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Tutorial Summary

In the recent years, multiple types of high-throughput functional genomic data have become
available that facilitate rapid functional annotation and pathway modeling in the sequenced
genomes. Gene expression microarrays are the most commonly available source of such data.
However, genomic data sacrifice specificity for scale compared to traditional experimental
methods, yielding large quantities of relatively lower quality measurements. This problem
has generated much interest in bioinformatics in the past two years, as sophisticated
computational methods are necessary for accurate functional interpretation of these large-
scale datasets. This tutorial will present an overview of recently developed methods for
integrated analysis of functional genomic data and outline current challenges in the field. The
focus will be on the development and use of such methods for gene function prediction,
understanding of protein regulation, and modeling of biological networks.

Tutorial Outline
* Goals of data integration
» Overview of available experimental data
» Evaluation of data/method accuracy
* Overview of computational methodology
» Data representation for integration
» Application of data integration

This tutorial will be of interest to computational researchers interested in contributing to the
field of data integration and analysis of heterogeneous data and to biologists with some
computational background who are interested in using the methods on their experimental data
and understanding their properties and limitations.

Tutorial level
Introductory to intermediate. This tutorial will serve as a thorough introduction to data
integration in functional genomics, but some advanced issues will also be introduced.

Prior knowledge required

This tutorial will be self-contained and assume no prior background in the field of data
integration or biological data analysis. No specific computational or biological background
will be assumed, and the audience may include computer scientists, statisticians,
bioinformaticians, and computationally savvy biologists. The audience should be familiar
with basic biological concepts (e.g. regulation, transcription, etc) and basic computation
(probability).

All concepts will be introduced on an intuitive level, so a biologist or a computer scientist
will be comfortable with the material. Building on this introductory material, state-of-the-art
methods for data integration will be introduced with special emphasis on assumptions,
limitations, and strengths of each method. Finally, open problems in the field will be
discussed.



Introduction

The availability of complete genomic sequences of several eukaryotic organisms, including
the human genome (1-6), has brought molecular biology into a new era of systematic
functional understanding of cellular processes. The sequences themselves provide a wealth
of information, but functional annotation is a necessary step toward comprehensive
description of genetic systems of cellular controls (7-9). High-throughput functional
technologies, such as genomic (10, 11) and soon proteomic microarrays (12-16), allow one to
rapidly assess general functions and interactions of proteins in the cell. In addition to gene
expression microarrays (17), other high-throughput experimental methods are generating
increasing amounts of data. In yeast Saccharomyces cerevisiae, the most well-studied
eukaryotic organism that is commonly used in computational and experimental genomic
studies, these datasets include protein-protein interaction studies (affinity precipitation (18),
two-hybrid techniques (19)), synthetic rescue (20) and lethality (20, 21) experiments, and
microarray analysis (10, 11). This increase in functional data is also reflected in the rise of
multiple functional databases, especially for yeast, including: the Biomolecular Interaction
Network Database (22), the Database of Interacting Proteins (23), the Molecular Interactions
Database (24), the General Repository for Interaction Datasets (25°), the MIPS
Comprehensive Yeast Genome Database (26), and the model organism database for yeast—
Saccharomyces Genome Database (SGD) (27°). While classical genetic and cell biology
techniques continue to play an important role in the detailed understanding of cellular
mechanisms, the combination of rapid generation and analysis of functional genomics data
with targeted exploration by traditional methods will facilitate fast and accurate identification
of causal genes and key pathways affected in cellular regulation, development, and in disease.

Thus, the key goal of these high-throughput data is rapid functional annotation of the
sequenced genomes and understanding of gene regulation and biological networks. Even in
yeast, the most well-studied eukaryote, 1481 of 5788 open reading frames (ORFs) are still
unnamed, and functional annotation is unknown for 1865 ORFs. High-throughput functional
data, especially the large number of microarray datasets, are important for rapid functional
annotation of these unknown genes, but it is important to recognize that high-throughput
methods sacrifice specificity for scale in the quality to coverage tradeoff, yielding to many
false positives in the datasets (8, 28-32). Recent work has highlighted this problem, showing
that different cDNA microarrays exhibit between 10 and 30 percent variation among
corresponding microarray elements (33). For gene function annotation and biological
network analysis, an increase in accuracy is essential, even if it comes at the cost of some
sensitivity (30). This review presents an overview of computational methods that incorporate
the abundant microarray data with other data sources for increased specificity in gene
function prediction and in identification of biological networks. We outline resent progress
in integrated analysis of heterogeneous data, presenting the methods in a rough order of
increasing complexity of biological questions — from gene function prediction, to regulation,
to biological networks. A general overview of the data integration tasks is presented in
Figure 1.

Figure 1. Overview of integrated analysis of genomic data. Multiple gene expression
datasets and diverse genomic data can be integrated by computational methods to create an
integrated picture of functional relationships between genes. These integrated data can then
be used to predict biological function or to aid in understanding of protein regulation and
biological networks modeling. Alternatively, computational approaches for biological
networks prediction can analyze diverse genomic data directly, without the intermediate
integration step. Upon evaluation by cross-validation or based on a test set of labeled data,



best novel predictions should be tested experimentally, and the results of these experiments
can be used to improve performance of the methods.
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Gene function prediction

Currently, gene expression microarray datasets are the most commonly available functional
genomic data due to their relatively low cost and easily accessible technology. At the time of
publication, NCBI’s Gene Expression Omnibus database (17) already contained over 650
gene expression datasets, sixty of which are yeast and 203 are human datasets, and other
databases provide additional gene expression data. These data can be used to identify groups
of coexpressed genes, and such groups, through the principle of “guilt by association”, can
facilitate function prediction for unknown proteins and identification of regulatory elements.
However, while gene coexpression data are an excellent tool for hypothesis generation,
microarray data alone often lack the degree of specificity needed to make accurate biological
conclusions. For such purposes, an increase in accuracy is needed, even if it comes at the cost
of some sensitivity. This improvement in specificity can be achieved through incorporation of
other data sources in an integrated analysis of gene expression data. These additional data
sources include other high-throughput functional data (e.g. protein-protein interactions,
genetic interaction data, localization information), DNA and protein sequence data, published
literature, and phylogenetic information.

