts for concept discovery in molecular biology. In Pac. Symp.
Biocomput., volume 6, pages 384—395, Hawaii. World Scientific.

lossifov, I., Krauthammer, M., Friedman, C., Hatzivassiloglou, V., Bader, J. S., White,
K. P, and Rzhetsky, A. (2004). Probabilistic inference of molecular networks from
noisy data sources. Bioinformatics, 20:1205-1213.

Jensen, L. J., Saric, J., and Bork, P. (2006). Literature mining for the biologist: from
information retrieval to biological discovery. Nat. Rev. Genet., 7:119-129.

Jenssen, T. K., Leegreid, A., Komorowski, J., and Hovig, E. (2001). A literature network
of human genes for high-throughput analysis of gene expression. Nature Genetics,
28:21-28.

Kayaalp, M., Aronson, A. R., Humphrey, S. M., Ide, N. C., Tanabe, L. K., Smith, L. H.,
Demner, D., Loane, R. R., Mork, J. G., and Bodenreider, O. (2003). Methods for
accurate retrieval of MEDLINE citations in functional genomics. In Proceedings of
TREC 2003, volume 12.

Kennedy, M. A., Barbuch, R., and Bard, M. (1999). Transcriptional regulation of the
squalene synthase gene (ERG9) in the yeast Saccharomyces cerevisiae. Biochim.
Biophys. Acta, 1445:110-122.

Kim, J.-D., Ohta, T., Tateisi, Y., and Tsuijii, J. (2003). GENIA corpus—a semantically
annotated corpus for bio-textmining. Bioinformatics, 19 suppl. 1:i1180-i182.

Koike, A. and Takagi, T. (2004). PRIME: automatically extracted PRotein Interactions
and Moolecular Information databasE. In silico Biology, 5:0004.



34 Literature mining for the biologist

Korbel, J. O., Doerks, T., Jensen, L. J., Perez-lratxeta, C., Kaczanowski, S., Hooper,
S. D., Andrade, M. A., and Bork, P. (2005). Systematic association of genes to
phenotypes by genome and literature mining. PLoS Biol., 3:e134.

Kou, Z., Cohen, W. W., and Murphy, R. F. (2005). High-recall protein entity recognition
using a dictionary. Bioinformatics, 21:i266—i273.

Krallinger, M., Padron, M., and Valencia, A. (2005). A sliding window approach to
extract protein annotations from biomedical articles. BMC Bioinformatics, 6:S19.

Krallinger, M. and Valencia, A. (2005). Text-mining and information-retrieval services
for molecular biology. Genome Biology, 6:224.

Krauthammer, M., Kaufmann, C. A., Gilliam, T. C., and Rzhetsky, A. (2004). Molecu-
lar triangulation: Bridging linkage and molecular-network information for identifying
candidate genes in Alzheimer’s disease. Proc. Natl. Acad. Sci. U.S.A., 101:15148—
15153.

Krauthammer, M., Rzhetsky, A., Morozov, P, and C., F. (2000). Using blast for identi-
fying gene and protein names in journal articles. Gene, 259:245-252.

Lenssen, E., James, N., Pedruzzi, |., Dubouloz, F., Cameroni, E., Bisig, R., Maillet, L.,
Werner, M., Roosen, J., Petrovic, K., Winderickx, J., Collart, M. A., and De Virgilio, C.
(2005). The Ccr4-Not complex independently controls both Msn2-dependent tran-
scriptional activation—via a newly identified Glc7/Bud14 type | protein phosphatase
module—and TFIID promoter distribution. Mol. Cell. Biol., 25:488—-498.

Leonard, J. E., Colombe, J. B., and Levy, J. L. (2002). Finding relevant references to
genes and proteins in Medline using a Bayesian approach. Bioinformatics, 18:1515—
1522.

Leroy, G. and Chen, H. (2002). Filling preposition-based templates to capture informa-
tion from medical abstracts. In Pac. Symp. Biocomput., volume 7, pages 350-361,
Hawaii. World Scientific.

Lindsay, R. K. and Gordon, M. D. (1999). Literature-based discovery by lexical statis-
tics. J. Am. Soc. Inf. Sci., 50:574-587.

Liu, J. and Rost, B. (2000). SAWTED: Structure Assignment With Text Description—
enhanced detection of remote homologues with automated SWISS-PROT annota-
tion comparisons. Bioinformatics, 16:125-129.

Maier, H., Dohr, S., Grote, K., O’'Keeffe, S., Werner, T., Hrabé de Angelis, M., and
Schneider, R. (2005). LitMiner and WikiGene: identifying problem-related key play-



Literature mining for the biologist 35

ers of gene regulation using publication abstracts. Nucleic Acids Res., 33:W779—
W782.

Manning, C. D. and Schitze, H. (1999). Foundations of statistical natural language
processing. MIT Press, Cambridge, MA, USA.

Marcotte, E. M., Xenarios, I., and Eisenberg, D. (2001). Mining literature for protein—
protein interactions. Bioinformatics, 17:359-363.

Masys, D. R. (2001). Linking microarray data to the literature. Nature Genetics, 28:9—
10.

Masys, D. R., Welsh, J. B., Lynn Fink, J., Gribskov, M., Klacansky, I., and Corbeil, J.
(2001). Use of keyword hierarchies to interpret gene expression patterns. Bioinfor-
matics, 17:319-326.

Matsunaga, T. and Muramatsu, M. (2005). Knowledge-based computational search
for genes associated with the metabolic syndrome. Bioinformatics, 21:3146—3154.

