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Outline

In this tutorial, we present the audience with evidence that massively parallel
computing environments will and are playing a significant role in scientific discovery
in the biological sciences. The infrastructure and the knowledge to take advantage
of this infrastructure is presented along with pointers for added information and help
to employee massively parallel computing infrastructure to accelerate bioinformatics
and computational biology research

Need to explain this

Computation is playing an ever increasing and vital role in biology creating demand
for new machines. Vendors strive to meet demands with advanced computer
architectures such as IBM’s Blue Gene machine. In this tutorial, we will give an
overview of the Blue Gene architecture. We will briefly describe both the hardware
and software architecture and the central philosophy behind the development of the
Blue Gene that makes it easy to use on ultrascalable problems. We will emphasize
the key features that allow thousands of processors to work together on a user’s
problem. We will present the programming model used on Blue Gene. We will
explain ways to take advantage of the Blue Gene nodes and their associated
networks. We hope to provide a foundation for attendees to begin to think about
problems and how to design and implement them so they will scale out and take full

advantage of the computational power in Blue Gene.

Once we have presented a basic understand of the architecture, our goal will be to
show how Blue Gene is impacting bioinformatics through several examples. We will
describe briefly some solutions done on Blue Gene in such as areas as protein
folding, transcription factor binding sites, and systems biology to demonstrate to the
audience the wide applicability. We will try to illustrate the ease of use of the
systems through remote demonstration if Internet facilities are available. Depending
on the partition size, we will demonstrate some simple scaling up to the number of

processors available on some simple problems pertinent to the audience.

Through the computational power of Blue Gene, scientists will tackle problems that
to date they had not considered. This will happen in some ways we are starting to
see today but there are other approaches we yet can not predict. For this reason,
we will discuss alternative approaches to design of computation of the problem that

might spark others imagination. We will also show by example some problems that
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one might not think would be suitable for the Blue Gene architecture. We will
discuss in these examples which have been run on Blue Gene systems, actual
performance results. More importantly, we will try to point how having
unprecedented number of processors changes how one approaches the

computational problem.

The tutorial will proceed to go in depth on one application area, Genome Assembly.
We will describe a massively parallel framework for genome assemblies on the Blue
Gene, and its application to the ongoing maize genome sequencing project. We will
show how to harness the power of the massively parallel system, Blue Gene, to
carry out genome assemblies at a significantly rapid pace of hours instead of days
and weeks. We will discuss the applicability of this framework to solve other large-
scale computational genomics problems including EST clustering, SNP

identification, and selected problems in comparative genomics.

If successful, the audience will leave this tutorial with sufficient knowledge of how
massively parallel or ultrascale out computing can accelerate their research in the
biological sciences. While some, based on their own experience and computational
background, may be able to put this knowledge to immediate use taking advantage
of opportunities mentioned for access, others will have sufficient information to know
where to get more details and possibly even to form new collaboration to accelerate
their research. The intention of this tutorial is to use examples of bioinformatics and
computational biology to demonstrate the utility of ultrascale out computing while

dismissing the myths associated with massively parallel/ultrascale out computing.
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INTRODUCTION

Background  [Slides 3-8]

Over the course of the years in computing, we have seen several trends develop in
high performance computing. Some of these trends have been the result of the chip
technology while other trends have been the result of innovative assembly of
processor technology. As technology hits a wall, innovation allows us to take new
approach. Massively parallel computing is not new, but innovation is allowing for
truly massive parallel computing in dense packaging while keep power consumption

and cooling requirements at a minimum.

The number of transistors on a computer chip has doubled every couple of years.
This is called Moore’s law. What this meant is the number of floating point
operations per second (flops) a computer could perform has also increased.
Eventually the constraint on the overall size of a single computer chip and the
physical limitations on how small a transistor could be produced have to stop that

curve.

Shrinking transistors has an absolute limit, which we are approaching, and also yield
increasingly difficult side effects such as power leakage. In order to continue to get
increased performance, we turn to the clustering of chips together to allow the
continued increase in the number of flops. This led to the development of computers
with numerous CPUs sharing the same memory requiring some very fast and
sophisticated interconnects that increase the system cost as the number of CPUs

within these shared memory machines increases.

With commodity computing in the 1990’s, the cost of large scale machines giving
increased flops could be achieved using individual CPUs networked, or clustered, to
function together as a single unit. This class of systems became known as
massively parallel processing (MPP) systems. The only theoretical limit to their size
was the floor space, power consumption, and cooling needed to house and run the

aggregated equipment.

From the application point of view it became apparent that the limitation on
increased flops depended not only on the individual performance of the CPUs but

also on the performance of the entire system on which the CPUs depend including
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memory system, the file access and network (messaging). It also became clear that
these types of systems could not handle every application. As the number of
processors increases taking advantage of them becomes more difficult, and there
are some type of applications that cannot take advantage of the extra power. But for
those that do, developers and users need access now to larger numbers of CPUs to

find ways to scale their applications to ever higher number of processors.

A massively parallel (MPP) system in general has the following characteristics:

e A single system image for up to thousands of nodes.

e The cost per flop is extremely low because each node is an inexpensive
processor.

e Each node has its own distinct uniquely addressable memory.

e The nodes are organized into a grid, mesh, torus or hypercube arrangement
to allow each node to communicate with all the other nodes.

The aggregate MPP system has access to a huge amount of real memory for the
application operations to access, because this is the sum of the memory available to

each node.

The parallelism we see in systems used for technical computing is pervasive. We
see this commercial off-the-shelf (COTS) systems assemble into large clusters.
Hybrid systems, combining commercial processors with high speed interconnects,
are available. Each of these kinds of systems is limited on the ability to obtain
ultrascale out. Custom architectures such as the IBM Blue Gene system are

addressing the environmental requirements while providing ultrascale out systems.

The IBM eServer Blue Gene Solution is not a completely new system with exotic
components. On the contrary, the processors of the Blue Gene/L system come from
IBM’s family of embedded PowerPC processors. They are enhanced for the kind of
work loads with heavy floating point computation expected in high performance
computing. The use of embedded processor technology keeps the computing

environmental requirements low.

In addition, the Blue Gene/L is not a radically different architecture for IBM. Looking
at computer systems in a two dimensional space consisting of scale up systems
versus scale out systems, we see that Blue Gene/L is at the high end of the scale
out systems. For this reason, we often refer to it as an ultrascale out system.

Placing Blue Gene/L in the IBM high performance computing portfolio, we see that it



is design for those that need capabilities that can only be satisfied by purpose built

systems which allows for ultrascale out.

Massively Parallel Computing Making a Difference [Slides 9-14]

Before delving into a lot of detail of a massively parallel computing environment, it is
worthwhile to demonstrate such an environment is of wide value in bioinformatics
and computational biology. Over the past year, the first author has enabled and
coached members of Charles DelLisi’s group at Boston University. This has resulted
in the implementation of the Gibtigs code on a massively parallel computing

environment, the IBM eServer Blue Gene Solution.

The human body consists of some 200 major cell types — various types of neurons,
blood cells, epithelial cells and so fourth — all of which differentiated from a single
blueprint encoded in the genome of a fertilized egg. The process of differentiation
itself, which leads to specialized cell function, remains poorly understood, but it is
generally believed to involve chromosomal remodelling induced by very tight protein
binding and structural modification that blocks the expression of certain sets of
genes, while allowing expression of others. .Understanding how genes are selected
— that is, cracking the genomic regulatory code — is a primary knowledge gap

between a genome sequence and the diversity of life encoded therein.

A computational approach has been taken to understand genomic regulation — the
code dictating the regions of the genome transcribed into molecular messengers.
The transcribed messengers become the proteins that define and control the cell.
Proteins regulate the initiation of gene expression by binding short nucleotide
sequences generally found upstream of the gene. A typical eukaryotic gene has on
average sites for 6-9 different regulators, and each regulator can bind upstream of
multiple genes. The result is a complex regulatory network. A first step and more
tractable problem is to find the binding sites, about 200 as compared with 600 for

mammalian cells, for the simplest eukaryotes, yeast in particular.

Computational attempts to detect the DNA sequence patterns recognized by
regulators is to look for short sequences of DNA that exist far more frequently than
would be expected at random. Unfortunately, the problem is difficult because the
fragments are found in a relatively large amount of unrelated and noisy DNA. At the

same time, the DNA sequences of the fragments to which a particular regulator



binds are not always identical. As such, even the best computational approaches
have met with considerable difficulty, especially in complicated organisms such as

humans.

Tim Reddy and Boris Shakhnovich, from the Biomolecular Systems Laboratory
(DeLisi) at Boston University have developed a code for cracking that first key step
in genomic regulation. The code, GibTigs, uses Gibbs Sampling, in a novel and
exhaustive manner. Current Gibbs sampling implementations generally attempt to
crack the code a few times and return the best answer from those attempts. This
results often in missing subtle, solutions while producing incorrect answers without
biological significance. GibTigs attempts to crack the code several thousands of
times, retaining all solutions, and identify potential sites by assembling overlapping
solutions. The result is a clear set of signals in a background of noise. By increasing
the number of attempts, GibTigs is able to distinguish between incorrect sequences,
which tend to appear randomly within the DNA, and correct results, which tend to
occur in a small, conserved set of positions every time they are found. From early
successes, the group has focused on much larger problems, such as identification
of key regulatory sequences across entire genomes as well as exploring

evolutionary models of the sequences.

While an individual Gibbs Sampling analysis requires relatively little compute time,
iterating the process exhaustively and on a large scale is computational challenge.
The feature of GibTigs that allows easy and productive deployment on cluster-based
supercomputers is that the computational core of the algorithm depends on
thousands of independent iterations of Gibbs Sampling, a directed statistical
sampling of the DNA sequence data, requiring much CPU, but little memory. Each
iteration can be performed independently allowing for the distribution of tasks over a
large cluster of CPUs with minimal overhead from inter-processor communication.

This Makes GibTigs ideal for the Blue Gene/L system.

One Blue Genel/L rack represents nearly a twenty fold increase in available compute
power, over a conventional cluster available at Boston University. With GibTigs
showing linear scalability up through 2048 CPUs, one Blue Gene/L rack (in virtual-
node mode) sped development from a few runs a week to many runs a day,
enabling large scale parameter searches, and regular production grade performance
evaluations. The results are dramatic improvements in sensitivity and specificity of

the algorithm, none of which would have been possible at the previous development



pace. Moreover, rather than making conservative modifications to GibTigs, the
power of Blue Gene has given the team the freedom to take risks in trying new
ideas, many of which have failed, but some of which have provided new insight and
new power to GibTigs. As a result, GibTigs has recently proved to be, according to
published measures, the most powerful predictor of DNA transcription regulatory
sites to date.

COMPONENT ARCHITECTURE

Massively Parallel (Ultrascale Out) Computing Environment  [Slides 15-29]

In this section, we describe both the hardware and software philosophy that has led
to an ultrascale out machine. With the preceding example and the detailed
examples that follow, we believe that this ultrascale out environment will enable the
solution of many important problems in bioinformatics and computational biology.
Those that learn how to take advantage of this ultrascale out environment as we are
already will lead in the breakthroughs and help to steer the directions of discovery in

the biological sciences.

Blue Gene/L Building Blocks [Slide 16]

Based on IBM’s Power architecture, the IBM eServer Blue Gene Solution is
optimized for bandwidth, scalability and the ability to handle large amounts of data
while consuming a fraction of the power and floor space required by today's fastest

systems. It is an ultrascale computer.

Blue Gene/L is a massively parallel machine. It is as a collection of small basic
elements, Power architecture chips, connected together by a set of networks.
Starting with the base elements, we show how these are package to build a systems

up to 64 racks, to become the current fastest computer.

The Chip: The base component of Blue Gene is a dual core Power PC CPU chip.
The CPU frequency is 700 MHz and each CPU can perform four floating point
operations per cycle. The theoretical peak performance of each CPU is 2.8 Gflops.
The 2 CPUs on the chip constitutes the compute node with a peak performance of
5.6 Gflops.

10



The Compute Card: The compute nodes are soldered to a processor card. Each
processor card has two compute nodes on it. The memory for each chip sits on the
other side of the processor card; there are either 512 MB or 1 GB per node (1 GB or
2 GB RAM per compute card) depending on the system. The original Blue Gene
System node cards only had 512 MB per node.

The Node Card: The processor cards are plugged on a node card consisting of two
rows of eight compute cards. On the node card there maybe two or four I/O nodes
but some node cards may not contain any I/O nodes. The I/O nodes are similar to
compute nodes; they also sit in pairs on a small processor card which is slightly
different from the one used for compute nodes. They are called 1/O nodes because

their role is different from the compute node role; it is solely for handling I/O.

The Midplane: The processor cards, which bear 16 compute cards, are stacked in a

midplane which sits in a rack.

The Rack: A rack holds two midplanes, for a total of 32 compute cards.

The System: One can connect up to 64 racks for a Blue Gene/L system.

To calculate the number of processor in a system, the following formula is used:

The number of racks x number of node cards per rack x number of compute cards
per node card x number of processors per compute card,

or

the number of racks x 32 x 16 x 4,

or

the number of racks x 2048.

The largest possible configuration is 64 x 2048 = 131072 processors.
Even though the I/O nodes are made of the same PowerPC chip as the compute
nodes because they do not contribute to the actual computation, they are not

factored into the processor count.

The Blue Gene/L System [Slides 17-18]
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The description above gives details of what goes into a Blue Gene Rack.
Essentially, the rack contains the compute part of the system. To make a complete
system, there are some other components. There are often two additional
computers that with the rack make up the Blue Gene System: a service node and
front-end node. In addition, file servers with appropriate storage are part of the
system. A typical configuration is given in order to understand how all the
components come together to really make up the massively parallel computational

environment that will be used.

