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Prediction of protein function is one of the major challenges of computational biology
today. Some studies have attempted to predict function of individual proteins
((Whisstock and Lesk 2003), while others have offered ideas, tools and methods for
high throughput, automated function prediction (Rost, Liu et al. 2003). In this tutorial
we will present some of these tools and ideas, and discuss many of the open
challenges in the field.

It is divided into two parts: First, we define "function”, discuss the approaches used
to study it in-silico and survey the available tools for function prediction. In this part
we elaborate on open challenges and un-tackled research questions.

In the second part (see the tutorial Slides), we use the recent literature to illustrate,
using real-life examples, the power, as well as some of the pitfalls, of current

function prediction methods.



Automatic prediction methods

Gap between available and annotated sequences

The relative simplicity with which researchers can obtain the sequences of biological
macromolecule led to the launching of several large-scale genome-sequencing
projects. Combined with thousands of individual sequencing laboratories all over the
world, these projects supply tremendous number of sequences. The pace at which
these sequences accumulate far exceeds the ability of experimental biologists to
process them and decipher their biochemical traits and biological functions. This
pace is so rapid that it outgrows even computer integrated circuits, often considered
to be the most rapidly advancing technological frontier. However, traditional
methods for analyzing protein function deal with a single protein at a time.
Expressing and purifying a protein, and studying its activity in vitro and in vivo, is
laborious and may take a long time. Therefore, most new sequences remain
without annotation. A tremendous effort is therefore invested in developing high
throughput methods for the analysis and prediction of protein function. The goal of
bioinformatics, in this context, is to devise computational tools that will help decipher
the information that is encoded in these sequences, thus enabling the prediction of
their structure and function.

The pressing need to annotate large numbers of newly sequenced proteins is not
the only raison d’etre of in silico function analysis. While exploring the molecular
minutia of a single protein may reveal its function, comparing and analyzing
thousands or even millions of proteins could sometimes be as, if not more,
revealing. Large-scale analysis of this sort could arguably be performed only using
computerized tools. In the next sections we will discuss some of the challenges of
function prediction and survey the tools and approaches that were developed to

explore protein function in silico.

How is this gap treated for protein structures?

A key notion of the Central Dogma of Molecular Biology is the hierarchical structure
in which biological information flows. The DNA and RNA sequences include the
information that is encoded into the sequence of proteins. This sequence largely
determines to what three dimensional structure the protein will fold (Anfinsen 1973).
The most successful approach in structure prediction is based on the simple notion
of using a known structure to predict the structure of proteins with similar

sequences.



The first entire genome (DNA) sequence of a free-living organism, Haemophilus
influenzae, was published in 1995 (Fleischmann, Adams et al. 1995). Currently, we
know the entire genomic sequence for over 100 organisms; for over 60 of these the
data is publicly available and contributes about 250,000 protein sequences, i.e.
about one fourth of all currently known protein sequences (Liu and Rost 2001; Liu
and Rost 2002; Carter, Liu et al. 2003; Pruess, Fleischmann et al. 2003). Only for a
small fraction of them is there an experimentally determined structure available.
Computational biology plays a central role in bridging this gap (Fleischmann, Moller
et al. 1999; Holm and Sander 1999; Luscombe, Laskowski et al. 2001; Thornton
2001; Valencia 2002; Valencia and Pazos 2002): For about 40% of all sequences,
we can deduce structure from homology to known structures (Gerstein and Levitt
1997; Teichmann, Chothia et al. 1999; Wolf, Brenner et al. 1999; Moult and
Melamud 2000; Liu and Rost 2001; Vitkup, Melamud et al. 2001; Liu and Rost
2002).

Protein sequence determines, to a large extent, where in the cell it will reside, with
which other molecules it will interact, what biochemical and physiological tasks it will
be able to carry out, and eventually when and how it will be broken down and
reduced to its building blocks. In short - the function, or in the case of a disease, the
malfunction, of every protein is encoded in its sequence of amino acids. Can we use
annotation transfer between similar sequences to predict function, the same way

this is done to predict structure?

Structure prediction methods applicable to function?
Annotation transfer - Sequence comparison

For about 60% of all sequences from current genome projects sequence homology
suggests some aspects of function (Bork, Ouzounis et al. 1992; Andrade, Brown et
al. 1999; lliopoulos, Tsoka et al. 2001; Koonin 2001). However, drawing a firm
conclusion about function is not always possible. Various analyses have established
that sequence similarity above a certain cutoff ascertains similarity in structure. Even
though the opposites is not always true, and proteins of similar structure may
sometime lack any detectable similarity, this relationship between sequence and
structure makes structural homology modeling a reliable way to predict structure of
newly sequenced proteins. However, the relationship between sequence and
function, and even structure and function, is more complicated. It is rather simple to
establish a sequence similarity cutoff that would ascertain that a pair of proteins
folds into the same structure. It is not yet clear how to determine a similar cutoff for

function.



Several studies have shown that the precise values for thresholds of significant
sequence similarity (T) that would imply function similarities are specific to particular
aspects of function and have to be re-established for any given task (Shah and
Hunter 1997; Ouzounis, Perez-Irratxeta et al. 1998; Devos and Valencia 2000;
Pawlowski, Jaroszewski et al. 2000; Wilson, Kreychman et al. 2000; Todd, Orengo
et al. 2001; Nair and Rost 2002; Rost 2002; Wrzeszczynski and Rost 2003). The
problem of annotating function was illustrated immediately after the release of the
first genome: 148 amendments were published a few weeks after the original
publication (Casari, Andrade et al. 1995). Similar amendments followed most papers
presenting entirely sequenced genomes (Ouzounis, Casari et al. 1996; Kyrpides and
Ouzounis 1998; Kyrpides and Ouzounis 1999). Several pitfalls in transferring
annotations of function have been reported, e.g. inadequate knowledge of
thresholds for 'significant sequence similarity’, or using only the best database hit, or
ignoring the domain organization of proteins (Galperin and Koonin 1998; Kyrpides
and Ouzounis 1998; Brenner 1999; Kyrpides and Ouzounis 1999; Mushegian 2000;
Devos and Valencia 2001; Tamames, Gonzalez-Moreno et al. 2001). However,
Eugene Koonin and colleagues turned the issue of annotation transfer errors around
by collecting a few examples for which subsequent experiments showed that
theoretical predictions had been more accurate than previous experiments (lyer,
Aravind et al. 2001).