McDonald, R. and Pereira, F. (2005). Identifying gene and protein mentions in text
using conditional random fields. BMC Bioinformatics, 6:S6.

Mika, S. and Rost, B. (2004). Protein names precisely peeled off free text. Bioinfor-
matics, 20:i241—-i247.

Mitsumori, T., Fation, S., Murata, M., Doi, K., and Doi, H. (2005). Gene/protein name
recognition based on support vector machine using dictionary as features. BMC
Bioinformatics, 6:S8.

Morel, V. and Schweisguth, F. (2000). Repression by Suppressor of Hairless and
activation by Notch are required to define a single row of single-minded expressing
cells in the Drosophila embryo. Genes Dev., 14:377-388.

Muller, H. M., Kenny, E. E., and Sternberg, P. W. (2004). Textpresso: an ontology-
based information retrieval and extraction system for biological literature. PLoS Biol.,
2:e309.

Narayanaswamy, M., Ravikumar, K. E., and Vijay-Shanker, K. (2003). A biological
named entity recognizer. In Pac. Symp. Biocomput., volume 8, pages 427—438,
Hawaii. World Scientific.

Narayanaswamy, M., Ravikumar, K. E., and Vijay-Shanker, K. (2005). Beyond the
clause: extraction of phosphorylation information from medline abstracts. Bioinfor-
matics, 21:i319—-i327.



36 Literature mining for the biologist

Novichkova, S., Egorov, S., and Daraselia, N. (2003). MedScan, a natural language
processing engine for MEDLINE abstracts. Bioinformatics, 19:1699-1706.

Ono, T., Hishigaki, H., Tanigami, A., and Takagi, T. (2001). Automated extraction of
information on protein—protein interactions from the biological literature. Bioinfor-
matics, 17:155-161.

Perez-Iratxeta, C., Bork, P, and A., A. M. (2001). XplorMed: a tool for exploring
MEDLINE abstracts. Trends Biochem. Sci., 26:573-575.

Perez-Iratxeta, C., Bork, P.,, and Andrade, M. A. (2002). Association of genes to ge-
netically inherited diseases using text mining. Nature Genetics, 31:316-319.

Perez-Iratxeta, C., Perez, A. J., Bork, P, and A., A. M. (2003). Update on XplorMed: a
web server for exploring scientific literature. Nucleic Acids Res., 31:3866—-3868.

Perez-Iratxeta, C., Wijst, M., Bork, P., and Andrade, M. A. (2005). G2D: A tool for
mining genes associated to disease. BMC Genetics, 6:45.

Pillet, V., Zehnder, M., Seewald, A. K., Veuthey, A. L., and Petrak, J. (2005). GPSDB: a
new database for synonyms expansion of gene and protein names. Bioinformatics,
21:1743-1744.

Proux, D., Rechenmann, F,, and Julliard, L. (2000). A pragmatic information extraction
strategy for gathering data on genetic interactions. In Proc. Int. Conf. Intell. Syst.
Mol. Biol., volume 8, pages 179-285, Menlo Park, CA. AAAI Press.

Proux, D., Rechenmann, F, Julliard, L., Pillet, V. V., and Jacq, B. (1998). Detecting
gene symbols and names in biological texts: A first step towards pertinent informa-
tion extraction. Genome Inform. Ser. Workshop Genome Inform., 9:72—80.

Pustejovsky, J., Castano, J., Cochran, B., , and Morrell, M. (2001). Automatic extrac-
tion of acronym-meaning pairs from MEDLINE databases. Medinfo., 10:371-375.

Pustejovsky, J., Castano, J., Zhang, J., Kotecki, M., and Cochran, B. (2002). Robust
relational parsing over biomedical literature: Extracting inhibit relations. In Pac.
Symp. Biocomput., volume 7, pages 362—-373, Hawaii. World Scientific.

Ramani, A. K., Bunescu, R. C., Mooney, R. J., and Marcotte, E. M. (2005). Con-
solidating the set of known human protein—protein interactions in preparation for
large-scale mapping of the human interactome. Genome Biology, 6:R40.

Ray, S. and Craven, M. (2005). Learning statistical models for annotating proteins with
function information using biomedical text. BMC Bioinformatics, 6:S18.



Literature mining for the biologist 37

Raychaudhuri, S. and Altman, R. B. (2003). A literature-based method for assessing
the functional coherence of a gene group. Bioinformatics, 19:396—401.

Raychaudhuri, S., Chang, J. T., Imam, F,, and Altman, R. B. (2003). The computational
analysis of scientific literature to define and recognize gene expression clusters.
Nucleic Acids Res., 31:4553—-4560.

Raychaudhuri, S., Chang, J. T., Sutphin, P. D., and Altman, R. B. (2002a). Associating
genes with Gene Ontology codes using a maximum entropy analysis of biomedical
literature. Genome Res., 12:203-214.

Raychaudhuri, S., Schutze, H., and Altman, R. B. (2002b). Using text analysis to
identify functionally coherent gene groups. Genome Res., 12:1582—1590.

Rebholz-Schuhmann, D. (2005). Facts from text—is text mining ready to deliver. PLoS
Biology, 3:€65.

Renner, A. and Aszodi, A. (2000). High-throughput functional annotation of novel gene
products using document clustering. In Pac. Symp. Biocomput., volume 5, pages
50-68, Hawaii. World Scientific.

Rice, S. B., Nenadic, G., and Stapley, B. J. (2005). Mining protein function from text
using term-based support vector machines. BMC Bioinformatics, 6:S22.