Improving microarray analysis with other genomic data

Bioinformatics methods for effective integration of high-throughput heterogeneous data can
provide the improvement in specificity necessary for accurate gene function annotation and
network analysis based on high throughput data (8, 9, 34, 35). While the exact amount of



overlap and correlation among functional datasets is unclear (32, 36-38), data integration has
been shown to increase the accuracy of gene function prediction compared to a single high-
throughput method (31, 34, 39-43). Specifically, studies demonstrated that using more than
one type of functional data for predictions increased accuracy (31) and that integrating more
heterogeneous information increases the number of protein-protein interactions correctly
identified (42), leading to better prediction of function for unknown proteins. This potential
of data integration recently led to development of several computational methods for
integrated analysis of microarray data with other data sources.

A simple scheme for increasing accuracy in function prediction based on heterogeneous data
is to consider the intersection of interaction maps for different high-throughput datasets (44).
While this scheme reduces the false positives, it has the drawback that the lowest-sensitivity
dataset will limit sensitivity of the entire analysis. As published large-scale interaction
studies are not comprehensive even in model organisms, this strict sensitivity limitation is too
restrictive for large-scale and general function prediction. Several other groups suggested
approaches that provide increased sensitivity of function prediction from the intersection
scheme above. In the first study of this type, Marcotte et al. predicted a number of potential
protein functions for S. cerevisiae based on a heuristic combination of different types of data
(34, 39). In another early study, Schwikowski et al. assigned putative protein function based
on the number of interactions an unknown protein has with proteins from different functional
categories (40). These studies demonstrated the potential of integrated data analysis, but they
combine the information from different sources in a heuristic fashion, where confidence
levels for protein-protein links are defined on a case-by-case basis. This approach is
successful in these studies and served as a clear proof of concept, but it may be hard to
generalize to new datasets, data types, or other organisms because each approach is
developed with specific data and application goal in mind and therefore lacks a general
scheme or representation.

A more general method was developed by Clare et al., who introduced a rule-based method
in which heuristics are learned based on heterogeneous data sources and known functional
predictions (45). These heuristics are then applied to genes with unknown function to predict
function. This study uses a modified C4.5 decision tree algorithm, and includes sequence,
phenotype, expression, and predicted secondary structure data. In a different approach,
Karaoz et al. combined interactions and expression data by creating a weighted graph of
protein-protein interactions with the weight between two genes derived from coexpression
values of these genes in one gene expression dataset (46). They then used a variant of
discrete-state Hopfield network to assign function for unknown proteins, based on known
annotations in the Gene Ontology (47).

Probabilistic integration of heterogeneous data

Recently, several computational methods have been suggested that combine datasets in a
confidence-dependent manner. The advantage of such statistical approaches is that they
enable general data integration and can easily adapt to new data sources. In addition, because
these methods are probabilistic, their outputs can be filtered by the confidence or probability
cutoff to a desired level of spensitivity and specificity (estimated based on the cross-
validation trials or a test data set).

In a general methodology based on Support Vector Machines, Lanckriet et al. has combined
interactions, expression, and sequence data by representing each input as a separate kernel.
The weighted optimized combination of these kernels was then used to recognize membrane



and ribosomal proteins (48°) as well as other general classes of proteins (49). This method is
general and can also readily provide information, encoded in the kernel weights, on the extent
to which each data source contributes to the final prediction. One disadvantage of such
discriminative approaches is that a separate classifier is generally built for each functional
category, thereby making it possible to only predict general functional categories (e.g.
metabolism) because of lack of training data for more specific functions. Methodologies that
first perform general data integration, creating a general graph of functional relationships, and
then predict function based on such graph, can alleviate this problem (Figure 1). For
example, Troyanskaya et al. used a Bayesian network-based method for general integrated
analysis of functional genomic data (35°). They then predicted function for each unknown
gene based on significant over-representation of known proteins of particular function in the
unknown gene’s neighborhood in the graph. In an alternative approach, Zhang et al.
predicted co-complexed protein pairs with probabilistic decision trees based on expression
and proteomics data (50).

Including prior knowledge through biological literature

In addition to high-throughput experimental methods, traditional experimental techniques
have generated volumes of biological knowledge in the past decades. Results of such
experiments are often substantially more accurate than large-scale functional genomic data,
and many of their conclusions have been verified by multiple techniques. This knowledge is
encoded in the wealth of biological literature, which, if properly analyzed, may provide the
strongest aid yet for the analysis of high-throughput data. For example, Raychaudhuri et al.
use biomedical abstracts to resolve boundaries of hierarchical clusters of gene expression
patterns and to recognize clusters that are most functionally coherent (51°). Unfortunately,
current work in this area focuses on analysis of keywords or article abstracts, largely because
full-text literature mining is restricted by the lack of availability of full-text articles
copyrighted to biomedical journals.

In addition to original literature, increasing sources of human-curated databases of structured
biological knowledge are available. Probably of most influential is the Gene Ontology — an
acyclic directed graph of biological terms divided into three parts: biological process, cellular
location, and molecular function (47). Gene Ontology terms are being used to annotate genes
in different organisms, and these annotations often serve as the “gold standard” or training
data for microarray analysis and gene function prediction methods (52). In addition to gene
function, multiple databases aim to encode knowledge about metabolic and regulatory pathways
in different organisms, for example the MetaCyc and KEGG pathway databases (53, 54). These
are also very valuable resources for training and evaluation of computational analysis methods.
Hanisch et al., for example, used biological networks as an integrated part of their clustering
algorithm — with a single distance metric derived from both metabolic networks (from the KEGG
database) and gene expression data (55°).

