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Outline

Bayesian networks provide a neat compact representation for expressing joint probability dis-
tributions and for inference. They are becoming increasingly important in biology for inferring
cellular networks and pathways, biological data integration and genetics. This tutorial intro-
duces the Bayesian approach to inference and learning parameters and structures for Bayesian
networks.

Many applications in computational biology have taken advantage of Bayesian networks
or more generally, probabilistic graphical models. These include: protein modelling, systems
biology; gene expression analysis, inferring cellular networks and pathway modelling; biological
data integration; protein protein interaction and functional annotation; DNA sequence analysis;
genetics and phylogeny linkage analysis.

With this growing use of Bayesian networks and Bayesian methodologies, there has been
a lack of suitable introductory information about Bayesian networks which is accessible to an
audience without significant mathematical and statistical backgrounds.

This tutorial builds on our recent primer (Needham et al., 2006), and is aimed at the multi-
disciplinary ISMB audience, both students and researchers, since it will be based around bi-
ological examples and begin at an introductory level with numerous examples to demonstrate
how to use Bayesian networks. In the second half, the focus will be on the higher level concepts,
rather than becoming involved in the complicated mathematics behind the learning methods.

This will provide the audience with an understanding how and why Bayesian networks work,
and at a time when they are becoming the machine learning method of choice.
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Introduction

Bayesian networks are a useful tool for statistical modelling. They are increasingly popular in
the biological sciences for the tasks of inferring cellular networks (Friedman, 2004), modelling
protein signalling pathways (Sachs et al., 2005), data integration, classification, and genetic
data analysis (Beaumont and Rannala, 2004). Bayesian networks provide a neat compact
representation for expressing joint probability distributions and for inference. The representation
and use of probability theory makes Bayesian networks suitable for learning from incomplete
datasets, expressing causal relationships, combining domain knowledge and data, and avoid
over-fitting a model to training data.

This primer aims to provide an accessible introduction to Bayesian networks for the com-
putational biologist, focusing on the concepts behind methods for learning the parameters and
structure of models. It begins with a simple toy example, and then considers the points made
above. More in-depth tutorials are provided by Heckerman (1998) and Husmeier et al. (2005).

A Bayesian network can be viewed as a collection of probabilistic classification/regression
models, organised by conditional-independence relationships. – Heckerman (1998)

Modelling a simple cell signalling pathway

Consider a simple cell signalling example consisting of an outside stimulant, an extracellular
signal, an inhibitor to the signal, a G protein coupled receptor, a G protein, and the cellular
response. A Bayesian network can be constructed which expresses the relationships between
variables. For example:

• The stimulant may or may not generate a signal.

• The concentration of the signal may effect the level of the inhibitor.

• Whether the signal binds with the receptor is dependent upon both the concentration of
the signal and the level of the inhibitor.

• The G protein should become active if the receptor binds.

• An active G protein initiates a cascade of reactions that causes the cellular response.

Using this information, which variables depend on which other variables can be identified,
and also which variables are conditionally independent. If two variables are independent given
the state of a third variable, then they are said to be conditionally independent. For example,
consider two independent tests for a disease, T1 and T2. The tests are reasonably reliable, and
a strong correlation is seen between T1 and T2. If the result of test T1 is positive, it becomes
more likely that T2 will also be positive. However, if it is known that the person has/hasn’t
got the disease, then the result of T1 has no effect on the expected value of T2; they become
conditionally independent. The above relationships between the cell signalling variables can be
expressed by the graph structure shown in Figure 1; nodes represent variables, and the directed
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edges show the dependencies. (Feedback from the cellular response to the concentration
of the extracellular signal (or inhibitor) would create a cyclic graph which is discussed later).
Consider all the variables to be discrete, and to take the following possible values (and note the
abbreviations introduced).

Figure 1: Bayesian network of the cell signalling pathway, and example CPTs

• ST - Stimulant: present/not present

• SI - Signal: high/medium/low

• IN - Inhibitor: high/medium/low

• RE - Receptor binds: yes/no

• GP - G protein: active/not active

• CR - Cellular response: yes/no

A model of the relationships between the variables can be built. In this discrete case,
conditional probability tables (CPTs) can be formed to express the probability of the state of
each variable given its parents (those it directly depends upon). For example, if the graph
structure and CPTs of the Bayesian network are taken to be as defined in Figure 1, then the
probability that the signal is high when the stimulant is present, p(SI = high|ST = present) =

0.6 and the probability that the receptor binds given that the signal is high and the inhibitor is
low, p(RE = yes|SI = high, IN = low) = 0.9.

The joint probability distribution p(ST, SI, IN,RE,GP,CR) can be expressed as a product
of distributions over a smaller number of variables, through repeated application of the product
rule of probability calculus

p(x, y) = p(x|y)p(y) (1)

and by exploiting conditional independence relations described in the graph structure. Applying
the product rule, and then conditional independence gives:

p(ST, SI, IN, RE, GP, CR) = p(CR|ST, SI, IN, RE, GP )p(ST, SI, IN, RE, GP )

= p(CR|GP )p(ST, SI, IN, RE, GP )
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Continuing in this way, the joint probability over all the variables can be expressed as:

p(ST, SI, IN, RE, GP, CR) = p(CR|GP )p(GP |RE)p(RE|SI, IN)p(IN |SI)p(SI |ST )p(ST )

In the case of Bayesian networks, consisting of a set of n nodes x = {x1, . . . , xn} organised
in a directed acyclic graph (DAG), where each node xi has parents pa(xi), the joint probability
distribution is compactly expressed as:

p(x1, . . . , xn) =
n∏

i=1

p(xi|pa(xi)) (2)

The ability to express the joint probability in this way (exploiting conditional independencies)
provides a concise representation in terms of simple component distributions (factors), thereby
reducing the number of parameters to be estimated. In this example, to specify the full joint
probability distribution as a conditional probability table would require 72 parameters, whereas
by exploiting conditional independence only 24 are required. This may not seem that advanta-
geous, however consider a network with 100 nodes, each taking 3 possible values. If the graph
was fully connected, the full probability distribution would require over 1047 parameters1, com-
pared to only needing 1800 parameters if each node had only two parents (100 × 18 = 1800).
This demonstrates just how powerful conditional independence can be. Not only is the param-
eter space smaller, but the parameters are easier for an expert to estimate, since they involve
fewer variables. Learning of the parameters from data is discussed below. First, inference in
Bayesian networks is illustrated.

What is the probability of the G protein being active, given that the stimulant is
present?

Given evidence about the state of a variable, or set of variables, the state of other variables can
be inferred. For example, to find the probability that the G protein is active given that it has been
observed that a stimulant is present, i.e. to find p(GP = active|ST = present), it is necessary
to marginalise over the unknown parameters. This amounts to summing the probabilities of all
routes through the graph, using the sum rule:

p(x) = Σyp(x, y) (3)

where p(x, y) may be expanded using the product rule (Equation 1). Thus:

p(GP = active|ST = present) = ΣxΣyΣzp(GP = active|RE = x)

p(RE = x|IN = y, SI = z)p(IN = y|SI = z)

p(SI = z|ST = present)

1In a fully connected directed acyclic graph there must be one node with 0, 1, . . . , n − 1 parents, thus the number of
parameters is

∏
99

i=1
2 × 3

i
= 2 ×

1−3
100

1−3
= 3

100
− 1 ≈ 5 × 10

47
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which when evaluated with the conditional probabilities in Figure 1 equals 0.592. [ p(GP =

active|ST = not present) = 0.5048 ].

What is the probability the stimulant is present, given that the signal is high?

It is often of interest to calculate posterior probabilities such as the probability that the stimulant
is present, given that the signal is high p(ST = present|SI = high) for which Bayes’ rule may
be applied:

p(y|x) =
p(x|y)p(y)

p(x)
(4)

Note also: p(x) = Σyp(x|y)p(y)

Thus:
p(ST = present|SI = high)

= p(SI=high|ST=present)p(ST=present)
p(SI=high|ST=present)p(ST=present)+p(SI=high|ST=notpresent)p(ST=notpresent)

= 0.6×0.4
0.6×0.4+0.1×0.6 = 0.8

So within this neat representation of a Bayesian network, inference is easy. Inferences can
be made about the value of any variable(s), given evidence about the state of other variable(s).
[For example, consider the prior probability that the stimulant is present p(ST = present) = 0.4.
The inferred probability of the presence of a stimulant is dependent upon evidence about the
other variables: p(ST = present|GP = active) = 0.44 and p(ST = present|GP = not active) =

0.35 ].

Models with continuous variables

For Bayesian networks which use continuous variables, conditional probability densities (CPDs)
are used in a similar way to CPTs. Figure 2 presents a simple Bayesian network which intro-
duces the concept of using continuous variables. A continuous node, B, with a discrete parent,
A, (say, a variable with k states) could in effect model the continuous data with k Gaussian
distributions. Thus given that A is in state ai the likelihood of a value of B may be inferred,
or alternatively, given a value b for variable B, the probability that variable A is in state ai may
be inferred. Linear regression may be used to fit the Gaussians (or other distributions) to the
training data in order to minimise the decision error between the classes.

Learning for Bayesian networks

In essence a Bayesian network is used to model a probability distribution X. A set of model
parameters θ may be learned from the data in such a way that maximises the likelihood that
the data came from X. Given a set of observed training data, D = {x1, . . . ,xN} consisting of
N examples, it is useful to consider the likelihood of a model, L(θ), as the likelihood of seeing
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Figure 2: A simple Bayes net with a continuous node B, having a discrete parent A. The
usual notation is to use squares for discrete nodes and circles for continuous nodes. θB is the
parameter set which encodes the model for B in terms of three Gaussians - one for each of
the three possible states of A. A mean µi and standard deviation σi are the parameters for the
Gaussian distribution which models p(b|ai).

the data, given a model:

L(θ) = p(D|θ) =
N∏

i=1

p(xi|θ) (5)

In order to infer the likelihood of an example observation, x, a joint probability of all the vari-
ables can be calculated (as in the previous section) as the product of the conditional probability
distributions for each variable:

p(x|θ) =
n∏

i=1

p(xi|pa(xi), θi) (6)

where x = {x1, . . . , xn} are the variables (and nodes in the BN), and the set of model param-
eters θ = {θ1, . . . , θn}, where θi is the set of parameters describing the distribution for the ith

variable xi which are used in conjunction with the known model structure given by pa(xi) - the
parents of xi. Each parameter set θi may take a number of forms, commonly a CPT (conditional
probability table) is used for discrete variables, and CPDs (such as Gaussian distributions) are
used for continuous variables. Classification/regression models can be used to learn the pa-
rameters for each node in the network. For the example using CPTs in Figure 1, it is possible
to learn the probabilities for these tables. For each node, the probability that the variable will
be in each possible state (given its parents’ states) could be calculated based on the frequency
observed in a set of training data.