The Blue Gene/L Networks [Slides 19]

As described above, the Blue Gene/L machine is a massively parallel computer. In
order for the CPUs to work on data together they must be able to communicate with
one another. To accomplish this task, Blue Gene/L needs a communication fabric
or network. Actually, Blue Gene/L has 5 networks. The 5 networks can be grouped
in two categories, those for efficient parallel coding and those to communicate with
the outside world. For parallel efficiency there are two characteristics to keep in
mind, bandwidth and latency of the network. The efficient parallel coding networks
of most important to the application programmer are the torus network, the global
tree network and the global barrier network. For communication to the outside
world, there is the gigabit Ethernet network and the control network. Each of these

is described below.

The 3D Torus Network: On Blue Gene/lL instead of using a cross bar switch for
point-to-point communications, a 3D (dimensional) torus network is used. Each
node of the torus communicates with its six nearest neighbors through a
bidirectional network. In this manner, the 3D torus forms the communications
backbone for computations and connects all compute nodes (65,536 on a 64 rack

system). The characteristics of the 3D torus are:

e Virtual cut-through hardware routing.

e On each of the 12 connections of a compute node, 1.4Gb/s or 2.1 GB/s per
compute node.

e The hardware Latency (Nearest Neighbor) is 200nanoseconds (32B packet),
1.6 microseconds (256B packet). The worst case for 64 hops is 6.4
microseconds.

e The bisection bandwidth is 0.7/1.4 TB/s and a total bandwidth of 67 TB/s.
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The Global Tree (Collective) Network: Blue Gene/L has a special network
devoted to MPI collective operations such as all-to-all, all-to-one, and one-to-all.
This is the Global Tree or Collective Network. This network connects all the
compute nodes in a shape of a tree. The root can be any node. The IBM
implementation of MPI on Blue Gene/L will use the tree network whenever it is more
efficient then the 3D torus for a collective communication. The application developer
when using the MPI collective operations will get the most efficient path. The

characteristics of the tree network are:

e Has one-to-all broadcast and reduction operations functionality.

e The bandwidth of each link is 2.8 Gb/s.

e The latency of a tree transversal 2.5 microseconds and approximately
23TB/s total binary tree bandwidth on a 64K compute node machine (64
racks).

e The binary tree interconnects all compute nodes and |/O nodes.

The Barrier (Global Interrupt) Network: On a very large system, there is often a
need to synchronize or bring every processor to the same point before moving on.
Since such communications require small amount of bandwidth but need very low
latency, a special network, the Barrier or Global Interrupt network, on Blue Genel/L is
provided to handle MPI synchronization routines like barriers or waits. The

characteristics of this network are:

e The latency is 1.3 microseconds for a round trip on the network.

All interactions between the outside world and Blue Gene/L go through the service
node to the 1/0 nodes. There are two networks connecting the service node to the
I/0 nodes. The two networks that connect the service node to the 1/0 nodes are the

Ethernet network and the Control or JTAG network.

The Ethernet Network: This network is used to mount the global file system to
allow Blue Gene/L access to 1/0. The link from I/O node to compute nodes is the
tree (collective) network. The global file system only has to be “global” to all the
nodes in a partition, plus the service node and the front-end system used to submit
the job.

The Control (JTAG) Network: The control network is used to give the service

node direct access to the Blue Gene/L compute nodes. It is used to boot the nodes.
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The connection between the node cards and the service node is a 100 Mb/s

Ethernet network.

The Blue Gene/L Processors [Slides 20-21]

The compute nodes are comprised of 2 dual core chips. Each core or ASIC is a
complete System-On-a-Chip. The Blue Gene/L compute ASIC chip includes two
non cache-coherent microprocessors, each containing one single load/store unit,
one single 32-bit integer unit and one double Single-Instruction-Multiple-Data
(SIMD) 64-bit FPU. Each FPU can execute up to two multiply-adds per cycle,
meaning that the peak performance is eight 64-bit floating-point operations per

cycle. That is 2.8 Gflops/s per core and 5.6 Gflops/s per chip.

The ASIC block diagram shows the details of two processors, each having a special
double floating point unit, connecting individually to L2 cache, and accessing the L3
controller to connect to the L3 cache. The integrated networks on the ASIC, as
described before, include:

six 1.4 Gbit/s bidirectional ports for 3-dimensional torus network connection
three 2.8 Gbit/s bidirectional ports to a tree (collective) network connection
one gigabit network connection

one Joint Technical Advisory Group (JTAG) control and monitoring network
connection

e one barrier (global interrupt) network connection

The basic elements of the PowerPC 440 microprocessors are:

32-bit architecture at 700 MHz.
Single integer unit
Single load/store unit
L1 cache: 32KB total size, 32-Byte line size, 64-way associative, round-
robin replacement
L2 cache: prefetch buffer, holds 16 128-Bytes lines
e L3 cache: 4MB, approximately 35 cycle latency, on-chip
e Special double floating pointing unit
o 32 primary floating point registers, 32 secondary floating point
registers that support —
= standard PowerPC instructions which execute on primary
registers such as fadd, fmadd, fdiv, ... and
= special SIMD instructions for 64-bit floating point numbers
which execute on the primary and secondary registers such
as fpadd, fpmadd,
0 The floating point pipeline is 5 cycles
0 The floating point load-to-use latency is 4 cycles

The Blue Gene/L Double Floating Point Unit  [Slide 22-24]
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The Double Floating Point unit of the Blue Gene/L Processor has two pipes. The
primary pipe executes the standard instructions and the SIMD (Single Instruction
Multiple Data) instructions while the second pipe only executes the SIMD
instructions. The double FPU (Floating Point Unit) implemented on Blue Gene/L chip
offers more capabilities than a pure SIMD unit. Some instructions cause two
different operations to be performed in the two pipes. For example, the instructions
allow to efficiently support complex cross products. Other instructions cause a single

operation to occur on a single set of data.

The results from the pipes are only written to the corresponding FPRs (Floating
Point Registers), primary FPRs for the primary pipe and secondary FPRs for the
secondary pipe. However, the cross micro architecture of FPU allows the primary
and secondary pipes to select primary FPR values or secondary values. Each pipe

has 5 stages and can execute one multiply-add per cycle.

Although, there are two sets of register files, they are not independent and share
address buses for each port. The secondary FPR is accessed with the same
addresses as the primary FPR. The optimal way to fill out the FPRs is to access the
operands in pairs, one primary and one secondary. The Load/Store pipe of the
double FPU makes full use of the quadword APU interface. One load and store can
provide two double-precision operands or two single-precision operands, one for the
primary and one for the secondary pipe. To achieve this, the memory accesses

must be quadword aligned.

In order to understand the impact of the double floating point units as a brief aside,
we show the impact of the performance on a DAXPY, double precision scalar times
a vector plus another vector, kernel. This is a fundamental kernel often found in the
Basic Linear Algebra Subroutines, BLAS, which are optimized for a particular

architecture and called from a library.

In this example, give the source code in both C and Fortran. The graph illustrates
the impact of both aligning the data to be quad word aligned and use of the
secondary floating point unit when aligned. Note that compiler switches are used as

well as directives in the code.

SOFTWARE AND PROGRAMMING MODEL OVERVIEW
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System Software  [Slide 25-26]

The fundamental philosophy behind the systems software is simplicity in order to
scale to tens and hundreds of thousands of processors. In addition, a familiar
application interface that will allow users to easily move existing codes to the
system. With this in mind, the systems software developers avoid features in the
operating systems that were not essential for high performance computing and

strove fro simplicity to achieve both efficiency and reliability.

The system software consists of:

The Compute Node Kernel: The kernel that runs on the compute node is called
Compute Node Kernel (CNK). This is a small simple kernel that provides a Linux-like
simple runtime environment to run the user’s application. It is IBM proprietary. It
does include a subset of Linux system calls primarily to handle I/O so the end-user
can open and close, read and write, create directories, etc. This kernel is Single
user, Single process and no paging. The Compute Node, as mentioned,
communicates to the outside world through the 1/0O Node. The executable program

is loaded from the I/O node through the Collective network.

The 1/0 Node Kernel: The kernel of the I1/O node is called Mini-Control Program
(MCP). It is a port of Linux Kernel which means it is GPL/LGPL licensed. It has
specific patches for the Blue Gene Architecture such as:

Patches for Blue Gene/L

New interrupt controller (BIC)

Save and restore for dual FPU registers on context switch
New memory layout

New set of Device Control Registers (Dicers)

Driver for new Ethernet Macro (EMAC4 based on EMAC3)

The 1/0O service is provided through the Compute Node I/O Daemon (CIOD) on the
Compute Nodes. It is started during the boot procedure of the MCP. The CIOD is a
user level process which controls and services applications in the Compute Node

and interacts with the Midplane Management and Control System (MMCS).
The Midplane Management and Control System(MMCS): Both Blue Gene/L

hardware and software are controlled and managed by the Midplane Management

and Control System(MMCS). The service node, front-end nodes and the file servers
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are not under the control of MMCS. MMCS currently consists of several daemons

which interact with a DB2 database running on the service node.

The Service Node Blue Gene/L Software: The Service Node has three daemons
running on it that perform Blue Gene system management services. These
daemons are idoproxydb, mmcs_db_server and ciodb. These three daemons
perform the following functions:

e idoproxydb - handles the communication to the cluster hardware.

e mmcs_db_server - manages the blocks(also known as partitions), handles
the requests from mmcs_db clients (mmcs_db_console, mmcs_db command
scripts or a job scheduler).

e ciodb - detects the block when it is initialized and manages the job
submission request.

There are four DB2 databases on the Service Node that interact with the MMCS.

These are:

e The configuration database which records Blue Gene/L component
location and connectivity. Most items in this database relate to specific
physical pieces of hardware.

e The operational database which records partitions, job status, and events
related to ongoing Blue Gene/L system activity. (Although it called one of the
four databases, the operational database is actually part of the configuration
database.)

e The environmental database which records periodic readings of voltage
levels, switch

e settings, and sensors.

e The Reliability, Availability, Serviceability (RAS) database which records
both software- and hardware-related errors. It is the RAS database which is
most closely watched by system administrators keeping an eye on the
overall system health.

The Blue Gene/L System Overview [Slide 27]

Taking all the above into account, we see that the Blue Gene/L system is really
comprised of several computers, the Service Node, the Front-End Node(s), File
Servers all connected with the Blue Gene rack which contains the compute and I/O

nodes. Summarizing these systems perform the following functions:

e Service Node - Used for controlling the Blue Gene/L system.

e Front End Nodes - Users log in to these nodes and submit jobs to the Blue
Genel/L system.

e Compute Nodes - The compute engines inside the Blue Gene/L racks.

e |/O Nodes - Installed inside the Blue Gene/L racks.
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e File Servers - Provide a file system accessible both by the Front End Nodes
and by the I/O nodes.

e Functional Network - A common network used by all components of the
Blue Gene/L system except the Compute Nodes.

e Control Network - Used for specific system control functions between the
Service Node and the I/O nodes.

Programming Models and Development Environment [Slide 28]

One of the goals of the Blue Gene Project was to create a system that was familiar
to the application developer. To achieve this, a message passing programming
model built on MPI (Message Passing Interface) was adopted. Most application
programmers familiar with programming on clusters using MPI would be familiar with

the Blue Gene environment.

The development environment should be familiar to many programmers. The
programmer interacts with the Blue Gene system through the front-end node. The
front-end node runs the Linux operating system. The users does all development,
compilations, job submission, and debugging on the front-end node. The
compilation for Blue Gene is done through the use of a cross compiler, the user
compiles on the front-end or other supported platform but targets the executable
through appropriate compiler switch to run on Blue Gene. Supported languages are
Fortran, C, and C++ with MPI (MPI1 plus an appropriate subset of MPI2). The
compilers also support automatic generation of the SIMD instruction for double

floating point unit.

For the most part, the programming model on Blue Gene is a Single Program
Multiple Data (SPMD) model. This, too, is familiar to many who program clusters.
Numerous applications written using MPI calls fit into this model making it easy to

move codes over to try out Blue Gene.

In addition, there are numerous tools familiar to application developers and more
tools are being added. Some familiar tools include:

e Debuggers — TotalView
e Profiling and trace tools — MPI Tracer
¢ Hardware performance monitors — HPC Toolkit, Paraver, Tau, Kojak

You can find more information about these tools and the status of them and others

at the following Websites:
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o TotalView (Etnus @ Entus LLC)
http://www.etnus.com/TotalView/

Parallel debugger

¢ PARAVER (UPC @ U of Barcelona)
http://www.cepba.upc.es/paraver/

KOJAK (ICL @ U of Tennessee and ZAM @ FZ Jiilich)

http://www.fz-juelich.de/zam/kojak/

Kit for Objective Judgement and Knowledge-based Detection of
Performance Bottlenecks

e PAPI (ICL @ U of Tennessee)
http://icl.cs.utk.edu/papi/

Performance Application Programming Interface

e TAU (U of Oregon)
http://www.cs.uoregon.edu/research/paracomp/tau/tautools/

Tuning and Analysis Utilities

e mpiP (LLNL)
http://www.lInl.gov/CASC/mpip/

Lightweight, Scalable MPI Profiling

While the application development should be familiar to many, there are a few things
to keep in mind while developing code to run on the Blue Gene/L Compute Nodes.
One feature on running a code on Blue Gene is the system is strictly a space
sharing system. This means that there is one parallel job (user) for each partition of

the machine. Further, there is one process per processor of the compute node.
The virtual memory of the system is constrained to the physical memory. This
requires the developer to understand the memory requirements of the application. It

is wise to manage memory carefully on this system.

The Blue Gene/L Processor Execution Modes [Slide 29]

The Compute Nodes are composed of a pair of CPUs in a single chip, supporting
chips, and 512 MBs (1 GB) of dedicated memory in which the user’s application
runs. The application user may set up at the time the partition is booted to use the
two processors in one of three ways: Coprocessor Node Mode, Virtual Node Mode,
or Hybrid Node Mode.

