Python programming for Life Science

researchers

An Introduction to Biopython

Sebastian Bassi

Universidad Nacional de Quilmes, Argentina

Outline

Why is this tutorial important?

Python is a popular computer language that is gaining momentum between scientific
users. Python is used in a wide range of applications, from P2P (like Bittorrent) to
dynamic generated webpages (like Google uses). Scripting languages like Perl,
Python and Ruby are used extensively for data manipulation, a task frequently used
in scientific work. BioPython will be used as example of the power and simplicity of
Python, since you can for example do a BLAST search using a one line of code and
process it with very few lines. Another advantage worth pointing is that Python
programs runs on virtually every platform, from PDA to supercomputers. After

tutorial completion, students should be able to make their own programs.

What will it cover?

Concepts

Python concepts. What is different from other languages.

Interactive use. Python as a calculator.

Data structures. Variables, Lists, strings, dictionaries

Program control flow. For, if-else, while

Modularize. Functions. Modules.

File management. Reading and writing text files. Data manipulation

XML. Overview and processing.

Useful modules. Cgi, htmlgen, BioPython. Build a melting point calculator with a web

interface that generates HTML and use BioPython functions.

CONTENTS

INTRODUCTION . ..ottt e e e e e e e e e et e e e e et e e ene 5
THE INTERACTIVE INTERPRETER... ..o e e e 6
PYTHON AS A CALCULATOR. ..ot e e e e e e e 6
DA T A TY PES . . 6
STRING DATATY PE ... e e 6
L ST DA T AT Y PE .. o e e e e e 8
LIST NOTATION . .. e e e e e et e e 8
LIST OPERATIONS ... it e e e et e e e et e 8
TUP L S . o e e e e e 9
DICTIONARIES . ..o e e e e en e 10
PROGRAM FLOW . ..ottt e e e e e e et e e e e e 11
FUN CTION S ... e e e e e e e e e e e e e e e e 12
MODULESt e e e e e e e e e e e e 13
READING TEXT FILES ... oo e e e e e e e e e e e 13
WRITE TEXT FILES ... oot e e e e e e e e e e 14
DATA MANIPULATION . .. ettt et e et e e et e e e e e e e e 14
XML: BASIC OVERVIEW ... e e e e 16
XML: SOME REAL WORLD SAMPLES ... e e 17

XML: ANOTHER SAMPLE, BLAST ... i e e 17

XML: ANOTHER SAMPLE, SVG ... oot e e e e 17
XML: PARSER WITH ELEMENTTREE.......cooi i e e 17
WHAT IS BIOPYTHON. ...ttt e e e e e e e et e e 18
BIOPYTHON SAMPLE.t e e e e e e 19
MELTING POINT CALCULATOR. ..ottt e e e e 23
GENERATE TM IN HTML FROM MULTIPLE SEQUENCES USING PYTHON.....25

Introduction

Why Python?

Let me introduce Python first. Python is a modern programming language developed
in the early 1990s by Guido Van Rossum. There are many characteristics of this

language that is worth point out:

Easy to read: A program written in Python is easy to read, for another programmer
or even for the same programmer some time after the code was written. The same
can't be said for all languages out there. Sometimes is so easy to read that the code

resemble the pseudocode used in many books.

Easy/Fast to write: Python handles most low level function, so you don't have to
worry about pointers and memory allocation. This will allow you to focus just in your
work. This also result in faster times for coding. With current computer speeds, most
of the time is more important the coding time than program running time (this of

course depends on the task).

Batteries included: Python has many functions built-in. Other languages depends of
several external libraries to accomplish the same task that can be done with a

standard Python installation.

Multiplatform: There are version of Python for all popular computing platform (like
Windows, Linux, Mac, Solaris and even some phones and PDASs). This make your

programs portable between these platforms.

Dynamically typed: It doesn't use explicit datatype declarations. When you use a

variable for first time, is automatically declared.

Strongly typed: Once a variable is defined, it remains on it type unless explicit

declared. If you have an integer, you can't use it as a string withoul converting it.

Friendly community: This is not a feature built into the language, but it makes a good

point you should watch for before deciding to “adopt” a language.

The interactive interpreter

Python has two modes of use: Interactive and batch mode. In the interactive mode
you write any command and then you get a reply from the interpreter after you press
enter. Is the ideal way to test and try how Python works. This screen shows Python
version and platform where the interpreter is installed. Version number is important
since there are many improvements on each version.

Most of the time you will use the batch mode, but even then you could use

interactive mode for debugging porpoises.

Python as a calculator

In the interactive mode you can write expressions and get answers in real time. On
this slide you could see that integer values are integer unless you declare then as
float. More about data type will be introduced in the next slide. The underscore () is

the last output of the interpreter.

Data Types:

There are different data types, in this slide there are most types used for numbers:
Integer: Integer number up to 2.10"31.

Long: Integer larger than 2.107"31. The upper limit depends on hardware
architecture.

Float: Floating point numbers.

Type command return the data type.

String datatype:

String are limited by quotes, double quotes or even triple quotes. Single and Double
quote can be used in alternate way, as long as you start and end with the same type

of quotes. Triple quote are used to preserve multiple line format.

You ca use “slice notation” to refer to a substring. Slice notation will be explained in
list data type. With plus (+) you concatenate two or more strings, but you can't
concatenate strings with numbers. With str() you can convert any other data type to
string.

Special characters: You can escape non-printable characters using “\”. Here is a list

of supported escape sequences:

\ Single-quote

\’ Double-quote
\\ backslash

\a bell

\b backspace

\f formfeed

\n newline

\r carriage return
\t tab

\v vertical tab

Join multiple strings with string.join:
string.join([“This is a”,"test"])

This is a test

You can join using other characters than spaces, like “;":

string.join([“This is a”,"test™]),”;”)

This;is;a;test

Split function is very useful for file parsing:
string.split(“Another test”,” “)
[*“Another”,"test”]

Converting string to numbers:
string.atof(“444.76")

444.76

List datatype:

A list is a set of data under the same variable name. Are like C vectors or VB and
Perl arrays. A list can contain different types of elements, like int, string and another
list (nested list). The first element of a list is the element O, the second is the number
1 and so on. These numbers are called list index. To access inside a element inside
a list, you need to use another index. This slide shows how to access a element in a

string element inside a list.

List notation:

For operations involving only one element, you can think the index as a particular
element of the list. When you want to access to a group of elements, you should
think of list indices as positions between elements. On the slide there are some
usage sample. When you leave one index as blank a 0 value is assumed. To count

from the last element, negative indices are used.