Rindflesch, T. C., Tanabe, L., Weinstein, J. N., and Hunter, L. (2000). EDGAR: ex-
traction of drugs, genes and relations from the biomedical literature. In Pac. Symp.
Biocomput., volume 1, pages 517-528, Hawaii. World Scientific.

Rzhetsky, A., lossifov, |., Koike, T., Krauthammer, M., Kra, P., Morris, M., Yu, H.,
Dubou’e, P. A., Weng, W., Wilbur, W. J., Hatzivassiloglou, V., and Friedman, C.
(2004). GeneWays: a system for extracting, analyzing, visualizing, and integrating
molecular pathway data. J. Biomed. Inform., 37:43-53.

Saric, J., Jensen, L. J., Ouzounova, R., Rojas, I., and Bork, P. (2004a). Extracting
regulatory gene expression networks from pubmed. In Proceedings of the 42nd
Annual Meeting of the Association for Computational Linguistics.

Saric, J., Jensen, L. J., Ouzounova, R., Rojas, I., and Bork, P. (2006). Extraction of
regulatory gene/protein networks from Medline. Bioinformatics, 22:645-650.

Saric, J., Jensen, L. J., and Rojas, |. (2004b). Large-scale extraction of gene regulation
for model organisms in an ontological context. In silico Biology, 5:0003.

Scherf, M., Epple, A., and Werner, T. (2005). The next generation of literature analysis:
Integration of genomic analysis into text mining. Brief Bioinform., 6:287-297.



38 Literature mining for the biologist

Schijvenaars, B. J. A., Mons, B., Weeber, M., Schuemie, M. J., van Mulligen, E. M.,
Wain, H. W., and Kors, J. A. (2005). Thesaurus-based disambiguation of gene
symbols. BMC Bioinformatics, 6:149.

Schlitt, T., Palin, K., Rung, J., Dietmann, S., Lappe, M., Ukkonen, E., and Brazma, A.
(2003). From gene networks to gene function. Genome Res., 13:2568—-2576.

Schuemie, M. J., Weeber, M., Schijvenaars, B. J. A., van Mulligen, E. M., van der
Eijk, C. C., Jelier, R., Mons, B., and Kors, J. A. (2004). Distribution of information in
biomedical abstracts and full-text publications. Bioinformatics, 20:2597—2604.

Seki, K. and Mostafa, J. (2005). An approach to protein name extraction using heuris-
tics and a dictionary. Proceedings of the American Society for Information Science
and Technology, 40:71-77.

Sekimizu, T., Park, H. S., and Tsujii, J. (1998). Identifying the interaction between
genes and gene products based on frequently seen verbs in Medline abstracts.
Genome Inform. Ser. Workshop Genome Inform., 9:62—71.

Settles, B. (2005). ABNER: an open source tool for automatically tagging genes,
proteins, and other entity names in text. Bioinformatics, 21:3191-3192.

Shah, P. K., Jensen, L. J., Boue, S., and Bork, P. (2005). Extraction of transcript
diversity from scientific literature. PLoS Comput. Biol., 1:e10.

Shah, P. K., Perez-Iratxeta, C., Bork, P., and Andrade, M. A. (2003). Information extrac-
tion from full text scientific articles: Where are the keywords? BMC Bioinformatics,
4:20.

Shatkay, H. (2005). Hairpins in bookstacks: Information retrieval from biomedical text.
Brief Bioinform., 6:222—238.

Shatkay, H., Edwards, S., Wilbur, W. J., and Boguski, M. (2000). Genes, themes
and microarrays: using information retrieval for large-scale gene analysis. In Proc.
Int. Conf. Intell. Syst. Mol. Biol., volume 8, pages 317-328, Menlo Park, CA. AAAI
Press.

Shi, L. and Campagne, F. (2005). Building a protein name dictionary from full text: a
machine learning term extraction approach. BMC Bioinformatics, 6:88.

Skusa, A., Ruegg, A., and Kohler, J. (2005). Extraction of biological interaction net-
works from scientific literature. Brief Bioinform., 6:263—276.

Smalheiser, N. R. and Swanson, D. R. (1994). Assessing a gap in the biomedical
literature: Magnesium deficiency and neurological disease. Neuroscience Research
Communications, 15:1-9.



Literature mining for the biologist 39

Smalheiser, N. R. and Swanson, D. R. (1996). Linking estrogen to Alzheimer’s dis-
ease: An informatics approach. Neurology, 47:809-810.

Smalheiser, N. R. and Swanson, D. R. (1998). Using ARROWSMITH: a computer-
assisted approach to formulating and assessing scientific hypotheses. Comput.
Methods Programs Biomed., 57:149-153.

Srinivasan, P. and Libbus, B. (2004). Mining MEDLINE for implicit links between dietary
substances and diseases. Bioinformatics, 20:i290—i296.

Stapley, B. J. and Benoit, G. (2000). Biobibliometrics: Information retrieval and visu-
alization from co-occurrence of gene names in Medline abstracts. In Pac. Symp.
Biocomput., volume 5, pages 529-540, Hawaii. World Scientific.

Stephens, M., Palakal, M., Mukhopadhyay, S., Raje, R., and Mostafa, J. (2001). De-
tecting gene relations from Medline abstracts. In Pac. Symp. Biocomput., volume 6,
pages 483—-495, Hawaii. World Scientific.

Suomela, B. P. and Andrade, M. A. (2005). Ranking the whole MEDLINE database
according to a large training set using text indexing. BMC Bioinformatics, 6:75.