It is often useful/necessary to use a prior distribution for the model parameters. For multi-
nomial sampling, a Dirichlet distribution is commonly used as a prior and can be thought of as
adding pseudo-counts to the observed frequencies. If the sample size is large, the effect of the
prior is small, however it can often be useful to allow a larger pseudo-count for classes with little
or very uncertain data, ensuring certain configurations of variables are still possible. Without a
prior, a configuration that was not seen in the training examples would be incorrectly assigned
a zero probability of being drawn from X.

The learning paradigm which aims to maximise L(θ) is called maximum likelihood (ML).
This approximates the probability of a new example x given the training data D as p(x|D) ≈

8



p(x|θML) where θML is the maximum (log) likelihood model which aims to maximise ln p(D|θ),
i.e. θML = arg maxθ ln p(D|θ). This amounts to maximising the likelihood of the ‘data given
model’. ML assumes a uniform prior. In order to consider other prior distributions, a maximum
a posteriori (MAP) model can be used. This approximates the probability of a new example
x given the training data D as p(x|D) ≈ p(x|θMAP ) where θMAP is the maximum a posteriori
probability (likelihood of the ‘model given data’) which aims to maximise ln p(θ|D), i.e. θMAP =

arg maxθ ln p(θ|D). This takes into account the prior, since through Bayes’ theorem: p(θ|D) =

p(D|θ)p(θ)/p(D). Both ML and MAP produce a point estimate for θ. One of the powers of
Bayesian statistics is not producing point estimates but is model averaging, which is considered
in the next section.

Bayesian learning

For Bayesian learning, the parameters are considered to be latent variables and the key idea is
to marginalise over these unknown parameters, rather than to make point estimates (which ML
and MAP do). The computation of a full posterior distribution, or model averaging, avoids severe
over-fitting and allows direct model comparison. Formulating Bayesian learning as an inference
problem, the training examples in D can be considered as N independent observations of the
distribution X (Figure 3).

x x x x1 2 N

θ

Figure 3: Bayesian learning is an inference problem. The shaded nodes xi represent the ob-
served independent training data, x the incomplete example observation for which the missing
values are to be inferred, all of which are dependent upon the model θ.

The joint probability of our training data, the model and a new observation x is:

p(D, θ,x) = p(x|θ)p(D|θ)p(θ) (7)

Applying the sum rule (3):
p(x, D) =

∫
p(D, θ, x)dθ (8)

Applying the product rule (1) to the left hand side, and substituting (7) for the joint probability
on the right hand side, then dividing both sides by p(D), gives the predictive distribution for x:

p(x|D) =
1

p(D)

∫
p(x|θ)p(D|θ)p(θ)dθ (9)

=

∫
p(x|θ)p(θ|D)dθ (10)
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i.e. p(example|data) = p(example|model) × p(model|data) over all models

This is computing a full Bayesian posterior. In order to do this, a prior distribution for the
model parameters needs to be specified. There are many types of priors which may be used,
and much debate about the choice of prior.

Learning from incomplete data

The parameters for Bayesian networks may be learned even when the training data set is
incomplete, i.e. the values of some variables in some cases are unknown. Commonly, the
Expectation-Maximisation (EM) algorithm is used, which estimates the missing values by com-
puting the expected values and updating parameters using these expected values as if they
were observed values.

EM is used to find local maxima for MAP or ML configurations. EM begins with a partic-
ular parameter configuration θ̂ (possibly random) and iteratively applies the expectation and
maximisation steps, until convergence:

• E-step. The expected values of the missing data are inferred to form Dc - the most likely
complete dataset given the current model parameter configuration.

• M-step. The configuration of θ̂ which maximises p(θ̂|Dc) is found (for MAP).

Using EM to find a point estimate for the model parameters can be efficient to calculate and
gives good results when learning from incomplete data or for network structures with hidden
nodes. With large sample sizes the effect of the prior p(θ) becomes small, and ML is often used
instead of MAP in order to simplify the calculation.

A number of sampling methods have been used to estimate the (full) posterior distribution
of the model parameters in the presence of incomplete data. Monte Carlo methods, such as
Gibbs sampling, are extremely accurate, and require lots of computation, often taking a long
time to converge, and become intractable as the sample size grows. Gaussian approximation
is often accurate for relatively large samples, and is more efficient than Monte-Carlo methods.
It is based on the fact that the posterior distribution p(θ|D) which is proportional to p(D|θ)×p(θ)

can often be approximated as a Gaussian distribution. With more training data, the Gaussian
peak becomes sharper, and tends to the maximum a posteriori configuration θMAP .

Structure learning

So far, only the learning of parameters of a Bayesian network of known structure has been
considered. Sometimes the structure of the network may be unknown and this may also be
learnt from training data. One approach to learning structure is to use a search to find a
‘good’ structure. This may be done by starting with an initial network with no connectivity and
adding parents to each node, measuring the accuracy of the resulting network at each stage
or alternatively an initial guess of the structure may be made and this may then be updated
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through modifications such as the addition or removal of edges. This could be achieved through
an optimisation process such as simulated annealing.

There are two common approaches used to decide on a ‘good’ structure. The first is to
test whether the conditional independence assertions implied by the structure of the network
are satisfied by the data. The second approach is to assess the degree to which the resulting
structure explains the data (as described for learning the parameters of the network). In this
case a penalty is required to prevent the selection of complex structures as these will have a
higher likelihood. For example, using ML without a penalty function would produce a completely
connected network, implying no simplification of the factors.

The computation of a full posterior distribution over the parameter space and the model
structure space is intractable. Markov chain Monte Carlo (MCMC) methods (such as the
Metropolis-Hastings algorithm) are used to obtain a set of ‘good’ sample networks from the pos-
terior distribution p(S, θ|D), where S is a possible model structure. This is particularly useful in
the bioinformatics domain, where data D may be sparse and the posterior distribution p(S, θ|D)

diffuse, and therefore much better represented as averaged over a set of model structures, than
through choosing a single model structure.

Dynamic Bayesian networks

An essential feature of many biological systems is feedback. For example, in the simple cell
signalling pathway presented at the start of this article, it may be that the strength of the extra-
cellular signal is dependent upon the cellular response (once successful, the signal becomes
blocked). This would create a feedback loop (cyclic graph). In order to combat this problem, the
network may be rolled out in time, to create a dynamic Bayesian network where there are con-
nections between time slices and each node is present in each slice. Hidden Markov models
(HMMs) are a special case of these.

Dynamic Bayesian networks have been used for inferring genetic regulatory interactions
from microarray data. Data from a few dozen time points during a cell cycle is a very small
amount of data on which to train a dynamic Bayesian network. Husmeier has recently used
MCMC on simulated data of microarray experiments in order to access the network inference
performance with different training set size, priors and sampling strategies (Husmeier et al.,
2005).

Causality

Often the really interesting problems involve the learning of causal relationships (Pearl, 2000),
such as protein-signalling networks (Sachs et al., 2005). In order to discover the underlying
causal model, more than just structure learning is needed, since many network structures
are equivalent. (In Markov equivalent network structures the nodes may be dependent upon
each other in different ways, but produce the same results). In order to identify a variable
which exhibits a causal influence over another variable, particular patterns of dependency of a
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third variable must be observed, in the context of interventions (fixing the values of particular
variables). This allows the directionality of the causal relation to be determined.

Software

A variety of software is used for Bayesian inference. Three commonly used packages are:

• Bayes Net Toolkit for Matlab (http://bnt.sourceforge.net/)

• Probabilistic Network Library (http://sourceforge.net/projects/openpnl)

• OpenBUGS (http://mathstat.helsinki.fi/openbugs/)

Example code for inference in the cell signalling pathway example in Matlab for use with the
Bayes Net Toolkit is available from http://www.comp.leeds.ac.uk/chrisn/research/cellsig/

Summary: Bayesian networks for computational biology

Many applications in computational biology have taken advantage of Bayesian networks or
more generally, probabilistic graphical models. These include: protein modelling, systems bi-
ology; gene expression analysis, networks and pathway modelling; biological data integration;
protein protein interaction and functional annotation; DNA sequence analysis; genetics and
phylogeny linkage analysis (Beaumont and Rannala, 2004). Bayesian networks and probabilis-
tic graphical models use results from graph theory which allow lucid expression of probability
theory. Bayesian networks coupled with Bayesian learning provide a robust framework in which
to combine domain knowledge and data, in order to make inferences about states of unknown
variables. Learning in Bayesian networks may use a point estimate of the parameters, or use
Bayesian statistics to average over possible model structures and parameters to provide an es-
timate of the posterior distribution of the variables, which avoids over-fitting to the data, which
may be noisy, limited, incomplete and uncertain.

12



References

Beaumont MA and Rannala B (2004) The Bayesian revolution in genetics. Nature Reviews
Genetics, 5, 251–261.

Biedermann A and Taroni F (in press, 2005) A probabilistic approach to the joint evaluation of
firearm evidence and gunshot residues. Forensic Science International.

Burnside ES (2005) Bayesian networks: Computer-assisted diagnosis support in radiology.
Academic Radiology, 12, 422–430.

Friedman N (2004) Inferring cellular networks using probabilistic graphical models. Science,
303, 799–805.

Heckerman D (1998) A tutorial on learning with Bayesian networks. In Jordan MI, ed., Learning
in Graphical Models. Kluwer Academic, 301–354.

Husmeier D, Dybowski R, and (Eds) SR (2005) Probabilistic Modeling in Bioinformatics and
Medical Informatics. Springer.

Imoto S, Higuchi T, Goto H, Tashiro K, Kuhara S, and Miyano S (2003) Combining microarrays
and biological knowledge for estimating gene networks via Bayesian networks. In IEEE
Computational Systems Bioinformatics (CSB’03).

Murphy KP and Mian S (1999) Modelling gene expression data using dynamic Bayesian net-
works. Tech. rep., Dept. of Computer Science, University of California, Berkeley, CA.

Needham CJ, Bradford JR, Bulpitt AJ, and Westhead DR (2006) Inference in Bayesian net-
works. Nature Biotechnology, 24, 51–53.

Pearl J (2000) Causality: models, reasoning and inference. Cambridge.

Sachs K, Perez O, Pe’er D, Lauffenburger DA, and Nolan GP (2005) Causal protein-signaling
networks derived from multiparameter single-cell data. Science, 308, 523–529.

Troyanskaya OG, Dolinski K, Owen AB, Altman RB, and Botstein D (2003) A Bayesian frame-
work for combining heterogeneous data sources for gene function prediction (in saccha-
romyces cerevisiae). PNAS, 100, 8348–8353.