List operations:

There are three ways to add data into a list.
Append: Add elements into the last position
Insert: Add elements in any arbitrary position

Extend: Add a list to the last position.

List: Delete elements

There are two ways to remove elements:

pop(n) will retrieve the nth element of the list. The value can be stored in a variable

(or printed, or handled in any way).

remove(n) will remove the nth element of the list, but without retrieving the value.
There are more useful methods in the lists:

List membership: in and not in can be used to verify if a specific element is inside
the list.

6 in [34,5,6,7]

1

9notin[1,2,6,9]

0

List initialization with *:
f=[4]*4

f

[4,4,4,4]

List minimun and maximun:
max(f)

4

min([3,4,7,5])

3

Count elements in a list:
0=[3,4,5,6,7,8,7,6,5,7]
g.count(7)

3

g.count(9)

0

Search inside a list: Index
g.index(3)

1

An error will be raised if the value is not in the list. Is recommended to execute a in

operator before an index.

Tuples:

This a data structure very similar to lists, but can't be modified. They are inmutable.

The advantage is that are faster to operate than list. They are “write protected” list.

9

Tuples can be used to make several assignments at the same time:

varl, anothervar, var3 = 56,34,89

This line replaces 3 lines:

varl = 56
anothervar = 34
var3 = 89

Converting between tuples and lists:

List function produce a new list with the same elements as the input. Tuple function

does the opposite.

list((3,4,6,8))
[3,4,6,8]
tuple([5,8,8,7])
(5,8,8,7).

Dictionaries:

This is a kind of “associative arrays”. That is, it stores one to one relationship

between keys and values.

A dictionary can be created empty:

k={}

Or with data:
k[“X"]=242.6
k[“T"=178.3

Elements in a dictionary has no implicit order (that is different from lists).

Some methods of Dictionaries:

10

Len returns the number of elements in the dictionary:

len(k)
2

keys will return a list of all keys in a dictionary:

k.keys()
(X" T]

Values will return a list with the values stored in a dictionary:
k.values()
[242.6,178,3]

Has_key will test if there a specific key:

k.has_key(“X")
1
k.has_key(“K")
0

Del will remove an entry from the dictionary:

del k[“X"]

k.items()
[(“T",178.3)]

Program flow:

The first control structure we will see is “If else”. If will test for a condition, if is true,
the program will execute the code that is under the if. If the condition is not true, the
else part will be executed. In this slide we also introduce the indentation. That is, the
space you leave to indicate a block of code. In this case, this code is checking for

the size of the variable length is greater than 20. In this case, it will display a

11

sequence with the “...” string in the middle. Otherwise (else), it will just display the
whole seq variable (since it is smaller than 20 chars, we are sure that it will fit in the
output space).

In order to evaluate multiple conditions, there is the elif clause. It works as shown in
the slide (like case in C).

for: To iterate inside a list. In the slide there is a list called output_parts with three
small strings. In this case, opart will take the value of each element in the list.
If you want to iterate in a list of numbers (“a la Basic”), just create a list of number

with range function.

range(5)
[0,1,2,3,4]

while: To execute a code as long as a condition is true.

Functions:

A standard way to modularize your code is to create functions. A function is a
portion of code that can be accessed from any other part of the program. In Python,
you use “def” to define a function, a name, and enclose between parenthesis all the
variables that the function needs. To assign a default value, just use “=" in the
definition. Like this:

def a_new_function(var=value)
To return a value to the program, use “return”. If the function doesn't return anything,
you can write it as return None.

Only one value can be returned from a function. To return more than value, you can

return a list containing multiple values.

12

Modules:

In Python you can store functions, constants and dictionaries in a file called module.
You can invoke modules from a program or from interactive mode. Python provides
several modules and there are many more that can be downloaded from the
Internet. In the slide there is a sample usage of the modules.

To bring a function from a module you have to import it first. To import the math
module, just do: import math

We will import several modules during this tutorial.

Reading text files:

Reading a text file in python is a three step process.

1: Open the file and assign it a handle.

HandleName=open(*“PATHNAME”","r")

On the open function the first term is the filename, with path (if no path is specified,
current working directory is assumed). the second term is the first letter of the open
mode, that is read, write and append.

the handlename is used from this point on, every time you refer to the file, instead of
using the filename, just use the handle.

If you print that handle, you will see only an hexadecimal code corresponding to the

handle. To see the actual contents of the file, you need the step two:

2: Read the file. There are several functions to read the contents of a file:

read(n)= Will read the first n characters of a file. Without arguments, will read the
whole file.

readline(n)=Will read the line number n. If you invoke this function without argument,
it will read the first line the first time you call it. Next time will read the second. When
there is nothing more to read from a file, it will return an empty string

readlines()= Will return a list of string with all lines in the file.

End of line (EOL) code is determined based on host operating system.

13

3: Close the file:

HandleName.close()

Python can close the file automatically when the program ends.

Write text files:

Writing a file is very similar to reading a file. Step one and three are the same. The
main difference is in step two. Instead of reading a file, you have to write into the

handlename, like this:

HandleName.write(“This will go into a text file”)

Data manipulation:

The problem: A text file with data on it should be parsed, that is, read and

interpreted by the program, and then display or store only selected information.

Python tools:

¢ Build-in open file function.
e Control flow structures.

e String manipulation methods.

The slide 22 will introduce a typical data manipulation problem. Here is the output of
a BLAST search (in hit table format). The aim is the get to Gene ID (GID) of the
genes with a BLAST match better than 45%. With the GID, make the URL to get the

sequences.

14

Line by line explanation of the source code (slide 23):

import string

To make available the string module (that will be use in line 6).

baseurl="http://...”
A string type variable that will be used at line 11. The backslash ('\') at the right

allows to split the line into multiple lines as if were a single line.

infile=open(‘allans.txt','r")
infile is the file handle (see slide 19 for more information on filehandles), this will
open the file allans.txt for reading. Allans.txt is the file where the BLAST output is

stored.

for line in infile:

This will read all lines in file with “infile” handle.

ids=string.split(line,"\t')[1]

String.split will separate the contents of line (that is, the line that is being reading)
and put all different content in a list. To retrieve only one element, it is indicated with
[1], this will store only the element 1 of the list (that is, the second element), into the
ids variable. The '\t', that represent the tab character, is the data field separator on
the hit table. The second element is the one that start with gi|26249933|ref].

p_ident=float(string.split(line,'\t")[2])
As line line before this one, this will retrieve one element (the 3. The float function

will convert this string into a float number.

if p_ident > 45:
Since | want to get the GID of the results with a match better than 45%, | have to

test for this condition.