What is function?

Structural similarity is a measurable magnitude, making structure prediction and its
assessment a fairly rigorous domain. It is easy to score a prediction according to its
similarity to the experimentally determined structure, and it is relatively
straightforward to group proteins according to their structure in order to create a
training set for a machine learning algorithm. Function, however, is a fuzzy term.
When referring to protein function, different people mean different things. While
biophysicists refer to physico-chemical characteristics of a protein as its function,
biochemists are more likely refer to its biochemical traits or to the biosynthetic
pathways in which it is instrumental. Molecular biologists may refer to its cellular
role, and others, such as physiologists, developmental biologists or neurobiologists,
may refer to its role in the context of the tissue or even the entire organism.

Several groups and associations have ventured to solve this problem by introducing
rigorous schemata to define function. One of the first attempts was the introduction
of Enzyme Classification (EC (Webb 1992)); this classification uses four digits to
classify enzymatic activity (Todd, Orengo et al. 1999). The MIPS database attempts



to extend this idea to a wider spectrum of more proteins and more roles through its
classification catalogue (Mewes, Frishman et al. 2002). Another characterization of
protein function originates from the Gene Ontology (GO) consortium (Ashburner,
Ball et al. 2000). GO distinguishes three levels of protein function. (1) Molecular
function: at the molecular level, the protein can, for example, catalyze a metabolic
reaction or transmit a signal. (2) Biological process: a set of many co-operating
proteins is responsible for achieving broad biological goals, for example, mitosis or
purine metabolism, or signal transduction cascades (3) Cellular component: this
category includes the structure of sub-cellular compartments, the localization of
proteins, and macromolecular complexes. Examples include nucleus, telomere, and
origin recognition complex. The sub-cellular localization of a protein is an essential
attribute for this level. Although not complete, GO constitutes the best set of

definitions available today.

Problem: functional information not machine-readable

Nearly all databases present the protein sequence and structures are in formats that
are more or less straightforward to parse by computers. Thus, researchers can
construct large data sets of protein structure and use them to train machine-learning
algorithms and develop structure prediction tools. However, functional annotations
are mostly written in free text using a rich biological vocabulary that often varies in
different areas of research. Such annotations are primarily meant for the eyes of
human experts, hence, they are not machine-readable (Eisenhaber and Bork 1998).
Another problem that hampers automatic annotations is the quality of database
annotations: only a few database groups attempt quality control of curated
annotations (Tsoka and Ouzounis 2001).

The reliability of transfer by homology depends on the particular feature of
function/structure considered. In order to estimate the accuracy in transferring
function given a particular threshold in sequence similarity, we have to complete the

following three steps:

1. Build data sets that have experimental annotations about the presence (true,
e.g. all proteins experimentally known to be nuclear) and absence (false, e.g.
all proteins experimentally known NOT to be nuclear) of a certain aspect of
function.

2. In order to avoid estimates that are incorrectly biased by the distribution of
today's experimental information (Rost 2002), a representative sub-set of
sequence-unique proteins from the true data has to be extracted and aligned



against all proteins in the true set (minus the representative sub-set) and false
set.

3. For all alignments, we then have to count how many true and false we find at
every given threshold for sequence similarity.

How should one measure sequence similarity? The most popular way is the level of
pairwise sequence identity, i.e. the percentage of residues that are identical in an
alignment of two proteins (R on R -> 1, R on K -> 0). The major problem with such a
score in the context of automatic annotations is that it does not reflect the length of
the alignment. For example, a stretch of 11 identical residues may differ in both
function and structure (Rost 1999; Nair and Rost 2002; Rost 2002). On the other
hand, levels of pairwise sequence identity of around 33% for alignments longer than
100 residues, or 22% for alignments longer than 250 residues imply similarity in
structure (Sander and Schneider 1991). This observation is used to compile an
empirical threshold for significant sequence similarity as a function of alignment
length (Nielsen, Engelbrecht et al. 1996). We refer to this threshold as the HSSP-
value; it is empirically chosen such that any pair of proteins A, B have similar
structure if HSSP-value (A,B)>0. Another measure of sequence similarity is the
expectation value built into the popular PSI-BLAST (Altschul, Madden et al. 1997)
alignment program. An important point to realize for BLAST and PSI-BLAST users is
that the expectation value depends on the database used to search for related
proteins. This implies the following: assume we align proteins A and B by pairwise
BLAST in two ways: (i) by searching with A against SWISS-PROT, and (i) by
searching with A against SWISS-PROT + PDB (Berman, Westbrook et al. 2000) .
Even if the resulting alignments between A and B are identical, the expectation
values may differ significantly due to the difference in size of the two databases.

Using these measurements of sequence identify it is possible to determine whether
two aligned proteins are likely to share the same structure. However, when it comes
to functional annotation transfer things get more complicated. Unfortunately, the

accuracy of transferring different aspects of function differs substantially.

From sequence to structure, from structure to function

The attempt to extract biologically important information from protein sequence has
been dominated in the last few decades by structure prediction. Since sequence and
structure are so tightly interconnected, high throughput function prediction can
benefit from the automated methods for structure prediction. Two kinds of tools for

structure prediction are of particular interest in this context: prediction of solvent



accessibility and prediction of transmembrane segments. Active sites in proteins are
most often exposed to the solvent so as to enable the interaction between the
protein and its target. Hence identifying the solvent accessible residues in a protein

is an important step in zooming in on the functional residues.