Using microarrays to decipher gene regulation

Gene expression data provide insight not only into gene function, but also into regulatory
processes in the cell. In fact, very early in microarray analysis several groups designed
methods for identification of potential transcription factor binding sites in the upstream
sequences of coexpressed genes, for example (56-59). The general approach is to cluster
gene expression patterns and then identify motifs or motif combinations common to each
cluster. Bussemaker et al. developed a method that does not require clustering and can
identify statistically significant motifs based on a single genome-wide set of expression
values (58).



However, motif discovery methods cannot on their own identify which transcription factor
binds each particular motif, and therefore stop short from identifying regulatory modules
(sets of coexpressed genes regulated by sets of transcription factors). The recently developed
chromatin immunoprecipitation microarray (ChIP) technology can connect specific
transcription factors to a large number of binding sites. This technique can identify direct
binding of a specific protein complex to DNA on whole-genome scale and thus is
complementary to gene expression microarrays. Integrated analysis of ChIP and gene
expression microarrays can identify coregulated groups of genes, their regulators, and the
corresponding transcription factor binding sites with higher accuracy than analysis of either
data type alone. An iterative approach suggested by Bar-Joseph et al., for example, improves
clustering of gene expression microarray data by using ChIP microarray data to identify
combinations of regulators (60). Another method developed by Kato et al. identifies over-
represented motif combinations found upstream from strongly co-expressed genes, and
associates these motifs with transcription factors (61). Segal et al. used a Bayesian
framework for identifying modules based on known regulatory proteins and gene expression
data (62°°). All of these methods, by identifying groups of coexpressed and coregulated
genes and determining their regulators, identify small components of regulatory circuits of
the cell.

Integrated analysis of biological networks

Possibly some of the most interesting questions of present-day computational functional
genomics arise in the area of biological networks prediction, where the goal is to decipher all
patterns of regulation in the cell. Creating network models involves, explicitly or implicitly,
solving every one of the above-described problems: gene function prediction, understanding
of protein-protein interactions, and identification of regulatory relationships. Although
multiple studies have attempted to estimate gene networks from microarray data alone, gene
expression is usually not sufficient for accurate network modeling because of its limited
scope (only transcriptional regulation is represented in gene expression microarray datasets,
and they cover a limited number of conditions) and its high noise levels. Integrated analysis
of multiple types of high-throughput data is essential for effective prediction of accurate
biological networks.

Increasing number of studies on modeling biological networks based on integrated data are
being published. Hartemink et al. reduced noise in regulatory network models by using
localization data to influence the prior of their Bayesian network model, in which gene
expression influenced the model likelihood (63). However, such model would still miss non-
transcriptional regulation that is often due to physical interactions between proteins. To
address this issue, several groups used protein-protein interactions data in addition to gene
expression datasets in constructing probabilistic network models (64). Tanay et al. also
included growth phenotype and transcription factor binding data, in addition to gene
expression and protein-protein interactions (65°°). They used a biclustering technique to
identify statistically significant modules based on the diverse data sets, then constructed
biological networks based on transcription factor binding profiles and their correspondence to
modules.

Open problems in data integration

This review outlined how integrated analysis of microarray data with other genomic data
sources can increase prediction accuracy and provide a coherent view of functional
information derived from diverse data types. Integrated methods can be based on formal



probabilistic reasoning and can generate predictions based on heterogeneous data sources,
and some are generalizable to new data sources as they become available. Although several
promising probabilistic methods for integrated analysis have been developed, the problem of
general data integration for both gene function prediction and pathway modeling is still not
fully solved. No truly general and robust method that can be routinely applied to noisy,
heterogeneous data has yet been developed. Additionally, the majority of methods have been
demonstrated only in baker’s yeast, as multi-cellular organisms present a host of additional
challenges for data integration.

One very promising direction in functional analysis of microarray data is integration of data
from multiple organisms. Recently, several groups have started using co-expression
information from homologous genes in several species to increase specificity of functional
relationships identified from gene expression experiments (e.g. 66, 67). Such comparative
genomics techniques, on their own or combined data integration methods described in this
review, will undoubtedly contribute to functional annotation and modeling of biological
networks.

It is also important to note that computational methods are always limited by the coverage
and quality of experimental data they use. Public availability of high-quality high-throughput
datasets is therefore essential for rapid functional annotation. Further experimental validation
of computational predictions by traditional laboratory techniques is ideal for validation and
for improvement of the computational methodology. Such validation can be accomplished
through collaborations with biological researchers and through open publication of
predictions in the form easily accessible to biologists.

Development of accurate data integration methods for functional genomics relies on labeled
data for training and validation, for example genes with known functions or known biological
pathways. Such data, generated by traditional biological methods, is often scarce and for the
most part represented in biological literature in the free-text format that cannot be readily
used for automatic training or validation. One very effective solution to this problem is
human curation, employed by several databases (e.g. 27). However, curation is costly and
thus currently limited. Therefore, accurate computational analysis of biomedical literature to
extract biological relationships that can be used as “gold standard” data is an area of great
importance that presents many natural language processing challenges.

Conclusion

Key challenges in present-day molecular biology are the functional annotation of unknown
genes within sequenced genomes and determining protein interactions and regulation in
biological networks. Traditional experimental methods are too slow and labor-intensive to
accomplish these tasks on the genomic scale in the near future. Therefore we must rely on
high-throughput techniques along with computational analysis to direct more traditional
experimentation. In the past, computational techniques in functional genomics have focused
primarily on gene expression microarray data. But integrated analysis techniques for diverse
biological data have emerged as more large-scale functional data have become available.
Future development of more accurate integrative methodologies and their expansion to multi-
cellular organisms complemented by further development of high-throughput experimental
technologies will be critical for complete functional annotation of model organisms and
human genomes.
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Outline of this tutorial

Goals of data integration

Overview of available experimental data
Evaluation of data/method accuracy
Overview of computational methodology
Data representation for integration
Application of data integration

Goals & challenges of data
integration

» Explosion of genomic data, but no equivalent
explosion of biological information

* Why?
— Data are noisy
— Datasets are incomplete
— Data are heterogeneous

 Effective data integration can lead to better
biological predictions and faster growth of
biological information

59

58

Experlmental data

Coexpression
* Genetic association
« Physical association
« Protein arrays
¢ Localization
* Sequence
e Structure
* Literature

60
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Coexpression

» Coexpressed genes (microarrays)

e Chromatin IP on microarrays (ChIP
on chip)

61

Coexpression - Microarrays, o e

<

Known DNA sequences ﬂ
Isolate mMRNA
o o L] L]
|:> o o L] L]
o o L] L] & <:|

Glass slide @

Reference sample

62

Co-regulated genes are
co-expressed

B MCB Box conszerved and aligned

Expression profiles of
53 genesin S.
cerevisiae genome
that contain the exact
match to an MCB
box in their
41 genes, EC = D.62 (P = 1.1x10%) promoters (profiles
Call cycle tima normalized by mean
& variance).