#retrieve only gi from ids

This is a comment. This line will not be interpreted by Python.

15

gi=string.split(ids,'|)[1]

To get the GID, we extract it from ids variable (see explanation for line 6), This time
we split that variable using '|' as a separator. We retrieve only the second element
(the GID).

print baseurl+str(gi)
This line should be self-explanatory. We are printing the variable we created in line 2

plus the gi. This way we are printing what we are looking for.

else:
Is used to indicate the beginning of an alternative block, this will be executed only if

the “if test” fails, that is, when p_ident is 45 or less.
pass

Its like a dummy statement, without any effect on the code, we use it because a

statement is necessary after an else.

XML: Basic Overview

Language to describe data (with no information about data presentation).
Based on text format (binary XML is out of the scope of this tutorial).
XML are “human-legible” (kind of)

Easy to write programs to process XML documents

Header with parsing information:

<?xml version="1.0"?>

Body:

<tagname attribute_name="attribute_value” >a text</tagname>

<line type='demo'>A simple line</line>

Empty element:

16

XML: Some real world samples

This is the source of an RSS feed. RSS is XML formated.

XML: Another sample, BLAST

BLAST can output as XML if commanded to do so. The tags are very self-

explanatory.

XML: Another sample, SVG

SVG: Scalable Vector Graphics. SVG defines graphics in XML format. There are
SVG standalone viewers, SVG plugins for browsers, and Firefox display SVG files

since version 1.5.

XML : Parser with elementtree

There are several parser in Python. Default parser are SAX and DOM. To use both
of them you need to know object orienting programing, that is out of the scope of
this tutorial. That is why we are using “ElementTree”.

Line by line explanation of the source code:

from elementtree.ElementTree import ElementTree

On this line we retireve the desired function from the module.

myxml=open(“slashdot.xml”,”r")

myxml is the handle for the file we want to parse.

root=ElementTree(file=myxml)

17

On this line, the ElementTree function is in action. It only needs as argument the

filehandle of the xml file. The whole tree is stored in an object called root.
iter=root.getiterator()
To iterate over the file, we need the getiterator function. It returns all elements into

iter variable.

for ele in iter:

This line will star to cicle over all the elements in inter.

if ele.keys():

this will check for the presence of keys inside ele

print ele.items()[0][0]
The keys will be printed

else:

If there is no keys inside ele

print ele.tag

Print the tag of each element

print ele.text

Print the text of the associated tag

What is Biopython?

It is a distributed collaborative effort to develop Python libraries and applications

which address the needs of current and future work in bioinformatics.

It provides:

e Tools for working with sequences (aa and nt).

e Parsers of all popular bio file formats (fasta, gb, pdb, BLAST output).

18

e Data retrieve from biological databases.
e Wrapper to bio-programs (BLAST, ClustalW, EMBOSS, Primer3, and more).
e Biological functions like LCC, restriction enzymes cutting, and more.

e Tables and constants.

Biopython sample. BLAST output parsing for vector removing from

DNA seguences

This is a BLAST output of a search for a vector inside newly sequenced data.
Cloning vector (called pBlueSKP in the table) is found on each sequence. We have
to write a script to remove the cloning vector from all our sequences. These
sequences are stored in the same directory and the file name correspond with the
one on the BLAST output file.

The program will we introduced in two parts, a BLAST parser and a sequence writer

Blast parser:

On the firsr five lines the script import all necessary modules.

arin=open(“resultado2.txt”,”r”)

arin is the filehandle for the file were the BLAST output file.
segab1={}
seqabl is an empty dictionary. Will be used to store the name of the sequence (as

key) and a list with start and end position of the match with the vector (as value).

for line in arin:

To walk arin line by line.

if “.abl1” in line and “#” notin line:

19

This check for the filenames ended in “.abil” and not inside a comment line

nomtemp=line.split(“\t”)[1]

To store in nomtemp the filename, that is the second column on the input line

#print nomtemo

A comment line with no operational value. It can be safely deleted.

if nomtemp not in seagbl.keys()

Check whether the name is not in the dictionary (segabl)

segabl[nomtemp]=[int(line.split("\t")[8]),int(line.split("\t")[9])]
Since the name is not in the dictionary, this line will create the dictionary entry for

this file (homtemp as key). The value is the two element list indicated before.

else:

The next block is executed when the name is in the keys.

if seqabl[nomtemp]==[int(line.split("\t")[8]),int(line.split("\t")[9])]:

To check if this filename is associated with the same list

print "repetido: "+nomtemp

In this case, it print it to the screen just to tell me there is a repeated entry.

else:

The next block is executed when the filename is not associated with this list.

if int(line.split("\t")[9])>int(line.split("\t")[8]):
Check if the end position is greater than the start position. In this case we should

also add this list.

listemp=seqgabl[nomtemp]
listemp.extend([int(line.split("\t")[8]),int(line.split("\t")[9])])
seqabl[nomtemp]=listemp

This will expand the list inside the dictionay.

else:

20

The next block is executed when the start position is greater than the end position.

listemp=seqgabl[nomtemp]
listemp.extend([int(line.split("\t")[9]),int(line.split("\t")[8])])
segabl[nomtemp]=listemp

This will expand the list inside the dictionay, with the position inverted.

else:
The next block (a pass statement) will be executed when there is no abl file, to do

nothing.

arin.close()

After parsing all the text file, we close it since this filehandle won't be used again.

for x in seqab1.:

To cycle inside all elements in segabl dictionay.

arin=open("renames/"+x[:-3]+"txt","r")
arin filehandle is open with files called like the keys in the dictionary. These are the

original sequence files (with vector pollution).

parser = Fasta.RecordParser()

A parser is defined, this is a special parser provided by Biopython to read fasta files.

iterator=Fasta.lterator(arin,parser)

A iterator is used to read fasta records inside a file.

currecord=iterator.next()
The iterator working. The product of this instance is stored in currecord
secuencia=currecord.sequence

Sequence is a property of currecord, and we store it in the variable “secuencia”.

arin.close()

Since the file is not longer needed, the filehandle is closed

a=seqab1[x][0O]
b=seqab1[x][1]

21

To retrieve the first (and second) element in the list inside the dictionary. a and b are

the start and end position of the vector in the sequence.

if len(seqabl[x])==2:
to check if the list in the dictionary has 2 elements, since there a list with 2 and 4

elements.