Solvent accessibility

Most of the methods that predict solvent accessibility combine searches for
sequence homologues, which are used to construct a sequence profile, and a
machine learning algorithm, which uses the profile to predict the solvent accessibility
of a residue.

Prediction methods

PHDacc and PROFacc: These two sister methods (Rost, Casadio et al. 1996),
which are part of the PredictProtein service, are based on the same concept, the
second being an improvement of the first. When a query sequence is submitted to
the server the program perform a database search and constructs a sequence
alignment using MaxHom (Sander and Schneider 1991). A neural network then
assigns one of ten possible levels of exposure to each residue in the query
sequence. These states could be translated into relative solvent accessibility,
describing for each residue its accessibility to the solvent as a percentage of its
surface area. Alternatively, the ten states could be grouped into a two state scheme:
if more than 16% of the surface area is accessible to solvent it is defined as
exposed; otherwise, the residue is considered to be buried. The 10-state scheme
could also be used to predict solvent accessibility in terms of square Angstroms.
Jpred: Jpred (Cuff and Barton 2000) is a prediction service that uses profiles that
are produced by HMM and by PSI-BLAST. A neural network uses these profiles to
predict one of three categories of exposure: 0%, 5% and 25%. The output of
predictions from two different Networks is combined to give an average relative

solvent accessibility.

Transmembrane segments

The communication between a cell and its surroundings, be it a unicellular cell
sensing its medium, or an animal or plant cell interacting with other cells in its
vicinity and in other tissues, is based almost exclusively on proteins that are
embedded in the cell's membrane and interact with molecules on both the inter-
cellular and the extra-cellular sides. Integral membrane proteins compose,
according to some estimates, 25% of the proteomes sequenced thus far (Melen,

Krogh et al. 2003). Identifying these transmembrane proteins and deciphering their



molecular mechanisms is, therefore, of high interest in many fields of biomedicine.
Typically, the transmembrane segments are classified into one of two classes
according to their secondary structures: helix or strands. It is reasonable to assume
that all transmembrane segments share common biophysical features. These
common features are probably reflected in the protein sequence, and hence many
bioinformaticians are attempting to develop methods that identify transmembrane
segments in-silico. The basic biophysical requirement for a residue to be buried in
the membrane is hydrophobicity. High hydrophobicity is what enables most of the
transmembrane segments to remain in the membrane and avoid the solvent on
either of its sides. Hence, the first and most basic methods focused on a search for
long hydrophobic stretches of sequence. In 1982 Kyte and Doolittle (Kyte and
Doolittle 1982) proposed a simple method to identify transmembrane segments of
proteins, based on the analysis of hydropathy. Since that pioneering work, many
groups have suggested improvements to Kyte and Doolittle’s idea, as well as novel
approaches to the problem. Some of them also offer prediction of the overall
topology of the transmembrane protein. The fact that it is difficult to decipher the
structure of trnasmembrane segments experimentally makes in-silico prediction both
a greater challenge and a more valuable tool.

Prediction methods

TopPred: Combining hydrophobicity analysis with the analysis of electrical charges,
TopPred (von Heijne 1992) was one of the first methods for the prediction of
transmembrane segments and the topology of transmembrane proteins. When a
protein sequence is submitted to TopPred, the program calculates a hydrophobicity
profile for it. Sequence stretches that are found to be rich in hydrophobic residues
are marked as transmembrane helices. Stretches that are hydrophobic but fail to
surmount a predefined cutoff of hydrophobicity are considered “putative
transmembrane helices”. Finally, based on various rules, the predominant of which
is the distribution of positive residues between the transmembrane helices, the
overall topology of the protein is predicted, with and without the putative helices.
PHDhtm: PHDhtm (Rost, Casadio et al. 1996) is the part of the PredictProtein
service dedicated to prediction of transmembrane helices. As in the cases of
secondary structure and solvent accessibility prediction, the method first constructs
a profile based on a database search and a multiple sequence alignment. Then, a
neural network predicts for each residue whether it is likely to be part of a
transmembrane helix. Another neural network is then used to decide whether the

protein as a whole is a helix bundle integral membrane protein. Finally, the system



predicts the topology of the protein based on its similarity to known topologies of
transmembrane proteins.

ProfTMB: Specializing in -strands, this method (Bigelow, Petery et al. 2004) uses
multiple sequence alignments to produce a profile that is fed to an HMM. The HMM
is trained on examples from one group of membrane proteins known as beta-barrels
- proteins that reside in the outer membrane of gram-negative bacteria, mitochondria
and chloroplasts - thus is particularly potent in finding sequences that belong to this
family. The service predicts whether the query sequence belongs to this class, and
identifies the transmembrane B-strands.

SOSUI: This server (Hirokawa, Boon-Chieng et al. 1998) bases its predictions on
four parameters: First it calculates the hydropathy based on the Kyte-Doolittle index.
Then it calculates charges of the residues and the amphiphilicity, namely the
distribution of electric charges around the helix. Finally, the length of the sequence
is incorporated into the calculation. The output of the program includes a graph with
the hydropathy profile of the query sequence, and a helical wheel diagram of the
predicted transmembrane segments. This representation shows the different
features of the helix residues and enables the visualizations of the biophysical traits
of the helix as a whole.