Expression

Cliften et al. Science 301 20083

Identifying TF factor binding
sites directly — “ChlIP on Chip”

» Array-based method for identification of
binding sites of known TFs

» Each array corresponds to one TF

64
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ChlIP on chip

Protein - TF f i.\ Qz i.\
0 0
()
DNA OIﬁcubation with L

antibodies against TF

=

.\
w4

Hybridization to intragenic array

Precipitation

65

Genetic interactions

» Synthetic lethality
» Synthetic interaction

Synthetic lethality

* When gene A is deleted and B is still present, the cell
is viable

« When gene B is deleted and A is still present, the cell
is viable

¢ When both genes A and B are deleted, is the cell
viable or not? If the cell is viable, then the genes are
not functionally linked. If the cell is inviable, then the

genes ARE functionally linked.
Synthetic
A-B- / lethality

Alive Alive Dead!

A-B+ A+B-

67

66

Synthetic interaction

When gene A is deleted and B is still present, the cell is wild-type
When gene B is deleted and A is still present, the cell is wild-type

When both genes A and B are deleted, does this induce a non-wild-type
phenotype? If yes (e.g. slow growth), then genes A and B have synthetic
relationship.

Note: if A-B- grows like wild-type, there still may be a different phenotype
under which A and B have synthetic relationship =>

— Negative results here don’'t mean much in general, but mean something

specific to phenotypes!
Synthetic
A-B- interaction

Wild-type Wild-type Slow growth

A-B+ A+B-

growth

68
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Physical interactions

* Yeast two hybrid
» Co-IP precipitation
« FRET

 Protein arrays (can also test
molecular function directly)

c R
2
Screened . e
against '

Screened
aainst

Screened
against

a) DNA-binding and
activation domains
(circles) are fused to
proteins X and Y. The
interaction of X and Y
leads to reporter gene
expression (arrow).

Screened
Aagainst

Screanad
against

Screened
against

70

69
Animal cell Protein A-agarose bead
i
e Ol\jj 7/\.‘
__" Antibo \I\y L/
Cell lysis 1 » | Antibody binding to
) protein A-agarose bead
“ r 1 i
-@p &
LY Antigen isolation on \_/
\mlllm dy be 1V
%p
Washing and analysis (1D-2D) gel. western)
Y / ®
.. )fM F.‘) 200 O
71
it

FRET (Fluorescence
Resonance Energy
Transfer):

photophysical effect where
energy that is absorbed by

~ one fluorescent molecule
(donor) is transferred non-
<20mmm. radioactively to a second

fluorescent molecule
(acceptor)

Note: doesn’t have to be a
true physical
interaction, but has to
be close

72
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Post-translational modification 73

Other genomic data

* Protein localization
Sequence-based data
Structure-based data
Biomedical literature
Public databases

: )_/‘MF.‘) 20001

Localization data

« Proteins are tagged and their localization studied

« Protein that are co-localized may be more likely to have functional
relationships

« Not all co-localizations are created equal:
— Co-localization to the cytoplasm means very little
— Co-localization to the nucleolus means more

« Localization may change depending on experimental conditions

GFP-tagged protein
localized to the bud

5]

74

!r.nu Brazi
August 4-10, 1008

Seqguence data

e TF blndlng site 5 40 yeast TATA sites
predictions ”

« Homologues data 5! T

. Motifs (e.g._ mito “."}".‘C’II;*
signal peptide
tal’geting protein to Mitochondrial signaling
mitochondria) / sequence

RS [N DB [N DREY R |

TATA sequence logo courtesy of the Schneider lab (ﬂl‘h)




Structure data

« Structural motifs

 Predicted functional binding sites (based
on structure)

 Structural similarity to known proteins with
specific function

7

Biomedical Literature

* NLP-based prediction of relationships
— Name co-occurrence in abstracts
— Detecting specific types of relationships (e.g.
geneA activates geneB)
» Curated literature
— Ontologies (Gene Ontology, KEGG, MIPS)

— Independent curation efforts by interaction
databases

78

Public databases

* Interactions data is often available through
public databases

* Some databases are dataset-specific (e.g.
O’Shea’s lab co-localization DB)

» Some are general collections of data
— Of some types: GRID, KEGG...
— For one organism: SGD, FlyBase...

Fortaleza, Brazil

Y t LA w A B
-~ E?EQ D & ?/_{E{ 3 FlyBase
A/ MP 20001 i}

Interaction coverage - yeast

* Interaction coverage is uneven

« Different biological processes can be
better represented by different data types

» Some high-throughput studies actually
focus on specific processes

80
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Evaluation of accuracy

¢ Gene Ontology

¢ MIPS — Munich Information center for
Protein Sequences

¢ KEGG - Kyoto Encyclopedia of
Genes and Genomes

81

Evaluation — the basics

Any experimental or computational method needs to be
evaluated

Evaluation requires a reasonable number of answers
Evaluation method depends on what question was asked
Most current data integration efforts focus on one of the
following questions:

— prediction of interactions between proteins

— prediction of gene function

— prediction of pathways

“Gold” Standards

Expert-curated assignments of genes
to functional groups, complexes, or
pathways

Gene Ontology

KEGG - Kyoto Encyclopedia of Genes
and Genomes

MIPS — Munich Information center for
Protein Sequences

» Far from “Gold”, more like Pewter...