13



 



1

Bayesian networks
for bioinformatics

An introduction to inference and learning

Dr Chris Needham
Computing

The University of Leeds, UK
chrisn@comp.leeds.ac.uk

Dr James Bradford
Cellular and Molecular Biology
The University of Leeds, UK

j.r.bradford@leeds.ac.uk

2

Timetable

Discussion30 mins

Examples section30 mins

More advanced concepts30 mins

coffee30 mins

Learning from data35 mins

Bayesian networks: representation and inference40 mins

Introduction to Bayesian statistics45 mins

TopicTime

3

Introduction to Bayesian statistics

• Principles of learning from data
• Other machine learning approaches
• Probability: Classical vs Bayesian
• Probability theory
• Bayesian inference

4

Classification

• “Classification is hard” –Janet Thornton, ISMB05

• Don’t just want machine learning methods 
that classify well…

• …we want to form an interpretable model.

• Yes/No is not enough, need to know why the 
decision was made.
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5

What is machine learning?

• Why do we want to learn from data?
• What problems can we tackle?

6

Decision Trees

• Gini index: i(N) = 1 - ∑j P2(wj)
• 20 questions?

7

Neural networks

• ‘Black box’

inputs

hidden

outputs

8

SVMs
Data xi is transformed by a non-linear 

mapping φ(.) to a high dimensional space 
where the yi = φ(xi) are linearly separable.



3

9

Drawbacks

• Many of you use machine learning 
algorithms...

What’s wrong with them?

10

• A framework for explaining causal relationships 
consisting of a set of variables connected by a 
set of directed edges

• Probability calculus is used to
describe the probabilistic 
relationship of each variable 
with its parents

Bayesian networks

11

Bayesian networks

• Combine domain knowledge and data
• Avoid over-fitting of data
• Handle incomplete datasets
• Allow learning about causal relationships

first some probability theory…

12

Bayesian Probability
• A classical probability is a physical 

property of the world
• The Bayesian probability of an event X is a 

person’s degree of belief in that event
• Important difference: Do not need 

repeated trials in order to assign a 
Bayesian probability

• What is the probability that Brazil will win 
the world cup in 2010 ?
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Probability assignment
• Probability assessment is the process of 

measuring a degree of belief and can be done in 
a number of ways:
– probability wheel
– ball drawing gambles

Your boss will give you an extra $1000 if you:
A – Write 3 Journal papers this year
B – Choose a red marble from a bag of 100 marbles, 

with n red marbles
At what n would event A and B be equally likely?

14

Probability Calculus
Product rule:   p(x,y) = p(y|x)p(x) x

y

y

x

Sum rule:        p(x) = Σy p(x,y)

p(x|y) =   p(y|x)p(x)
Σx p(y|x)p(x)

Bayes’ rule:   p(x|y) = p(y|x)p(x)
p(y)

visible
useful because often p(y|x) easy to find, 
whereas p(x|y) hard to assess

15

Have you got a disease?
• You’ve tested positive for a disease!
• What is the probability you have the disease?
• It depends on accuracy and sensitivity of the test 

and background (prior) probability of the disease.
In our probabilistic graphical models notation:

Diseased?

Test

D

T

θDisease = p(Diseased)

θTest = p(Test|Diseased)

16

P(D=true | T=pos) =
P(T=pos | D=true) * P(D=true)

P(T=pos| D=true) * P(D=true) + P(T=pos| D=false) * P(D=false)

= 0.95*0.01/(0.95*0.01 + 0.05*0.99) = 0.0095/0.0590 = 0.161

DDiseased?

Test T

θDisease = p(D)

θTest = p(T|D)

Let p(test is positive | you have the disease) = 0.95

and 1% of population have the disease, p(D=true) = 0.01

Suppose false positive rate is 5%: p(T=pos | D=false) = 0.05

T        F

0.01 0.99

0.05
0.05
0.95

0.95
pos   neg

T
F

(Bayes’ Rule)
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Disease example (cont.)
• So probability of having the disease given you 

have tested positive is 16%
• Low?
• Of 100 people, we expect only 1 of them to have 

the disease, but we expect 5 to test positive (5%)
• So, of the 6 people who tested positive, we only 

expect 1 of them to actually have the disease. 
Indeed 1/6 ≈ 0.16

• [Using multiple independent tests increases the 
posterior probability]

18

Guilty or not guilty?
• After opening statements, a jury believes there is 

an 80% probability that a suspect may be guilty
• Two pieces of evidence are presented, an eye 

witness report and a DNA test result
• Prior studies have shown that the reliability of an 

eye-witness report is 70% and the DNA test 95%
• The eye witness has identified the subject as the 

guilty party, while the DNA test indicates the 
suspect is innocent

• What would be the revised probability that the 
jury should believe the suspect to be guilty? 

19

GGuilty?

DNA Test D

θG = p(G)

θE = p(E|G)

So, p(G=Y) = 0.8
Eye Witness correct:  p(E=Y|G=Y) = p(E=N|G=N) = 0.7

θG Y       N

0.8 0.2

0.3
0.3
0.7

0.7E Eye Witness

θD = p(D|G)

Y
N

θE Y     N
0.05

0.05
0.95

0.95Y
N

θD Y      N

DNA Test correct:  p(D=Y|G=Y) = p(D=N|G=N) = 0.95

What’s the probability of guilty, given witness says guilty, and DNA not guilty?
p(G=Y|D=N,E=Y) = p(D=N|G=Y)p(E=Y|G=Y)p(G=Y) / p(D=N)p(E=Y)

= 0.05 * 0.7 * 0.8 / (0.05*0.8+0.95*0.2) * (0.7*0.8+0.3*0.2)
= 0.028/(0.23*0.62)
= 0.196                            p(guilty| evidence) = 20%

p(G,D,E) = p(G|D,E)p(D,E)      --product rule
p(G,D,E) = p(G)p(D|G)p(E|G)  --from graph/CI*

=>   p(G|D,E) = p(D|G)p(E|G)p(G)/p(D)p(E)

20

Summary

• Discussed some methods of machine 
learning and their limitations

• Introduced graphical models and 
probability theory

• Made lots of promises about Bayes nets
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Bayesian networks: 
representation and inference

• Joint probability distributions
• Bayesian networks
• Conditional independence
• Compact representation
• Conditional probability distributions
• Inference in Bayesian networks
• Calculating posterior probabilities

22

Joint Probability Distributions

• Given a set of n variables,  X = { x1,…,xn}, 
we want to form the joint probability 
distribution p(X) = p(x1,…, xn)

• Using this we can capture the 
relationships between sets of variables

• And perform inference of unknown values, 
such as p(xi|xj,xk)

23

What are Bayesian networks?

• Bayesian networks encode the probabilistic 
relationships between variables

• Nodes represent variables X = { x1,…,xn}
• Edges represent relationships between 

variables

• A directed acyclic graph (DAG) is formed

24

Joint Probability Distributions

• Consider p(x,y,z)
• By successive application of the product 

rule:

• p(x,y,z) = p(y,z|x)p(x) 
= p(z|x,y)p(y|x)p(x)

x

z

y
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Joint Probability Distributions
p(x1,…xn) =     p(xi|pai)
where pai are the parents of xi

DAG: directed acyclic graph

x7

x4 x5

x1

x6

x2

x3

p(x1)p(x2)p(x3)
p(x4|x1,x2,x3)
p(x5|x1,x3)
p(x6|x4)p(x7|x4,x5)

p(x1,…,x7) =

26

Conditional Independence
• If two variables are independent given the state 

of a third variable, then they are said to be 
conditionally independent

p(x,y|z) = p(x|z)p(y|z)

• Conditional Independence in Bayesian networks 
allows us to find variables that are independent 
and make the models of manageable size.

27

Serial connections
• Evidence transmitted unless state of 

variable in connection is known

x zy

Y unknown: evidence of level of x effects level of z
Y known: the level of z depends only on y, 

and is conditionally independent of x

gene x promotes gene y

gene y promotes gene ze.g. Gene expression

28

Diverging connections
• Evidence transmitted unless connection is 

instantiated

x z

y

Additional example: different tests for a disease

e.g. Transcription factor Y 
turns two genes X and Z on

Y unknown: evidence gene x is on effects state of z
Y known: the state of z depends only on y, 

and is conditionally independent of x
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Converging connections
x z

yGenes X and Z promote gene Y

Y unknown: evidence of expression level of gene x 
does not help to infer the expression level of z 
-- x and z are conditionally independent
Y known: evidence of expression level of gene x 
does help to infer the expression level of z

p(x,z|y) ≠ p(x|y)p(z|y)

• Evidence transmitted only if 
variable in connection or one of 
its children receives evidence

30

Converging connections (example)

• Pixel colour in an image 
x = lighting colour, y = image colour, z = surface colour

x z

y

p(x,y,z) = p(y|x,z)p(x)p(z)

p(x,z) = p(x)p(z)

p(x,z|y) ≠ p(x|y)p(z|y)

31

Simple cell signalling pathway

• Consider a simple example consisting of :
– a stimulant, 
– an extracellular signal, 
– an inhibitor of the signal, 
– a G protein-coupled receptor, 
– a G protein and the cellular response.

How do you model this pathway?

32

Prior knowledge
A Bayesian network can be 
constructed that expresses the 
relationships between variables

whether the signal binds with 
the receptor depends on the 
concentrations of both the 
signal and the inhibitorthe G protein should 

become active if the 
receptor binds

the concentration of the 
signal may affect the 
level of the inhibitor

an active G protein initiates a 
cascade of reactions that 
causes the cellular response

the stimulant may or may not 
generate a signal
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33

Conditional probabilities
• Now we have a network structure, we need to 

know the conditional probability distributions θi
• These are much easier to specify, since they 

involve fewer variables and don’t involve 
estimating posterior probabilities.

• For example we only need to know 
– p(G protein is active | receptor binds)

• rather than 
– p(G protein is active | receptor binds, inhibitor is high, 

signal is medium, stimulant is not present )
• We can learn these from data (next section)

34
Bayesian network of the cell signalling pathway 

with example conditional probability tables

Needham, Bradford, Bulpitt & Westhead.
Inference in Bayesian networks
Nature Biotechnology 24(1):51-53. Jan 2006.