TMHMM: TMHMM (Krogh, Larsson et al. 2001) uses hidden Markov models (HMM)
to predict transmembrane segments and the topology of the transmembrane
proteins. Many machine learning algorithms are designed to identify patterns in
ostensibly irregular sequences. Among these, HMM is particularly useful in matching
a sequence to a predefined “grammar”. Transmembrane proteins tend to obey a
relatively strict “grammar” — with alternating segments of membrane and non-
membrane segments and a well-defined organization of positively charged residues.
Using HMM, TMHMM tries to match the query sequence to this “grammar”, derived
from a set of well-characterized transmemrane proteins. By searching a known
transmembrane “grammars” to which the query protein obeys, TMHMM predicts the
segments that are most likely to be transmembrane and the most likely topology of
the whole protein.

DAS: The Dense Alignment Surface (DAS) method (Cserzo, Wallin et al. 1997)
assesses the sequence similarities between segments of the query proteins and
known transmembrane segments. Thus, it identifies those sequence stretches in the
query sequence that are likely to be transmembrane by virtue of their biophysical
similarity to stretches that were shown experimentally to be integrated in the

membrane.
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Functional residues, active sites and interaction sites

The attempt to develop automated tools for function prediction includes the
development of various methods to identify functionally important residues based on
their conservation throughout evolution (Casari, Sander et al. 1995). If a residue is
highly conserved it is likely to be functionally important. Several methods offer tools
that vary from identifying residues that have functional importance (such as
SequnceSpace, ConSurf and ISIS, see slides for details) to the identification of
highly specialized functional elements such as DNA or protein binding sites, or

regulatory elements in DNA sequence.

Motifs and Patterns

Another way to identify functional elements, or sequence signatures that are
associated with a certain function, is through sequence motifs and patterns.
Sometimes, the divergence between the sequence of a newly discovered protein
and any other annotated protein is too wide to establish relatedness based on
simple pairwise sequence alignment. But the existence of a relatively short
sequence motif that is highly conserved evolutionarily and highly specific functionally
within this newly discovered sequence might surrender the function of this protein.
For example, if we find in a newly-sequenced protein a sequence element that
appears in many known DNA binding sites, we can predict that the function of our
new protein involves an interaction with DNA. A few databases are dedicated to this
idea. They offer a large library of sequence motifs that have been collected either
manually by experts, or automatically by pattern-searching algorithms. Many of
these libraries include a searching tool. When a query sequence is submitted to
these tools, it is compared with all the known moatifs in search of a match. Finding
one of these well-characterized motifs in a newly discovered sequence could offer
some insights into its structure, function and even mechanisms of action.

Prediction methods

PROSITE: Developed and maintained by the team that maintains SWISS-PROT,
PROSITE (Falquet, Pagni et al. 2002) is a large collection of biologically important
motifs that is curated manually. The database contains three types of motifs:
patterns, rules and profiles; each represents a different automated method of
searching for motifs. These methods were applied to SWISS-PROT to construct a
large database of motifs. Every entry in PROSITE includes a description of the
proteins that it is designed to detect and the reason for including it in the database.
The close relationship between SWISS-PROT and PROSITE, is most beneficial

when it comes to annotations. The wealth of information included in each database
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also benefits the annotations of its sister database as they are often updated
together by their developers. It is possible to search PROSITE using free text to
mine the annotation, or using a SWISS-PROT / TrEMBL ID. It is also possible to use
ScanPro, a search tool for scanning a sequence against PROSITE.

Blocks: Blocks (Pietrokovski, Henikoff et al. 1996) is a database of motifs that has
been produced automatically, from an ungapped multiple sequence alignment of the
most conserved regions of proteins. Blocks offer a large database of motifs that
have been gleaned from InterPro (Apweiler, Attwood et al. 2000) - a database of
protein families, domains and functional sites, that is an integration of many motif
libraries. The Blocks that are produced from InterPro can be searched using a
search tool called Blocks searcher. Blocks maker, the tool that was used to produce
the Blocks database, is offered to the users who want to produce their own Blocks
from a dataset they have constructed.

Pfam: Using hidden Markov models (HMM) Pfam (Sonnhammer, Eddy et al. 1997),
offers a powerful tool for producing motifs from alignments and for finding them in a
guery sequence. Based on this tool the developers built a manually curated
database of protein families. Pfam was used by several genome projects (including
the human and the fly) for high throughput annotation of the function of newly
discovered genes (Bateman, Birney et al. 2002). Each protein family is represented
in Pfam by a set of well-characterized proteins, that are used to train the HMM, and
additional sequences that are obtained when the trained model is used to search for
new members of the family. The annotation in Pfam includes a description of each

family and links to other resources and literature references.

Sub-cellular localization

The methods we covered so far have all been based on the notion of annotation
transfer. That is, finding similarities between a query sequence and other proteins
that have been thoroughly characterized experimentally. However, in recent years
attempts have been made to develop tools that will decipher the function of a protein
from its sequence even when the most sophisticated tools for annotation transfer
yield no results.

When the pioneers of structure prediction launched their enterprise, one of their first
steps was to break down the somewhat fuzzy concept of “structure”, into well-
defined structural features like “secondary structures” or “topologies”, which we
discussed above, and other concepts like “structural family” or “fold” which will be
discussed in the next chapter. If “structure” is a fuzzy concept that requires a

meticulous set of subcategories, then “function”, as we explained above, is even
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more so. What we usually refer to as the “function” of a protein could be purely
biochemical (such as “phosphorylation”), cellular (e.g. “cytoskeletal protein™),
physiological or pertaining to the organism as a whole (e.g. “developmental”). Each
of these implications of “function” depends on different biophysical and biochemical
features of the proteins, and hence is probably encoded differently in its sequence.
Therefore, if we want to predict function from sequence, a first step would be to
define which aspect of function we attempt to predict. The eukaryotic cell has many
compartments, each of which host very different biochemical and biological
processes, carried out by different proteins. Identifying the sub-cellular localization
of a newly discovered sequence is a crucial step in finding the process in which it
partakes and what its function may be. A few groundbreaking works in recent years
have shown that, in many cases, it is possible to predict the sub-cellular localization
of a protein from its sequence.