83

82

Gene Ontology

A loosely hierarchical (a DAG) organization of biological concepts
Actually, three ontologies:

— Biological process

— Molecular function

— Cellular component

Pros:

— Relative well annotated for many organisms

— Provides varying levels of specificity

— DAG structure gives a sense of relationships between nodes
Cons:

— Annotation coverage varies by process and organism

— DAG structure makes it challenging to decide which nodes to
use (biological process node is too general, for example)

84
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G e n e O nto I Ogy Cell growth and/or m eth Od Cell growth and/or
maintenance . maintenance
Predicted |
[ Vetabotiom | — Gene Pairs . —
Cell cycle Metabolism Cell organization Cell cycle Metabolism Cell organization
LJ and biogenesis + + LJ ‘ ‘ and biogenesis
Mitotic cell Protein Nucleobase, Nuclear organization <:>> <¢> Mitotic cell Protein Nucleobase, Nuclear organization
cycle metabolism nucleoside, and biogenesis + + cycle metabolism nucleoside, and biogenesis
nucleotide and nucleotide and
nucleic acid + ‘ nucleic acid
& .T iehie Y < Protein metabolism Chromosome Mitotic cell Protein metabolism Chromosome
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85 86
¢ Loosely hierarchical (hierarchy not as deep as GO) » Pathway-based...sort of
¢ In between KEGG and GO in terms of both specificity » Very specific coverage of metabolism, some regulatory
and coverage pathways, and some other functional groups
e Pros: » Pros: specificity
— Hierarchical « Cons:
— Hierarchy less deep, makes somewhat easier to choose — specificity (proteins that most biologists would consider related
appropriate nodes for evaluation can belong to different pathways in KEGG)
e Cons: — Low coverage
— Annotation can be not as complete as GO (e.g. for yeast)
87 88




Important evaluation “footnotes”

* None of the “gold” standards is guaranteed to be
fully correct, thus some TPs may not be right

* None of the “gold” standards is complete, so
many of the FPs may be novel discoveries

» Gold standards don’t fully agree with each other
— careful to not fit the standard to the data

* However, comparative evaluation is

reasonable, and the numbers are likely to be
close (though too conservative)

89

Computational Methodology:
an overview

* Machine learning methods
— Training and evaluation
— Bayes nets
— Decision trees
— Support Vector Machines

* Heuristic methods

Machine learning methods

» Automatically learn to make accurate
predictions based on past observations

* Most methods require both positive and
negative training data

* Generative vs. discriminative methods

91

Some graphs courtesy of Rob Schapire®

Why Use Machine Learning?

Advantages:
« Often much more accurate than human-crafted rules (since data driven)

« Humans often incapable of expressing what they know (e.g., rules of
English, or how to recognize letters), but can easily classify examples

« Don't need a human expert or programmer
¢ Flexible — can apply to any learning task

« Cheap —can use in applications requiring many classifiers (e.g., one per
function, one per data type, ...)

Disadvantages
* need a lot of labeled data
— Biology doesn’t have much labeled data
— Very few negatives
« error prone— usually impossible to get perfect accuracy

92
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Training and testing
machine learning methods

« Separate training and test sets
» Crossvalidation
¢ Boosting

< Important to avoid overfitting (e.g. fitting points with a
polynomial) — =
[ \Jr NS

underfit sdeal fit overfit

A

:'J \/\
\'._
A

93

Bayesian networks

» Graphical probabilistic models
» Can represent prior knowledge/belief

» Can be learnt from data or constructed by experts
in the field

» Reasoning based on the Bayes rule
P(e|R=r)P(R=r7)
P(e)

P(e) ZP(@ | R= V)P(R = l") Marginal likelihood

P(R=r|e)=

The sprinkler Bayes net

PiC=F) Ble=T) Bayes nets are graphical
05  0s probabilistic models

P{S=F) PIS=T) C | B(R=F) P[R=T)

5 R|P(W=E) B(W=T) +

1o 0o Conditional probability
o1 e tables contain the priors
a1 09

= 001 0%9e

BN picture from Murphy, K. “A Brief Introductlorbgo
Graphical Models and Bavesian Networks”
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The sprinkler Bayes net

BIC=F) PC=T) Prlor probability that it is
cloudy

C PES F) P(S=T) - C | PIR=F) BIR=T)
F Q3

S R|P[W=F) P[W=T)

L Conditional probability that
ol oe it rains when it’s cloudy

ol

°?*—Probability that grass is wet
* %% \when the sprinkler is off and
it rains 96
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P(ANB)

Inference ren-"03

Observe: grass is wet

Two possible causes: either it is raining, or the sprinkler
is on. Which is more likely? Use Bayes' rule to
compute the posterior probability of each explanation.

Pr(S=1,W=1) 2, PriC=rS=LR=r,W=1)

Pr(5 =1 = 1) = = 0.2781/0.8471 = 0.430

P =1) =~ Pr(W = 1)
PR =1LW=1 PHC=cS=nR=1W=1
Pr(R =1 = 1) = ”(":rcw'l"’l) ) e Pl ;r(wfl) ) L D4581/0.647L = 0.706
where

Pr{W =1)= 3 Br{C=c,§=5R=nrW=1)=0.8471

(ijs a ?ormalizing constant (probability (likelihood) of the
ata).

A/ MDZ @Y that the grass is wet because it is
L DI RRETIEl N 00d ratio is 0.7079/0.4298 = 1.647.

Decision trees

* Learn “rules” to
recursively divide

Loc to nucleus

Learning Bayesian networks

* Two learning problems: structure + CPTs

Structure Observability Method

Known Full Maximum Likelihood Estimation
Enown Partial EM (or gradient ascent)

Unknown Full Search through model space
Unknown Partial EM + search through model space

Due either to missing data
or to hidden nodes

98

data into YES
subgroups
[stress resp overex] [ Co-IP with Ribo prots ]
YES YES NO
| DNA damage | | Ribosomal | [ Loc to Golgi ]

Loc to nucleus

Decision trees .