35

Compactly expressing the JPD

full JPD has  (2×3×3×2×2×2) - 1 = 143 free parameters

How much smaller is the model?

p(ST,SI,IN,RE,GP,CR) = p(CR|GP)p(GP|RE)p(RE|SI,IN)p(IN|SI)p(SI|ST)p(ST)

2

9

2

6
4

1 Bayes Net JPD has
24 free parameters
(1+4+6+9+2+2)

free parameters for each 
CPD p(x|y1,…,yn) are:

|yi|×…×|yn|× (|x|-1) 

For example θRE, p(receptor| inhibitor,signal) 
|inhibitor|×|signal|×(|receptor|-1) = 3×3×1 = 9

36

p(G protein active | stimulant present)

• Using the sum rule p(x) = ∑yp(x,y) and the 
product rule p(x,y) = p(x|y)p(y) we 
marginalise over the unknown variables:

p(GP = active| ST = present)
= ∑x ∑y ∑z p(GP = active|RE = x) p(RE = x|IN =y,SI = z) 

p(IN = y |SI = z) p(SI = z| ST = present)
= 0.592

p(GP = active| ST = not present) = 0.5048

Inference in Bayesian networks
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p(stimulant present | signal high)

• It’s often of interest to calculate posterior 
probabilities – we use Bayes’ rule

p(ST = present | SI = high) =

p(SI = high| ST = present)p(ST=present)
p(SI=high|ST=present)p(ST=present) + p(SI=high|ST=absent)p(ST=absent)

=            0.6×0.4                =  0.8
(0.6×0.4) + (0.1×0.6)

Bayes’ rule:   p(x|y) = p(y|x)p(x)
p(y)

Calculating posterior probabilites 38

Why have you come to ISMB?
• What factors influence people’s decision to 

attend ISMB (or not) ?

• Which of these are independent
• Can we draw a Bayesian network?

Paper inTravel paid
Cost/AffordabilityDesire (beach?)
LocationAcademic interest

39

academic
interest desire affordabilitylocation travel

paid
paper

accepted

attend
ISMB

attend
ISMB

academic
interest desire affordabilitylocation travel

paid
paper

accepted

Naïve Bayes classifier

Inverted naïve Bayes classifier All dependent

All independent factors

40

academic
interest

desire affordability

location travel
paid

paper
accepted

attend
ISMB

Bayesian network for ISMB example

Detriot/Fortaleza

Excited/bored

Yes/No

Yes/No

Yes/Maybe/NotWant to go/don’t

Full/Part/None



11

41

Summary

• Joint probability distributions
• Basic concepts of Bayesian netowrks
• Representation
• Inference
• Incorporating prior knowledge

42

Learning from data

• Learning model parameters from data
• Parameter priors
• Continuous variables as well as discrete
• Point estimates: maximum likelihood (ML), 

maximum a posteriori (MAP) estimates
• Bayesian learning – model averaging

43

Probabilistic terminology
• Prior p(θ)

– the prior probability assigned to a parameter, 
or to an event, in advance of any empirical 
evidence

• Posterior p(θ|D)
– the probability assigned to a parameter, or to 

an event, on the basis of its observed 
frequency in a sample, calculated from a prior 
probability by Bayes’ rule

• Data set  D = {xn}, n = 1,…,N

44

Models with discrete variables
b1 b2 b3 

a1
a2
a3

1/9   1/9 1/9
1/9   1/9 1/9
1/9   1/9 1/9

Prior model parameters θ

p(a,b) b1 b2 b3 

a1
a2
a3

0.30   0.10   0.01
0.02   0.05   0.15
0.10   0.24   0.03

Posterior model parameters θ

p(a,b)

prior (model no data) often 
uniform uninformative 
Dirichlet priors are used.

posterior (model given data) 
can be formed from psuedo-
counts of observed 
frequencies in example 
training data
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SNP prediction from Amino Acids

• Inverted naïve Bayes
classifier

• Good predictor

• structure important!

p(dieased|residue,mutant)

A C D E F G H I K L M N P Q R S T V W Y

A
C
D
E
F
G
H
I

K
L
M
N
P
Q
R
S
T
V
W
Y

residue AA

effect

mutant AA

46

Example (ISMB BNet revisited)

• How can we construct conditional probability 
tables for this example?   
– Using frequency counts

• How does it work?

• What questions do we need to ask?
– p(travel paid | paper accepted)
– p(desire to go| location, academic interest)
– p(academic interest)
– p(paper accepted)
– p(affordability|location,travel paid)
– p(attend ISMB| desire, affordability)

• Compare to building JPD over all variables in 
this way!

• Later we will consider how to do this in the 
presence of incomplete data 

academic
interest

desire afford

location travel
paid

paper
accepted

attend
ISMB

Detriot/Fortaleza

Excited/bored

Yes/No

Yes/No

Yes/Maybe/NotWant to go/don’t

Full/Part/None

47

• prior p(θ) – estimate of model parameters

Continuous data

μ

σ

θ = (μ,σ)

48

p(b|a1) p(b|a2) p(b|a3)

μ1 μ2 μ3

σ1

σ2

σ3

a1 a2 a3

b

p(b|a1) p(b|a2) p(b|a3)

μ1 μ2 μ3

σ1

σ2

σ3

a1 a2 a3

b

Discrete parent, continuous child

A

B

θB = p(B|A)
p(B=b)

A = a1 μ1,σ1
A = a2 μ2,σ2
A = a3 μ3,σ3
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Learning model parameters

• How do we fit a model to data?
• Do we measure how well the data fits the model? 

or how well the model fits the data?
• Given training data, how do we predict a new 

example?

× × × × × × × ×× × ×  ×   × ×   × × × ×   data

posterior

prior

Heights of people in 
the tutorial next door?

p(D|θ)

50

Maximum Likelihood estimate
• Likelihood function (for independent observations)

L(θ) = p(D|θ) =      p(xn| θ)

• θML is maximum likelihood model parameters

θML = arg maxθ ln p(D|θ)
(data given model)

• Predictive distribution

p(x|D) ≈ p(x|θML)

51

MAP estimate

• θMAP is maximum posterior model parameters

θMAP = arg maxθ ln p(θ|D)

(model given data)
• Predictive distribution

p(x|D) ≈ p(x|θMAP)

p(θ|D) = p(D|θ)p(θ)

52

Bayesian learning paradigm

• Key idea is to marginalize over unknown 
parameters, rather than make point estimates
– avoids the over-fitting of ML and MAP
– allows direct model comparison

• Parameters are now latent variables
• Bayesian learning is an inference problem!

p(x|D) = ∫p(x|θ)p(θ|D)dθ
(x given model)(model given data)(over all models)

Predictive  distribution
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Bayesian Learning

Predictive distribution:  

p(x|D) =        ∫p(x|θ)p(D|θ)p(θ)dθ1
p(D)

Model evidence:  p(D) = ∫p(D|θ)p(θ)dθ

. . .

x1 x2 xN x

θ

p(D|θ) =     p(xi|θ )

p(D, θ, x) = p(D|θ)p(x|θ)p(θ)    

xi
N

x

θ

54

Summary

• Methods for learning model parameters
• Benefits of Bayesian learning
• Avoids over-fitting

55

Review of Bayes Nets

• Binding site prediction
• Data integration for gene function prediction
• Evaluation of firearm evidence
• Medical decisions
• Gene cluster analysis

56

Binding site prediction

• Naïve Bayes classifier is excellent predictor of 
binding site patches on protein surfaces.

Bradford, Needham, Bulpitt & Westhead. Insights into protein-protein 
interfaces using a bayesian network prediction method. JMB(submitted)

hydrophobicity
conservation

electrostatic
potential

shape

binding site Y/N

residue interface
propensityASA
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Data Integration

Troyanskaya et al. A Bayesian framework for combining heterogeneous 
data sources for gene function prediction (in Saccharomyces cerevisiae). 
PNAS, 100(14), 2003

expert derived structure
combining domain knowledge and data

Functional
Relationship

Data Noise 
LevelCoexpressionExpression 

Data Type

Genetic 
Association

Physical 
Association

Hierarchical 
Clustering

SOMsK-means
Clustering

TF 
binding

Colocal
-isation

Y2H

direct 
binding

58

Evaluation and combination of 
firearm evidence

Biedermann & Taroni. A probabilistic approach to the joint evaluation of firearm 
evidence and gunshot residues. Forensic Science International. 2005

xaxm

Y ym ya

D F

F: incriminated bullet 
was fired by suspect

D: distance

Y: Quantity of particles 
in a Gun Shot Residue y: incriminated bullet

x: suspect’s bullets

subscripts:
m: marks relating 

to manufacturer
a: acquired 

characteristics

59

Medical Decisions

• Radiologists have an overwhelming task of 
integrating over a breadth of relevant and 
diverse data

• Breast disease diagnosis factors:
– age, HRT, family history, calcifications (in a 

variety of patterns), mass attributes, asymetric
densities

Burnside. Bayesian Networks: Computer-assisted diagnosis 
Support in Radiology. Academic Radiology 12(4). 2005

60

Gene cluster analysis

Th
re

e 
ge

ne
s

Xg,a is the spot that 
measures expression 
of gene g in array a

Friedman, Inferring cellular networks using probabilistic 
graphical models. Science 303(6). 2004

Two arrays

AC1 AC2
GC1

x1,1 x1,2

x2,1 x2,2

x3,1 x3,2

GC2

GC3

gene cluster

spot
X

array cluster

array

gene
p(X|GC,AC)
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More advanced concepts

• Learning from incomplete data
• Markov chain Monte Carlo methods
• Structure learning
• Dynamic Bayesian Networks
• Hidden Markov Models
• Latent variables
• Causality

62

Learning from incomplete data

• Parameters can be learned even when 
some variables are unknown in some cases

• Commonly the Expectation-Maximisation 
algorithm is used.

EM estimates the missing values by computing 
the expected values and updating the parameters 
using these expected values as if they were 
observed values

63

The EM algorithm
• EM finds local maxima for MAP or ML 
• Starts with    a parameter configuration (random)
• Iteratively applies the expectation and 

maximisation steps until convergence
• E-step. The expected values of the missing data 

are inferred to form Dc – the most likely complete 
dataset given the current model parameters

• M-step. The configuration of     which maximises 
p(    |Dc) is found (for MAP)

θ,ˆ

θ̂
θ̂

64

Sampling methods
• Sampling methods have been used to estimate 

the full posterior distribution of the model 
parameters in the presense of incomplete data

• Monte Carlo methods such as Gibbs sampling 
are extremely accurate (but require lots of 
computation, take a long time to converge and 
become intractable as the sample size grows)

• Gaussian approximation is based on the fact 
that p(θ|D)      p(D|θ)p(θ) can be approximated 
as Gaussian distribution. With more training data 
the Gaussian peak becomes sharper → θMAP
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Structure learning

• We’ve seen that we can combine knowledge 
about the domain with data
– i.e. get an expert to design a network structure 

based on known relationships/ independencies 
between the variables

• We can also learn the structure of the model!
– search for good structures which capture the 

interactions between the variables, whilst 
maintaining a compact model

66

Structure Learning

• Greedy search 
– Iteratively: add, reverse or delete an edge
– Score the structure Sh

• Score functions
– Full Bayesian posterior
– BIC score function

ln p(D|Sh) ≈ ln p(D|θs,Sh) – ½ d ln NML

67

Review article: Friedman, Inferring cellular networks using 
probabilistic graphical models. Science 303(6). 2004

Learning Cellular Networks

G1

G3

G1

T1 T1G2

G3

T2
G2

G4

68

Inferring genetic networks
• Constructing a genetic network from microarray gene 

expression data by using a Bayesian network.
– a gene corresponds to a node (random variable)
– gene regulations are shown by directed edges
– gene interactions are modelled by the conditional distribution of 

each gene
• Incorporate prior knowledge from protein-protein 

interactions, protein-DNA interactions, gene networks 
and literature

• Analysis of Saccharomyces cerevisiae gene expression 
data newly obtained by disrupting 100 genes, mainly 
transcription factors.