Prediction methods

SUBLOC: Using the amino acid composition alone, SUBLOC (Hua and Sun 2001)
applies Support Vector Machine (SVM) to predict in which sub-cellular locale a
protein resides. It offers one of three localizations for prokaryotes (extracellular,
periplasmic, cytoplasmic) and four for eukaryotes (extracellular, mitochondrial,
cytoplasmic, nuclear).

PSORT: PSORT (Nakai and Horton 1999) receives as an input the amino acid
sequence of a protein and the type of organism from which it was obtained (gram
positive bacteria, gram-negative bacteria, yeast, animal or plant). Based on the
origin of the protein the system checks for a few sub-cellular localizations (e.g.
chloroplast for plant cells). The program then searches for several features that may
reflect the sub-cellular localization of the protein. For instance, it has been found that
the trafficking of proteins to some sub-cellular compartments is dictated by short
signal peptides at the N or C terminal of the protein. PSORT employs a library of the
known signals peptides and searches for them in the query sequence. It also checks
predicted structural features (such as topology that may indicate that protein is
transmembrane, amino acid composition, and PROSITE motifs.

TargetP: TargtP (Emanuelsson, Nielsen et al. 2000) focuses on signal peptides at
the N-terminal end of a protein. It uses a series of machine learning algorithms
including neural networks and SVM to identify signal peptides of three types:
chloroplast transit peptides, mitochondrial targeting peptides and secretory pathway
signal peptides. The interface of TargetP enables the user to define the desired

specificity of the prediction.
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LOC3D: LOC3D (Nair and Rost 2003) is a database of predicted sub-cellular
localization for eukaryotic proteins of known 3-D structure. It uses three methods:
predicNLS, which searches for a known nuclear localization signal, LOChom, which
uses homology to determine localization, and LOC3D, which is a neural network
based prediction method. LOCkey, a related service uses keywords in SWISS-
PROT annotation to predict the sub-cellular localization. Altogether, this suite offers
comprehensive coverage of the methods and approaches suggested and

implemented so far for prediction of sub-cellular localization.

Functional class

Monica Riley introduced the most widely used schema for classes of cellular
function to annotate E. coli (Riley 1993). TIGR (The Institute for Genome Research)
and many other genome centers have adopted this schema with minor
modifications. Transferring annotations of cellular function by homology has for long
been almost the only field in which methods were developed. In fact, many
researchers exclusively consider such methods when referring to the prediction of
protein function. However, recently groups have begun developing methods that
predict functional classes in the absence of experimental annotations.

Functional classes can be predicted from sequence. An interesting hybrid system uses
inductive logic programming to predict functional classes with and without homology
to experimentally annotated proteins (Clare and King 2002). While it is not clear how
successful the system is in ab initio prediction, the levels of accuracy published on
average appear promising. Genes located in a close neighborhood on the genome
may have some functional commonalities. While such neighborhood relations
sometimes enable prediction of aspects such as classes of cellular function, the
average signal is very weak, i.e. most often neighbors are not related in function
(Tamames, Casari et al. 1997; Overbeek, Fonstein et al. 1999; Galperin and Koonin
2000). The most recent breakthrough in the field of predicting protein function came
through a collaboration of the groups from Soren Brunak (CBS Copenhagen) and
Alfonso Valencia (CNB Madrid). Their ends are to predict cellular function from
sequence alone. Their means are complex, elaborate, and hierarchical systems of
neural networks (Jensen, Gupta et al. 2002). A first group of networks is used to
identify 'sequence features' (like protein length or amino acid composition) that
optimally separate between any two types of functional classes. These basic
predictions are then combined into a final prediction step, again through neural
networks. The authors applied their method to annotating functional classes for all

human proteins. For example, the prion protein is predicted to belong to the
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‘transport and binding category' and to 'not have enzymatic activity'. This appears
compatible with the observation that the prion binds and transports copper while no
catalytic activity has ever been observed (Brown 2002). Recently, the Brunak group
have applied their new concepts to identifying novel enzymes in archae (Jensen,
Skovgaard et al. 2002) and to predicting the functional type of all human proteins
according to the GO classification (Jensen, Gupta et al. 2003). The most impressive
news from these ground-breaking methods is that aspects of function can be
predicted without homology, i.e. for completely uncharacterised proteins.

Prediction methods

EUCLID: This method (Tamames, Ouzounis et al. 1998) uses the keywords in
SWISS-PROT to assign a protein to one of Reily’s functional classes. The algorithm
at the heart of this method is a basic Machine learning algorithm that learns, based
on a manually curated training-set, which composition of keywords is most likely to
indicate that the protein belongs to a certain functional type. The developers report
that in more than 90% of the cases the functional type that was determine by the
automated method was identical to the one that was assigned to it by a human
experts. However, EUCLID requires that some annotation, namely SWISS-PROT
keywords, would already be assigned to the sequence. Thus, it is not really a
method for prediction from sequence. Having only the sequence of a newly
discovered protein would not allow one to use EUCLID.

ProtFun: ProtFun (Jensen, Gupta et al. 2003) represents a recent and promising
step towards the prediction of function from sequence. To define a functional type,
ProtFun uses Gene Ontology (GO). Each protein could be assigned to a certain
molecular function, a certain biological process and certain cellular component. GO
is attempting to assign a number to each protein that will represent these three
types of functional description. Currently there are many hundreds of GO categories.
ProtFun focuses on 347 of them and uses complex systems of neural networks to
predict the GO functional classification of a protein from its sequence. The
developers report an impressive accuracy — in most cases more then 90% of their
predictions are correct. However, currently, their coverage is only partial, and many
of the query proteins are returned without any prediction. Yet, when it does give a

prediction, in most cases it is correct.