Swanson, D. R. (1986a). Fish oil, Raynaud’s Syndrome, and undiscovered public
knowledge. Perspect. Biol. Med., 30:7—-18.

Swanson, D. R. (1986b). Undiscovered public knowledge. Library Quarterly, 56:103—
118.

Swanson, D. R. (1988a). Intervening in the life cycle of scientific knowledge. Library
Trends, 41:606—631.

Swanson, D. R. (1988b). Migrane and magnesium: Eleven neglected connections.
Perspect. Biol. Med., 31:526-557.

Swanson, D. R. (1990). Somatomedin C and arginine: implicit connections between
mutually isolated literatures. Perspect. Biol. Med., 33:157—-186.

Swanson, D. R. and Smalheiser, N. R. (1999). Implicit text linkages between Medline
records: Using Arrowsmith as an aid to scientific discovery. Library Trends, 48:48—
59.

Tamames, J. (2005). Text Detective: a rule-based system for gene annotation in
biomedical texts. BMC Bioinformatics, 6:S10.

Tanabe, L., Scherf, U., Smith, L. H., Lee, J. K., Hunter, L., and Weinstein, J. N. (1999).
MedMiner: An internet text-mining tool for biomedical information, with application
to gene expression profiling. Biotechniques, 27:1210-1217.



40 Literature mining for the biologist

Tanabe, L. and Wilbur, W. J. (2002). Tagging gene and protein names in biomedical
text. Bioinformatics, 18:1124—-1132.

Tanabe, L., Xie, N., Thom, L. H., Matten, W., and Wilbur, W. J. (2005). GENETAG: a
tagged corpus for gene/protein named entity recognition. BMC Bioinformatics, 6:S3.

Temkin, J. M. and Gilder, M. R. (2003). Extraction of protein interaction information
from unstructured text using a context-free grammar. Bioinformatics, 19:2046-2053.

Thomas, J., Milward, D., Ouzounis, C., Pulman, S., and Carroll, M. (2000). Automatic
extraction of protein interactions from scientific abstracts. In Pac. Symp. Biocomput.,
volume 5, pages 707-709, Hawaii. World Scientific.

Tiffin, N., Kelso, J. F., Powell, A. R., Pan, H., Bajic, V. B., and Hide, W. A. (2005).
Integration of text- and data-mining using ontologies successfully selects disease
gene candidates. Nucleic Acids Res., 33:1544—-1552.

Tsuruoka, Y. and Tsuijii, J. (2003). Boosting precision and recall of dictionary-based
protein name recognition. In Proceedings of the ACL 2003 Workshop on Natural
Language Processing in Biomedicine, pages 41-48.

Usuzaka, S., Sim, K. L., Tanaka, M., Matsuno, H., and Miyano, S. (1998). A machine
learning approach to reducing the work of experts in article selection from database:
A case study for regulatory relations of S. cerevisiae genes in MEDLINE. Genome
Inform. Ser. Workshop Genome Inform., 9:91-101.

Verspoor, K., Cohn, J., Josly, C., Mniszewski, S., Rechtsteiner, A., Rocha, L. M., and
Simas, T. (2005). Protein annotation as term categorization in the gene ontology
using word proximity networks. BMC Bioinformatics, 6:S20.

von Mering, C., Jensen, L. J., Snel, B., Hooper, S. D., Krupp, M., Foglierini, M., Jouffre,
N., Huynen, M. A., and Bork, P. (2005). STRING: Known and predicted protein—
protein associations, integrated and transferred across organisms. Nucleic Acids
Res., 33:D433-D437.

Weeber, M., Klein, H., Aronson, A. R., Mork, J. G., de Jong-van den Berg, L. T. W,
and Vos, R. (2000). Text-based discovery in biomedicine: The architecture of the
DAD-system. Proc. AMIA Symp., 20 Suppl.:903—-907.

Wilbur, W. J. and Coffee, L. (1994). The effectiveness of document neighboring in
search enhancement. Inf. Process. Manage., 30:253-266.

Wilbur, W. J. and Yang, Y. (1996). An analysis of statistical term strength and its use
in the indexing and retrieval of molecular biology texts. Comput. Biol. Med., 26:209—
222.



Literature mining for the biologist 41

Wong, L. (2001). PIES, a protein interaction extraction system. In Pac. Symp. Bio-
comput., volume 6, pages 520-531, Hawaii. World Scientific.

Woods, S. L. and Witelaw, M. L. (2002). Differential activities of Murine Single Minded
1 (SIM1) and SIM2 on a hypoxic response element. J. Biol. Chem., 277:10236—
10243.

Wren, J. D. (2004). Extending the mutual information measure to rank inferred litera-
ture relationships. BMC Bioinformatics, 5:145.

Wren, J. D., Bekeredijan, R., Stewart, J. A., Shohet, R. V., and Garner, H. R. (2004).
Knowledge discovery by automated identification and ranking of implicit relation-
ships. Bioinformatics, 20:389—-398.

Wren, J. D. and Garner, H. R. (2004). Shared relationship analysis: ranking set co-
hesion and commonalities within a literature-derived relationship network. Bioinfor-
matics, 20:191-198.

Xiao, Y. and Mitchell, A. P. (2000). Shared roles of yeast glycogen synthase kinase 3
family members in nitrogen-responsive phosphorylation of meiotic regulator Ume6p.
Mol. Cell. Biol., 20:5447-5453.

Yakushiji, A., Tateisi, Y., Miyao, Y., and Tsuijii, J. (2001). Event extraction from biomedi-
cal papers using a full parser. In Pac. Symp. Biocomput., volume 6, pages 408—419,
Hawaii. World Scientific.