Imoto et al. Combining microarrays and biological knowledge 
for estimating gene networks via Bayesian networks. CSB 2003.
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Dynamic Bayesian networks (DBNs)

• Expression levels
of genes A, B, C A

C

B

A

C

B

t            t+Δt

A

C

B

promotes

inhibits

promotes

Static model – not a BN Dynamic Bayesian network
Murphy & Mian. Modelling Gene Expression Data using 
Dynamic Bayesian Networks. Tech Report. 1999. 70

Hidden Markov Models (HMMs)

Y1

X3

Y2

X1

Y3

X2

X3X1 X2 – xt depends only on xt-1

Modelling the state of variable X, as a Markov process, with a DBN:

HMMs can be represented as 
Dynamic Bayesian networks, 
with hidden variables.

t doesn’t have to be time
HMMs are often used for 
sequence alignment, where 
hidden state is INSERT, 
DELETE, or MATCH, and t is the 
next position in the sequence.White nodes unobserved. Shaded nodes observed.

71

Latent (hidden) variables
• Latent variables can be added to models 

to capture additional information or reduce 
model size through expert knowledge

72

SNP prediction from Amino Acids
p(dieased|residue,mutant)

A C D E F G H I K L M N P Q R S T V W Y

A
C
D
E
F
G
H
I

K
L
M
N
P
Q
R
S
T
V
W
Y

residue AA

effect

mutant AA

A latent variable model

residue
  class

mutant
 class

residue AA effect mutant AA

p(neutral|residue class, mutant class)

mc1 mc2

rc1

rc2

p(disease|residue class, mutant class)

mc1 mc2

rc1

rc2

p(residue class)

rc1

rc2

p(mutant class)

 

mc1

mc2

p(residue|residue class)

A C D E F G H I K L M N P Q R S T V W Y

rc1

rc2

p(mutant|mutant class)

A C D E F G H I K L M N P Q R S T V W Y

mc1

mc2
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Causality

• The learning of causal relations is 
somewhat trickier

• We’d like to determine what effects what, 
rather than just what’s related

• To do this requires the combination of 
expert knowledge, and interventions

74

X

Y

X

Y

X

X → Y

X

X – Y

No inhibition
X inhibited
Y inhibited

75

Causal protein-signalling networks

Sachs et al. Causal protein signalling networks derived from 
multi-parameter single-cell data. Science 308(5721) 2005

Perturbations
different conditions

Multi-parameter
Flow Cytometry*

Correlated phospho-
measures per cell

Bayesian network
analysis

Influence diagram of
measured variables

Datasets of cells
for each condition

* measures 11 phosphoproteins and phospholipids in individual cells in each perturbation

76

Summary

• Handling incomplete data
• Structure learning
• Learning causal relationships
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77

Examples section

• The simple cell signalling example from 
earlier, example in Matlab

• An application of Bayesian networks to 
learning parameters and structures from 
data for predicting functional 
consequences of missense mutations

78
Bayesian network of the cell signalling pathway 

with example conditional probability tables

Needham, Bradford, Bulpitt & Westhead.
Inference in Bayesian networks
Nature Biotechnology 24(1):51-53. Jan 2006.

79

Cell signalling pathway 
example in Matlab

N = 6;
discrete_nodes = 1:N;

ST = 1; SI = 2; IN = 3; RE = 4; GP = 5; CR = 6;

dag = zeros(N,N);
dag(ST,SI) = 1;
dag(SI,[IN,RE]) = 1;
dag(IN,RE) = 1;
dag(RE,GP) = 1;
dag(GP,CR) = 1;
dag

We have 6 discrete nodes

We will name them for ease of use

And construct a DAG

We must first setup the Bayes Net Toolbox (BNT)

dag =     0     1     0     0     0     0  
0     0     1     1     0     0
0     0     0     1     0     0
0     0     0     0     1     0
0     0     0     0     0     1
0     0     0     0     0     0

80

node_sizes = [2 3 3 2 2 2];

bnet = mk_bnet(dag, node_sizes, 'discrete', discrete_nodes,
'names', {'Stimulant','Signal','Inhibitor','Receptor','G protein','Cell Res'});

bnet.CPD{ST} = tabular_CPD(bnet, ST, [0.4 0.6]);
bnet.CPD{SI} = tabular_CPD(bnet, SI, [0.6 0.1 0.3 0.2 0.1 0.7]);
bnet.CPD{IN} = tabular_CPD(bnet, IN, [0.6 0.2 0.1 0.3 0.2 0.1 0.1 0.6 0.8]);
bnet.CPD{RE} = tabular_CPD(bnet, RE, [0.5 0.3 0.2 0.8 0.5 0.3 0.9 0.8 0.5 

0.5 0.7 0.8 0.2 0.5 0.7 0.1 0.2 0.5]);
bnet.CPD{GP} = tabular_CPD(bnet, GP, [0.9 0.1 0.1 0.9]);
bnet.CPD{CR} = tabular_CPD(bnet, CR, [0.8 0.1 0.2 0.9]);

engine = jtree_inf_engine(bnet);

Define the nodes sizes (SI and IN each take 3 values: high, med, low)

Initialise the Bayesian Network

Define the Conditional Probability Tables

We choose the Junction Tree algorithm for Inference
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The CPT for p(stimulant)

The CPT for p(inhibitor|signal)

The CPT for p(receptor|inhibitor,signal)

The CPT for p(signal|stimulant)

The CPT for p(G protein|receptor) The CPT for p(cell res|G protein)

ans = 0.4000
0.6000

ans = 0.6000    0.3000    0.1000
0.1000    0.2000    0.7000

ans = 0.6000    0.3000    0.1000
0.2000    0.2000    0.6000
0.1000    0.1000    0.8000

ans = 0.8000    0.2000
0.1000    0.9000

ans = 0.9000    0.1000
0.1000    0.9000

ans(:,:,1) =   0.5000    0.8000    0.9000
0.3000    0.5000    0.8000
0.2000    0.3000    0.5000

ans(:,:,2) =   0.5000    0.2000    0.1000
0.7000    0.5000    0.2000
0.8000    0.7000    0.5000

the first table above shows the 
conditional probabilities when the 
receptor binds, and the second when 
the receptor does not bind

82

We pass this evidence to the inference engine

evidence = cell(1,N);

evidence{ST} = 1;

[engine, loglik] = enter_evidence(engine, evidence);

marg = marginal_nodes(engine, GP);
marg.T

We set the evidence to nothing (a blank cell array)

We add to evidence that ST was present (1)

Now we can make inferences! 
e.g. What is p(G protein|Stimulant=present) ?

We get the marginal probabilities for GP for the given evidence

ans = 0.5920    
0.4080

p(GP = active       | ST = present) = 0.5920
p(GP = not active | ST = present) = 0.4080

83

We pass this evidence to the inference engine

evidence = cell(1,N);

evidence{ST} = 2;

[engine, loglik] = enter_evidence(engine, evidence);

marg = marginal_nodes(engine, GP);
marg.T

We set the evidence to nothing (a blank cell array)

We add to evidence that ST was not present (2)

Similarly, what is the probability that the 
G Protein is active if the Stimulant not present?
i.e. p(G protein|Stimulant=not present)

We get the marginal probabilities for GP for the given evidence

ans = 0.5048    
0.4952

p(GP = active       | ST = not present) = 0.5048
p(GP = not active | ST = not present) = 0.4952

84

BNT functionality

• The Bayes Net Toolbox for Matlab
supports many conditional probability 
distributions, inference engines, methods 
for parameter learning, and some structure 
learning.

• It is free open source code and is available 
from http://bnt.sourceforge.net/
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Missense mutations
• A single nucleotide polymorphism (SNP) is a 

mutation (insertion, deletion or substitution) 
observed in the genomic DNA of individuals of 
the same species. 

• When the SNP results in an amino acid 
substitution in the protein product of the gene, it 
is called a missense mutation. 

• A missense mutation can have various 
phenotypic effects. Here, we aim to predict 
whether a missense mutation has an effect or 
no effect on protein function.

86

Attributes
effect Effect of mutation on functionality  
ac Solvent accessible area of native AA
rac Accessibility relative to maximum accessibility in training set
bf Normalised B-factor of native AA
nbf Normalised B-factor of structural neighbourhood of native AA
bur Mutant AA is charged AA at buried site
trn Mutant AA occurs at glycine or proline in a turn
hlx Mutant AA occurs in helical region and involves glycine or 

proline
ifc Native AA is near subunit interface
nrent Phylogenetic entropy of structural neighbourhood of native AA
rent Normalised phylogenetic entropy of native AA
cnsd Native AA is at conserved position in phylogenetic profile
ncnsd Native AA is near conserved position in phylogenetic profile
uslaa Mutant AA is not in phylogenetic profile
uslby Mutant AA is not in the smallest AA class that includes the 

phylogenetic profile

S
tr

uc
tu

ra
l

E
vo

lu
tio

na
ry

BOTH

87

…

Naïve Bayes classifier

• Overall error rates 20%
• Area under ROC = 0.80

…

•performs well when evolutionary information is hidden,
•but poorly when structural information hidden

88

Learned network structure S
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effect ac rac bf nbf bur trn hlx ifc nrent rent cnsd ncnsd uslaa uslby

effect

ac

rac

bf

nbf

bur

trn

hlx

ifc

nrent

rent

cnsd

ncnsd

uslaa

uslby

Posterior distribution of edges in learned structures

90

A simplified Bayesian network

• Three structural descriptors:
– solvent accessible area of the native amino acid
– whether the amino acid is charged at the buried site
– the flexibility of its structural neighbourhood

• No evolutionary information!
• Same performance!

nbf

effect

bur ac

91
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Naive Bayes classifier

learned BN structure S

Learning from incomplete data

92

Conclusions/Recap

This application has shown that Bayesian networks
– Generalise well to new data
– Parameters can be learned from incomplete datasets
– Predictions can be made with missing data 

(through marginalising over the unknown variables)
– Structure learning can produce good compact models 

(compared to big fully connected graphs)
– A naïve Bayes’ classifier is excellent at integrating 

information
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Discussion

Bayesian networks
for bioinformatics

An introduction to inference and learning

Many thanks must also go to 
Dr Andrew Bulpitt & Prof David Westhead

for their contributions to this tutorial
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Bayesian networks
for bioinformatics

An introduction to inference and learning

Dr Chris Needham
Computing

The University of Leeds, UK
chrisn@comp.leeds.ac.uk

Dr James Bradford
Cellular and Molecular Biology
The University of Leeds, UK

j.r.bradford@leeds.ac.uk
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Timetable

Discussion30 mins

Examples section30 mins

More advanced concepts30 mins

coffee30 mins

Learning from data35 mins

Bayesian networks: representation and inference40 mins

Introduction to Bayesian statistics45 mins

TopicTime

59

Introduction to Bayesian statistics

• Principles of learning from data
• Other machine learning approaches
• Probability: Classical vs Bayesian
• Probability theory
• Bayesian inference

60

Classification

• “Classification is hard” –Janet Thornton, ISMB05

• Don’t just want machine learning methods 
that classify well…

• …we want to form an interpretable model.