Conclusion
The ability to analyze large amounts of data simultaneously enables computational
biologists to compile large datasets of functionally similar proteins and use them to

predict function. By comparing many proteins of a similar function one could identify
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typical characteristics in the sequence or the structure of these proteins. The
characteristics features could then be used to search among vast numbers of
unannotated sequences for other proteins that may have the same function. A large
number of methods, some of them surveyed above, already offer predictions based
on this concept. However, the field is still in its infancy and each of the stages in this
process could be enhanced and improved.

Sub-cellular localization and some functional sites can be predicted with high
accuracy from sequence. One challenge in the field is to define other functional
aspects that could be predicted from sequence or structure.

Thousands of sequence motifs and patterns are available in different databases and
could be used for prediction. Improving the methods for finding motifs and patterns
automatically and associating them with functions remains a major challenge.
Structural motifs and patterns are hard to identify in annotated proteins and harder
to search for in unannotated ones. Improved tools that will combine structural
alignment with biophysical and spatial analysis may constitute a breakthrough in this
arena.

Finally determining the sequence similarity threshold for each function is a
continuous effort that requires a wise choice of sequence alignment parameters and
a cautious utilization of available sequences.

Almost all of these methods depend on large veritable datasets for training. Better
methods for data mining that would lead to larger and cleaner datasets are one of
the major keys for the progress of the field. Tools that are based on the conceptual
approach we described can automatically predict function, or some aspects of it, for
a large number of proteins in a relatively short time. Hence they are very useful for a
high throughput annotation of whole genomes or large datasets. The results of these
tools could also be used for the analysis of single proteins by theoreticians or
experimentalists. These points are illustrated in the tutorial second part (Part II:

Practical Examples, see the tutorial Slides).
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Motifs and patterns

« Manual sequence alignment and annotation of patterns.
¢ Automatics alignment and annotation.
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Annotation Transfer
Possible solution

» Establish a family specific similarity cutoff
« Establish a function specific similarity cutoff.
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Annotation Transfer
open challenges - motifs and patterns

* Automate

o Unify

* Remote
homologues
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Structural patterns open challenges - structural patterns

« Manual identification of active site
¢ Automatic structural alignment? .
e Find

Search for this

structural pattern in L4 Search

T S Y G — @ « Add biophysics of the site to the

spatial search
Transfe}' function ﬁ

For review see: Jones & Thornton (2004) Curr Opin Struc Biol 8:3-7

Identify active site /
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Function by Association

« Differentiate functional and physical interaction

< Improve accuracy and coverage (data,
algorithm)

¢ Ab-initio prediction

Bairoch A. (2000) Nucleic Acid Research. 28:304-305 43
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Expression data Machine Learning / Clustering  Functional classes

For example see: Brown et al. (2000) PNAS 97:262-267 44
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On Mycoplasma genitalium

Method % of genes to which criterion is applicable
Gene fusion 6%

Conservation of 45%

the local context (37% + 8%)

Genomic profiles 11%

Combined ~50%

Huynen et al. (2000) Genome Res 10: 1204-1210 25

w Call Pelarity. |
B Coll Wall Madanasis

® Call Swuesan |
= Mtoes

& G Syninesis
ik Mapnie

a7

How useful are these methods?

Escherichia coll K12, coverage of functional annofations

70 , « 4 |* Homologs (in SWISS-
-t o PROT) with at least some
= &0 A '.\!., functional annotation
= b2} " Ganes having at least
@ 50 J ane significant genamic
2 . context association
2 40 A 7§ )
- KA Consenved nelghborhood
@
< 30 'v';’:.v M = Gene fusions
© ".‘ Co-nccurance
20 + ¢ ?ﬁ:'u-
v Lo
10 A g
0 : e .
1988 1993 1998 2003
Time (years)
Current Opinian in Call Biakegy
Huynen et al. (2003) Curr Op Cell Biol 15: 191-198 46

[Function by Association
Function by association: open challenges
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e Ab-initio prediction

48
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Sub cellular localization (nucleus,
membrane, etc.)

Post translational modifications
Functionally important residues
Interaction sites

49

50

composition
Abinitio all residues!
Hormelogy - surface only

SedUence =tru

[ g

M ot signal peptide Protein-protein

interaction
M g @arget motif

51 52




N-terminal signal peptide cleavage

Proteolytic cleavage, proteosome
cleavage

Phosphorylation
Lipid modification
N- and O-glycosylations

For review see: Rost ez al. (2003) CMLS 60:2637-2650 53

Variable Conserved

- .QIKILGNA.
) 1Z_pp--pp.

Ofran & Rost (2003) FEBS Letters 544:236-239 55

Glaser et al. (2003) Bioinformatics 19:163-164

54

Ofran & Rost (2004) submitted

56
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DNA binding
Antigenic sites
Metal binding
lon binding

Improve coverage and
accuracy

57

Input

Sequence
ADRTYFGH
NWDERFGH
TYMKLPRS

Extract Features Associate GO Terms
i ] Clués ProKnow L‘Em!.-'u.ﬂcr.i' Vocabulary
Feature Extractors  Fach feature  Knowled b Functions mapped to
*DALL/ DASEY may give — " protein features by the
" RIGOR multiple clues Annotation Profile
“PSI-BLAST
4 PROSITE T
“DIp _ | Protein Features Bives Theoier ta
“Fold P
b3S Mtifs weight function
“Bequence
“Motifs

“Functional-linkages

Weighted Set
of Functions

Pal & Eisenberg (2005) Structure 13(1):121-30

59

. . . .
Sequence Phenotype Structure Homology Expression

MIP Class

Clare & King (2003) Bioinformatics 19:ii42-ii49
58

KKVVLGKKGDTVELTCTASQKKSIQFHWKNSNQIKILGNQG

: ———> GOclass

Jensen et al. (2002) J. Mol. Biol. 319:1257-1265 60
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T