Yandell, M. D. and Majoros, W. H. (2002). Genomics and natural language processing.
Nat. Rev. Genet., 3:601-610.

Yeh, A., Morgan, A., Colosimo, M., and Hirschman, L. (2005). BioCreAtIVE task 1A:
gene mention finding evaluation. BMC Bioinformatics, 6:S2.

Yoshida, M., Fukada, K., and Takagi, T. (2000). PNAD-CSS: a workbench for con-
structing a protein name abbreviation dictionary. Bioinformatics, 16:169-175.

Yu, H. and Agichtein, E. (2003). Extracting synonymous gene and protein terms from
biological literature. Bioinformatics, 19:i340—i349.

Zhou, G., Shen, D., Zhang, J., Su, J., and Tan, S. (2005). Recognition protein/gene
names from text using an ensemble of classifiers. BMC Bioinformatics, 6:S7.

Zhou, G., Zhang, J., Su, J., Shen, D., and Tan, C. (2004). Recognizing names in
biomedical texts: a machine learning approach. Bioinformatics, 20:1178-1190.






14th Annual International Conference On Intelligent Systems For Molecular Biology

‘Vljlbuzoo@ oy 8

B ’ C Conference: X
— -

Biological literature mining
from information retrieval to biological discovery

Lars Juhl Jensen
EMBL, Germany
jensen@embl.de

Overview

 Information retrieval and entity recognition
— Methodologies for finding and classifying texts
— ldentification of gene/protein names in text

 Information extraction and text/data mining

— Statistical co-occurrence and NLP methods
for relation extraction

— Making discoveries from text alone
— Integration of text and other data types
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Transferalylity of tachnology

Maturity ol medods

Entity
recognifion

Infarmation
axtraction

Text mining

Integration

Status

* IR, ER, and simple IE
methods are fairly well
established

NLP-based IE systems
are rapidly improving

Methods for text mining
and text/data integration
are still in their infancy

st AaAnnEiq
pairioe: abpepiouy eobomg
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Example

Mitotic cyclin (Clb2)-bound Cdc28 (Cdk1l
homolog) directly phosphorylated Swel and this
modification served as a priming step to promote
subsequent Cdc5-dependent Swel
hyperphosphorylation and degradation
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Overview

* Ad hoc information retrieval
— The user enters a query

— The system attempts to retrieve the relevant
texts from a large text corpus

e Text categorization
— A set of manually classified texts is created

— A machine learning methods is trained and
subsequently used to classify other texts
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Information Retrieval and
Entity Recognition
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Ad hoc IR

* Very flexible — any query can be entered
— Boolean queries (yeast anp cell cycle)

— A few systems instead allow the relative
weight of each search term to be specified

» The goal is to find all the relevant papers

— Ideally our example sentence should be
identified by the query “yeast cell cycle”
although none of these words are mentioned
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Automatic query expansion

» The user will typically not provide all
relevant words and variants thereof

* Query expansion can improve recall
— Stemming of the words (yeast / yeasts)

— Use of thesauri deal with synonyms and/or
abbreviations (yeast/ S. cerevisiae)

— The next step is to use ontologies to make
complex inferences (yeast cell cycle / Cdc28)
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Document similarity

» The similarity of two documents can be
defined based on their word content

— Represent each document by a word vector

— Words should be weighted based on their
frequency and background frequency

» Document similarity can be used in IR

— Include the k nearest neighbors when
matching queries against documents
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Document clustering

» Unsupervised clustering algorithms can be
applied to a document similarity matrix
— Calculate all pairwise document similarities
— Apply a standard clustering algorithm

» Practical uses of document clustering
— The “related documents” function in PubMed
— Organizing the documents found by IR
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Text categorization

» These systems are less flexible than ad
hoc systems but give better accuracy
— The document classes are pre-defined
— Needs manual classification of training data

* Methods
— Rules can be manually crafted
— Machine learning methods can be trained

185

Example

Mitotic cyclin (Clb2)-bound Cdc28 (Cdkl
homolog) directly phosphorylated Swel and this
modification served as a priming step to promote
subsequent Cdc5-dependent Swel
hyperphosphorylation and degradation

Hints in the text
— Yeast cell cycle: Cdc28 and Swel
— Cell cycle: mitotic cyclin, CIb2, and Cdk1l

Machine learning

* Input features
— Word content or bi-/tri-grams
— Part-of-speech tags
— Filtering (stop words, part-of-speech)

* Training
— Support vector machines are best suited
— Separate training and evaluation sets
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Entity recognition

* An important but boring problem

— Find the entities (genes/proteins) mentioned
within a given text

» Recognition vs. identification
— Recognition: find the words that are names
— ldentification: identify the entities they refer to
— Recognition alone is of limited use
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Example

Mitotic cyclin (Clb2)-bound Cdc28 (Cdk1l
homolog) directly phosphorylated Swel and this
modification served as a priming step to promote
subsequent Cdc5-dependent Swel
hyperphosphorylation and degradation

Entities identified

Clb2 (YPR119W), Cdc28 (YBR160W), Swel
(YJL187C), and Cdc5 (YMROO1C)

189

Recognition

* Features
— Morphological: mixes letters and digits
— Context: followed by “protein” or “gene”
— Grammar: should occur as a noun

* Methodologies
— Manually crafted rule-based systems
— Machine learning (SVMs)

Identification

* A good synonyms list is the key
— Combine many sources
— Curate to eliminate stop words