[stress resp overex] [ Co-IP with Ribo prots ]

YES YES NO

| DNA damage | | Ribosomal | [ Loc to Golgi ]

Choose rule to split on /\
Divide data into disjoint subsets using splitting

rule
Repeat recursively for each subset
Stop when leaves are <almost> pure

100
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Splitting rules

» Best rules lead to greatest increase in purity

» Purity can be measured by
— Decrease in entropy:

el ind;g p. — frac of positive examples
B X .
p_ — frac of negative examples
Y
Entropy=—p.Inp,. —p_Inp_
'.::s ‘.:::‘ Giniindex=p, p_

101

Overfitting?

trees must be big enough to fit training data (so that “true” patterns are
fully captured)

BUT: trees that are too big may overfit (capture noise or spurious
patterns in the data)

Significant problem: can'’t tell best tree size from training error

Usually grow the tree to maximize training accuracy,
then prune back 50

40

error (%)

Decision tree conclusions

* best known:

— C4.5 (Quinlan)

— CART (Breiman, Friedman, Olshen & Stone)
* Pros:

— very fast to train and evaluate

— relatively easy to interpret
» Cons:

— accuracy often not state-of-the-art

103
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Support Vector Machines

given linearly separable linearly
separable data

margin margin = distance to
separating hyperplane

choose hyperplane that
maximizes minimum margin
intuitively:

want to separate +'s from -'s
as much as possible

margin = measure of
confidence

104
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What if data is not linearly
separable?

* map into higher dimensional space in which data
becomes linearly separable
» Can be done efficiently using kernels
* Pros:
— fast algorithms now available
— state-of-the-art accuracy
— power and flexibility from kernels
— theoretical justification
« Cons:
— Not so simple to program

— Discriminative methods require to learn a classifier for each
question (e.g. each functional group)

105

Heuristic methods

» Rule-based methods (e.g. predict interaction
whenever more than 2 data types call it)

» Can be quite accurate and useful
» Can be hard to create good rules/heuristics
» Hard to generalize to new data types etc

* Heuristics can be combined with probabilistic
evaluation to lead to effective methods

» Need extensive evaluation for accuracy and
generality (same for ml methods)

106

Data representation for

integration
* Pair-wise

representation
» Vector-based

107

Data representation challenge

» Genomic data are heterogeneous

» To integrate data, it must be represented
in a coherent way

» A closely related challenge is database
integration (won'’t be discussed here)

108
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Pair-wise representation for
gene groupings

Cluster 1
7Gene A

eneB/ T——Gene |Gene |Gene |Gene
GeneC |Gene |A 1 B D|C1 |D1
Method 2 gene 1 1 1

Gene A ene 1 1 1

Gene D Sene 1 1

doesn’t have to binary — e.g. each value could be 0...1

.....
1008

)y‘ﬁbzqoé

ey o
Augus
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Data representation challenges

* Any data representation currently causes data
loss

» Effective data representation can depend on the
integration task (pathway vs. function prediction)

* Need to be careful of data representation — if
critical part of data is not propagated through the
process, even a great data integration method
may not be effective (esp. important for
continuous data e.g. microarrays)

111

Vector-based representation for
gene groupings

Cluster 1
Gene A
{Gene B EXp 1 EXp 2 EXp 3 |Gene
GeneC |Gene 0.1 0.7 23 |A1
Method 2 Bene 4 3 0.2 1
Gene B Bene 0.2 0.6 -1 1
{Gene D Sene -1.3 | 04 2 0

110

Applications of data integration
(and some examples)

» Function prediction
— Based on single data type
— Based on integrated data
* Prediction of regulatory modules

* Regulatory networks prediction

112
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Function prediction based on
one type of data

113

neighbors
Observed gene locations
()
Q
()
Inferred functional linkage .--------O .

If two genes (blue and yellow in the figure) are found to be
neighbours in several different genomes, a functional linkage may be
inferred between the proteins they encode. The method is most
robust for microbial genomes but may work to some extent even for
human genes where operon-like clusters are observed (see, for
= example, ref. 26). The gene neighbour method correctly identifies
functional links among eight enzymes in the biosynthetic pathway
for arginine in Mycobacterium tuberculosis. Eisenberg et

The Rosetta Stone method

Genaral concept

Rosatta Stone In organism 1 [ P | — —

Protein A Inorganism 2 Top SEquen?e -

ProlenB  inorganism2 s fused domain that’s
homologous to two

C. slogans separate seqs from

Ade5.7.5 I I .

Yeast Pur2 I | another species

Yeast Purd p__________ |

E. coll TrpC [ [ —

YeastTpG [T 1

Yeast TmF (—

Eisenberg et al. Nature 40551423

Phylogenetic profiles method

Genomes @
Pi P2 P4 P5 P7

S cerevisias (SC) B b(B

Proteins are considered
functionally linked if they
share phylogenetic profiles
(presence and absence in
genomes). Proteins do not
have the be homologous by
sequence.

P7

Phylogenetic profile
EC SC BB HP
01

el
£
B =

1
1
L]
1
1
1

oo 2020

Conclusion P2 and PT are functionally linked,
[R5 e P2 Co ey L Eisenberg et al. Nature 40551623




Annotation assignment based
on co-expression clusters

If enrichment for genes of a
specific biological process,
can claim unknowns are also
involved in that process.