&
i e
cpﬁa‘?\(@i@ \é“’o yﬁé\ ,§\§ 69@ By @45\_\5@’ J

High throughput predictions
Automated Function Prediction

Large scale Comparative Genomic

functional analysis analysis annotation

Rl
o o 5’} I
vl LS S é"f & ,f(“e, & o?i&“f
X '
oz| O o (] OC) O+ Amino acid biosynthesis
. o 3
Qo o O@ ) © | Biosynthes's of cofactors
Predict o | C O@O O | sy
H ] 0] O OO Cell envelope
fu n Ctlonal Q o 0oQ o0 Cellular processes
class from o 00 O@O O fudhsms
@ o O O O Enargy matabolism
Seq U e n Ce @ o O o OO0 Faity acid metabolism
alon e o @80 ® {0 } Purines and pyrimidines
(ORSRS] C‘O O Regulatory functions
o O 0 @ @ e
0] o000 O 8] Translation
® e a] ) O O Transport and binding
Jensen et al. (2002) J. Mol. Biol. 319:1257-1265 61
T
~— Meta-Server
<
63

62

BlData

®Algorithms

QDefining the problem

L Choice of relevant features
UPreparation of data
QAssessment of performance

64
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14th Annual International Conference On Intelligent Systems For Molecular Biology

Computing Biological Function: USlng Homology Transfer

Bioinformatics approach to the analysis and prediction of protein function

(Part 2)

Yanay Ofran & Marco Punta
Columbia University, New York

Example 1

Trusted dataset of

annotated proteins
Structure Subcellular localization

100 - 100
> > ER and Golgi Other
£ 80 geof| (true positives) (true negatives)
8 g | 676-312 8417
2 60l 260
8 3 I
3 |3 3
£ a0f T Sl s £ 40t i PSI-BLAST A
& L w: 4 . w1l RS S L
."c!n 20t i . :. ?!” 201 iy

f:; e . S . é s " 2 .
& @ " SO P PSS N TS 1

; 5 100 200 300 400 500
© " numoer of residucs alned * . it iatlomn it [ st [ HSSP |[ E-value |

| Wrzeszezynski KO and Rost B - CMLS (2004), 61:1341-1353 |




Example 1 Example 1

| Golgi proteins alignments |

[ [ J | ) J |
[ ) | J | ) | ) [ ) | J | J | )

] [ J | J | J |
J | J | J [ J | J | J | ]
] [ J J J
Golgi proteins

M@ YPXOYOY®) | \rzcszczynski KO and Rost B - CMLS (2004), 61:1341-1353
%-10, 1008

Fortaleza, Brazil

August

| Golgi proteins alignments |

Golgi proteins

M| @ YPXOYOY®) | \rzeszczynski KO and Rost B - CMLS (2004), 61:1341-1353
%-10, 1008

Fortaleza, Brazil

August

20

Example 1 Example 1

| Golgi proteins alignments |

o 20 40 60 20 100 G0 -40-20 O 20 40 60 20 0 -100 -200 -200 -400 -500
] B R ) = T T T T

E — @ )
= = = Sy

3 80 F

4 60

4 40

Accurac}'
B & 2 B
T T
b I |
| 1
a3eraa0)

4 20

o -

[ )
[ )
[

-
=1
Sl

T

3 a0 E

4 G0

40

Agg;r']g'y
B &5 2 8
T

Hz |z0f

=
T

M@ YPXOYOY®) | \rzeszczynsi KO and Rost B - CMLS (2004), 61:1341-1353 |
%-10, 1008

Fortaleza, Brazil

August




Example 1 Example 1

60-40-20 0 20 40 60 20 0 -100 -200 -300 -400 -500 0 20 40 60 80 100 | -GO0-40-20 O 20 40 &0 S0
188 [Er 10100 10

. ml,

5 oL g Jz | =0 g J=

l: ]

2 Js |80 3 J&

< <

= (<

Golgi [] Golgi []

0. : il

o TR RN VR o 5 ol s Bl 2 S R I e gl OO s e P B V= TR 2
Percentage sequence identity | | HSSP value | |[ Log(BLAST/PSI-BLAST E-vilue) Percentage sequence identity | | HSSP value | |[ Log(BLAST/PSI-BLAST E-vilue)
—— — —
‘ =@ PSI-BLAST accuracy =8~ PSI-BLAST coverage U ‘ == PSI-BLAST accuracy == PSI-BLAST coverage U
az az
1008 1008
Example 1 Example 1
60 -40 -20 20 40 &0 80 0 -100 -200 -300 -400 -500 g 20 40 &0 &80 100 -G0-40 -20 O 20 40 G0 S0 Q  -100 -200 -300 -400 -500
100 100 E1o[o0 O T T T T 410 o0 o0 T T w10 =10
B0 a0 20 ZnE
g o £ o
g |eo Eli &0 < 5 |a0 <
<@ o <9 o
%l g & 3
40 40 & 40 2
[+ [}
n) 20 20 =20
i i 0 i
100 100 oo 10 100
fa] s 2ol 20 a0 g |esok a0
geo oL &0 2 e ol 50
2
=) o
S0 40f 40 1Y 40 40 40
<
=l ]S 20 il a0l z0f
o T - . . )
o T N s 1 gl 5 ] B il 0 o N N N N 1 oL ol 3 R i
Percentage sequenc identitj ‘ HSSP value ‘ Log(BLAST/PSI-BLAST E-value) Percentage sequence identitﬂ ‘ HSSP value —‘ Log(BLAST/PSI-BLAST E-vé lue)
————— —————
‘ =@ PSI-BLAST accuracy =8~ PSI-BLAST coverage D ‘ == PSI-BLAST accuracy =8~ PSI-BLAST coverage




| Examile 1 | | Examile 1 |

Anngtalteid Different Hynotheti estimate Anngtalteid Different Hypotheti estimate
Proteome | Predicted | 25.2%'8" | swiss-Prot | Hypothetic d # of Proteome | Predicted | 25.2°'9" | swiss-Prot | Hypothetic d # of
in Swiss- . al protein in Swiss- ) al protein
annotation errors annotation errors
Prot Prot