» Orthographic variation
— Case variation: CDC28, Cdc28, and cdc28
— Prefixes and postfixes: c-myc and Cdc28p
— Spaces and hyphens: cdc28 and cdc-28
— Latin vs. Greek letters: TNF-alpha and TNFA
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Disambiguation

* The same word may mean different things

— Entity names may also be common English
words (hairy), technical terms (SDS) or refer
to unrelated proteins in other species (cdc2)

* The meaning can be found from the
context
— ER can distinguish names from other words

— Disambiguation of non-unique names is a
hard problem

192
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Summary

* Information retrieval

— Ad hoc IR methods are more flexible than text
categorization methods

— Text categorization methods can generally
provide better performance than ad hoc IR

* Entity recognition
— It is not sufficient to recognize names — the
entities should also be identified
— The best methods use curated synonyms lists

\ gy, |
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IE by co-occurrence

* Limitations of co-occurrence methods
— Relations are always symmetric
— The type of relation is not given

» Scoring the relations
— More co-occurrences = more significant
— Ubiquitous entities = less significant

» Simple, good recall, poor precision

199

Overview

* Information extraction (IE)
— Simple statistical co-occurrence methods
— Combining co-occurrence and categorization
— Natural Language Processing (NLP)

» Text/data mining
— Making discoveries from text alone
— Augmenting text mining with other data types
— Annotation of high-throughput data

198

Example

Mitotic cyclin (Clb2)-bound Cdc28 (Cdk1
homolog) directly phosphorylated Swel and this
modification served as a priming step to promote
subsequent Cdc5-dependent Swel
hyperphosphorylation and degradation

Relations extracted

Clb2—-Cdc28, Clb2—-Swel, Cdc28-Swel,
Cdc5-Swel, ClIb2—-Cdc5h, and Cdc28-Cdc5
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Categorization

» Extracting specific types of relations

— Text categorization can be used to identify
sentences that mention a certain type of
relations

* Well suited for database curation
— Text categorization can be reused

— Recall is most important since curators can
correct the false positives

202

recombination. spundle pole body separation wnd s mdle

NLP

 Information is extracted based on parsing
and interpreting phrases or full sentences
— Good at extracting specific types of relations
— Handles directed relations

» Complex, good precision, poor recall
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Example

Mitotic cyclin (Clb2)-bound Cdc28 (Cdk1l
homoloq) directly phosphorylated Swel and this
modification served as a priming step to promote
subsequent Cdc5-dependent Swel
hyperphosphorylation and degradation

Relations:
— Complex: Clb2-Cdc28
— Phosphorylation: Clb2—Swel, Cdc28—Swel, and

An NLP architecture

Tokenization

— Entity recognition with synonyms list

— Detection of multi words and sentence boundaries
Part-of-speech tagging

— TreeTagger trained on GENIA

Semantic labeling

— Dictionary of regular expressions

 Entity and relation chunking

— Rule-based system implemented in CASS

Cdc5—-»>Swel
205
Semantic labeling e Gone || Gono
Gene and protein names % producca /' l @
Words for entity recognition 1

Words for relation extraction Torecio gl Siable

Binding I
site —p Protein

1

Named entity chunking
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o | | cormmna | | o
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[nxexpr The expression of
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[hxpg HAP1]

activator repressor
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Mining text for nuggets

* Inferring new relations from old ones

— This can lead to actual discoveries if no one
knows all the facts required for the inference

— Combining facts from disconnected literatures

» Swanson’s pioneering work
— Fish oil and Reynaud's disease
— Magnesium and migraine

i
LINKING QN
DOCUMENTS, DISCIPLINES, INVESTIGATORS AND DATABASES

WELCOME: This site is open during construction.

Ready to use Arrowsmith? References Corner"f‘?‘;r%;lmt?ratwe
Start Start Go to Website I
Author-ity: A tool for Anne O'Tate: A tool for
identifying Medline articles Oomp-lf‘:)ﬁ”#‘;?"?; E-R..Tﬁsd'cal summarizing the results of a
written by a particular author 9 PubMed query.

Start Start Start
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Trends

Similar to existing data mining approaches

— Although all the detailed data is in the text,
people may have missed the big picture

» Temporal trends
— Historical summaries, forecasting

Correlations
— Customers who bought this item also bought
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Correlations

* “Customers who
bought this item also
bought ...”

» Protein networks S Bl
— “Proteins that regulate  “1- - Gl
expression ..."
— “Proteins that control
phosphorylation ...”
— “Proteins that are
phosphorylated ...”
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Signaling pathways
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Transcriptional networks
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P <9.10°
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Multiple regulation
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Integration

» Annotation of high-throughput data
— Loads of fairly trivial methods

» Protein interaction networks
— Can unify many types of interaction data

* More creative strategies
— ldentification of candidate disease genes
— Linking genotype to phenotype

rlagiz = Bayrilezie) + rlaloflnie

STRING - Search Tool for the Retrieval of Interacting Genes/Proteins

Enter your gene/protein of interest ... What it does ...

identifier: 0 T, TR STRING is a database of known and predicted protein-protein
interactions.

b EE IO The interactions include direct (physical) and indirect
{functional) associations; they are derived from four sources:

alternatively, paste an amino-acid sequence:

Genomic  High-throughput (Conserved)  Previous
Context Experiments Coexpression Knowledge

=2 S O pae

STRING quantitatively integrates interaction data from these
sources for a large number of organisms, and transfers

information between these organisms where applicable. The
database currently contains 736429 proteins in 179 species.

interactors wanted:
GO! Reset COGs Proteins

References / Info ...