newseqg=secuencia[:a]+secuencia[b:]
Here is the new sequence (with newseq variable name). It is composed from the
original sequence, until the start of the vector, plus the end of the vector until the

end of original sequence.

elif len(segabl[x])==4:

To check if the list in the dictionary has 4 elements

c=segabl[x][2]
d=segab1[x][3]
newseq=secuencia[:a]+secuencia[b:c]+secuencia[d:]

As before, we build the new sequence, but removing the vector from both sides.

else:
pass
If there is a different number of start-end pairs, the program will do nothing. Since

there is no biological meaning in such event.

arout=open(‘wovects/'+x[:-3]+'txt','w")
Next step is to write the new sequence, in fasta format, so this line opens a file for

writing (in another directory). Nothing is writing up to this moment.

dna=Seq(newseq)

We define newswq as a sequence objet, with the name dna.

seq=SegRecord(dna,id=currecord.title,description="")
SegRecord will create a SeqRecord objet based on the seq object. SeqRecord
allows to include more associated data, like ID, name, description, annotation and

features.

22

sali=FASTA.FastaWriter(arout)
This will init the FASTA writer.

sali.write(seq)
This statement actually writes the sequence in FASTA format.

arout.close()

arin.close()

Closes all open files.

Melting Point Calculator

The Melting Point function will calculate the melting point of a DNA or RNA duplex,
given the sequence and other mix parameters. It is part of Biopython. The main
drawback is that you need to know biopython to use it. There are many ways to
wrap up all the complexity of biopython functions for the end user. We will use and
web aproach since is easy to setup and all users know how to use a web form.
Just use any HTML or text editor to make the GUI. This form asks for the same
parameters that Tm function uses. The data the user enter, will go to the Biopython

program using CGI.

23

Form code:
In this slide we show the form portion of the HTML needed to input the data.

<form method="post" action="cgitm.cgi">

This is the form declaration, in the action field we have to refer to where the actual

python code resides.

Sequences: <textarea rows=10 cols=30 wrap=virtual name=seqs></textarea>
This text area is where we input the sequence(s). rows and cols defines the relative

size in the screen. The name variable is very important since will be used later.

Salt concentration: <input type="text" name="saltc" value="10"
size="3">[mM]

Nucleotide concentration: <input type="text" name="nucc" value="10"
size="3">[nM]

Two new variables: saltc and nucc. The input type is text, and not textarea since is

only a line of text.

Nucleotide type:

<select name="nucle">

<option value="0" selected="selected">DNA</option>

<option value="1">RNA</option>

</select>

This generate a dropdown box with two options (DNA and RNA) and asign a value
for each instance (0 for DNA and 1 for RNA).

<input type="submit" name="SubmitButton" value="Calculate tm"></form>

This code will generate the submit button.

This is all the coded need to make the interface for the end user. Most of it can be
done with any HTML editor (like Nvu).

24

Generate Tm in HTML from multiple sequences using Python

When the user click on the submit button, the following code is executed:

#!/usr/bin/python

This indicates where the python interpreter is located. This is not a standart
comment. The server needs it to know how to execute the python code. Remember
that CGI can execute any code (like BASH, Perl, C) so you need to explicity define
the path to the interpreter.

def Tm_staluc(s,dnac=50,saltc=50,rna=0):
This is the Tn function definition. Its displayed here to show the all the parameter it
needs. The rest of the internal work of the function is not relevent for this exercise.

Explanation of cgi program.

formu=cgi.FieldStorage()
FieldStoreage is a function (inside cgi module) that will store all the variables values
from the html form.

doc=SimpleDocument(title="Melting Temperature OUTPUT, \

Bgcolor=WHITE, cgi=1)

SimpleDocument is a function from the module Htmlgen, it defines an html page.
The first parameter is the HTML title, the second is the background color and the
last parameter, cqi, is useful if your page is for cgi use.

try:
The block under try is executed, but if any exeption is raised, the except code is
executed instead.

dseqgs=formu[“seqgs”].value

This will retrieve the value of the variable segs from the form.
fsaltc=float(formu[“saltc”].value)
fnucc=float(formu[“nucc”].value)
fdna=int(formu[“nucle”].value)

As before, we are retrieving all the remaining values from the form.

except:
The following block of code will be executed only if there is any error during the
execution of the “try” block.

25

dseqs="gtcttctgatctacatctgcgctatgc”

fsaltc=50

fnucc=50

fdna=0

Some default values, if the try block fails, all the variables will have a value.

doc.append(‘<pre>’)
On this sentence we are appending an HTML element inside the webpage.

unvar=string.split(dseqs,”\n”)
unvar is now a list of input sequences. The ‘\n’ is the enter that separates each
sequence.

for x in unvar:
To cicle inside all sequences

If len(x)>10:
Do this block only if the sequence is larger than 10.

theTM=Tm_staluc(x,fnucc,fsaltc,fdna)
This is when the Tm function is called, using the parameters entered using the form.

doc.append(str(theTM))
On the document, the Tm value (converted to string) is added.

else:
The following block (one line) is executed when the sequence (in x) is less than 10
nucletides long.

doc.append(* Sequence not long enough”)
To add this warning when the sequence is small.

doc.append(‘</pre>’)
After the list has been processed, the pre tag is closed.

print doc
This will print all the generated HTML code.

This is a screen capture of running the program from the command line. Since there
is no form to retrieve the data from, the default values are being used. The first two
lines that are printed, at first sight seems that there are not generated by our
program. But they are pre-appended to the HTML output by the cgi=1 statement in
SimpleDocument function.

Result of the CGI code output after pressing submit button is pressed in HTML.:

<IDOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2//[EN">
<HTML>

26

<!-- This file generated using Python HTMLgen module. -->
<HEAD>
<META NAME="GENERATOR" CONTENT="HTMLgen 2.2.2">
<TITLE>Melting Temperature OUTPUT</TITLE>
</HEAD>
<BODY BGCOLOR="#FFFFFF">
<pre>
47.0052165167
48.8539424877
60.8652584543
56.6515506015
59.2044067674

</pre>

</BODY> </HTML>

27

14th Annual International Conference On Intelligent Systems For Molecular Biology

‘fME) 2000 s

I_ Cl’*l‘E‘\ ence:

Python programming for Life
Science researchers

Sebastian Bassi,
UNQ, Argentina
sbassi@gmail.com

Python interactive interpreter

- Python shell H=f
Do Eit fhell Debug Optons indows Hulp
Eytk 2, Bep 30 2005, 21:19:01)
[GCC prerele n-r—] (Ubuntu 4.0.1 fll\ untud)] on l nuxa
Typ d st "license ()" for mare informatic
RAARRAR R NS
mpLte: 1 phack
'||h'lr- on_any nal
interface and no data is sent t: or recelved fr J'n tl'e Intecnet.
BRARRRRRARRRARRARRRSAAARRARRARRRRRAS T hERRRRAAE
I0LE 1.1.2
>3 |
i 19 Cok: 4

Python interactive interpreter screenshot

115

Why Python?