19



e Coprocessor Node Mode is a configuration that uses the secondary CPU
as an offload coprocessor for processing the 1/0O of the main CPU. This
reduces the burden on the main CPU, and provides all 512 MB (1 GB) of
memory for the user application in that CPU. Coprocessor Node Mode, will
not assist with file based /O, only messaging, and only then after the primary
node starts it.

e Virtual Node Mode is a configuration that uses both CPUs separately,
running a different instance of the user’s application on each processor. In
this mode, the 512 MB (1 GB) memory is split between the two processors,
giving each processor effectively 256 MB (512 MB) of memory for the
Compute Node Kernel and user application. Each processor also handles it
own /O interactions for messages and the file system 1/O stubs.

e Hybrid Node Mode is a non-default configuration created by the coder. It
sometimes is referred to as “Communication Coprocessor Mode with
Computation Offload”. In this mode, the secondary processor functions as
both an I/O coprocessor and as user application processor. This mode is of
use for those who don’t mind coding their own behavior and the details that
go with performing such a task, details such as handling the lack of L1 cache
coherence between the two processors, in order to wring out the last 2-4% of
speed possible in the Blue Gene/L system.

PERFORMANCE OPTMIZATION AND TOOLS

Performance Optimization and Libraries [Slides 30-32]

To develop programs on Blue Gene/lL, one needs to compile their code. The IBM XL
compilers for Fortran, C and C++ are available. In addition, IBM’s batch processing
scheduler called LoadLeveler is available for dispatching jobs. For I/O performance,
the General Parallel File System (GPFS) is available for Parallel 1/O to external disk.
Several math libraries have been optimized for Blue Gene, The Engineering and
Scientific Subroutine Library (ESSL) is ported to Blue Gene and most functions are
available in highly optimized form. The MASS and MASSV library provide an
additional performance benefit via highly optimized intrinsic functions. The
comparison between the default libm.a and the MASS and MASSV library for

several intrinsic functions is illustrated in the table below.

Cycle count per evaluation on Blue Gene/L processor

Function Libm.a Libmass.a Libmassv.a
Exp 185 64 22
Log 320 80 25
Pow 460 176 29-48
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Sqrt 106 46 8-10

Rsqrt 136 . 6-7

1/x 30 e 4-5

The relative costs of operations on the Blue Gene/L processor are given in the table.
It shows that division is the costliest primitive operation. Avoiding division, one can
achieve 1 mult-add per cycle on each pipe on each of two processors, unless limited
by load-stores. There is no hardware square-root function on Blue Gene/L and the
default GNU library function from libm.a is slow. The recommendation for codes
dominated by SQRT is to use the IBM supplied MASS and MASSV libraries which
are available for download from the following URL:

http://www-
1.ibm.com/support/docview.wss?rs=2021&context=SSVKBV&dc=D400&uid=swg24
009222&loc=en_US&cs=UTF-8&lang=en .

Performance Decision Tree [Slide 33]

On the Blue Gene/L system, there is a variety of tools one uses to obtain and
improve code performance. These tools and their connection are outlined the
Performance Decision Tree. Total performance comes from computation,
communication and I/O performance. The tools available for each are list in this tree

diagram.

Compiler Options and Switches [Slide 34]

For computation, one should not forget the compiler. A lot of performance
improvement can be obtained through a variety of compiler switches. There are
various levels of optimization O through O5. With the wealth of compiler switches
and options, it is hard to determine what will work best in all cases. Here we
recommend a specific starting point of —g for debugging purpose, -O for minimal
optimization purpose, -qarch=440 for the architecture and —-qmaxmem=64000. The
—qarch is important because we are doing cross-compiling, in other words, we are

compiling on another PowerPC architecture and targeting for the 440PC.

HPC Toolkit Overview  [Slides 35-36]
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IBM has an integrated tool kit, the HPC Toolkit. Couples several tools, a profiler,
Xprofile, to understand the performance of code on a processor; an interface to the
PowerPC chip monitors, HPM; and a message passing profiler, MP Profiler and
Trace facility to understand communication. Work is underway to include profilers
for 1/0. All these performance monitoring tools are integrated in a common viewing

tool called Peekperf which aids in visualizing and analyzing the performance.

Message Passing Performance [Slides 37-39]

In the first set of slides, we show the information on message passing performance.
Information can be obtained through the MP_Profiler library and the MP Trace
library. The profiler library captures summary message passing data while the trace
library essentially timestamps MPI calls. The information can be conveniently

displayed through the Peekperf tool.

Processor Performance [Slides 40-43]

We can obtain a variety of information on the performance a code on a processor
through the use of the Xprofiler tool. This tool is much like gprof that many
experienced code developer are use to. Using procedure profiling a graphical
display of call graph can be produced. Hot spots in the code can be readily
identified. Using the source code window and the disassembly windows users are
able to identify to the line those parts of the codes that are the most CPU intensive.
The dissembler code is useful in understanding results of various compiler options
and quickly identifying the use of the double floating point unit. From this
information, the user is able to easily revise his code in the higher language,

recompile and gain improved performance on the processor.

Hardware Performance Monitors — Instrumented Code  [Slides 44-46]

The hardware performance monitors are actually additional logic placed on the
PowerPC processors. They count specific events and were originally intended for
understanding of the logic by the processor designers. As a consequence, the
additional logic is limited information available for an application developer. The
hardware performance monitor library is the mechanism that applications
developers can access the hardware performance monitor HPM. It requires the

application developer to insert calls to the HPM library in his code. One advantage
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of the HPM for the application developer is sections of code perhaps identified by
the Xprofiler can be instrumented. The instrumentation can be nested to easily
identify subsections. Again, the results of the HPM can be displayed through the
Peekperf tool.

Running Code on Blue Gene/L [Slides 47-48 ]

When a user is ready to submit a run on Blue Genel/L, he first identifies and acquires
a partition. This may be done through a script of a job scheduler or the user may
allocate a partition depending on how the Blue Gene is administered locally. The
allocation of a partition is done from the front-end node. Through the allocation, the

user boots the partition to prepare it for execution of the program.

Multiple users may be using different partitions in the Blue Gene rack. This allows

different users to share the rack but the individual partitions are not shared.

Once the partition is set up for the user, the user will submit his parallel job. The job
submission may be done through a job scheduler or through the submit job

command.

The mpirun command is also available for those familiar with it. The use of the
mpirun command offers an advantage over the submitjob command because
mpirun allows the allocation of the partition and the execution of the parallel job to

be performed through a single command.

We present some results from two simple programs running on a Blue Gene/L
system. All the results presented are from a partition consisting of 32 compute
nodes. The information presented comes from editing the output on the front-end

node. The results demonstrate a few features of the Blue Gene/L system.

The first program developed by Jim Sexton at Watson Research Center is a C code
C, Sanity.c and the executable is referred to as Sanity.rts. It is a simple program
that gathers during execution and subsequently prints out information on the
compute node that the MPI task was running on. The information comes from the
bglpersonality.h. The personality is static data given to every compute and 1/O node
at boot time. This simple code queries and extracts the information in the

blgpersonality structure. The code was executed twice, once in coprocessor mode
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and once in virtual node mode. Coprocessor mode is the default mode when booting
a partition. If we were in coprocessor mode and wanted to run this program in
virtual node mode, we would have to reboot the partition because of the static
nature of the personality data. This is not a big task as the partitions on Blue

Genel/L are design to quickly boot up.

There are two lines output from two separate runs, one representing coprocessor
mode in the first line, VN? 0, and the other virtual node mode, where we have in the
second line VN? 1. Both lines are line 20 from standard output file and the
represent the 20" MPI rank which in line 1 is out of 32 MPI tasks (coprocessor
mode 32 processors used) and in line 2 is out of 64 MPI tasks (virtual node mode 64
processors used). The next item prefaced by Pers indicates the X, Y, Z coordinates
in the 4x4x2 mesh and the last coordinate indicating the T coordinate for the
processors that share a compute node. The default torus ordering was assumed,
X0Y0Z0. The Memory size is recorded to be 512 MB. The last item is the location

of node in the system.

Line 1:
stdout[20]: MPI: 20/32, Pers: <0,1,1,0>/<4,4,2,1>, Torus? X0Y0Z0, VN? 0, Mem:
512MB(6), Loc: RO0-M1-Nf-C:J14-U11

Line 2:
stdout[20]: MPI: 20/64, Pers: <0,1,1,0>/<4,4,2,2>, Torus? X0Y0Z0, VN? 1, Mem:
512MB(6), Loc: R00-M1-N2-C:J14-U11

The next program is a Monte Carlo code developed by Bob Walkup at Watson
Research Center. It calculates the value of Qusing a different number of
processors but keeping the amount of work the same. For this particular example,
the code was running in coprocessor mode on a 32 compute node partition. In the
results, it is of interest note the linear scaling, see the table below. In addition, note

the time on each of the number of processors.

Monte Carlo Calculation of (4

#cpus | #trials pi(est) err(est) err(abs) | time(s) Mtrials/s
32 256000000 | 3.14176 | 0.00022 | 0.00017 1.082 236.58
16 256000000 | 3.14164 | 0.00022 | 0.00004 2.164 118.29
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8 256000000 | 3.14157 | 0.00022 | 0.00002 4.328 59.15
4 256000000 | 3.14160 | 0.00022 | 0.00000 8.656 29.57
2 256000000 | 3.14155| 0.00022 | 0.00004 17.313 14.79
1 256000000 | 3.14145| 0.00022 | 0.00014 34.625 7.39

APPLICATION PERFORMANCE

For an ultrascale out system with a massive number of processors, one might very
well ask can one really take advantage of such a system on a single application. In
addition, one might ask what problems/applications are suited to an ultrascale out
architecture. In this section, we highlight a few applications that have some
relevance to the computational biology community that have exploited the utlrascale

out architecture of Blue Gene.

At IBM’s Yorktown Heights facility, IBM runs a large Blue Gene system consisting of
20 Blue Gene racks. The purpose of this facility is for production science in support
of IBM’s Research Division’s mission of basic science. This machine is referred to
as BGW, Blue Gene at Watson.

Blue Matter Framework [Slides 50-54]

As part of the public unveiling of the Blue Gene project in December 1999, the
project’'s two main goals were stated: (1) to advance our understanding of biological
phenomena such as the mechanisms behind protein folding via large-scale
simulation, and (2) to explore novel ideas in massively parallel machine architecture
and software. This project should enable biomolecular simulations that are orders of

magnitude larger than those achieved with previously available technology.

Blue Matter is a molecular simulation framework and application developed to
support the scientific goals of IBM’s Blue Gene project, to serve as a platform for
research into application programming patterns for massively parallel architectures,
and to explore ways to exploit hardware features of the Blue Gene/L architecture. A
major design goal for Blue Matter has been to achieve strong scaling of molecular
dynamics for moderately sized systems (10,000 — 100,000 particles) to very small

numbers of atoms per node. This supports one of the aims of the scientific
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component of the project, to carry out simulations on a scale that allows meaningful
comparisons with experimental data. Results from early production use of prototype
Blue Gene/L hardware were recently published in the Journal of the American

Chemical Society.

Included here are results from the Blue Matter Framework for various molecular
dynamic problems, such as G Protein-Coupled Receptors (GPCR) in a membrane
environment and lipid bilayers. For comparison purposes, we provide the Blue
Matter code performance against that of a popular free available code NAMD, the
best NAMD performance. One key component of the Blue Matter code is to have an

efficient 3D FFT. The performance of this kernel is displayed.

New Science and Outstanding Performance [Slides 55-63]

Several codes with some relevance to this community have achieved significant
performance milestones. These are documented last fall at the SC05 conference,
where the ddcMD code broke the 100 Tflops barrier. We describe the science and
the performance results for ddcMD, a scalable, general purpose code for
performing classical molecular dynamics (MD) simulations using the highly accurate
model generalized pseudopotential theory (MGPT) potentials. These semi-empirical
potentials, which are based on a rigorous expansion of many body terms in the total
energy, are needed in order to investigate quantitatively the dynamic behavior of
transitions metals and actinides under extreme conditions. What is shown is the
nucleation of the solid phase in Tantalum and Uranium. This is the first time that it
has been possible to see multiple nucleation sites in a computer modeling
experiment. We also see that scaling of the code to greater than 10,000 processors

is excellent.

Similarly, the CPMD code from IBM Zurich Research Labs has also exceeded the
100 Tflops mark. The CPMD is based on the Car-Parrinello Molecular Dynamics
codes. The code uses a plane wave/pseudopotential implementation of the Density
Functional Theory. The parallel implementation is designed for ab-initio molecular
dynamics. For more detailed information including how to download the code visit:

http://www.cpmd.orqg .

The work being done at AIST combines genome decoding with protein engineering

for drug design. This is natural use of Blue Gene.
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Not every computational biology problem is related to molecular dynamics. We
mentioned the transcription regulatory work at Boston University. We will give
details on the use of Blue Gene for genome assembly later. But another area the
Blue Gene is impacting the biological sciences is the neurology. The Blue Brain
Project at EPFL (Ecole Polytechnique Fédérale de Lausanne) in Switzerland
headed by Prof. Henry Markham is using Blue Gene to accelerate their research
efforts.

MASSIVELY PARALLEL COMPUTING ENVIRONMENT

Massively Parallel Computing Environment - What Next? [Slide 64-72]

In the above, it was mentioned that a familiar programming model, Single Program
Multiple Data (SPMD), is easily used on Blue Gene/L. Many cluster programs
assume this programming paradigm. As a consequence, it is easy to get started on
Blue Gene/L. In some instances, the programs moved to Blue Gene will tackle
larger problems of interest to society with real impact. In other instances to get
more accuracy, finer resolution, greater refinement or larger searchers may be done
utilizing a lot of processors. To take full advantage of the power of tens or even
hundreds of thousands of processors, one may want to rethink the problem. For
some problems, a Multiple Program Multiple Data (MPMD) paradigm may be more
appropriate. The Blue Gene system can support such a model through use of MPI
communicators. Through the use of multiple communicators, different parts of the
Blue Gene system may be able to work on different aspects of the problem
simultaneously. While this may not really be a Multiple Program Multiple Data

situation, it provided the initial thinking in this direction.