STRING uses orthology information from the excellent COG database (Ref).
Up-to-date genomes and proteins are maintained at SWISSPROT and ENSEMBL
STRING references: von Mering et.al. 2005 / von Mering et.al. 2003 / Snel et.al.
2000.

Miscellaneous: Access Statistics, Robot Access Guide, Supported Browsers.

=MBL

+BIOCOMPUTING
+BORK GROUP

‘What's New? You are looking at release 6.2 of STRING - latest additions are the 'HPRD' and 'Reactome’ databases.
Previous Releases: Trying to reproduce an earlier finding? Confused? Try our old releases: version 6.0, version 5.1
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rlemiz & Blawnlleziel = rl=loflpio L saSTIRING
Your Trput: g A |
= LY Cell divisien contrel protein 2B (LL £3 if!;ff .
BodRpET
Prodivted Functinal Asociabioms: 3 ji k3 ,95_5, rl ,-_;-g H
D CHKL Serine/threvnine-protein kinsse CBEL (EC 2.7.1.377 {COK-activabing kin [...] e 990
D LKL GL/S-specific cyclin CLEL 96 aa? .
OO GL/S-specific cuclin CLRZ (995 aa? . 990
D CLWG GL/S-specific cuclin CLKG (060 aa? .
=g T fic cuclin 1 (71 asd .
= ez fic cuclin 2 (91 aad .
= s specific cuclin 3 (127 aad .
- LB specific cuclin 4 (160 asd .
ST w cuclin B (135 an) .
y cyclin G L0 aa0 - .

e lin-gependent kinases regulatory subunit (Cell division control pro [...1 - .

SIC1 protein (COK inhibitor pdnd (213 aad ..

Mitosis inhibitor protein kinase SWEL (LC Z.7.1.-3 (P15 a4l CREaY

Wpothetical GZ.U kDa Trp-ftp répeats containing protein inm PRCL-TIGEZ (...] -

Cell division control protein & (317 aal -

Securin (X aad -

Hegative regulator of the PID system (L 2.7.1.30) (Serine/thréonine-p [...] -

Protein Kinase CLAL (EC 2.7.1.-) (G0 840 -

Cell division control pri Lo-0 d5Fa s -

Cell division control pr LA (307 aad -

Regulatory protein SWIG (Cell-cyclé box Factor, chain SWIG) (Trans-act [...] -

DR YURDICN (255 aa) -

1EpS0 co-chaperons CocK’ (MspSD chaperons protein kinase-targeting sub (...] -

Cyclin-gépendent kinate inhibitor FAKL (CKL FRELY (Factor arrest prote (...] -

Ubiguitin Ligase complex F-box protein GREL (1131 aa) -
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rlopz  Elayrlesiel + l=o/lnie

Relevant abstracts mentioning your query species [Saccharomyces cerevisiae):

LLES (=) and CLBE (=), a new pair of B cycling invalved in DIVA replication in
Saccharemyces cerevisiae, Fublﬁlcd

The functions of the Coc26 (me) protein kinase in DNA reglication and mitosis in Saccharemyces cerevisiae are
thought to be determined by the type of cyclin subunit with which it is associated. Gl-specific cycling encoded by
CLNL (o), CLN2 (=), and CLN3 (=) are required for entry into the cell cycle (Start) and thereby for S phase,
whereas G2-specific B-type cycling encoded by CLBL (=), CLE2 (=), CLB3 (c=), and CLEB4 () are required for
mitosis. We describe a new family of B-type cyclin genes, CLBS (=) and CLEG (=), whose transcripts appear in
late G1 along with those of CLNL (=), CLNZ (=), and many genes required for DNA replication. Deletion of
CLBG (=) has lttle or no effect, but deletion of CLES (=) greatly extends S phase, and deleting both genes
prevents the timely initiation of DNA replication. Transcription of CLES (e») and CLBG (=) is normally dependent
on Cin activity, but ectopic CLBS (B») expression allows cells to proliferate in the absence of Cin cydlins. Thus, the
kinase activity associated with OIS (=6 and not with Cin cyclins may be responsible for S-phase entry. ObS (e)
b has a function, slong with Cb3 (5] and Clhd (), in the formation of mitetic spindles, Cur observation that
CLBS (&) i involved in the initiation of bath S pha uggets that a
might have been sufficient for regulating the cell cyce of the comman ancestor of

ingle primordial B-type cyclin
v, if nat all, eukaryobes.

G2 cycling are required for the degradation of G1 cyclins in peast. Publffjed

sion of the cukaryatic cell cycle is controlled by cpdin-dependent ki ), the budding

Progre

yeast homologue of Cde? (Cdict < required for both the G1/8 and G2/M transitions of the cell cycle, The
netional specificity of the Cdc28 (me) kinase is determined by its association with G1 or G2 cyclins. Alternation of

coll cyche phars: mainly due to that ensure that ane cyclin family succeeds another. Here we
show that the G2 cyding Obl (), Ob2 (), Clb3 () and Clbd (me) are required for the protealysis of the G1
cydlins Cin (£} and Cin2 (), providing a mechanism for coupling synthesis of G2 cyclins with the disappearance

of G cyclins. Cur data indicate that this pathway invelves the Ubcd ubiguitin-conjugating enzyme. The Cdc3d
ubiguitin-conjugating activity may function redundantly with Ube8, or it may only be involved in CIn1,2 turnaver
through its ol in promating the degradation of Sicl (£3), a specfic inhibitor of Cle28 (m)-Clb complexiss.