• Yes/No is not enough, need to know why the 
decision was made.
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What is machine learning?

• Why do we want to learn from data?
• What problems can we tackle?

62

Decision Trees

• Gini index: i(N) = 1 - ∑j P2(wj)
• 20 questions?

63

Neural networks

• ‘Black box’

inputs

hidden

outputs

64

SVMs
Data xi is transformed by a non-linear 

mapping φ(.) to a high dimensional space 
where the yi = φ(xi) are linearly separable.



17

65

Drawbacks

• Many of you use machine learning 
algorithms...

What’s wrong with them?

66

• A framework for explaining causal relationships 
consisting of a set of variables connected by a 
set of directed edges

• Probability calculus is used to
describe the probabilistic 
relationship of each variable 
with its parents

Bayesian networks

67

Bayesian networks

• Combine domain knowledge and data
• Avoid over-fitting of data
• Handle incomplete datasets
• Allow learning about causal relationships

first some probability theory…

68

Bayesian Probability
• A classical probability is a physical 

property of the world
• The Bayesian probability of an event X is a 

person’s degree of belief in that event
• Important difference: Do not need 

repeated trials in order to assign a 
Bayesian probability

• What is the probability that Brazil will win 
the world cup in 2010 ?
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Probability assignment
• Probability assessment is the process of 

measuring a degree of belief and can be done in 
a number of ways:
– probability wheel
– ball drawing gambles

Your boss will give you an extra $1000 if you:
A – Write 3 Journal papers this year
B – Choose a red marble from a bag of 100 marbles, 

with n red marbles
At what n would event A and B be equally likely?

70

Probability Calculus
Product rule:   p(x,y) = p(y|x)p(x) x

y

y

x

Sum rule:        p(x) = Σy p(x,y)

p(x|y) =   p(y|x)p(x)
Σx p(y|x)p(x)

Bayes’ rule:   p(x|y) = p(y|x)p(x)
p(y)

visible
useful because often p(y|x) easy to find, 
whereas p(x|y) hard to assess

71

Have you got a disease?
• You’ve tested positive for a disease!
• What is the probability you have the disease?
• It depends on accuracy and sensitivity of the test 

and background (prior) probability of the disease.
In our probabilistic graphical models notation:

Diseased?

Test

D

T

θDisease = p(Diseased)

θTest = p(Test|Diseased)

72

P(D=true | T=pos) =
P(T=pos | D=true) * P(D=true)

P(T=pos| D=true) * P(D=true) + P(T=pos| D=false) * P(D=false)

= 0.95*0.01/(0.95*0.01 + 0.05*0.99) = 0.0095/0.0590 = 0.161

DDiseased?

Test T

θDisease = p(D)

θTest = p(T|D)

Let p(test is positive | you have the disease) = 0.95

and 1% of population have the disease, p(D=true) = 0.01

Suppose false positive rate is 5%: p(T=pos | D=false) = 0.05

T        F

0.01 0.99

0.05
0.05
0.95

0.95
pos   neg

T
F

(Bayes’ Rule)
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Disease example (cont.)
• So probability of having the disease given you 

have tested positive is 16%
• Low?
• Of 100 people, we expect only 1 of them to have 

the disease, but we expect 5 to test positive (5%)
• So, of the 6 people who tested positive, we only 

expect 1 of them to actually have the disease. 
Indeed 1/6 ≈ 0.16

• [Using multiple independent tests increases the 
posterior probability]

74

Guilty or not guilty?
• After opening statements, a jury believes there is 

an 80% probability that a suspect may be guilty
• Two pieces of evidence are presented, an eye 

witness report and a DNA test result
• Prior studies have shown that the reliability of an 

eye-witness report is 70% and the DNA test 95%
• The eye witness has identified the subject as the 

guilty party, while the DNA test indicates the 
suspect is innocent

• What would be the revised probability that the 
jury should believe the suspect to be guilty? 

75

GGuilty?

DNA Test D

θG = p(G)

θE = p(E|G)

So, p(G=Y) = 0.8
Eye Witness correct:  p(E=Y|G=Y) = p(E=N|G=N) = 0.7

θG Y       N

0.8 0.2

0.3
0.3
0.7

0.7E Eye Witness

θD = p(D|G)

Y
N

θE Y     N
0.05

0.05
0.95

0.95Y
N

θD Y      N

DNA Test correct:  p(D=Y|G=Y) = p(D=N|G=N) = 0.95

What’s the probability of guilty, given witness says guilty, and DNA not guilty?
p(G=Y|D=N,E=Y) = p(D=N|G=Y)p(E=Y|G=Y)p(G=Y) / p(D=N)p(E=Y)

= 0.05 * 0.7 * 0.8 / (0.05*0.8+0.95*0.2) * (0.7*0.8+0.3*0.2)
= 0.028/(0.23*0.62)
= 0.196                            p(guilty| evidence) = 20%

p(G,D,E) = p(G|D,E)p(D,E)      --product rule
p(G,D,E) = p(G)p(D|G)p(E|G)  --from graph/CI*

=>   p(G|D,E) = p(D|G)p(E|G)p(G)/p(D)p(E)

76

Summary

• Discussed some methods of machine 
learning and their limitations

• Introduced graphical models and 
probability theory

• Made lots of promises about Bayes nets
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Bayesian networks: 
representation and inference

• Joint probability distributions
• Bayesian networks
• Conditional independence
• Compact representation
• Conditional probability distributions
• Inference in Bayesian networks
• Calculating posterior probabilities

78

Joint Probability Distributions

• Given a set of n variables,  X = { x1,…,xn}, 
we want to form the joint probability 
distribution p(X) = p(x1,…, xn)

• Using this we can capture the 
relationships between sets of variables

• And perform inference of unknown values, 
such as p(xi|xj,xk)

79

What are Bayesian networks?

• Bayesian networks encode the probabilistic 
relationships between variables

• Nodes represent variables X = { x1,…,xn}
• Edges represent relationships between 

variables

• A directed acyclic graph (DAG) is formed

80

Joint Probability Distributions

• Consider p(x,y,z)
• By successive application of the product 

rule:

• p(x,y,z) = p(y,z|x)p(x) 
= p(z|x,y)p(y|x)p(x)

x

z

y
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Joint Probability Distributions
p(x1,…xn) =     p(xi|pai)
where pai are the parents of xi

DAG: directed acyclic graph

x7

x4 x5

x1

x6

x2

x3

p(x1)p(x2)p(x3)
p(x4|x1,x2,x3)
p(x5|x1,x3)
p(x6|x4)p(x7|x4,x5)

p(x1,…,x7) =

82

Conditional Independence
• If two variables are independent given the state 

of a third variable, then they are said to be 
conditionally independent

p(x,y|z) = p(x|z)p(y|z)

• Conditional Independence in Bayesian networks 
allows us to find variables that are independent 
and make the models of manageable size.

83

Serial connections
• Evidence transmitted unless state of 

variable in connection is known

x zy

Y unknown: evidence of level of x effects level of z
Y known: the level of z depends only on y, 

and is conditionally independent of x

gene x promotes gene y

gene y promotes gene ze.g. Gene expression

84

Diverging connections
• Evidence transmitted unless connection is 

instantiated

x z

y

Additional example: different tests for a disease

e.g. Transcription factor Y 
turns two genes X and Z on

Y unknown: evidence gene x is on effects state of z
Y known: the state of z depends only on y, 

and is conditionally independent of x
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Converging connections
x z

yGenes X and Z promote gene Y

Y unknown: evidence of expression level of gene x 
does not help to infer the expression level of z 
-- x and z are conditionally independent
Y known: evidence of expression level of gene x 
does help to infer the expression level of z

p(x,z|y) ≠ p(x|y)p(z|y)

• Evidence transmitted only if 
variable in connection or one of 
its children receives evidence

86

Converging connections (example)

• Pixel colour in an image 
x = lighting colour, y = image colour, z = surface colour

x z

y

p(x,y,z) = p(y|x,z)p(x)p(z)

p(x,z) = p(x)p(z)

p(x,z|y) ≠ p(x|y)p(z|y)

87

Simple cell signalling pathway

• Consider a simple example consisting of :
– a stimulant, 
– an extracellular signal, 
– an inhibitor of the signal, 
– a G protein-coupled receptor, 
– a G protein and the cellular response.

How do you model this pathway?

88

Prior knowledge
A Bayesian network can be 
constructed that expresses the 
relationships between variables

whether the signal binds with 
the receptor depends on the 
concentrations of both the 
signal and the inhibitorthe G protein should 

become active if the 
receptor binds

the concentration of the 
signal may affect the 
level of the inhibitor

an active G protein initiates a 
cascade of reactions that 
causes the cellular response

the stimulant may or may not 
generate a signal
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Conditional probabilities
• Now we have a network structure, we need to 

know the conditional probability distributions θi
• These are much easier to specify, since they 

involve fewer variables and don’t involve 
estimating posterior probabilities.

• For example we only need to know 
– p(G protein is active | receptor binds)

• rather than 
– p(G protein is active | receptor binds, inhibitor is high, 

signal is medium, stimulant is not present )
• We can learn these from data (next section)

90
Bayesian network of the cell signalling pathway 

with example conditional probability tables

Needham, Bradford, Bulpitt & Westhead.
Inference in Bayesian networks
Nature Biotechnology 24(1):51-53. Jan 2006.