» Some python characteristics:
— Easy to read (pseudocode that works)
— Easy/Fast to write
— Batteries included
— Multiplatform
— Dynamically typed
— Strongly typed
— Friendly community

Python Overview: What is different from other languages

114

Python as calculator

Python Shell = X!

Pin [dit Shel Debug Oplions Holp
, Sep 30 2005, 21:19:01)
0808 (prerelease) (U u 0.1=-dubuntud)] on linux2
"credits" or "1i " for more information.
AAARARA R AR A A AR AR A AR R A AAR AR A AR R AR AR AR A AR AR AR R R A AR AR Ak kR A Ak kR
Personal firewall software may warn about the connection IDLE
makes to its subproc using rhlq co r‘s inte loopback
interface. This connection is not wvi on any ernal
interface and no data is sent to or re 2d from Internet.
sk ok ke ke ke ek ke x:*kt-:*kz-:\A*x aA*xK:l**nKxaﬁzktxn*kt-nAkx-aA*xua
Lnz 23 Cok: 4|
Python can be used as a calculator
116

29

Data types: Int, Long, Float

* Int: From -2.10%-1 to 2.10%1-1
« Long: Integer > than 2.103*
» Float: Floating point numbers.

e ML Shell Debug Options Wndows teip
>>» MyVariable=2147483647 EY

> MyVariable

17483647

»>> type (MyVariable)

‘type 'int'>

»>> MyOtherVariable=2147483648
>>> type (MyOtherVariable)

<type 'long'>

»»> type(l.0)

<type *"float'>

==n |

Ln: 335 Coki 4

Int, Long and Float numbers

Data Types: String

[l Edit Shell Debugy Options Yindows

»>> FirstString="Hellc
= t Firststring

Hello World!
B t Firststring + "
Hello World! In Python
R t Firststring[0:5)
Hello
B FirstStringl[:5]
Hello
=] "+ 2006
306 call last):
Fil ine 1, in -toplevel-

(2006)

e

nate 'str' and 'int' objects

n; 307 Col; 3

-

Strings can be concatenated like this:

117
« An array of data. Like C vectors, VB and Perl arrays.
- Pythion Shell =] 3|
fle [ot Shell Dabug Options indows Lieip
;;; MyFirs [1,2,8,"ten”,Firststring] i
23> MyFirs a]
1
>33 MyFirstList|[1l
33> MyFirstList([2]
55 MyFirstList[3]
‘ten’
»»> MyFirstList[4
'Hello world!'!
>>> MyFirstList([3] (0]
e
E | J
!
Lin; @1 Col: 4|
List, definition, creating and invoking
119

'%s ... %s' % (‘tga’, 'atg’) 118
Python Shell
Slice Notation
MyFirstList=[1,2,8,"t ",FirstString]
| |
123 4 5
[e Lt Shell Debug Oplions Windows Help
>>> MyFirstList[:4] A
[1, 2, 8, 'ten']
>>> MyFirstList[-3:]
[8, 'ten', 'Hello World!']
S Ln:-l.!l'lﬂi:l;
Slice notation used for lists
120

30

List: Operations, insert data

[l Edil Shell Debug Options Windows Help

>>> MyFirstList =
[1., 2, &8, 'ten' 'Hello World!*]

=>> MyFirs StList. append (99)

> H;lx;bth;qt

[1, 2, &, 'ten', 'Hello World!', 99]

>>> MyTL stList.insert (2,40

>>> MyFirstList

2, 40, &, 'ten', 'Hello Wor;g!', 99

M,a"l";1|.:‘-.t cwl(rl(i[[‘a"" "
MyFJ_‘ stList
2, 40, 8, 'ten', 'Hello World!', 99,
;aot']
T T 4

*Append: Add elements to the last position.
eInsert: Add in any arbitrary position.
*Extend: Add a list to the last position

Append, Insert, Extend as way to insert data in a list
121

List: Delete elements

e Eit Shel Debig Options Wndows

=>> MyFirstList

(1, 2, 40, 8, 'ten', ‘'Hello World!', 99,

55, 'last']

»>> AInt=MyFirstList.pop(2)

e M,rlvs1|1at

[1, 2, &, 'ten’ 'Hello World!®*, 99, 55,

*last']

>>> AInt

40

>>»>> MyFirstList.remove("ten")

>>> MyFirstList

[1, 2, &, 'Helle World!', 99, 55, 'last']

22| v
o Aok 4

*LIST.pop(n) will retrieve the n element of LIST (default=last)
*LIST.remove(“N”) will remove the first “N” in LIST

Delete with pop and remove. Pop will return the value, and
pop() will do it with last element 122

Tuples

ATuple={("g ", "cttege™, "caatge™) P
»>=>> ATuple

{'gecactte', 'cttcge', 'caatge')
==> ATuple|0]

‘geactte!

»>> ATuple.pop()

(most recent

"<pyshell§258>", line 1, in -tople

*Defined like a list, with parentheses instead of square brackets.
sIndexes works as lists. Can use slicing.

*Tuples are immutable. Can't add or remove elements.

*Tuples are faster than list. Tuples are like “write-protected” list.

0‘ When you need to iterate over a list of constant values, use
a tuple instead of a list. 123

Dictionaries

» Datatype to store one-to-one relationships between keys and
values (like hash in Perl or the Scripting. Dictionary object in
Visual Basic).