In Biology, we are interested in exploring interactions of complex systems. We
might model and perform simulations at various levels such as at the molecular,
cellular, organ or organism level. But of real interest is to understand the
interactions between these different levels. Even trying to fully model a single cell, a
simple system, result in a set of complex systems interacting. A MPMD

programming paradigm may be the right way to tackle such a problem.

Examples where concepts of multiple program with multiple data may apply abound

in biology. Blue Gene provides the infrastructure with the ability to do atomistic
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(discrete) level computations and easily couple these to microscale, mesoscale and
continuum computations. One might look at the whole cell as composed of different
simulations all coupled together or pharmaceutical manufacturing problems that

involve multiple scales such as for inhalers.

Other examples include, analyzing the various data available from gene expression
profiling, protein expression profiling, combined with multi-modal imaging and then
coupled to models for simulation. Ultimately, as we learn how to use massively
parallel computing environment to model biological systems, we will be able to rely
on these models for predictions of out comes. This eventually will lead to moving
through the various biological scales, moving from gene data, to proteins, to cells
and ultimately to organs and finally to complex biological systems. With systems
like Blue Gene, we are starting to get the needed computational power but there
remains a lot to learn on how to best use such tools combined with other tools such
as high resolution imaging device. All of this is moving us in the realm of systems

biology.

The goal of systems biology is to provide predictive simulations of complex
biological problems. Here again we are faced with systems of complex systems.
Modeling each system and then combining them in some fashion may lead naturally
to a MPMD programming paradigm. Blue Gene/L provides the facilities to serious

explore this realm and provides the opportunity for new discoveries.

Large-Scale Computational Genomics on the IBM Blue Gene/L

Supercomputer

We first present an overview of a number of large scale problems in computational
genomics and then present a unified methodology to solve them on high

performance parallel supercomputers such as the Blue Genel/L.

Genome Assembly [Slides 75-76]

Current sequencing techniques can only determine short sequences experimentally
(up to 1000 nucleotides). To overcome this limitation, sequencing projects break a
large sequence into many smaller sequences. As an example, consider whole

genome sequencing. Multiple large genomic sequences are randomly fragmented
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such that the output is a collection of unordered, but overlapping, fragments that can
be sequenced. Genome assembly algorithms then take advantage of the inherent
overlap information to reconstruct the original sequence similar to putting together a

very large jigsaw puzzle.

Expressed Sequence Tag [Slides 77-78]

Expressed Sequence Tag (EST) sequencing is an approach used to enrich for the
protein-coding sequences present in a genome. Messenger RNA is extracted from
multiple tissues of interest, converted into cDNA via reverse transcription and cloned
to generate a collection of expressed molecules often called a library. One or both
ends of these cDNAs are then sequenced, resulting in many single-pass fragments.
As shown in slide 5, however, genes are not uniformly expressed and in the
absence of biochemical normalization the rate at which a specific gene is sampled is
directly proportional to its frequency in the original cDNA pool. This frequency
information is useful to analyze gene expression computationally, but also
significantly affects the computational complexity because there are a quadratic
number of potential overlaps among these data. For this reason most collections of
ESTs are first grouped based on a single-linkage clustering algorithm to reduce their

analysis to multiple subproblems.

Single Nucleotide Polymorphisms - SNP [Slides 79-82]

Although the underlying process used to generate genomic fragments and ESTs
differ greatly, these sequencing strategies are highly complementary because ESTs
can be mapped onto their respective genomic loci using algorithms collectively
called spliced alignment. For example, it is possible to compute an optimal
alignment solely based on scores assigned to matches, mismatches and constant
penalties for insertions/deletions that satisfy a specified minimum length criterion.
Moreover, ESTs are invaluable resources for locating single base differences
between related individuals called single nucleotide polymorphisms, or SNPs. This
is performed by analyzing a multiple sequence alignment composed of a reference
sequence (e.g., an assembled genome) and multiple ESTs as illustrated in these
slides. An alternative SNP detection approach is to perform an assembly of the
diverse EST sequences themselves and determine columns of the corresponding
multiple sequence alignment that differ, which is useful when no reference sequence

is available.
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Naive Approach to Alignment [Slide 83-85]

The above slides are an example of some of the problems in computational
genomics which can in principle be solved by finding good alignments between pairs
of sequences and processing the results. This tutorial will focus on how to solve
such problems effectively on large parallel computers. The naive approach to
determine which sequences overlap involves computing an alignment between all
pairs of input sequences; this is computation-intensive and often wasteful. Avoiding
an all-vs.-all comparison is especially important for large scale data. For example,
some of the largest EST collections such as human, mouse and maize are
composed of millions of input ESTs. To overcome this pitfall, many software tools
restrict the search space to sequences that are more likely to have a significant
alignment by using criteria such as one or more exact matches of length I. Locating
all sequences that share common exact matches can be performed using a linear
time and space data structure such as a lookup table, which can then be used to
restrict alignments to only between these “promising pairs”. Even so, ESTs may be
non-uniformly sampled such that the number of promising pairs computed could

scale quadratically even when using the most stringent of heuristics.

Lookup Tables [Slide 86]

Lookup tables are easy to program, require linear space, and have a very small
space constant, which enables them to be useful on many machines. There are,
however, limitations with this approach. We would expect that the quality of an
alignment is somewhat correlated with the longest exact match between two strings.
Lookup tables can not determine the length of long exact matches because the
space required to store them grows by a factor of 4' for indexing substrings of length
[. Moreover, a single long exact match of length m would reveal itself as m — | + 1

fixed length matches with no implicit order unless we initially sort all of the pairs.

PaCE Methodology [Slide 87]

Our contribution, which is implemented as a software tool called PaCE, overcomes
the limitations of a lookup table and introduces additional algorithmic innovations for
large-scale sequence analysis. This software constructs a distributed version of a

generalized suffix tree (GST) that allows generating promising pairs in decreasing
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order of maximal common substring length in time and space proportional to the
size of the input. In addition, an on-demand non-increasing pair generation scheme
eliminates storing a potentially quadratic number of overlaps while decreasing the
total amount of work by filtering these matches based on previously computed
results. This provides a scalable framework that we show can effectively utilize
thousands of processors to reduce run-time and increase available memory when

processing large sequence collections.

Maize Genome Assembly

Maize Genome [Slide 88-89]

Here, we present an application of the PaCE framework to both maize genome
assembly and large-scale EST clustering. Just as the human genome will
accelerate advances in medicine, recent plant genome sequencing endeavors
should help improve food production. Maize, also known as corn, is the best
studied model for the cereal crops (rice, wheat, barley, and oat) and is itself
economically important. Unfortunately, it is also one of the most complex eukaryotic
genomes with a total size of ~2.5-3 billion bases, most of which is composed of
highly similar retrotransposons. These present a significant challenge during
assembly and were the focus of pilot studies to better understand the landscape of

the maize genome.

Assembly Strateqy [Slides 90-91]

As mentioned earlier, software tools that perform all pairwise comparisons such as
genome assembly use an exact match filter to substantially reduce the search
space. This also can lead to a linear space requirement in most shotgun
sequencing projects because the number of overlaps each sequence participates
should, on average, be the same as the number of times that base is represented in
the set of sequences. Even so, assembly of genomes as large as the human
genome and maize places enormous computational demands and requires tens of
thousands of CPU hours. For example, twenty seven million fragments were
assembled by the Celera Assembler in 20,000 CPU hours, half of which was spend

detecting overlaps.

Maize Genome Assembly Effort [Slides 92-96]
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Current estimates state that maize contains approximately 50,000 genes, which are
roughly twice as many genes in the human genome and the model plant
Arabidopsis. These genes, however, only occupy about 15-20% of the maize
genome. To address this disparity and to devise a strategy for maize genome
sequencing, an NSF workshop was held in 2001 to discuss various options and
resulted in two consortiums being funded to explore multiple strategies. One
consortium that involved Rutgers and the University of Arizona performed traditional
Bacterial Artificial Chromosome (BAC) sequencing including a substantial number of
end sequences to obtain a relatively random sampling of the maize genome at
multiple resolutions: both at random (ends) and specific blocks (BACs). The other
consortium involving the Danforth Plant Science Center, TIGR, Purdue, and Orion
Genomics tested techniques that have since been termed “gene-enrichment”
because they apply unique filters to traditional genomic fragments to substantially

enrich for genic sequences. Each of these approaches is explained in detail below.

Arguably the best enrichment strategy for plant genomes involves selecting against
methylated DNA prior to sequencing using special strains of E. coli. Unlike
mammalian genomes, genes in plants tend to be highly hypomethyated, i.e., there
are no methyl groups attached to the genome at these loci. Moreover, the repetitive
sequences in plants tend to be highly methylated. Removing methylated DNA
therefore enriches for genic sequences because repeats are preferentially removed
during this strategy. This strategy is also very simple; only the type of bacteria used
during the clone step needs to be changed in order for this strategy to work. The
other gene-enrichment technique involved C,T filtration using methodology similar to
that used to normalize cDNA libraries prior to EST sequencing in the 1990s.
Although this approach is also effective, it is much more complex and is subject to
sequence artifacts because single-stranded DNA must be converted to double-

stranded DNA prior to sequencing.

Cluster-Then-Assemble [Slides 97-98]

Gene-enrichment has been shown to be a cost-effective strategy to survey the
“‘gene space” of at least two genomes: maize and sorghum. These strategies,
however, place the same computation requirements on assembly algorithms as

ESTs because certain sequences may preferentially survive the filtration steps
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and/or residual repeats cause non-uniform sampling of certain regions of the

genome.

To overcome the potential computational bottleneck of non-uniform genome
assembly, we developed a “cluster-then-assemble” strategy. This strategy locates
all of the connected components in the overlap graph used during genome
assembly and then runs a serial assembly on each component in parallel. In order
for this strategy to work, any overlap that would be determined by the assembler
also should be detected during the clustering step to ensure the result of processing
each connected component individually is the same as performing the assembly

directly.

Our strategy proceeds as follows: We perform single-linkage clustering approach
on a collection of gene-enriched sequences generated from methyl-filtration (MF)
and/or high CgT selection (HC). Specifically, each sequence belongs to its own
cluster at the start of execution and at the end of clustering sequences belonging to
the same cluster either directly overlap or are transitively related by a chain of
overlaps that lead from one sequence to another. Because these chains may be
inconsistent in the presence of repetitive sequences or chimeric reads, post-
processing may generate more than one contig. We use the union-find data
structure to efficiently combine and search for membership in clusters at any point

during the execution of the algorithm.

Pair Generation [Slides 99-101]

One observation that can be made about clustering is that pairs that already belong
to the same cluster do not need to be evaluated. In fact, it is easy to prove that
although there are O(n?) potential overlaps in the worst case, only O(n) of these can
be used to merge clusters after which all n sequences will belong to the same
cluster. Although we can not guarantee that we will find this linear number of
successful alignments first, we can utilize a greedy clustering heuristic that attempts
to find as many of these good overlaps quickly to eliminate many unsuccessful
alignments. Our algorithm achieves this result by generating promising pairs in non-
increasing order of maximal common substring length using a GST in amortized
O(1) time per pair. We do not need to store previously generated pairs, resulting in
a linear space clustering algorithm for any underlying sequence sampling

distribution.
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PaCE Methodology [Slides 102-108]

Our PaCE algorithm has four distinct modules. In the first module, a generalized
suffix tree, which is a compacted trie of all of the suffixes of all of the input strings, is
constructed in parallel. There are currently no optimal suffix tree construction
algorithms for distributed memory systems; however, observe that a suffix tree can
be converted into a forest where each tree has a common prefix. In other words, we
chop the suffix tree breadthwise at some arbitrary depth d generating at most 4¢
subtrees whose suffixes share a common prefix. By setting the minimum allowable
maximal common substring to be greater than d, we ensure that any promising pair
can be determined on a single processor without utilizing any subsequent
communication. To achieve this distributed GST, we initially bucket the suffixes
based on the first d nucleotides and then allocate the corresponding buckets such
that each processor has O(nl/p) suffixes, where | is the average sequence length
and p is the number of processors. Each substree of the GST is then generated
top-down by successive bucketing, resulting in an O(nl*/p) algorithm, which works

well in practice.

To eliminate additional memory overhead, we construct each subtree on each
processor iteratively. Although this approach is space-efficient on the Blue Gene/L
supercomputer, it requires substantial random access 1/O in parallel and the same
sequence may be read from disk as many times as it has suffixes. We addressed
this issue on BG/L by replacing 1/0 with communication and using the collective

memory of all the processors to store the input sequences.

Pair Generation Algorithm [Slides 109-114]

Maximal common substrings between pairs of sequences can be identified as
follows: The concatenation of edge labels on the path from root a node in the suffix
tree is called the path label of that node. Consider an internal node in the tree and
two leaves in its subtree. The path labels of these leaves correspond to two suffixes.
The path label of the internal node is a common prefix to these suffixes, hence a
shared substring. This common substring is right maximal (i.e., cannot be extended
to the right) if the leaves are in the subtrees of different children of the internal node.
They are left maximal (i.e., cannot be extended to the left) if the respective previous

characters of the two suffixes differ. These rules are used to generate maximal
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common substrings at every internal node in the tree. By sorting the internal nodes
according to non-increasing order of the lengths of their path labels, and processing

them in that order, the required pair generation is achieved.

Master-Worker Paradigm [Slide 115-117]

The clustering phase of the PaCE algorithm utilizes a master-worker paradigm
where the master processor is responsible for cluster management and the worker
processors generate pairs from their portion of the GST and compute alignments
using banded dynamic programming. As shown in these slides, this approach
scales well and, most importantly, is able to substantially reduce the number of

alignments computed by processing exact matches in non-increasing length order.

Assembly Pipeline [Slide 118]

Our sequence assembly pipeline can be broken down as follows. First, input
sequence data are cleaned by trimming residual vector sequence in addition to low-
quality sequences using the Lucy tool. Then, sequences are masked using a
modified version of the BLAST search algorithm using previously published
methodology and clustered on BG/L. Each of the clusters is then assembled in
parallel by distributing them to individual processors and combining the results after

all clusters have been processed.