Prob of x out of n annotations assigned to
the same GO term by chance\

P(x or more of n genes n |
being annotated to a Z[ - " . prf x(1—p)"~’
particular term) =\ M=)

Num of permutations of x of n genes
having the annotation

117

Data integration for gene function
prediction

118

“Guilt by association” principle

* If gene a acts similar to genes {b, ¢, d} in a
set of experiment

 And genes {b, c, d} all function in
biological process P

» Then by “guilt by association” gene a also
functions in biological process P

119

“Guilt by association in
microarrays”

G1/S

P(x or more of n genes being
| G2/M annotated to a particular term)

n

|M/G Jj=x .]!(n_.])|
1

Z( L jxp"’ x(1-p)"’

Data and figure credit of Michael Whitfiejlg0
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Proof-of-Principle of data integration:
intersection-based integration

< Early methods looked for intersection or union of multiple
data types

« For example, Marcotte et al. 1999
— First paper proposing a data integration
— A heuristic-based method for finding intrsection
— Allows to identify potential functions for a number of proteins
— But:

» doesn't take into account relative accuracy/coverage of
methods

« Intersection dramatically decreases coverage
* Hard to generalize to new data in an effective way

121

General integration

Probabilistic methods

— Bayesian

— Graph algorithms-based

Decision tree methods

Support vector machines

» Methods based on biomedical literature
— Curated data — Gene Ontology

— NLP of biomedical literature

Bayesian methods

Several Bayesian methods proposed
— Troyanskaya et. al 2003
— Gerstein et. al 2003
- Etc...
Pros:
— Probabilistic
— Easy to tell which experimental sources contribute more to predicitons
— General data integration

— Don't have to train a classifier for each functional group => even small
functional groups can often be classified correctly

Cons:

— Not a discriminative approach, so may loose power
« Also an example of setting up the problem and evaluation for gene function
prediction

123
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MAGIC: Multi-source Association of Genes
by Integration of Clusters

11 1 1

genei...m
= Apply MAGIC algorithm to

each gene i- gene j pair

gengi...m

100308 09|
10
10 01
10 04
10
04 10
01 10 08
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MAGIC Bayesian network

1000

900

MAGIC performs better than input

—— MAGIC
| —som | methods over a range of FP levels
O~ K-means O MAGIC Non-Expression only

10000
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8000
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Biological process

Evaluation

PI’Edictecrn eth Od mainter‘1ance

Gene Pairs

——F
| + 1+ metabolism
‘ Transcription ‘ ,—‘—‘

Cell cycle ‘ Metabolism ‘ Cell organization
+ + and biogenesis
<:>> <¢> Mitotic cell Protein Nucleobase, Nuclear organization
+ + cycle metabolism nucleoside, and biogenesis
nucleotide and
‘ + ‘ nucleic acid ‘

Mitotic cell Protein metabolism Chromosome

cycle modification + 4+ organization and
biogenesis

+

num pairs s.t.geneA & geneB annotated to same GOterm

proportionTP = -
total num of pairs

proportionFP =

Establishment
nd/or maintenance
of chromatin

num pairs s.t. geneA & geneB not annotated to the same GOterm | architecture

total num of pairs

126

|
metabolism

Ubiquitin-dependent
protein catabolism /
10 genes in cluster: e~
9 ubiquitin-dependent —
protein catabolism peptTinusts | PeAFication
1 nucleotide-excision p'
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ubisui tin-dependent
protein
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nucleic
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DA
metabolism
ONA repair

nucleotide—excision
repair

nucleotide—excision
repair

pair,
ONA_damage
recognition

O .pvalue: {=le-10 1e-10 to le-§ | 1e-8 to le-6
- 1le-6 to le-4 le-4 to 1le-2 F0.01
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Decision-tree-based methods
 Clare and King 2003
— Heuristics learned based on diverse data and
known functional annotations
— Uses a modified C4.5 decision tree algorithm
» Zhang et al 2004
— Predicted co-complexed protein pairs using
probabilistic decision trees
— Uses expression and proteomic data
Auguit 670, 1004 181
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SVM-based methods

* Lanckriet et al 2004

combined interactions, expression and sequence data by
representing each input as a separate kernel
« Weighted optimised combination of these kernels used to
recognize membrane and ribosomal proteins
* Pros:
— General
— can tell the extent to which each data source contributes to final
prediction (encoded in the kernel weights)
* Cons:
— separate classifier is built for each functional category => only

possible to predict general functional categories (eg metabolism)
because of lack of training data for more specific functions.

art . Br 132
Mugust §-10, 2008
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Other approaches

* Many other approaches, for example:
e Karaoz et al. 2004

— Combined interactions and expression data
by creating a weighted protein-protein
interactions graph

— Weight(gA, gB) ~ coexp (gA, gB)

— Function for unknown genes assigned based
on a variant of discrete-state Hopfield network

133

Data integration to study
gene regulation

» Regulation and how it works

* Identifying motifs based on GE
and sequence data

 Predicting regulatory modules
(a case study)

Opportunities for

m . - .

PHANGEEGE] gene regulation
’ ‘h"w:"ﬁﬂﬂi

Trasergtion]  giig il IO » Opening of DNA
it Wil duplex

» Transcription
* mRNA stability
o « Translation
T « Protein stability
1 « Protein modification

o R e
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Transcriptional regulation

» Thought to be the most used

» Does not waste intermediate products (MRNA,
protein, etc)

» But transcriptional regulation is slow, and thus
may not be used in cases when fast, transient
regulation is necessarily

ATG
[ Open Reading Frame

Transcription Facto:.

RNA polymerase -

136
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Co-regulated genes
are co-expressed

Expression profiles of
53 genesin S.
cerevisiae genome
that contain the exact
match to an MCB
box in their
promoters (profiles
normalized by mean
& variance).

B MCB Box conszerved and aligned

4 genes, EC =0.62 (P=1.1x10%)

Expression
bbb io=«n o a

Cell cycle time

Cliften etal. Science 3012003 137

Integration of expression with
sequence for motif discovery

* |dentify sequence motifs or motif
combinations common to each group of
co-expressed genes

B MCB Box conserved and aligned

— ACGCGT

41 genes, EC =062 (P=1.1x10%)

Cell cycie time
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Regulatory motif discovery from
Gene Expression data

* |dentify sets of co-regulated genes from
microarrays
— Unsupervised analysis - clustering
— Supervised analysis

* |dentify common motifs in regulatory regions of
co-regulated genes
— Combinatorial methods (enumeration with tricks)

— Probabilistic methods (EM, Gibbs Sampling — a
special case of MCMC)

139

Gibbs Sampling

* Given:
- x1, ..., xN sequences
— motif length K,
— background B,
* Find:
— Model M
— Locations a,;, ..., ayinxt, ..., xN
Maximizing log-odds likelihood ratio:

K M(k’xfzﬁk)

ﬁ:ZIog

i=1 k=1 B (x;l_ )

140
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Gibbs Sampling (2)

» AlignACE: first statistical motif finder
» BioProspector: more recent, faster algorithm with
higher accuracy
Algorithm (sketch):
1. |Initialization:
a. Select random locations in sequences x4, ..., xN
b. Compute an initial model M from these locations

2. Sampling lterations:
a. Remove one sequence xi
b. Recalculate model

c. Pick a new location of motif in x' according to probability
the location is a motif occurrence

141

Gibbs Sampling (3)

Initialization:
» Select random locations a,..., ay in xt, ..., xN
* For these locations, compute M:

1Y ,
ZWZ('xai+k :.])
i=1

* That is, My; is the number of occurrences of
letter j in motif position k, over the total

Gibbs Sampling (4)

Predictive Update: BN

» Select a sequence x = X

¢ Remove x|, recompute model:
Again, My; is the pr‘oporﬁon of occurrences of leh‘er‘j in motif position k

M

M, =
gt 2=
where B; are pseudocoun‘rs to avoid Os,
and B = %, B;
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Gibbs Sampling (5)

How “overrepresented”

Samgling: this word is in motif vs.

. background
For every K-long word X;,..., X1 in X:

Q; = P(word | motif ) = M(1,%)x<"xM(K,Xj.1)
P; = P(word | background )= B(X)x...xB(X;.x.1)

,_et ProP

|x|—k+1

Represents wmghls for sampling Qj / })j
(words more different from = 0 x|
background get higher weight)

Sample a random new position g according to the probabilities

._ )_/'szoofﬂ

new location for the motif)

144
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Gibbs Sampling (6)
Running Gibbs Sampling:
1. Initialize

2. Run until convergence

3. Repeat 1,2 several times, report common
motifs

145

Regulatory modules
* Regulatory Module — set of genes that are co-regulated by a
shared regulation program

« Knowing motifs from coexpression doesn’t guarantee where the
TF actually binds, or what the protein the TF is...

¢ Can use ChIP data in addition to GE data to identify regulatory
modules

« Alternatively, can combined known regulators data with GE data
to identify regulatory modules — e.g. Segal et. al Nat. Genetics
2003
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Advantages / Disadvantages

* Very similar to EM (essentially EM’s stochastic analog)

Advantages:
» Easier to implement

* Less dependent on initial parameters
* Less likely to converge to local minima than EM
* More versatile, easier to enhance with heuristics

Disadvantages:
» More dependent on all sequences to exhibit the motif

* Less systematic search of initial parameter space (doesn’t
converge to point estimate like EM)
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Assumption —

regulators are -
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regulated

Candidate regulators | | Expression data |
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Regulation Gene partition |[#——
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regulator genes | program learning

3 Gene

‘ )
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Segal et al Nat. Genetics 2003 [}
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Regulation programs

a . ‘ Segal et al Nat. Genetics 2003
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Defining regulation programs

« Regulation program specifies:

— Set of contexts (rules describing behavior of genes in

modules e.g. upregulation)

— Response of modules in each context
» Contexts organized in regression tree

— Decision nodes are regulators

— Each path to a leaf defines a context using texts on the path
Contexts effectively specify sets of arrays

— Context model: normal distribution over the expression of the
module’s genes in these arrays (mean, variance stored in
corresponding leaf)

— Small variance => tight regulation

Learning Module Networks with EM

. E-step - Given g's inferred regulation program, find module that
best predicts g's behavior

— For each gene g:

« Calculate:
P(g | regulatory _ program) = H p(g, | array context)

arrays

context ¢ of array j is defined as N(u..0,)
* Reassign gene g to the program that gives highest
P(g | regulatory _ program)

4 M-step - Given partition of genes into modules, learn best regulation
program (tree) through combinatorial search of trees
— Tree grown from root to leaves, for each regulatory node:
— Choose query that best partitions gene expression into two distinct
distributions
— Stop when no such split exists

151

EM learning details
* Initialize with clusters
» Converges after 23 iterations to the 50
modules (initial assignments changed for
49% of genes)
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Predicted Modules

» Regulators (in ovals) are
connected to modules
(numbered squares)

— Red line — regulation
supported in literature,
dashed line - inferred

* Module groups (boxes)
share common motifs and
sometimes common function

» Yellow regulators tested
experimentally

VETRE

Amino acid
matabolism

Energy
and cAMP
signaling

ONA and RNA
procossing

|| Muschear 153

Limitations

Requires a set of putative transcription factors as input and
predefined number of modules

Q

Cannot find regulators whose expression does not change
sufficiently for detection

Cannot identify multiple regulators that participate in a
regulatory even, will only identify one of them

Can mistakenly identify a gene as regulator because it is highly
predictive of a module either b/c it's a member of the module or
by chance (gene has to be a member of the putative regulator
set

Will not identify regulatory events specific to regulator and its
target

Can only handle non-overlapping modules — a gene can belong
to only one module (other methods address this problem)

WA/ MP20006)

gl Frieiera. Braxid
August 4-10, 2008

Analysis & modeling of biological
networks based on diverse data
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Biological networks — combinations

of many modules
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Challenges in modeling of
biological networks

» Scale of the problem:
— networks are collections of many regulatory modules
— Need more experimental data
— Need more training data
 Biology is compex
— Many different types of interactions
— Cellular compartments may play a role
* May need a step-wise process that integrates
experimentation

Q

=" _ @
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Open problems in
data integration

* No truly general & robust method for data
integration available

» Data sharing still a challenge

* Integration of data from multiple organisms
a promising field

* Need more experimental data

» Need better/more gold standards
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Perhaps a hybrid
e—— method?
é' mmr b T it B _:;
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Some hopes

» Data should be available in full, with full
descriptions of experiments

» Computational methods should be available for
use, and their algorithms clearly explained in
publications

» Clear and comprehensive evaluations, using at
least GO, which currently is the most complete
curated annotation (at least for yeast)
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