- Python Shell =I0IX
fle B Shell Debug Options Windows Help
»»> threecode = ['A': , ‘B S ‘., 'D':i'Asp’, -
}
»>»> threecode["0"]
'Gln’
B tht'eecodp.keys [‘.l
[***, ‘B, -r-, B 'Y, 'DY, 'G', 'F', 'I', 'H', 'K', 'M', 'L
., .”. G, b .S., R, e, ..1..F v, e, el
- t’htC'F'f“OFJP ualups(,
['Ter', 'Ala', 'Cys', 'Asu', 'Glu', 'Asp', 'Gly', 'Phe', 'Ile',
'His', 'Lys', 'Met', 'Leu', 'Asn', 'Gln', 'Pro', 'Ser', 'Arg'
Sel*, 'Thr', 'Trp'., 'Val' '‘Tyr', 'Haa', 'Glx'] =
n; 564 Colz 175

threecode dictionary is part of Biopython. Elements in a
dictionary are unordered. 124

31

Dictionaries: Some methods

« If key is not found, Python rises an error:

>>> threecode["kkk"]

Traceback (most recent call last):

File "<pyshell#299>", line 1, in -toplevel-

threecode ["kkk"]

KeyError: 'kkk'

« Before looking for a value, check the key:

>>> threecode.has_key ("kkk")

False

threecode.clear() deletes all items.

del threecode[“A”] deletes that item from dictionary.

125

Program flow: For

- Python Shell I—Ialx]
File Edit Shell Debug Options Windows Help
»>> indent=4
»>>> pinfo="acTccc"+"\n"

»>»> output parts=["ACTTCG","GCTCTAC", "TTCGAC™]
»»> for opart in output parts:
oinfo += " " * indent +opart + "\n"
»>> ginfo
'"ACTGGCYN ACTTCGAN GCTCTAG\N TTCGACA\N' J
>>> | .
Ln: 62[Col: 4

for x in range(5) works as BASIC for x=0to 4

range function. See indentation.

To cicle inside numbers, create a list with numbers with

127

Program flow: If, elif, else

Code from Biopython
length = len(seq)
if length > 20:

short = '%s ... %s
else:

short = seq

1 Q

% (seql:10], seq[-10:1)

if database in ['nucleotide']:
format = 'gb’
elif database in ['protein']:
format = 'gp'
else:
raise ValueError("Unexpected database: %s" % database)

WA/ MP 2006}

See footnote on slide 6 for string concatenation and slide 8
for list slicing. Elif works as C switch 126

" Fortaleza, Braz
August §:10,

While: Do while is true

while '' in new tax list:
new_tax list.remove('")

while True: will generate an infinite loop. Can be
escaped with break.

o) 61 We will use “while True:” and break on BLAST parsers
128

32

Modularize your code: Functions

A chunk of code that can be used from a
program or in interactive mode. o _
def get_interpro_entry(id): Functions, classes, constants and dictionaries
"""get specified interpro entry"""
handle = urllib.urlopen("http://www.ebi.ac.uk/interpro/IEntry?ac=" + id)

can be called and used from a program.
XXX need to check to see if the entry exists!

- Python Shell
return handle

[We Edit Shell Debog Options Windows

»>»> string.find("H:
*Variables declared inside a function, lives only inside the
function. Only argument in “return” is returned to the program.
«If the function just do something instead of returning a value
use: return None (this is not mandatory, but improves legibility
of the code)

eUsage: MylinterproHandle = get_interpro_entry(“IPR004560")

string
string. find("

To return more than one value, return a list with all the
variables you need.

Modules are searched in several path, like your home

129 directory. See them all with sys.path. 130
Pytlion Shell
Mo Et Shel Debug Options Windows Lelp Mhe Lt Shel Debog Options Windows lelp
»>> MyHandle=open(” shas wifi.log","r") o
> MyHandle - _ > ANiceFile=open ("my L Mut)
<open file '/home/sbassi/wifi.log', mode 'r' at ANiceFile.write ("] .k ; ; ; "y
Oxb6egdldo> BNiceFile.close()
»>»> line=MyHandle.readline()
»>> line =
'Mon Qet 24 22:49:24 2005 Entering network: cas TR
azssn'
>>> MyHandle.close() !
e There are two modes for writing files:
fileobject=open(filename,”r") readlines() return a list W Write with overwrite if a file exists
for line in fileobject: of string from all the file «a: Write at the end of the file (append). Useful for
print line logs.
Files can't be edited while opened, until closed. 61 Open can take a third agument, which defines how file is
131 i buffered before writting. 132

Data Manipulation

» The problem: A text file with data on it should be
parsed, that is, read and interpreted by the
program, and then display or store only selected
information.

» Python tools:
— Build-in open file function.
— Control flow structures.
— String manipulation methods.

This is a generic overview of the problem and tools.
133

Sample file: BLAST Hit table

inseq2 gi|26249933[ref[NP_755973.1] 100.00 29
inseq2 gil1789736|gbJAACT6363.1] 100.00 29 0
inseq2 gi|3483131|gbJAAC33265.1] 100.00 29 O
inseq2 gi|29542596|gbjAAC91530.1] 46.4328 15
inseq2 gi|67762813ref(ZP_00501511.1] 48.2829 15
inseq2 gil67737420ref[ZP_00488193.1] 43.1227 15
inseq2 gil67714721ref(ZP_00484082.1| 47.8842 15
inseq2 gi|69988727|ref[ZP_00641885.1] 41.3159 15 O

1 29 837 865 1e-0860.8
29 834 862 1e-0860.8
29 480 508 1e-0860.8
29 515 542 42 323
29 278 306 7.2 316
29 278 306 7.2 316
29 278 306 7.2 31.6
29 221 249 7.2 316

O o o o o o o
P P P P NP PO

2000 more lines follows (removed to enter into this slide)

Your mission (should you choose to accept it): Get all GI from
this file and retrieve URL to get full Genbank record only if “%
identity” is greater than 45%.

Python script of data manipulation

- test3.py - fhome/sbassi/notas/test3.py IQIE X
Hle Edit Format Run Options Wndows Help

lmport string
baseurl=‘*http://www.nckbi.nlm.nih.gov/entrez/\
query. fogi?omd=textadb=proteinédopt=genpeptiuid="
infile=open('allans.txt','c'")
for line in infile:
ids=string.split(line, ""L") [1]
p ident=float (string.split(line, '"L"}[2])
1f p ident=»45:
fretrieve only gi from 1ids
gi=string.split{ids, " | ") [1]
print baseurl+str{gi)
else:
pass

/
[Ln: 13]cal: 12

To send the output to a text file just redirect it in the
command line with “>". 135

This URL will be handy for this kind of task:

ncbi.nim.nih.gov/entrez/query/static/linking.html 134

XML: Basic Overview

« Language to describe data (with nothing about data presentation).