Blue Gene Performance [Slides 119-120]

We have applied our parallel framework on up to 8,192 processors of a BG/L
supercomputer as illustrated by these tables. The implementation used for
generating these runtime appears to scale well up until 8,192 processors for the
suffix tree construction phase but only achieves marginal speedup during the
clustering phase when compared to a run on a 1,024 processor system. This is
primarily a result of using a single master processor for clustering that becomes
overwhelmed as the number of processors enters the thousands. A potential
solution to this phenomenon is to utilize multiple master processors; however, this
may require substantial communication to ensure the state of the clusters is

consistent between master processors.

Maize/Sorghum Assembled Genomic Islands [Slides 121-228]
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The assembly results from our runs on BG/L are actively utilized by the plant biology
community. We currently provide multiple assembly versions of both the gene-rich
regions of the maize and sorghum genomes as builds called Maize Assembled
Genomic Islands (MAGIs) and Sorghum Assembled Genomic Islands (SAMIs). The
latest MAGI build (version 4.0) is based upon 3.2 million input fragments and is
composed of 217,106 contigs and 567,797 non-repetitive sequences that do not
assemble with any other sequence. Significantly, we have shown that the results of
this assembly are highly accurate both with respect to base fidelity as well as contig
formation in a 2005 paper in the Proceedings of the National Academy of Sciences
that involved substantial biological validation. There are very few residual
sequencing errors in our assembly and we estimate that overall this build has an
error once every 10,000 nucleotides. This assembly has led to substantial
advances in maize genetics and one such observation is that genes tend to cluster
together in the maize genome in what we term gene “archipelagoes”. These data in
addition to information about the PaCE software tool can be accessed from our

project website http://magi.plantgenomics.iastate.edu. This site also includes

substantial annotation graphically displayed by GBrowse and is searchable by
BLAST.

Maize Genome Project Future [Slides 129-130]

The U.S. National Science Foundation (NSF), Department of Agriculture (USDA),
and Department of Energy (DOE) have recently announced a $32 million dollar
investment in maize genome sequencing. The goal of this project is to sequence all
genes in the B73 cultivar, determine their order and orientation, and anchor them to
the genetic/physical maps. Washington University in St. Louis will lead this
sequencing consortium that includes the University of Arizona, lowa State University

and Cold Spring Harbor.

Mouse EST Clustering

Mouse EST [Slides 131-132]

We have also applied our clustering framework to the ~3.8 million mouse EST
sequences, which is the second largest collection of ESTs next to those from

human. To validate our massively parallel strategy we reclustered sequences from
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a UniGene build downloaded in March 2006 on 1,024 processors of BG/L and
obtained 60,862 clusters with more than one sequence; the original UniGene
collection contained 56,470 clusters. Approximately 83% of these clusters are
composed of members obtained from a single UniGene without postprocessing the

results to eliminate highly similar gene families and/or alternative splice forms.

Validating Accuracy [Slides 133-134]

Validating the accuracy of any clustering algorithm can be performed in different
ways. One method is based on all possible pairs of sequences, and this approach
has been used to test the ability of PaCE to cluster small collections of plant ESTs.
Another approach that we found yielded more information for large collections of
ESTs is comparing the number of correct merges, or decisions, computed by our
algorithm when compared to the UniGene benchmark. Similarly, we can determine
how many additional merges PaCE performed (false positives) that led to two
different UniGenes being placed together as well as the number of merges missed
(false negatives) leading to multiple PaCE clusters per UniGene cluster. As
illustrated on slide 61, over 3.2 million out of 3.3 million decisions were made by
both clustering algorithms, suggesting PaCE recovers many of the valid overlaps
among the maize ESTs processed. Moreover, only 26,125 false positive merges

were made, confirming that many clusters are highly specific.

Blue Gene Performance and Scaling [Slides 135-136]

The scaling of our BG/L clustering algorithm when applied to EST data is similar to
that of maize gene-enriched genomic fragments with near perfect scaling up to
1,024 processors for the largest dataset analyzed (n = 2,000,000) and weak scaling
for smaller datasets. Interestingly, the alignments saved when performing EST
clustering is substantially higher for these sequence data than genomic data with
nearly 1.8 billion alignments ignored for the 3.78 million dataset among a total 2.1
billion (86%). Even so, this run took a total of 9.5 hours, of which 7 hours were

spent clustering.

Closing Remarks

Blue Gene Consortium [Slide 139]
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There are several places to learn more about how to use Blue Gene and how you
might access it. One such place is to visit the Blue Gene Consortium Website,
http://www.mcs.anl.gov/bgconsortium . One can learn about other activities at this
Website.

Final Remarks [Slide 140]

While we are starting to see Blue Gene impacting computational biology, much work
remains to be done. In closing, it will be up to computational biology community to
determine how a resource like Blue Gene will really have impact. Hopefully, this
tutorial sparked your interest and your imagination on problems you might now

tackle using a resource such as Blue Gene.
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Additional WEB Sites

Here are some additional websites, in addition those included in the text, where one

can find additional information on the topics described in this tutorial.

IBM Deep Computing website contains other information on Blue Gene. The
Website is:

http://www.ibm.com/servers/deepcomputing/

Information on the IBM Computational Biology Center can be found at:

http://domino.research.ibm.com/comm/research.nsf/pages/r.compbio.html

IBM’s Healthcare and Life Sciences Industry details can be found at the following;

http://www.ibm.com/industries/healthcare/

IBM Redbooks are handy references guides on many topics. All IBM Redbooks are
available as pdf files. The IBM redbook website is:

http://www.ibm.com/redbooks

Information on the Bioinformatics and Computational Biology Program at lowa State
is available at:

http://www.bcb.iastate.edu/

Information on the Department of Biomedical Engineering at Boston University is
available at:
http://www.bu.edu/dbin/bme

Srinivas Aluru’s home page is:

http://www.ee.iastate.edu/~aluru/home.html

Kirk Jordan’s home page is:

http://www.ibm.com/software/info/university/people/kjordan.html
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Blue Gene is an evolutionary, innovative technology which reduces “time to solution” for
many computational science problems through ultrascalability and modularity with the
lowest power consumption, smallest footprint, highest reliability and easiest
manageability in the industry.
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Trends in HPC Architecture

Completely COTS
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= Commercial off-the- Dell PowerEdge (EM64T) = Combines commodity
shelf (COTS) P @ty ST (EYET) processors with custom high
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(rack-optimized or IBM BladeCenter LSxx, €326 performance
blade) IBM BladeCenter HSxx, x336, x346 (EM6AT) = Standard or custom
= PCI-Express or Linux NetWorx (EM64T or Opteron) packaging
HTX-based Sun Fire x2100, x4100, x4200, V202, V402 (Opteron) = Growth limited by program
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IBM HPC Server Portfolio

Scale-out (high-value) Purpose-built
« Tightly coupled clusters « Specifically designed for HPC capability workloads
* RISC- or Itanium-based SMP servers; « Usually custom microprocessors, usually employ vectors

« Optional high performance interconnect (industry- and streaming
standard, OEM or custom) « Custom interconnect
« Industry standard or custom packaging « Custom packaging

« Vendor integrated « Vendor integrated

System p5 575 I1BM System
Blue Gene®
®
IBM BladeCenter ®JS21* ST

(Standalone) SMP
* 2-way to 64-CPU (or bigger) SMP servers
+ Single system simplicity, uniform memory programming
model, and high SMP scalability for a broad range of
problem sizes and throughput objectives
« Broad ISV support (Unix and Linux)

IBM System p5™
IBM System x™

184

46



14th Annual International Conference On Intelligent Systems For Molecular Biology

Biology of Transcriptional Regulation

‘ /‘ME) 2000 iy i _
nd 27 Annual ABC_ Conference: g  Transcription Factors (TFs) bind DNA upstream of a gene
- - and promote or inhibit RNA transcription

« Genes bound by the same TF can be co-regulated

Example Using Blue Gene

Goal

« Identify both the TFs and the places they bind (i.e. the genes they regulate)

« Identify sets of gene regulated by the same TF

/ -\jr ,)// i :'._\;\_ l—
> ?

186

Gibbs Sampling GibTigs BlueGene/L Implementation
— - - GibTi ; ;
« Pick initial positions in — GibTigs analysis requires the
} — -MANA- compilation of millions of
promater hypothesized to - - Gibbs sampling iterations
contain a common binding — - T pling :
T [ - Compute Chip
ste — p— - 2a8- «Each iteration is bl
= BATA- f .
EROMOTER, e |ndeperjdgnt, ‘and a!lowmg -
o broad distribution of jobs with PR
« Calculate a PWM (1/8(8 4 minimal i_nterprocessor Ingependent bk Sampling
ADIS 15 communication
« In general, the score we want to optimize 2090009 -
is the conservation of the PWM mlalolao *GibTigs also takes full
S advantage of both the tree
-— —— 8[1|0(8]® and torus networks
- connecting processors. (! J
« lteratively update - . 9p s’
. P - - ———
positions, optimizing PWM o *Thus, linear scalability is
- - = maintained through the use of BlueGenel L Rack (Tonws Wetwork): BlueGane/t Rack {Tree Network]:
thousands of CPUs. Mol !
PROMOTED ORF
187 188




GibTigs on the S. cerevisiae genome

e Study set:
Genome location data for 203 TFs in numerous conditions.
310 sets of genes to be analyzed in all.

* Using a single BlueGene/L rack, completed whole genome GibTig analysis
in less than 2 weeks.
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Yeast Phylogeny

» Potential for comparative genomic studies?
(genomic sequences exist for 15 yeast species)

*  Will be possible with multi-rack
BlueGene/L systems
(16 racks ~ 1 yeast genome per day) I malet

b prmbe

14th Annual International Conference On Intelligent Systems For Molecular Biology

Fortaleza,
August

Blue Gene Architecture

Hardware
Software

Blue Genel/L - Insight into Genomic Regulation

Redeployment of GibTigs on BlueGene/L
systems redefines Boston University’s
Biomolecular Systems Lab development cycle.

— One BGIL rack represents nearly a twenty fold increase
in available compute power, of which we have taken full
advantage.

— GibTigs showing linear scalability up through 2048 CPUs, ,&;,v
one BGI/L rack in virtual-node mode - sped our
development cycle from a few runs a week to many runs a
day.

« Doing so has enabled large scale parameter searches, and
regular production grade performance evaluations.

The results are drastic improvements in sensitivity and

specificity of our algorithm, none of which would have been

possible at our previous development pace.

Rather than making conservative modifications to GibTigs, the,

power of BlueGene has given us the freedom to take risks i

trﬁlng new ideas, many of which have failed, but some of

ich have prowded new insight and new power to

GibTigs.

- Gilegs has recently proved to be, according to
published measures, the most powerful predictor of
DNA transcription regulatory sites to date.

Havmﬁ; achieved a performance milestone, the
scalability of BlueGene/L has encouraged us to
think even bigger in our research. “
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Dual PowerPC
System-on-Chip (SoC)

Upto 5.6 TFs
Dual T00MHz CPUs g
4MB L3 . N
Upto 5.6 GFis Blue Gene SoC is implemented in 0.13 pm
technology integrating L1, L2, L3 (4MB) cache;
‘@ quad-word memory controller; and five networks
(torus, tree, interrupt, JTAG, Ethernet)
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Blue Gene system modularity

L=}

Host System
Service and Front End Nodes
(P5/SLES9), Storage System,
Ethernet Switch, Cabling, SUSE
SLES9, DB2, XLF/C Compilers

Blue Gene Rack(s)
Up to 1024 Compute Nodes / Rack
Up to 128 10 Nodes / Rack
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BlueGene/L Interconnection Networks

3 Dimensional Torus

— Interconnects all compute nodes (65,536)

— Virtual cut-through hardware routing

— 1.4Gb/s on all 12 node links (2.1 GB/s per node)
— Communications backbone for computations

— 0.7/1.4 TB/s bisection bandwidth, 67TB/s total
bandwidth

Global Tree

One-to-all broadcast functionality

— Reduction operations functionality

— 2.8 Gb/s of bandwidth per link

— Latency of tree traversal 2.5 ps

— ~23TB/s total binary tree bandwidth (64k machine)
— Interconnects all compute and 1/O nodes (1024)

Ethernet
@\ @ — Incorporated into every node ASIC
/@ — Active in the I/O nodes (1:64)
@,. — All (;xtemal comm. (file /O, control, user interaction,
" etc.
@ @ Low Latency Global Barrier and Interrupt

Control Network
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1-8 rack BGIL System

up o 125 115 nodes per

rack

pSeries p570 service node
Baway for 14 racks
pSeries p570 B way Front
End node for user interaction

Storage disk farm with 60 DS4100
storage controllers & DS4000-
EXP100 expansion units
Total storage 330 TH (Raw)

Typical Blue Gene Configuration

ch2:
480 1-GigE ports 32 10-GigE ports
816 10-GigE ISL & 16 10-GigE ISL

slorage by 2GB FC links
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wilh BEC 1D drawers connecled to

5 NSD servers

Force 10 Networks E1200 GigE Swilches i
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Powerpc-440 Processor
32-bit architecture at 700 MHz
single integer unit (fxu)
single load/store unit
special double floating-point unit (dfpu)
e L1 Data cache : 32 KB total size, 32-Byte line size, 64-way associative,
round-robin replacement
» L2 Data cache : prefetch buffer, holds 16 128-byte lines
» L3 Data cache : 4 MB, ~35 cycles latency, on-chip
* Memory : 512 MB DDR at 350 MHz, ~85 cycles latency
Double FPU has 32 primary floating-point registers, 32 secondary floating-
point registers, and supports :
— standard powerpc instructions, which execute on fpuO (fadd, fmadd, fadds,
fdiv, ...), and
— SIMD instructions for 64-bit floating-point numbers (fpadd, fpomadd, fpre, ...)
Floating-point pipeline : 5 cycles
Floating-point load-to-use latency : 4 cycles
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For double FPU code generation, 16-byte alignment is required; should work
from —gqarch=440d but may need alignment assertions:
Fortran :

call alignx(16,x(1))

call alignx(16,y(1))
libm* unroll(10)

doi=1,n

y(i) = a*x(i) + y(i)

end do
C:

double *x, *y;

#pragma disjoint (*x, *y)

__alignx(16,x);

__alignx(16,y);

#pragma unroll(10)

for (i=0; i<n; i++) y[i] = a*x[i] + y[i];
Try : -O3 -garch=440d -qlist —qsource
Easiest approach to double FPU is to use optimized math library routines.