91

Compactly expressing the JPD

full JPD has  (2×3×3×2×2×2) - 1 = 143 free parameters

How much smaller is the model?

p(ST,SI,IN,RE,GP,CR) = p(CR|GP)p(GP|RE)p(RE|SI,IN)p(IN|SI)p(SI|ST)p(ST)

2

9

2

6
4

1 Bayes Net JPD has
24 free parameters
(1+4+6+9+2+2)

free parameters for each 
CPD p(x|y1,…,yn) are:

|yi|×…×|yn|× (|x|-1) 

For example θRE, p(receptor| inhibitor,signal) 
|inhibitor|×|signal|×(|receptor|-1) = 3×3×1 = 9

92

p(G protein active | stimulant present)

• Using the sum rule p(x) = ∑yp(x,y) and the 
product rule p(x,y) = p(x|y)p(y) we 
marginalise over the unknown variables:

p(GP = active| ST = present)
= ∑x ∑y ∑z p(GP = active|RE = x) p(RE = x|IN =y,SI = z) 

p(IN = y |SI = z) p(SI = z| ST = present)
= 0.592

p(GP = active| ST = not present) = 0.5048

Inference in Bayesian networks
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p(stimulant present | signal high)

• It’s often of interest to calculate posterior 
probabilities – we use Bayes’ rule

p(ST = present | SI = high) =

p(SI = high| ST = present)p(ST=present)
p(SI=high|ST=present)p(ST=present) + p(SI=high|ST=absent)p(ST=absent)

=            0.6×0.4                =  0.8
(0.6×0.4) + (0.1×0.6)

Bayes’ rule:   p(x|y) = p(y|x)p(x)
p(y)

Calculating posterior probabilites 94

Why have you come to ISMB?
• What factors influence people’s decision to 

attend ISMB (or not) ?

• Which of these are independent
• Can we draw a Bayesian network?

Paper inTravel paid
Cost/AffordabilityDesire (beach?)
LocationAcademic interest

95

academic
interest desire affordabilitylocation travel

paid
paper

accepted

attend
ISMB

attend
ISMB

academic
interest desire affordabilitylocation travel

paid
paper

accepted

Naïve Bayes classifier

Inverted naïve Bayes classifier All dependent

All independent factors

96

academic
interest

desire affordability

location travel
paid

paper
accepted

attend
ISMB

Bayesian network for ISMB example

Detriot/Fortaleza

Excited/bored

Yes/No

Yes/No

Yes/Maybe/NotWant to go/don’t

Full/Part/None
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Summary

• Joint probability distributions
• Basic concepts of Bayesian netowrks
• Representation
• Inference
• Incorporating prior knowledge

98

Learning from data

• Learning model parameters from data
• Parameter priors
• Continuous variables as well as discrete
• Point estimates: maximum likelihood (ML), 

maximum a posteriori (MAP) estimates
• Bayesian learning – model averaging

99

Probabilistic terminology
• Prior p(θ)

– the prior probability assigned to a parameter, 
or to an event, in advance of any empirical 
evidence

• Posterior p(θ|D)
– the probability assigned to a parameter, or to 

an event, on the basis of its observed 
frequency in a sample, calculated from a prior 
probability by Bayes’ rule

• Data set  D = {xn}, n = 1,…,N

100

Models with discrete variables
b1 b2 b3 

a1
a2
a3

1/9   1/9 1/9
1/9   1/9 1/9
1/9   1/9 1/9

Prior model parameters θ

p(a,b) b1 b2 b3 

a1
a2
a3

0.30   0.10   0.01
0.02   0.05   0.15
0.10   0.24   0.03

Posterior model parameters θ

p(a,b)

prior (model no data) often 
uniform uninformative 
Dirichlet priors are used.

posterior (model given data) 
can be formed from psuedo-
counts of observed 
frequencies in example 
training data
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SNP prediction from Amino Acids

• Inverted naïve Bayes
classifier

• Good predictor

• structure important!

p(dieased|residue,mutant)

A C D E F G H I K L M N P Q R S T V W Y

A
C
D
E
F
G
H
I

K
L
M
N
P
Q
R
S
T
V
W
Y

residue AA

effect

mutant AA

102

Example (ISMB BNet revisited)

• How can we construct conditional probability 
tables for this example?   
– Using frequency counts

• How does it work?

• What questions do we need to ask?
– p(travel paid | paper accepted)
– p(desire to go| location, academic interest)
– p(academic interest)
– p(paper accepted)
– p(affordability|location,travel paid)
– p(attend ISMB| desire, affordability)

• Compare to building JPD over all variables in 
this way!

• Later we will consider how to do this in the 
presence of incomplete data 

academic
interest

desire afford

location travel
paid

paper
accepted

attend
ISMB

Detriot/Fortaleza

Excited/bored

Yes/No

Yes/No

Yes/Maybe/NotWant to go/don’t

Full/Part/None

103

• prior p(θ) – estimate of model parameters

Continuous data

μ

σ

θ = (μ,σ)

104

p(b|a1) p(b|a2) p(b|a3)

μ1 μ2 μ3

σ1

σ2

σ3

a1 a2 a3

b

p(b|a1) p(b|a2) p(b|a3)

μ1 μ2 μ3

σ1

σ2

σ3

a1 a2 a3

b

Discrete parent, continuous child

A

B

θB = p(B|A)
p(B=b)

A = a1 μ1,σ1
A = a2 μ2,σ2
A = a3 μ3,σ3
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Learning model parameters

• How do we fit a model to data?
• Do we measure how well the data fits the model? 

or how well the model fits the data?
• Given training data, how do we predict a new 

example?

× × × × × × × ×× × ×  ×   × ×   × × × ×   data

posterior

prior

Heights of people in 
the tutorial next door?

p(D|θ)

106

Maximum Likelihood estimate
• Likelihood function (for independent observations)

L(θ) = p(D|θ) =      p(xn| θ)

• θML is maximum likelihood model parameters

θML = arg maxθ ln p(D|θ)
(data given model)

• Predictive distribution

p(x|D) ≈ p(x|θML)

107

MAP estimate

• θMAP is maximum posterior model parameters

θMAP = arg maxθ ln p(θ|D)

(model given data)
• Predictive distribution

p(x|D) ≈ p(x|θMAP)

p(θ|D) = p(D|θ)p(θ)

108

Bayesian learning paradigm

• Key idea is to marginalize over unknown 
parameters, rather than make point estimates
– avoids the over-fitting of ML and MAP
– allows direct model comparison

• Parameters are now latent variables
• Bayesian learning is an inference problem!

p(x|D) = ∫p(x|θ)p(θ|D)dθ
(x given model)(model given data)(over all models)

Predictive  distribution
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Bayesian Learning

Predictive distribution:  

p(x|D) =        ∫p(x|θ)p(D|θ)p(θ)dθ1
p(D)

Model evidence:  p(D) = ∫p(D|θ)p(θ)dθ

. . .

x1 x2 xN x

θ

p(D|θ) =     p(xi|θ )

p(D, θ, x) = p(D|θ)p(x|θ)p(θ)    

xi
N

x

θ

110

Summary

• Methods for learning model parameters
• Benefits of Bayesian learning
• Avoids over-fitting

111

Review of Bayes Nets

• Binding site prediction
• Data integration for gene function prediction
• Evaluation of firearm evidence
• Medical decisions
• Gene cluster analysis

112

Binding site prediction

• Naïve Bayes classifier is excellent predictor of 
binding site patches on protein surfaces.

Bradford, Needham, Bulpitt & Westhead. Insights into protein-protein 
interfaces using a bayesian network prediction method. JMB(submitted)

hydrophobicity
conservation

electrostatic
potential

shape

binding site Y/N

residue interface
propensityASA
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Data Integration

Troyanskaya et al. A Bayesian framework for combining heterogeneous 
data sources for gene function prediction (in Saccharomyces cerevisiae). 
PNAS, 100(14), 2003

expert derived structure
combining domain knowledge and data

Functional
Relationship

Data Noise 
LevelCoexpressionExpression 

Data Type

Genetic 
Association

Physical 
Association

Hierarchical 
Clustering

SOMsK-means
Clustering

TF 
binding

Colocal
-isation

Y2H

direct 
binding

114

Evaluation and combination of 
firearm evidence

Biedermann & Taroni. A probabilistic approach to the joint evaluation of firearm 
evidence and gunshot residues. Forensic Science International. 2005

xaxm

Y ym ya

D F

F: incriminated bullet 
was fired by suspect

D: distance

Y: Quantity of particles 
in a Gun Shot Residue y: incriminated bullet

x: suspect’s bullets

subscripts:
m: marks relating 

to manufacturer
a: acquired 

characteristics

115

Medical Decisions

• Radiologists have an overwhelming task of 
integrating over a breadth of relevant and 
diverse data

• Breast disease diagnosis factors:
– age, HRT, family history, calcifications (in a 

variety of patterns), mass attributes, asymetric
densities

Burnside. Bayesian Networks: Computer-assisted diagnosis 
Support in Radiology. Academic Radiology 12(4). 2005

116

Gene cluster analysis

Th
re

e 
ge

ne
s

Xg,a is the spot that 
measures expression 
of gene g in array a

Friedman, Inferring cellular networks using probabilistic 
graphical models. Science 303(6). 2004

Two arrays

AC1 AC2
GC1

x1,1 x1,2

x2,1 x2,2

x3,1 x3,2

GC2

GC3

gene cluster

spot
X

array cluster

array

gene
p(X|GC,AC)
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More advanced concepts

• Learning from incomplete data
• Markov chain Monte Carlo methods
• Structure learning
• Dynamic Bayesian Networks
• Hidden Markov Models
• Latent variables
• Causality

118

Learning from incomplete data

• Parameters can be learned even when 
some variables are unknown in some cases

• Commonly the Expectation-Maximisation 
algorithm is used.

EM estimates the missing values by computing 
the expected values and updating the parameters 
using these expected values as if they were 
observed values

119

The EM algorithm
• EM finds local maxima for MAP or ML 
• Starts with    a parameter configuration (random)
• Iteratively applies the expectation and 

maximisation steps until convergence
• E-step. The expected values of the missing data 

are inferred to form Dc – the most likely complete 
dataset given the current model parameters

• M-step. The configuration of     which maximises 
p(    |Dc) is found (for MAP)

θ,ˆ

θ̂
θ̂

120

Sampling methods
• Sampling methods have been used to estimate 

the full posterior distribution of the model 
parameters in the presense of incomplete data

• Monte Carlo methods such as Gibbs sampling 
are extremely accurate (but require lots of 
computation, take a long time to converge and 
become intractable as the sample size grows)

• Gaussian approximation is based on the fact 
that p(θ|D)      p(D|θ)p(θ) can be approximated 
as Gaussian distribution. With more training data 
the Gaussian peak becomes sharper → θMAP
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Structure learning

• We’ve seen that we can combine knowledge 
about the domain with data
– i.e. get an expert to design a network structure 

based on known relationships/ independencies 
between the variables

• We can also learn the structure of the model!
– search for good structures which capture the 

interactions between the variables, whilst 
maintaining a compact model

122

Structure Learning

• Greedy search 
– Iteratively: add, reverse or delete an edge
– Score the structure Sh

• Score functions
– Full Bayesian posterior
– BIC score function

ln p(D|Sh) ≈ ln p(D|θs,Sh) – ½ d ln NML

123

Review article: Friedman, Inferring cellular networks using 
probabilistic graphical models. Science 303(6). 2004

Learning Cellular Networks

G1

G3

G1

T1 T1G2

G3

T2
G2

G4

124

Inferring genetic networks
• Constructing a genetic network from microarray gene 

expression data by using a Bayesian network.
– a gene corresponds to a node (random variable)
– gene regulations are shown by directed edges
– gene interactions are modelled by the conditional distribution of 

each gene
• Incorporate prior knowledge from protein-protein 

interactions, protein-DNA interactions, gene networks 
and literature

• Analysis of Saccharomyces cerevisiae gene expression 
data newly obtained by disrupting 100 genes, mainly 
transcription factors.