« Based on text format (binary XML is out of the scope of this tutorial).
¢ XML are “human-legible” (kind of)

« Easy to write programs to process XML documents

¢ Header with parsing information:
— <?xml version="1.0"?>
« Body:
— <tagname attribute_name="attribute_value”>a text</tagname>
— <line type='demo'>A simple line</line>
— Empty element:

Pay attention: XML is everywhere!. Official webpage is
www.w3.org/XML 136

34

XML: Some real world samples
A RSS feed. Is XML based.

x

view-source: - Source of: http://rss.slashdot. org/slashdot/slashdot - Mozilla Firefox Dﬁm

Fle Edit View

<item rdf:about:"http://slashdot.org/article.pl?sid=06/05/01/213E
<title>'Revenge of the Nerds' Remake in the Works</title>
<link>http: //rss.slashdot.org/Slashdot/slashdot?m=5222</link>
<description>grouchomarxist writes "According to CNN the movie '
<p> <a href="http://rss.slashdot.org/~a/Slashdot/slashdo
<dc:creator>CmdrTaco</dc:creator>
<dc:date>2006-05-01T22:26:00+00: 00</dc:date>
<dc:subject>movies</dc:subject>
<slash:department>score-with-the-omega-mus</slash:department>
<slash:section>mainpage</slash:section>

4 et ot EE

61 RSS is a popular way to syndicate news. Atom is another
i protocol, also based on XML. 137

XML: Sample with attributes

<syg xmlns="http://www.w3.0rg/2000/svg" width="800" height="600"=>
=circle cx="400" cy="200" r="150" style="fill:none;stroke:black;stroke-
width:0.5"/>

<text x="400" y="200" style="text-anchor:middle; font-size:12px; font-
weight:bold; font-family:Arial;"=X6Jd44</text=

<text x="400" y="215" style="text-anchor:middle; font-size:10px; font-
family:Arial; ">3455 bp</texts]

=path d="M 511.62370399082 300.200542451368 L 530.227654655024
316.900632859929" style="fill:none;stroke:black;stroke-width:0.5" />
<text x="533.948444788024" y="320.240650941641" style="text-anchor:start
font-size:9px; font-family:Arial;"=ecoRI 1266</text=

All elements in this sample contains attributes. SVG
contains width and height. Text contains x, y and style
and Path has d and styTle.

A/ MP 200@

Plasmids in SVG at: bioinformatics.org/savvy/. More bioXML
at: xml.com/pub/rg/Bioinformatics
139

XML: Some real world samples
XML BLAST output.

T

view-source: - Source of: http:fflocalhost/apache2-default/blast/blast.cgi'- Mozilla Firefo_||O/X]
File Edit Wiew

<?xml version="1,0"?> ﬁ

<!DOCTYPE BlastOutput PUBLIC "-//NCBI//NCBI BlastOutput/EN" "NCB|

<BlastOutput>
<BlastOutput_program>blastp</BlastOutput_program>
<BlastOutput_version>blastp 2.2.10 [0ct-19-2004]</BlastOutput_
<BlastOutput_reference>~Reference: Altschul, Stephen F., Thoma
<BlastoOutput_db>nr</BlastOutput_db>
<BlastOutput_query-ID>1cl|QUERY</BlastOutput_query-ID>
<BlastOutput_query-def>inseq2</BlastOutput_query-def>
<BlastOutput_query-len>29</BlastOutput_query-len> B

BLAST can be instructed to output as XML instead of text or

HTML 138

XML: Parser with elementtree

~xmiparser.py - fhomevicky/xmiparser.py ™% ==

File Edit Format Run Options Windows Help

from elementtree.ElementTree import ElementTree
myxml=open ("=slashdot.xml"™,"r")
root=ElementTree (file=myxml})
iter=root.getiterator()
for ele in iter:
if ele.keys():
print ele.items () [0][0]
else: -
print ele.tag
print ele.text

ol

[Ln: 10]Col:

Elementtree must be installed separately.
140

35

What is Biopython?

It is a distributed collaborative effort to develop Python libraries
and applications which address the needs of curfent and future
work in bioinformatics.

It provides:
*Tools for working with seqfuences (aa and nt

*Parsers of all popular bio file formats (fasta, zjb, pdb, BLAST
output).

«Data retrieve from biological databases.

*Wrapper to bio-programs (BLAST, ClustalW, EMBOSS,
Primer3, and more).” o)
Biological functions like LCC, restriction enzymes cutting, and
more.

*Tables and constants.

With biopython you can program repetitive task

concatenating several programs. am

line:

s zeqgabl . keys():
abl [nomtemp]=[int(line.split(™\t") [B]),int(line.split (" t") [9])]
segabl [nomtemp]==[int(line.split (" L") [8]) . .int(line.split(" SEEINEN
' "+nomtemp
1 [9])=int(line.split (" L") [8]):

zeqahbl [nomkam
tendi[int(line. split (" t")[8]),.int(line. split (™t)1 [9])]
:s-.--.qubLErlo(llLul:lﬂ=].i.'.z|_<.-r|||_-

bl [nomtemp]

wi[int (line. split(" "V[9]) int(line. split (™ t") [8])]
mpl=listemp

listemp.
zegabl [n.

arin.close()

This first half parse the BLAST output, w/o using biopython.

WA/ MP 20001

gl Friiers i
August §-10, 2006

143

Biopython sample. BLAST output parsing for
vector removing from DNA sequences

BLAST Search Results [BLasT)Gatrez] 9]

& BLASTN 2.2.10 [Dct-15-2004]
Query: paluss

s, start, . end, e-value. bit score
5. start, s, end, e-value. bit score

11 55 Ge2 117

68 26 118

67 -2 115

o .25 111

67 .25 111

o 24108

67 24 108

6 24 108

s 65 24 108

pELueSHP 01_Martin 100.00 55 [} 65 24108

Elementtree must be installed separately.

142

for ¥ in gegabl:
arin=open("renamss/"+x [-3]+"tzt", ")
parzer = Fasta.RecordParser ()
iterator=Fasta.Iterator (arin,parser)
currecord=iterator.next()
gecuencia=currecord. gequence
arin.close ()
a=geqabl[x] [0]
b=geqgabl[x] [1]
if len(geqabl([x])==2:
newgeg=gecuencial:al+sgecuencialb:]
| 2lif len(seqgabl[x])==4:
c=geqabl [x] [2]
d=geqabl[x] [3]
newgeg=gecuencial:a]+eecuencialb:c]+gecuenciald:]
elae:
pass
arout=open('wovects,/"+x [:=3]+" txt',w")
dna=Seqg(newseq)
gegq=SegRecord(dna, id=currecord. title,description="")
2ali=FASTA.FastaWriter (arout)
sali.write (seq)
arout.close ()
arin.close()

WA/ MP 200

61 Using fasta parser to read sequences and FastaWriter to
: write the modified sequence.

" Fartaleza,
August §:10,

1 144
o0e

36

Melting point calc. i scioin o
With HTML is

eas '[0 make catgctgtecatcatgegegatageategat
(;LJ S to cactagctagcatgecatcgatocgatgeocacag

i cgtacgageattctatcategetacgat
com mand Ilne cacgcgtctogtatctgaatgacaccacteag

rograms or cagctactgatgctgtgattc

|0p thon ccegtatgegatctgeatgeatg
functions. Just
use any HTML
or text editor.