WA/MP zoofﬂ
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Dual FPU Architecture

Two 64 bit floating point units

=
RImEiN
\ NS

library developers

files

cross and replicated operands

FFT
« Parallel (quadword) loads/stores
— Fastest way to transfer data between
processors and memory
Data needs to be 16-byte aligned
Load/store with swap order available
¢ Useful for matrix transpose

A/ MP 20961

¢ SIMD instructions over both register

« Designed with input from compiler and

— FMA operations over double precision data
— More general operations available with

¢ Useful for complex arithmetic, matrix multiply,

Forialeza, dr lul
August §-10
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Alignment Performance
BGI/L Daxpy Performance
12
call alignx(16,x(1))
call alignx(16,y(1)) 1
doi= 1,n —— 440d+alignx
y(i) = ax(i) + y(i) L 08 T — a0
end do g —440d
g 06
£ S P
04 AT
M N
02 \'_‘
0
108402 108403 108404 108405 108406 108407 108408
Bytes
Performance of compiler-generated code is shown.
-qarch=440 => single FPU code, theoretical limit is 2/3 flops per cycle.
-qarch=440d => double FPU code, theoretical limit is 4/3
Qps pe e _data in-cache, 2/3 flops per cycle otherwise
WA/MP200 61
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The Software Solution Philosophy

» Simplicity
— Avoid features not absolutely necessary for high
performance computing
— Using simplicity to achieve both efficiency and reliability

» New organization of familiar functionality
— Same interface, new implementation
— Hierarchical organization

— Message passing provides foundation
« Research on higher level programming models using that base
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BlueGene/L System Architecture

r--------- 1 tree
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BlueGene/L Software Hierarchical

Organization

« Compute nodes dedicated to running user application, and
almost nothing else - simple compute node kernel (CNK)

¢ |/O nodes run Linux and provide a more complete range of
OS services — files, sockets, process launch, signaling,
debugging, and termination

« Service node performs system management services (e.g.,

heart beating, monitoring errors) - transparent to application
software

202

Programming Models and Development

Environment

e Familiar Aspects
— SPMD model - Fortran, C, C++ with MPI (MPI1 + subset of MPI12)
« Full language support
« Automatic SIMD FPU exploitation
— Linux development environment
« User interacts with system through FE nodes running Linux — compilation, job
submission, debugging
« Compute Node Kernel provides look and feel of a Linux environment — POSIX system
calls (with restrictions)
— Tools — support for debuggers (Etnus TotalView), MPI tracer, profiler,
hardware performance monitors, visualizer (HPC Toolkit, Paraver, Kojak)

« Restrictions (lead to significant scalability benefits)
 Strictly space sharing - one parallel job (user) per partition of machine, one process
per processor of compute node
« Virtual memory constrained to physical memory size
— Implies no demand paging, only static linking
« Other Issues: Mapping of applications to torus topology
— More important for larger systems (multi-rack systems)
— Working on techniques to provide transparent support

/MBS 5000]
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Execution Modes for Compute Node

« Communication coprocessor mode: CPU 0 executes
user application while CPU 1 handles communications
— Preferred mode of operation for communication-intensive and
memory bandwidth intensive codes cPUO|
— Requires coordination between CPUs, which is handled in

libraries -
— Computation offload feature (optional): CPU 1 also «
executes some parts of user application offloaded by CPU 0
« Can be selectively used for compute-bound parallel regions
« Asynchronous co-routine model (co_start / co_join)
* Need careful sequence of cache line flush, invalidate, and copy
operations to deal with lack of L1 cache coherence in hardware

+ Virtual node mode: CPUQ and CPU1 handle both
computation and communication
— Two MPI processes on each node, one bound to each
processor
— Distributed memory semantics — lack of L1 coherence not a
problem
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"' ’ and 2% Annual AB>C Conference:
tl—

14th Annual International Conference On Intelligent Systems For Molecular Biology

\

I/ MP 200650

Performance

Compilers
Libraries
Tools
Running

HPC Tools Available for Blue Gene

IBM Software Stack Other Software

* XL Compilers « Etnus TotalView
Ll Externals preserved — Parallel Debugger
= New options to optimize for specific « Lustre File System

Blue Gene functions

— Enablement underway at LLNL
* LoadLeveler Y

- Same externals for job submission
and system query functions
= Backfill scheduling to achieve M
maximum system utilization
« GPFS
Ll Provides high performance file
access, as In current pSeries and
xSeries clusters
. Runs on 10 nodes and disk servers
« ESSL/MASSV
. Optimization library and intrinsics for
better application performance
- Serial Static Library supporting 32-bit
applications
. Callable from FORTRAN, C, and C++

« FFT Library

— FFTW Tuned functions by TU-Vienna
Performance Tools

— Total View

— HPC Toolkit

— Paraver

— Kojak
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Scalar and Vector MASS Routines

Approximate cycle-counts per evaluation on BGL processor

libm.a libmass.a libmassv.a
exp 185 64 22
log 320 80 25
pow 460 176 29 - 48
sqrt 106 46 8-10
rsqrt 136 6-7
1/x 30 4-5

. )_/'MF.‘) 2006‘

Fortaleza,
August &-10 :-:l.!
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Performance Decision Tree

Total Performance
«_ )
1 1
s

T
[ Xprofiler ] [ HPM ] [ Compiler ] [ MP_Profiler ] [ MIO Library ]

[ Routines/Source ] [ Summary/Blocks ] [ Source Listing ] [ Summary/Events ]
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Using IBM XL Compilers — Switches

Optimization levels:
Default optimization = none (very slow)
-O : good place to start, use with -gmaxmem=64000
-02: same as -O
-O3 -gstrict : less aggressive, must strictly obey program semantics
-03: aggressive, allows re-association, will replace division by multiplication with the
inverse
-ghot : turns on high-order transformation module, will add vector routines, unless -
ghot=novector
check listing: -qreport=hotlist
-gipa : inter-procedure analysis; many suboptions such as: -gqipa=level=2

Architecture flags:
-qarch=440 : generates standard powerpc floating-point code
-qarch=440d : will try to generate double FPU code

Recommendation:
On BGIL start with : -g -O -garch=440 -gmaxmem=64000
Try : -O3 -qarch=440/440d
Try : -O5 -garch=440d
-0O4 =-083 -ghot -gipa=level=1 -qarch=auto
-03 -ghot —gipa=level=2 -garch=auto

IBM High Performance Computing Toolkit on BG/L

» MPI performance: MP_Profiler, MP_Tracer
» CPU performance: Xprofiler, HPM

* Visualization and analysis: PeekPerf

* Modular I/O: MIO

MP_Profiler/MP_Tracer, | Xprofiler HPM MIO
II e

1 7
! .7

1 , 7

/ 7

v »
PeekPerf
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__\a__/"ME) 20001 »

Fortaleza, Brazil

August §-10, 2008

Structure of the HPC toolkit

*

PeekPerf GUI '
Communication Profiler Memory Profiler Visualization
CPU Profiler Query
Shared-Memory Profiler 1/0 Profiler Analysis

execution

{ustrumentation
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Message-Passing Performance:

* MP_Profiler Library
— Captures “summary” data for MPI calls
— Source code traceback

— User MUST call MPI_Finalize() in order to get output
files.

— No changes to source code

* MUST compile with —g to obtain source line number
information

* MP_Tracer Library
— Captures “timestamped” data for MPI calls
— Source traceback

WA/ MP20006)
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MP_Profiler Output with Peekperf
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Xprofiler

CPU profiling tool similar to gprof
Can be used to profile both serial and parallel applications

Use procedure-profiling information to construct a graphical display
of the functions within an application

Provide quick access to the profiled data and helps users identify
functions that are the most CPU-intensive

Based on sampling (support from both compiler and kernel)

Charge execution time to source lines and show disassembly code

216

54



Xprofiler: Main Display

Width of a bar:

time including R
called routines —
Height of a bar: Free
. h .
time excluding . 1 . . y
called routines
. . - . M
Call arrows LML, AR Ty SL TX] S e
labeled with
number of calls 583500 ’
Overview window X
for easy [ B =
navigation - | ‘o kel
(View > Overview) S Reset_Diff Equations [34]
i oo st oA o 1 e e e T e | e e
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[E Disassamblér Coda for calcs [3] i
File Help
no, ticks
address  per instr, instrection assesbler code source code
1000ZE1R 81 FCCAZETC  Foms 6.4, 1.5 =
1000ZE1C (2] CCFTO008  1fdu 7. 0uBZ3) POLDCI,J) = POI, J)+ALPHAS (FNEM(I, )=
1000ZE20 187 CI0CO00E  1F4 8. 0xB012) -l
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HPM: What Are Performance Counters

« Extra logic inserted in

the processor to count
specific events

» Updated at every cycle

 Strengths:

— Non-intrusive
— Accurate
— Low overhead

¢ Weaknesses:

— Specific for each
processor

— Access is not well
documented

— Lack of standard
and documentation
_on What is counted

HPM: Hardware Counters Examples
e Cycles
* Instructions

_F'Oa“”g point vIPC - instructions per cycle
instructions vFloat point rate (Mflip/s)
« Integer instructions v"Computation intensity
« Load/stores YInstructions per Ioad/store
. v'Load/stores per cache miss
+ Cache misses v'Cache hit rate
¢ TLB misses v'Loads per load miss
Branch taken / not ¥ Stores per store r_niss
taken v'Loads per TLB miss
v'Branches mispredicted %
« Branch

mispredictions

* Useful derived metrics
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LIBHPM

Go in the source code and instrument different sections independently

« Declaration:

Supports MPI (OpenMP, threads — #include f_hpm.h

on other PowerPC platforms) « Use:
call f_hpminit( 0, “prog”
Multiple instrumentation points -p ( p 9 )
call f_hpmstart( 1, “work” )

Nested sections do
call do_work()
call f_hpmstart( 22, “more work”)

- call compute_meaning_of_life()
call f_hpmstop(22)

end do

call f_hpmstop( 1)

call f_hpmterminate(0)

Supports Fortran, C, C++

HPM Data Visualization
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Blue Gene Check Systems

Sanity.rts
stdout[20]: MPI: 20/32, Pers: <0,1,1,0>/<4,4,2,1>, Torus? X0Y0Z0, VN? 0, Mem:
512MB(6), Loc: R00-M1-Nf-C:J14-U11
stdout[20]: MPI: 20/64, Pers: <0,1,1,0>/<4,4,2,2>, Torus? X0Y0Z0, VN? 1, Mem:
512MB(6), Loc: R00-M1-N2-C:J14-U11
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stdout[O]: #cpus #trials pi(est) err(est) err(abs) time(s) Mtrials/s
stdout[0]: 32 256000000 3.14176 0.00022 0.00017 1.082 236.58
stdout[0]: 16 256000000 3.14164 0.00022 0.00004 2.164 118.29
stdout[0]: 8 256000000 3.14157 0.00022 0.00002 4.328 59.15
stdout[0]: 4 256000000 3.14160 0.00022 0.00000 8.656  29.57
stdout[0]: 2256000000 3.14155 0.00022 0.00004 17.313  14.79
stdout[0]: 1256000000 3.14145 0.00022 0.00014 34.625 7.39
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14th Annual International Conference On Intelligent Systems For Molecular Biology

BGW at IBM T.J. Watson Research Center

IBM has a team of life sciences researchers developing Blue Matter —
application software used to run simulations of protein dynamics on Blue
Gene. They are now running production science experiments on membrane
proteins. Experiments that were taking a month or more on a conventional
system are now taking a few days on Blue Gene.

Application Performance

Brief overview of some
applications

Blue Matter: RHODOPSIN GPCR

Diseases associated with
malfunction of GPCRs are:
=Congestive Heart Failure
=Hypertension & Stroke

=Parkinson’s Disease

Membrane Proteins
Cell Signaling, lon/Nutrient Transport, Targets of Many Drugs

227

Omega-3 Fatty acids and
cholesterol

G Protein-Coupled Receptors (GPCR)
in amembrane environment

226

=Cancer including cell signalling
=Ulcers and cell division.
*Allergies  Studying lipids is crucial
=Asthma to understanding
*Anxiety diseases related to these
=Psychosis proteins, including
«Migraines muscular dystrophy and
9 Alzheimer's.