Imoto et al. Combining microarrays and biological knowledge 
for estimating gene networks via Bayesian networks. CSB 2003.
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Dynamic Bayesian networks (DBNs)

• Expression levels
of genes A, B, C A

C

B

A

C

B

t            t+Δt

A

C

B

promotes

inhibits

promotes

Static model – not a BN Dynamic Bayesian network
Murphy & Mian. Modelling Gene Expression Data using 
Dynamic Bayesian Networks. Tech Report. 1999. 126

Hidden Markov Models (HMMs)

Y1

X3

Y2

X1

Y3

X2

X3X1 X2 – xt depends only on xt-1

Modelling the state of variable X, as a Markov process, with a DBN:

HMMs can be represented as 
Dynamic Bayesian networks, 
with hidden variables.

t doesn’t have to be time
HMMs are often used for 
sequence alignment, where 
hidden state is INSERT, 
DELETE, or MATCH, and t is the 
next position in the sequence.White nodes unobserved. Shaded nodes observed.
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Latent (hidden) variables
• Latent variables can be added to models 

to capture additional information or reduce 
model size through expert knowledge
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SNP prediction from Amino Acids
p(dieased|residue,mutant)

A C D E F G H I K L M N P Q R S T V W Y

A
C
D
E
F
G
H
I

K
L
M
N
P
Q
R
S
T
V
W
Y

residue AA

effect

mutant AA

A latent variable model

residue
  class

mutant
 class

residue AA effect mutant AA

p(neutral|residue class, mutant class)

mc1 mc2

rc1

rc2

p(disease|residue class, mutant class)

mc1 mc2

rc1

rc2

p(residue class)

rc1

rc2

p(mutant class)

 

mc1

mc2

p(residue|residue class)

A C D E F G H I K L M N P Q R S T V W Y

rc1

rc2

p(mutant|mutant class)

A C D E F G H I K L M N P Q R S T V W Y

mc1

mc2
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Causality

• The learning of causal relations is 
somewhat trickier

• We’d like to determine what effects what, 
rather than just what’s related

• To do this requires the combination of 
expert knowledge, and interventions
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X

Y

X

Y

X

X → Y

X

X – Y

No inhibition
X inhibited
Y inhibited
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Causal protein-signalling networks

Sachs et al. Causal protein signalling networks derived from 
multi-parameter single-cell data. Science 308(5721) 2005

Perturbations
different conditions

Multi-parameter
Flow Cytometry*

Correlated phospho-
measures per cell

Bayesian network
analysis

Influence diagram of
measured variables

Datasets of cells
for each condition

* measures 11 phosphoproteins and phospholipids in individual cells in each perturbation
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Summary

• Handling incomplete data
• Structure learning
• Learning causal relationships
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Examples section

• The simple cell signalling example from 
earlier, example in Matlab

• An application of Bayesian networks to 
learning parameters and structures from 
data for predicting functional 
consequences of missense mutations

134
Bayesian network of the cell signalling pathway 

with example conditional probability tables

Needham, Bradford, Bulpitt & Westhead.
Inference in Bayesian networks
Nature Biotechnology 24(1):51-53. Jan 2006.
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Cell signalling pathway 
example in Matlab

N = 6;
discrete_nodes = 1:N;

ST = 1; SI = 2; IN = 3; RE = 4; GP = 5; CR = 6;

dag = zeros(N,N);
dag(ST,SI) = 1;
dag(SI,[IN,RE]) = 1;
dag(IN,RE) = 1;
dag(RE,GP) = 1;
dag(GP,CR) = 1;
dag

We have 6 discrete nodes

We will name them for ease of use

And construct a DAG

We must first setup the Bayes Net Toolbox (BNT)

dag =     0     1     0     0     0     0  
0     0     1     1     0     0
0     0     0     1     0     0
0     0     0     0     1     0
0     0     0     0     0     1
0     0     0     0     0     0
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node_sizes = [2 3 3 2 2 2];

bnet = mk_bnet(dag, node_sizes, 'discrete', discrete_nodes,
'names', {'Stimulant','Signal','Inhibitor','Receptor','G protein','Cell Res'});

bnet.CPD{ST} = tabular_CPD(bnet, ST, [0.4 0.6]);
bnet.CPD{SI} = tabular_CPD(bnet, SI, [0.6 0.1 0.3 0.2 0.1 0.7]);
bnet.CPD{IN} = tabular_CPD(bnet, IN, [0.6 0.2 0.1 0.3 0.2 0.1 0.1 0.6 0.8]);
bnet.CPD{RE} = tabular_CPD(bnet, RE, [0.5 0.3 0.2 0.8 0.5 0.3 0.9 0.8 0.5 

0.5 0.7 0.8 0.2 0.5 0.7 0.1 0.2 0.5]);
bnet.CPD{GP} = tabular_CPD(bnet, GP, [0.9 0.1 0.1 0.9]);
bnet.CPD{CR} = tabular_CPD(bnet, CR, [0.8 0.1 0.2 0.9]);

engine = jtree_inf_engine(bnet);

Define the nodes sizes (SI and IN each take 3 values: high, med, low)

Initialise the Bayesian Network

Define the Conditional Probability Tables

We choose the Junction Tree algorithm for Inference
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The CPT for p(stimulant)

The CPT for p(inhibitor|signal)

The CPT for p(receptor|inhibitor,signal)

The CPT for p(signal|stimulant)

The CPT for p(G protein|receptor) The CPT for p(cell res|G protein)

ans = 0.4000
0.6000

ans = 0.6000    0.3000    0.1000
0.1000    0.2000    0.7000

ans = 0.6000    0.3000    0.1000
0.2000    0.2000    0.6000
0.1000    0.1000    0.8000

ans = 0.8000    0.2000
0.1000    0.9000

ans = 0.9000    0.1000
0.1000    0.9000

ans(:,:,1) =   0.5000    0.8000    0.9000
0.3000    0.5000    0.8000
0.2000    0.3000    0.5000

ans(:,:,2) =   0.5000    0.2000    0.1000
0.7000    0.5000    0.2000
0.8000    0.7000    0.5000

the first table above shows the 
conditional probabilities when the 
receptor binds, and the second when 
the receptor does not bind
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We pass this evidence to the inference engine

evidence = cell(1,N);

evidence{ST} = 1;

[engine, loglik] = enter_evidence(engine, evidence);

marg = marginal_nodes(engine, GP);
marg.T

We set the evidence to nothing (a blank cell array)

We add to evidence that ST was present (1)

Now we can make inferences! 
e.g. What is p(G protein|Stimulant=present) ?

We get the marginal probabilities for GP for the given evidence

ans = 0.5920    
0.4080

p(GP = active       | ST = present) = 0.5920
p(GP = not active | ST = present) = 0.4080
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We pass this evidence to the inference engine

evidence = cell(1,N);

evidence{ST} = 2;

[engine, loglik] = enter_evidence(engine, evidence);

marg = marginal_nodes(engine, GP);
marg.T

We set the evidence to nothing (a blank cell array)

We add to evidence that ST was not present (2)

Similarly, what is the probability that the 
G Protein is active if the Stimulant not present?
i.e. p(G protein|Stimulant=not present)

We get the marginal probabilities for GP for the given evidence

ans = 0.5048    
0.4952

p(GP = active       | ST = not present) = 0.5048
p(GP = not active | ST = not present) = 0.4952
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BNT functionality

• The Bayes Net Toolbox for Matlab
supports many conditional probability 
distributions, inference engines, methods 
for parameter learning, and some structure 
learning.

• It is free open source code and is available 
from http://bnt.sourceforge.net/
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Missense mutations
• A single nucleotide polymorphism (SNP) is a 

mutation (insertion, deletion or substitution) 
observed in the genomic DNA of individuals of 
the same species. 

• When the SNP results in an amino acid 
substitution in the protein product of the gene, it 
is called a missense mutation. 

• A missense mutation can have various 
phenotypic effects. Here, we aim to predict 
whether a missense mutation has an effect or 
no effect on protein function.
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Attributes
effect Effect of mutation on functionality  
ac Solvent accessible area of native AA
rac Accessibility relative to maximum accessibility in training set
bf Normalised B-factor of native AA
nbf Normalised B-factor of structural neighbourhood of native AA
bur Mutant AA is charged AA at buried site
trn Mutant AA occurs at glycine or proline in a turn
hlx Mutant AA occurs in helical region and involves glycine or 

proline
ifc Native AA is near subunit interface
nrent Phylogenetic entropy of structural neighbourhood of native AA
rent Normalised phylogenetic entropy of native AA
cnsd Native AA is at conserved position in phylogenetic profile
ncnsd Native AA is near conserved position in phylogenetic profile
uslaa Mutant AA is not in phylogenetic profile
uslby Mutant AA is not in the smallest AA class that includes the 

phylogenetic profile

S
tr

uc
tu

ra
l

E
vo

lu
tio

na
ry

BOTH
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…

Naïve Bayes classifier

• Overall error rates 20%
• Area under ROC = 0.80

…

•performs well when evolutionary information is hidden,
•but poorly when structural information hidden

144

Learned network structure S
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effect ac rac bf nbf bur trn hlx ifc nrent rent cnsd ncnsd uslaa uslby

effect

ac

rac

bf

nbf

bur

trn

hlx

ifc

nrent

rent

cnsd

ncnsd

uslaa

uslby

Posterior distribution of edges in learned structures
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A simplified Bayesian network

• Three structural descriptors:
– solvent accessible area of the native amino acid
– whether the amino acid is charged at the buried site
– the flexibility of its structural neighbourhood

• No evolutionary information!
• Same performance!

nbf

effect

bur ac
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Learning from incomplete data
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Conclusions/Recap

This application has shown that Bayesian networks
– Generalise well to new data
– Parameters can be learned from incomplete datasets
– Predictions can be made with missing data 

(through marginalising over the unknown variables)
– Structure learning can produce good compact models 

(compared to big fully connected graphs)
– A naïve Bayes’ classifier is excellent at integrating 

information
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Discussion

Bayesian networks
for bioinformatics

An introduction to inference and learning

Many thanks must also go to 
Dr Andrew Bulpitt & Prof David Westhead

for their contributions to this tutorial