L ASTRING:
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Disease candidate genes

* Rank the genes within a chromosomal region to
which a disease has been mapped

e« BITOLA
— Gene—Words—Disease (similar to ARROWSMITH)

« G2D

— Gene—Function—~Chemical—->Phenotype—Disease
— Uses MEDLINE but not the text
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G2D

Candidate Genes to Inherited Diseases *

G2D

B Welcome to the G20 web server (vgrsion 2.0). Here you ¢an use our
alggnmm & 5¢an a human genomic region for genes related 1o an
inherited disease. You can also access a database of pre-compuled
results for mapped monogenic human diseases and for asthma, a
complex disease.

Candidate priorities are automatically established by a data mining
algorithm that extracts putative genes in the chromasomal region where
the disease is mapped, and evaluates their possible relation fo the
disease based on the phenotype of the disorder. To know more about
02d.

Uze G20
G2D COMBO
t i #ﬁ%ﬁ?&ﬁ:gxdeﬁningmadimwpickedrmm»r 5 lig! (6.9
protein comsius poy 131284) pam
phenotype | | chemistry | function onri B 1rso
Position start siop (2.9 63950000
MeSH C +—» MeSH D #———» Gene Ontology P 7a050000) T
6.902 terms 5,070 terms 2.379 terms Wheto do we look for he Cytoganetc band(e) band band2
6.023.924 pairs 98,969 pairs Liw; U
marker2 (&.g. DI5201 D35298)

In chromosome | select x|

(Maximum 50 Mo)

. )
207 &Mbﬂﬂr)

eza 228




Analysis of epilepsy,
childhood absence 1

GO TO:

HEASONS FOR ™ (QOVERVIEW OF [BESTI0
ASSOCIATION  |CANDIDATES  |CANDIDATES
CHROMOSOMAL REGION LINKS

Disease mapped: epilepsy, childhood absence 1
Method: Md EntrezGene:

Chromasome: 8

Genomic position start-stop: 117700000-146274826 K
|angth: 2574827 I
Band: Bg24

OMIM:

REASONS FOR ASSOCIATION
MEDLINE QUERY

A set of 33 papers related to this disease was derived from MEDLINE using the
query:
epilepsy [tw] AND childhood [tw] AND absence [tw] AND 1 [tw]

GO terms

We computed the GO terms associated
MESH-C TERMS to the MeSH-C terms selected for this
disease.

The MeSH-C terms associ:flcd to the

(derived papers were collected. Here you can see thase with higher

score of association.

Here you can see the lerms ordered by
the number of papers where they weré
found {number in brackets).

0.002425 B GABA-B receptor (function)
0.001051 B folate transpord (process)
0.000885 BN GABA-A recagptor (function)
0.000646 B gamma-aming butyric acid
signaling pathway (process)

0.000598 B N-methyl-D-aspartate
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Genotype—phenotype

» Genes and traits can be linked through
similar phylogenetic profiles
— Mainly works for prokaryotes so far
— Traits are represented by keywords

* Finding the phylogenetic profiles
— Gene profiles stem from sequence similarity

— Keyword profiles are based co-occurrence
with the species name in MEDLINE

231

CANDIDATE 2

DNA Mote)

R-score =0.002301; GO-score = 0.000301
117700000 bp Chromosome 8

146274826 bp

| aa NP_003605 368 aa

Similarity found to protein:

[B484INP 0036051 | Homo sapiens | galanin receptor 3 | length=368 aa

GO annotation:

0.000000 =1 plasma membrane (component)

0.000000 B feeding behavior (process)

0.000000 = galanin receptor (function)

0.000232 =1 learning and/or memory (process)

0.000152 =1 synaptic transmission (process)

0.000000 =1 integral membrane protein (component)

0.000520 =3 negative regulation of adenylate cyclase activity (process)

0.000000 B neuropeptide signaling pathway (process)

BLASTX hits:

E-value le-11 prot=18.330 DNA=142429946..14242907 1 fr=94/326 per=(28%) [EST ]
230

Exampie subset of 00

232
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Summary

* Information extraction

— Co-occurrence methods generally give better
recall but worse accuracy than NLP methods

— Only NLP can handle directed interactions

» Text/data mining
— New relations can be found from text alone

— Methods that combine text and other data
types have much better discovery potential

235

Annotation

» Finding keywords for a group of genes
— ER is used to find associated abstracts
— The frequency of each word is counted
— Background frequencies are recorded
— A statistical test is used to rank the words

» The same strategy can be used to find
MeSH terms related to a gene cluster

14th Annual International Conference On Intelligent Systems For Molecular Biology

w‘
_ l/‘MjF_') 2006 R,
g ’ and 2 Annual AB°C_Conference: X-Me

Outlook

Lars Juhl Jensen
EMBL, Germany
jensen@embl.de
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Necessity

* Literature mining will remain important
— Repositories are always made too late
— There will always be new types of relations
— Semantically tagged XML may replace ER
— But no one will ever tag everything!

» Specific IE problems will become obsolete
— Protein function and physical interactions
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Permission

* Open access

— Literature mining methods cannot work on
text unless it is accessible

— Restricted access is now the limiting factor

e Standard formats
— Getting the text out of a PDF file is not trivial

238

Innovation
. y
* The tools are in place ' (=
for IR, ER, and IE R
5 =
o g - Entity -3
* Text- and data-mining £ 3 recogniion g 8
— Biologists are needed % £ % g
— Work with linguists Z 32 omawon 3 z
. . = = = B
» Lack of innovation g = Text mining =z
= i
— Combine text and data =
integration
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