Blue Matter: Lipid Bilayers

Lipids provide the
environment for
membrane proteins and
enable critical functions

One third of all proteins
in the human body -- and
half of all drug targets --
are membrane proteins

228
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Blue Matter on BG/L vs. NAMD on PSC
Lemieux

Blue Matter on BG/L (BG/L ADE SPI)
NAMD on Lemieux (Elan/Quadrics) —+—

Elapsed Time (seconds)

Node/CPU Count
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Applications Performance on Blue Gene

» BGis first HPC system to break barrier of 100+
TeraFlop/s sustained performance on real applications
(Molecular Dynamics)

— ddcMD - 101.5 TeraFlop/s (7 hrs of Uranium atoms on 64 racks)
— CPMD - 110.4 TeraFlop/s

« Several other applications have achieved two orders of
maghnitude or more higher performance than previously
possible — successful scaling achieved from 1K to 100K
processors

« Gordon Bell Prize competition at SC 2005
— 4 of 6 finalists based on Blue Gene

— LLNL/IBM team won for “100+ TFlop Solidification Simulations
on Blue Gene/L”

— AIST also captured Best Technical Paper
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3D-Fast Fourier Transform

10 128"3 FFT —<—
1
m
b
o 0lp
£
[
0.01 ¢
0.001
1 10 100 1000 10000
Task Count

Enabled by optimized MPI Alltoall[v]
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ddcMD - Classical MD
2005 Gordon Bell Prize Winner

» Scalable, general purpose code for
performing classical molecular
dynamics (MD) simulations using
highly accurate MGPT potentials

* MGPT semi-empirical potentials,
based on arigorous expansion of
many body terms in the total energy,
are needed in to quantitatively
investigate dynamic behavior of
transitions metals and actinides

*Visualization of important scientific
findings already achieved on BG/L:
Molten Ta at 5000K demonstrates
solidification during isothermal
compression to 250 GPa

524 million atom simulations on 64K nodes are orders of magnitude larger than
any previously attempted runs; superb strong and weak scaling expected for full
machine - (“very impressive machine” says PI)

A/ MP> 20001
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Excellent scaling of ddcMD on BG/L supports
solidification understanding

*Nucleation is initiated at multiple independent sites & 14

in each sample cell 3 12 —~
«Growth of solid grains initiates independently, but ;A 1

soon leads to grain boundaries which span the ﬁ 8 08

simulation cell 3€ 06

+101.5 TF on 64 racks Z ooa

*The ddcMD team is currently using 131,072 CPUs g 021 —e—500 Particles/Task _|
of BG/L for unprecedented o ES=2000/Earticles/Task
«five hundred million atom MGPT simulations 1 10 100 1000 10000 100000

Lawre
Blue Gene/L

ure-induced Resoli on in MGPT Tantalum

Performance of ddcMD on Blue Gene
Weak scaling: MGPT Uranium and Tantalum

1000
100 .
) ////
S 10
i //
1;//“
0l N e © @ > 0o A
P R LI P L
S & K e 5 & \;b"’o

Number of Processors

ddcMD Simulation Results

(a) 64K atoms, (b) 256 K atoms, (c) 2,048,000 atoms, (d) 16,384,000 atoms
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Scaling ddcMD up to 131,072 CPUs

.. but allows unprecedented scaling of size or time

» Weak scaling is virtually flat across the entire machine - enables simulation
of tens of billions of atoms (roughly a cubic micron of material)

« Strong scaling shows speedup down to 8 atoms/CPU - enables simulations
involving millions of steps (typically ns of simulated time)

Weak Scaling (Ta and U)

Strong Scaling (Ta and U)

20
& 250 soms (L) 10°
- 18 250 stoen
»
g ' .
-

’é- 14 - " %
F &
£E12 = 8 10°
E. - [ ] - - =. ~
210
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10° 10 16°

Number of Processors
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CPMD

Alessandro Curioni, Salomon Billeter, Wanda Andreoni
CPMD Performance on BG/L

120
100 —

80 ——
60 —

40

20

Sustained TFs

32768 65536 131072

Number of Processors

Developed at IBM Zurich from Car Parinello code
Uses Plane Wave Basis functions, FFT, MPI_Collectives
Ongomg project : IBM/LLNL Pd:H (~900 atoms) Hydrogen Storage
aflop/s sustained on 64 racks BG/L (excellent strong scaling)

AIST

One of our biggest research challenges is to
apply data obtained from genome decoding to
protein engineering and drug design. The scale
of simulation this requires cannot be done
without the help of supercomputers. IBM's Blue
Genel/L supercomputer provides us with a
massive supercomputing resource that will
dramatically accelerate our work.

Dr. Yutaka Akiyama, Director, Computational Biology Research
Center, National Institute of Advanced Industrial Science and
Technology (AIST)

National Institute of
Advanced Industrial Science and Technology
B
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EPFL

IBM’s Blue Gene supercomputer allows a quantum
leap in the level of detail at which the brain can be
modeled. The time has come to begin assimilating
the wealth of data that has accumulated over the
past century and begin building biologically
accurate models of the brain to aid our
understanding of brain function and dysfunction.

Henry Markram, Laboratory of Neural
Microcircuitry, Brain Mind Institute

Ecole Polytechnique Fédérale de Lausanne
Switzerland
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14th Annual International Conference On Intelligent Systems For Molecular Biology

‘f o,

and 27 Annual AB°C_Conference:

Massively Parallel Computing
Environment

What might we do?
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The Real Question

» What can you do with 130K processors? (8K, 16K, 32K)
— Really BIG problems — Maybe

— Same problems but much finer resolution, refinements, larger
searches in shorter time — Maybe

— Explore parameters — large parameter space — Maybe
« BUT
— Perhaps need to rethink the problem
— Most parallel programs are Single Program Multiple Data

* What if

— Multiple Programs Multiple Data - - Systems of Complex
Systems interacting?

— Handle multi-scale, multi-physics - - Biology is multi-scale?
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BlueGene/L will allow overlapping
evaluation of models for the first tim
1
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Jrain
¥ 0. poly- !
erystal plasticity !

Dislocation
Dynamics

Mol |
Dl BlueGene/L simulations
bring qualitative change to
ASC material and physics

modeling and engineering

Collective behavier
Yt "n"n“"l“:':‘ f datects, single

1
1
1
1
1
ps bl crystal plasucity 1
J
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Grand Challenges for Healthcare & Life Sciences

* Whole cell modeling - e.coli

Genetically engineer e-coli strains to increase drug production by fermentation

« E. coliis the most popular target

— It's simple: “only” ~4000 genes, no
nucleus, unitary genes, no organelles

— It's well studied
« How might Blue Gene impact
— Atomistic level
— Chemical kinetics
— Continuous models

» Drug delivery modeling
Develop manufacturing processes that insure the right dose of a drug is effectively delivered

* Inhaler delivery of drugs
e | 2 .00

— Multi-scale — atomistic, chemical,
fluid flow

] — Manufacturing complex model
« How might Blue Gene impact
— Atomistic level

— Chemical kinetics
— Continuous models 243

Courtesy of Steve Louis @ LLNL

e
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Spatially explicit model of actin and myosin interaction in the

cardiac myofilament - Possible simulation mapping on BG/L- Jeremy

Rice, Jagir R Hussan, Pieter P. de Tombe, Gustavo Stolovitzky, Yuhai Tu

Mathematical modeling of heart will allow better therapies for heart disease..
...but modeling heart requires bridging between organ level and molecular level

Organ level Cell level Molecular level

LI~ g7
F— Y
o

cyclical interactions of
myosin on thick filame
(red) and actin in thin
filament (green).

In each cell of heart, a
lattice of sarcomeres
produce contraction on
every heart beat.

Reconstruction of
whole heart by
Peter Hunter, U. of
Auckland

Collaborators - University of Auckland, JHU, Loyola, UCSD, UIC,
Oxford, others

Sarcomere contracts by

nt
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Combine 32 full sarcomeres into 1 myofibril

Movmg to a terascale which is a cell-level structure

model of a myofibril

'
[S
IS5
[
-
-
-
-

2.9/5.7 TF/s
256 GB DDR

- :
= e\ 90/180 GF/s
8 GB DDR
5.6/11.2 GF/s

2.8/5.6 GF/s 0.5 GB DDR
4 MB
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Increasing Importance of Engineering, Mathematical
and Computational Sciences in Human Disease
Research — Computational Medicine

Multi-Scale Patient-Specific Data

Genetic Variability Gene. Protein Multi-Modal
Expression Expression Imaging

Profiling Profiling Data Analysis

And Modeling

Goals — How Best To:

< analyze these data sets to gain novel insights regarding disease mechanisms and to perform risk
prediction targeted to the individual (statistical inference, pattern discoverylclassification,
computational anatony)

« synthesize computational models of biological systems and disease processes that provide insights
into disease mechanisms and novel therapies (dynamical systems theory, probability theory,
stochastic processes)

« Distribute multi-scale data, data analysis methods and computational models to basic and clinical
researchers through computational grids (“bio-grids”) — Blue Gene potential compute engine

Courtesy: Rai Winslow, Johns Hopkins University
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Multi-scale in Physiome Project

Hunter's Group — converting CMISS (Continuum Mechanics, Image analysis, Signal
processing and System Identification ) to potentially use Blue Gene

Cell Atom
{104 {101 m)

Systerns models  Con um models (PDEs) ODEs Gane networks

imulation, Visua oftware F . Datab.

Courtesy: Poter Hunter, L rsity of Auckland

= Blue Gene Impact
= Atomistic to System Model scales — tightly coupled
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Biomedical and Molecular Imaging — Exploit Parallelism

High Resolution Research Tomograph (HRRT)
Resolution ~2.5 mm

Sensitivity ~ 6%

Number of detectors 119,800

Number of Lines of response (LOR) 4.5 Billion !!

Dynamic (4D) PET Imaging

Quantity measured in PET: in vivo regional concentration of the
radiotracer

» Use multiple time frames to “measure” the physiologic or
metabolic process

« Can extract how various compartments interact

Radiology - Storage/Computational Issues
+~30GB of raw/list-mode data per study
*Each study divided into ~30 frames and reconstructed
«Currently, computation takes:
15 hours (span3), 7 hours (span9:lower-res) per study!
8 nodes/frame, 4 frames processed at a time
«Each reconstructed image is 50MB (i.e. 1.5GB /study)

Goal: 20 studies/week: clearly not achieved in span3

WA/ MP20006!
‘*‘-—df R i
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Genome Assembly

Input: Multiple copies of the same genome
Output: Unordered genome fragments

S
S

Process: Randomly fragment each copy

251

14th Annual International Conference On Intelligent Systems For Molecular Biology

\

I/MP 2006 ::

“' ’ and 2* Annual AB>C_Conference: X
" ili— »

In-Depth look at
Large-Scale Computational
Genomics on the IBM Blue

Gene/L Supercomputer

Sequence Assembly Required!
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EST Clustering

5 [ mRNAT ] AAAAAAA 3

=

4

¥ [ebNAT] TTTITIT o
—> <

ESTs _— _—
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Genes Are Not Uniformly Sampled

| SR (oened] cened|

————

— No expression

— Low expression

High expression

EST Based Gene Discovery

oy m— s
exon, exon, exon
DNA g oo e cxon, R cxon. TR
% exon exon. exon
MRNA et 3
cDNA
ESTs _— JE—
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Single Nucleotide Polymorphisms
(SNPs)

ATGTTTAAAGACTACCATGATGGTTATG \ }
Allele 1

ATGTTTAAAGACTACCATGATGGTTATG ‘

ATGTTTAAAGACTGCCATCATGGTTATG ‘

ATGTTTAAAGACTGCCATCATGGTTATG \
Allele 2

[ ATGTTTAAAGACTGCCATCATGGTTATG |

\ ATGTATAAAGACTGCCATGATGGTTATG }
Allele 3

‘ ATGTATAAAGACTGCCATGATGGTTATG

256
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SNPs Based on Assembly

[ ATGTTTAAAGACTACCATGATGGTTATG |
| ATGTTITAAAGACTACCATGATGGTTATG |
Alignment of
[ ATGTTTAAAGACTIGECATCATGGTTATG |  (elated genomic
. sequences
[ ATGTTTAAAGACTIGCCATCATGGTTATG |
| ATGTATAAAGACTIGECATGATGGTTATG |
[ ATGTATAAAGACTIGECATGATGGTTATG |
Consensus

257

SNPs Based On Clustering

‘ ATGTTTAAAGACTGCCATGATGGTTATG ‘ Genome

‘ ATGTTTAAAGACTACCATGATGGTTATG

‘ ATGTTTAAAGACTACCATGATGGTTATG

ATGTTTAAAGACTGCCATCATGGTTATG

| |

Samples that
\ ATGTTTAAAGACTGCCATCATGGTTATG \ are aligned
| |
| |

to the consensus

ATGTATAAAGACTGCCATGATGGTTATG

ATGTATAAAGACTGECCATGATGGTTATG

Naive Approach

All vs. All alignments + post processing
Compute-intensive and wasteful!

» 33 million fragments for mouse assembly

e 7+ million human ESTs

259
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Typical Methodology

* |dentify pairs of fragments that have a
good exact match (promising pairs).

» Restrict alignment computations to
promising pairs.

» Perform post-processing.

260
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CATTATTAGGA

Lookup Table Pair Generation

AAACAGAT CACCCGCTGAGCGGGTTATC TG TT
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

HENN

HEERENEREN
s[> % ;

7l [l
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PaCE Methodology

Reduce space requirement from quadratic to
linear.

Generate promising pairs in decreasing order of
maximal common substring length.

Constant time per generation of a pairwise
maximal common substring.

Significantly reduce number of alignments
without affecting quality.

Massively parallel processing — reduce run-time;

263

Problems for Large-scale Analysis

» Longer matches are revealed as multiple
short matches.

» Matches are arbitrarily generated.

* Linear space for uniformly random
overlaps with constant coverage but worst-

262

Fortal
20005
"' ’ and 2* Annual AB>C_Conference
—tl—

A Specific Application: Maize
Genome Assembly

66



Why sequence the maize genome?

* Maize (i.e., corn) is an economically important crop.

* Best studied model organism for the cereal crops.

* Just as the human genome project will intensify
upcoming medical advances, cereal genomes (rice
and maize) will help improve worldwide food
production.

265

Typical Assembly Strategy

— T = T ’2 pairs
- —— - )
(n22) run-time

0
Directly detect Exact . ]
promising pairs Matching Filter

O(n) pairs
O(nP) run-time

Genome Assembly Example

* Human Genome Assembly (Venter et al.
2001):
— Input: 27 million fragments
— Program: Celera Assembler

—10,000 CPU hours for detecting overlaps

* Parallelized to run on 64 GB shared memory
machine + 10 4-processor SMPs with 4-GB
memory

— 10,000 CPU hours for the rest

267
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Maize Genome Assembly

* Maize genome is comparable in size to the
human genome (2.5 GB) but is highly
repetitive (65-80%). About 15-20% is gene
space.