This form asks Sequences: | T
for the same Salt concentration: 50 [mM]

arameters that Nucleotide concentration: 50 [nM]

m function Nucleotide type: [DNA -
uses.

Calculate tm

6‘ The Tm function is inline to avoid dependency problem in
i some hosts. 145

Form code

<form method="post" action="cgi-bin/cgitm.cgi">

Sequences: <textarea rows="10" cols="30" wrap="virtual" name="seqs"></textarea>

Salt concentration: <input type="text" name="saltc" wvalue="10" size="3">[mM]

Nucleotide concentration: <input type="text" name="nucc" value="10" size="3">[nM]
Nucleotide type:
<select name="nucle">
<option wvalue="0" selected="selected">DNA</option>
<option wvalue="1">RNA</option>
</ select>

<input type="submit" name="submitButton" wvalue="Calculate tm"></form>

Look for action path and variable names.
146

Generate Tm in HTML from
multiple sequences using Python

cgitm.cgi - /var/www/apache2-default/cat-bin/cgitm.cal

Fle Edit Fognmat Run Options Windows Help

#!/usr/bin/python

from HTMLgen import *
from HTMLcolors import *
import og

import gl

import gtring

import math

def Tm_staluc(s,dnac=50,=altc=50,rna=0):
""TReturns DNA/DNA tm using nearest neighbor thermodynamics. dnac i
DHA concentration [nM] and saltc isg =alt concentration [mM].
rna=0 is for DHA/DNZ (default), for RNZ, rna should be 1.
Sebastian Bassi <sbascilgenesdigitales.com>"""
fCredita:
#Main author: Sebastian Bassi <sbassilfgenesdigitales.com>
#0vercount function: Greg Singer <singergltcd.ie>
#Based on the work of Nicolas Le Novere <lenov@ebi.ac.uk> Bicinform
dh=0 {DeltaH. Enthalpy
dg=0 fideltald Entropy

The Tm function is inline since to avoid dependency
problem in some hosts. 147

formu=cgi.FieldStorage ()
doc= SimpleDocument (title="Melting Temperaturs OUTFUT", %
bgcolor=WHITE, cgi=1)

try:
deeqgs=formu["=eq="] .value
fealto=float{formu["zaltce”] .value]
frnucc=float (formu| "nucc™] . valuel
fdna=int(formu["nucle"] . value)

except:
dgegs = "gtcotattgtgtateocgogattogogogatotaa®
fzalte = 50
fruce= 50
fdna= 0

doc.append{'<pre=")
unvar=string.splitidseqs,"\n")
for ® in unvar:
if lenix)=10:
theTM=Tm_=taluc(x,fnucc,fzaltc,fdna)
doc.append(=ztr (theTM))
elae:
doc.append("Sequence not long enough™)
doc.append('</pre=")
print doc

In formu are stored all the form variables. Doc is an object
used for store the HTML info. 148

37

sbassil@vicky2:/var/www/apacheZ-default/cgi-bin § ./cgitm.cgi
Content-Type: text/html

<IDOCTYPE HTML PUBLIC "“-//W3C//DTD HTML 3.2//EN"Z
<HTML>

<!-— This file generated using Python HTMLgen module. --3>
<HEAD>
<META NAME="GENERATOR" CONTENT="HTMLgen Z.2.2">
<TITLE>Melting Temperature OUTPUT</TITLEx>
</HEAD>
<BODY BGCOLOR="#FFFFFF">
<pre:
63.5885725727
</prex

</BODY> </HTML>

sbassilvicky2:/var/www/apache2-default/cgi-bin §]

CGl output generated from command line. The CGlI script
should work under CLI 149

)MszooQ

H Fortaleza, Brazi
August 6-10, 2008

<!DOCTYPE HIML PUBLIC "-//W3C//DID HIML 3,2//EN">
<HTML>

<{-- This file generated using Python HIMLgen module. --
<HEAD>
<META NAME="GENERATOR" CONTENT="HTMLgen 2.2.2">
<TITLE>Melting Temperature OUTPUT</TITLE>
</ HEAD>
<BODY BGCOLOR="#FFFFFF">
<pre>
63.9172232903
64.2425203546
5%.534715514
69.8722552748
52.3744576098
58.8075358913
</pre>

</BODY> </HTML>

6‘ CGl output generated from command line. The CGlI script
i should work under CLI 151

@5 0 DT
) test | | Google AdSense | | MiPagin
Google - |
3 Disable~ 57 C55+ %) Forms 0 Ime
Result of CGl code x o, | Eiramss- ... | (7o

after submit button
is pressed in 63.9172232903

HTML. 0d.9429205540
55.534719514
©9.87225527483
52.3744576098
55.80793586913

CGl output generated from command line. The CGI script
should work under CLI 150

A/ MP 2006

" Fortaleza, Brazil
August §-10, 2008

i

That's all for today. But there is a
lot more in Python!

Resources:

The Quick Python Book, Dary Harms and Kenneth McDonald, Manning, 2000
Professional XML, Birdbeck et al., 2" Ed., Word Press, 2001

Python Tutorial, Guido van Rossum, March 2006 (http://docs.python.org/tut/)
Dive into Python (diveintopython.com)

Bicg)f/thon tutorial and cookbook, Jeff Chang, Brad Chapman, Iddo Friedberg,
2001 (http://bioweb.pasteur.fr/docs/doc-gensoft/biopython/Doc/Tutorial. pdf)

Python Speed & Performance Tips)
(http://wiki.python.org/moin/PythonSpeed/PerformanceTips)

Python course in Bioinformatics, Katja Schuerer, 2004
(http://www.pasteur.fr/recherche/unites/sis/formation/python/)

)l/‘[\;l b 200 6‘ The Tm function is inline to avoid dependency problem in

~— (ot some hosts. &2

i

38