* NSF Workshop in July 2001 to debate
sequencing strategies
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Maize Genome Assembly
NSF funded pilot projects (2002; $10.2 million):

* “gene-enrichment” — Consortium for Maize
Genomics (Danforth Center, TIGR, Purdue &
Orion Genomics)

— Methylation filtration (MF)

— High Ct selection (HC)
* BAC sequencing — Rutgers & Univ. of Arizona.
* Dept. of Energy (DOE) added about 2.4 million

269

Methylation Filtration

methylated region methylated region

1.) Fragment

T

2.) Clone into
special
bacteria

h 8
#
h S
h S
h S

3.) Sequence ATATGTGACCA

High C t Selection

repeat region repeat region

I [
1.) Fragment = = = BE = FB =
dsDNA p— = = p—

2.) Denature
into ssDNA

I I I S S S S . . )

3.) Slowly reform ~ "=—E===E RS I ———— e ) =

dsDNA

4.) Sequence
remaining SSDNA

Fortaleza . Brazil 271
Auguit 6.10, 2008
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Random vs. Biased Sampling

Uniform layout Nonuniform layout

* Uniform case — O(n) overlaps

 Non-uniform case — O(n?) overlaps

272
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PaCE Methodology

» First cluster, then assemble.

» Two sequences fall in the same cluster if there is
a chain of overlaps that leads from one sequence
to the other.

» Each cluster can be assembled into a contig.

273

Clustering Strategy

* Initially, treat each sequence as a cluster
by itself.

* If two sequences from two different
clusters show significant overlap, merge
the clusters.

* Use union-find data structure.

274

Processing High-quality Overlaps
first is important!

Successful overlap results in
» Merging of two clusters.

* No need to test other promising pairs of
fragments where a member of the pair
comes from each constituent cluster.

275

Clustering Heuristic

Promising pairs: Pairs aligned: Clustering:
j —O—
i [:]‘ «— —
k——3— X
i :' -« —
R i S \/
k -— — k—
‘ - - \/ Pair generation
order matters !
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Pair Generation Methodology

» Generate pairs

— In non-increasing order of maximal common substring
length

— On-demand without storing previously generated
pairs

— O(1) amortized time per pair

— Using linear space

PaCE Software Architecture

Alignment
Evaluation

ST Constructi On-demand pair Pair Cluster
onstructio generation Selection Management

Parallel Clustering Phase

Constructio
n Phase

278

Generalized Suffix Tree (GST)

WINDOWS INDIGO$

1234567 1234567
a,7)
2,7
a1

Parallel Construction of GST
Q Virtual root Exact
SN AN \Fword

FARA

Proc #1 Proc #2 . Proc #p

O(nl/p) leaves O(nl/p) leaves ... O(nl/p) leaves

length

280
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Parallel Construction of GST

Bucket the suffixes of the sequences
based on the first k bases.

Redistribute the suffixes in parallel such
that each processor owns a set of buckets.

Build GST locally in each processor.
* In each processor, #leaves = O(nl/p)
e Run-time = O(nl?/p)

281

GST Construction: Scaling Issues

* How to acquire sequences corresponding to the
suffixes contained in the local buckets ?

» Approach (a): Acquire sequences from disk
before constructing each subtree

* Issues: (i) Requires random access /O in
parallel, and (ii) the same sequence can be read
multiple times for different buckets

BG/L-Specific Optimizations

* Approach (b): Process buckets in batches and acquire
sequences by communicating before every batch
construction

Processor i Processor j

RAKR| AAAA

11 r—1

Round #1 Round #2 Round #3 Round #1 Round #2 Round #3

« Each communication round is an Alltoallv
¢ Number of rounds and data communicated half for every

283
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GST Construction on BlueGene/L

Input: 250 million bases
700 1400

Input: 500 million bases

B Computation [
@ Communication

600 m Computation [ 1200
500 ac 4 1000

§ 800

£300 2 600
g 400

200

256 512 768 1024 256 512 768 1024
Number of processors

Number of processors
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Pair Generation Algorithm

* Process the nodes in the local GST in the
decreasing order of string-depth and
generate pairs at each node.

» Generate a pair at a node only if the
corresponding overlap is maximal.

285

Left Character Sets (/sets)

* leaf-set(v) = set of strings whose suffixes
are present in the subtree of v.

* /set (v) = partition of leaf-set(v) into |X|+1
subsets, 1,(v), Io(v), I5(v), I{v), 1,(v).

287

Main ldea of the Algorithm

* Maximal common substring

root

a=xp fkﬁ 01/ ‘o
s, T ——

o O

by &

286

Maximal Match Detection

Pair generation at an internal node u

* Right Maximality

=s(i) and s’ (j) arein
subtrees of two

different children of u [set{A)

Iset (C)

Iset (G) /,Szﬂ

* Left Maximality el |
=sfi-1] #s'[j-1], ifi>1 and
>1

Run-time: O(1) per pair

288
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Run-time for Pair Generation Number of Duplicates

a
« Sorting of nodes in the local GST F, % ld, 181z v
= O(nl/p) F,
a B a
» Processing of all nodes in the local GST
= O( # pairs generated ) eg., (F.F,) is generated at most twice.

# of times a pair is generated

< # of distinct maximal common substrings
(of length > y)

289

Possible Fragment Overlaps Parallel Clustering Phase
F, Master Processor
: I N —
bl * b...c Send promising pai

a...c 8 pairs
for alignment / \
ising

c Slave #1 Slave #p
- Compute only lower and upper rectangles

— Do banded dynamic programming

Local GST Local GST

291 ‘ Farual razii
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Clustering Phase Performance on
BlueGene/L

1000 Run-time for clustering phase
\ 0 Promising Pairs and Alignment

L 250 million b
=800 e m? onbases || || OAligned and accepted
prd —a—500million bases B Aligned and rejected
&600 T| @Unaligned
2400 s
£ £ 520
20 ‘\*\.\. £219
I~ s

0 ‘ ‘ ‘ 0l — |

256 512 768 1024 250 Inp?]?((l)n m\\\\unltg(s)gs) 1252
Number of processors
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Overview of

1.) Collect data
a

2.) Clean up data

0

3.) Mask repeats

0

4.) Cluster data

0

5.) Assemble smaller

Number of Number of PaCE Runtimes (in minutes)
Input Bases nodes
(in billions) Tree Clustering Total
Construction
1.25 1,024 13 89 102

295

. )V'MF_') 200 0MS

Assembly Pipeline

MF (230.6 MBI HC (1864 MBI BAC ends (68.5 MB) / Shotgun (5.3 ME)
— — — Find 00
58554
~ |
—friey SeqClean

<20 o ML Pepet Beguens
3 380"

Atypical reads for
munual classification

Gencrass contigs usieg CAFY
— — S ey, D by e

CAPA i‘ MAGIs ;
-94

Maize Assembly on BlueGene/L

Number of | Number of PaCE Runtimes (in minutes)
Input Bases | processors
(in billions) Tree Clustering Total
Construction
0.5 8,192 1.2 11 13
1.15 8,192 2.3 72 75
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Maize Assembled Genomic Islands
(MAGISs)

MAGI v4.0
Input Sequences 3,202,268
Assembly Size 329.61 MB
GC Content 44.9%
Contigs 217,106
Non-repetitive 567,797
Singletons
Avg contig len 1,518
Avg GSS per 4.78
contig
. O

297

Gene “archipelagoes”

MAGI3.1_4593 (12,498 bp)

299

MAGI 3.1 quality and coverage

Gene Length | Error | Errors | Alignment
Rate Length
gl8a 6760 0.0 0 1512
pdc2 5443 0.0 0 3462
pdc3 7773 3.5e-4 1 2793
rf2a 11520 0.0 0 1886
rf2b 4311 3e-4 1 3315
rf2c 7257 0.0 0 3898
rf2d 7415 0.0 0 3880
rf2e 4739 0.0 0 1765
rth1 14 350 | 4.5e-4 1 2190
rth3 3152 0.0 0 3145
72720 le-4 3 27 846

Gene “archipelagoes”

MAGI_4593

2K oK 7K 10K
— )
S = B
-
=
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Maize assembly Portal

Acdreus [] hetp: [fume plartganoms st atn adyjisce

] e [

)
M‘/GI Maize Assembled TOMA STATE UNIVERSITY
Genomic Island A Lk | At ke | Bkt Lk

walcoma to the MAGI wabsite, which reparts the results of 4 maize genome assembly
project being conducted by the alwnu, Ashiock and Schnable research groups.

A3 the bust-studied biskogical model for cereats and one of the world's most important

crops, there iz a strong rationale for sequencing the maice gencme ( fan

2001 ; Chandler and Brandsl, 2002) and the Hational Geisnce Foundation has r‘aeenuy

announced an EEP to do 0. Mot studies have )Imady gamraim ( it antual msmbere of
QENOMIC Surviy S (GSS: ; Palmer of

2003), a5 well as BAC sequences and random sho‘wn G54 vy kow ol 56 ghum that

are avaiable for download from

Wa have recently reported the parallal for the
efficient assembly of non-uriformiy sampied q«nmm: fragments (such as gene-ennched
G553) into “genomic islands® (Emrich et al., 2004). We have used these procedures and a
6; processor IBM xSenies cauuer :o assemble ~B50,000 maire GSSs generated by the
fof Maize Genomics inte MAGIS (Maize Assembled Gencmic Islands). we have

iy 3 ~500,000 g sorghum{ ATHEZE) GESs generated by Onon

enomics and their partners HC+Hybrids and Solvigen into SaMls (Sorghum Assembled
qan"\iC 1stands).

Bated on computational and biological quality assesements it appeas that a very high
porcentage of genic MAGIS and SAMIS accurately reflect the structure of the maize and
sorghum genomes (£ )

To idantify genomic contigs assaciated with particular genes or functions, MAGIS and —
SAMIE may be cearched utng BLAST. In addition, MAGIE have been annotated wia

sequonce similarity, aignments to ESTs using GeneSeqer and the sb-sfio gene predction

tool EGENESH (Yao wt al., submitted: Fu et ol submitted). The G553 that comprise sach D1
MAGI can also be displayed. It is also now possible to request that spacific MAGIS be

More Information

Publications:
¢ On Maize Assembly
— Bioinformatics, January 2004.

— International Parallel and Distributed Processing Symposium,
April 2006.

¢ On PaCE

— IEEE Transactions on Parallel and Distributed Systems,
December 2003.

— Nucleic Acids Research, March 2003.

* On Maize Genomics
— Proc. National Academy of Sciences, August 2005.
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Sorghum Assembled genomic Islands
(SAMIs)

SAMI v1.0
Input Sequences 511,512
Assembly Size 98.46 MB
GC Content 45.12%
Contigs 74,673
Singletons 131,610
Avg contig len 1,319

Avg GSS per 5.08
contig

- =
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More information

» PaCE software download
http://www.ece.iastate.edu/~aluru/software/PaCE

— Over 45 academic/governmental/non-profit users
from 10 countries.

— 2 companies.

* Maize Assembly Website
http://www.plantgenomics.iastate.edu/maize

— Used by researchers from Berkeley, Cornell, Purdue,

Penn State, Dupont, BASF etc.
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Future of Maize Genome
Sequencing Project

» US $32 million project by NSF, DOE, and USDA
for large-scale sequencing.

+ Goal is to sequence all genes, determine their
order and orientation, and anchor them to
genetic/ physical maps.

» Projects started November 15, 2005.

305

$32 million B73 maize genome
seguencing consortium

Washington University* lowa State University

University of Arizona , Cold Spring Harbor

Courtesy of the NSF

14th Annual International Conference On Intelligent Systems For Molecular Biology

p——
Fortaleza, Brazi
2000 it
< ’ and 27 Annual AB°C Conference: X

Another Application: Mouse
EST Clustering

306

Mouse EST clustering

* Input:
— A random subset of 56,470 UniGene clusters
downloaded in March 2006

— 3.78 million total entries including ESTs and full-
length cDNAs

e Output:
— 60,862 clusters with more than one sequence
— Average cluster = 55; Largest = 807,671
— 83% of clusters are composed of a single UniGene
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Validation

 Single-linkage clustering performs at most n
merges.

* When comparing to UniGene, one measure of
accuracy is the number of additional or missed
merges performed.

* Ignoring clusters of size 1, our data suggest that
over 98% of the links in UniGene were correctly
determined by PaCE.

309

Clustering accuracy

PaCE clustering UniGene clustering
decisions decisions

3,213,878 45,058

False positives False negatives

Run-time Scaling: Mouse EST

Clustering
450
——n=100,000 <
400 H{ = n=250,000
n=500,000
350 11 _a—n=1,000,000
300 H,——n=2,000,000

b
24

Run-time in minutes
[i=]
o
(=]

o
S

32 64 128 256 517 1024
Number of processors
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PaCE: Promising Pairs Statistics

2500

O Aligned and Accepted
M Aligned and Rejected

2000 4@ Unaligned —.—

1500

)

in millions

1000 —

Oﬁmﬂﬂ,}

(i

Number of pairs generated
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14th Annual International Conference On Intelligent Systems For Molecular Biology

L N—
I M 2006 Fortaleza, Brazil
August 621082006
\ and 204 Annual AB>C Conference: X

Closing Remarks

Getting Started

http://www.mcs.anl.qgov/bgconsortium & Activities

o ““¥ « Working Groups meetings:
e — Application Working Group
[ « Help sponsor Porting Workshops
¢ Technical meetings
« Some access to ANL BG/L
Machine
— Systems Software Group
« Help sponsor technical
meetings/workshops
« Community building through web presence
— BG Consortium Website
— BG Consortium Wiki
— BG Consortium email discussion
« Opportunities with IBM
— BGW Consortium Days
— Breakthrough science meeting

315

Remarks
* |Is Blue Gene a systerg for
computational Bioloy\
— Starting to see effdcti se of lots
of processors in this d
Still need to re-think how tacae>
problems - -
BECAUSE SPEED MATTERS. .
y THE PC IUEENIES

Systems of complex systems wil(‘@ :

Think of problems might tackés that
until now would not dream

need multi-disciplinary teams - -

* The answers remains left to
the audience/the reader/the
users - - youl!

CMPUTER W CAFABILE OF

CUR BUFERC
PERECLMWNG TRILLIOWS OF COMPTATIONS
FER SESOND, BUT WE PRUMARILY LSE (T
FOR BIT TORBENT AND UG, " L6