S'Cer:"'s'a 70 53 17 8 12 S'°e’:"'s'a 70 53 17 8 12
A.thaliana 70 31 39 5 1-2
C.elegans 57 23 34 27 1
D.melanog 61 40 32 0 1

aster
Mmuseuld | 195 145 50 0 4
H.sapiens 347 273 74 0 7

All 6 800 565 235 40 16

| Examile 1 | | Examile 1 |

A:Sngtoalteid Different Hynotheti estimate
Proteome | Predicted | . 91| swiss-prot | Hypothetic d # of Different
in Swiss- ) al protein Annotated : .
annotation errors " Swiss- . estimate
Prot ’ as Golgi Hypothetic
Proteome | Predicted | . X Prot . d # of
S.cerevisia in Swiss- X al protein
70 53 17 8 1-2 Prot annotatio errors
€ n
A.thaliana 70 31 39 5 1-2 23 (98%) 800 565 235 40 16
C.elegans 57 23 34 27 1 16 (95%) 1110 675 435 66 55
D.melanog
aster 61 40 32 0 1 12 (90%) 1358 728 630 99 136
M'm”:w'“ 195 145 50 0 4 8 (85%) 1726 812 914 125 259
H.sapiens 347 273 74 0 7 7 (78%) 1853 826 1027 134 407
All 6 800 565 235 40 16




Beyond homology transfer

Liu J and Rost B - Protein Science (2001), 10:1970-1979

Example 2

‘ ‘ % mem ‘ ‘ % coils ‘ ‘ Yo sigp u

Eukaryotes

. ickTime™ and a
Bacteria ~ TIER L2 decompressor

are needed to'see this picture.

Archaea

05101520253035 2 4 6 81012 510 15 20 2530
ercentage of proteins in entire proteo

Methods used: PHDhtm, COILS, SignalP

— —
)_V‘M P_‘) 200 6‘1 Liu J and Rost B - Protein Science (2001), 10:1970-1979
le
i o

-

Example 2

QuickTime™ and a
TIFF (LZW) decompressor
are needed to see this picture.

Homology Transfer?

Homology transfer with > 30% SI, ~70% accuracy for EUCLID classification
Tamames...Valencia Bioinformatics 14 (1998)

Example 2
[ ] Semenn

Eukaryotes {
Bacteria ~ TESLS
are needed

Archaea {
0510152025 30 33!

ercentage of proteins in entire proteomF

Rost, B., Casadio, R. & Fariselli, P. (1996). Prot. Sci., 5, 1704-1718.

21



Example 2

Archagas Prokaryotes Eukaryotes

1357911131517 13579111315171357 911131517

MNumber of transmembrane helices

Example 2

Percentage of membrane proteins

Archagas Prokaryotes Eukaryotes

1357911131517 13579111315171357 911131517

MNumber of transmembrane helices

Example 2

Percentage of membrane proteins

Archaeas Prokaryotes Eukaryotes

1357911131517 1357911131517 1357 911131517

MNumber of transmembrane helices

Example 2

[ ]

Eukaryotes

({
{

Archaea

J %o coils

kTime™ and a
IW) decompressor
to'see this picture.

246 81012

ercentage of proteins in entire proteomF

[ Lupas, A. (1996). Meth. Enzymol., 266, 513-525 |

*From http:, nbi.dk/article_coiled-coil.

il_proteins1.jpeg
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Example 2

%o mem

‘ % coils ‘ ‘ Josigp* u

Eukaryotes {
Bacteria ‘
Archaea {

5101520253035 2 4 6 81012] 510 1520 2530
ercentage of proteins in entire proteo!

Nielsen

, ... & von Heijne, G. (1997). Prot. Engin., 10,

*Nielsen, Brunak and von Heijne Prot. Eng. 12 (1999) -

Microarrays

Two-hybrid systems

Mass Spectrometry

Experimental methods for detecting
protein-protein interactions

Fields FEBS (2005) 262:5391-5399 - Review

Mann et al. (2001) Rev Biochem. 70:437-473 -Review

ESPEJO et al. (2002) Biochem. J. 367 (697-702)

Using interaction maps

Sub-Cellular Localization View

Extracellular
Extracellular Matrix
Plasma Membrane
Synaptic Vesicle
Mitochondria
Endoplasmic Reticulum
Golgi

Lysosome
Cytoplasm
Cytoskeleton
Peroxisome
Ribosome
Centrosome
Nucleus

Uknown

[
[}
o
9}
9}
o
[ ]
o
[ ]
5
9}
[
[ ]
o
o

Nuclear Proteins =
C ic Proteins

Membrane and -
Extracellular Proteins [

nteraction Ratings

from: Giot, Rothberg et al. Science 302, 1727-1136 (2003):
A Protein Interaction Map of Drosophila melanogaster




Example 3

Online Mendelian Inheritance in Man (OMIM)

http://www.ncbi.nlm.nih.gov/omim/

lymphoma

- - -

Chen et al. Pacific Symposium on Biocomputing 11:367-378(2006)

Example 3

Online predicated human interaction database (OPHID)
http://ophid.utoronto.ca/ophid/

« N
<

0
Ko /

Example 3

Online Mendelian Inheritance in Man (OMIM)

http://www.ncbi.nlm.nih.gov/omim/

]

etc.

Example 3

Online predicated human interaction database (OPHID)
http://ophid.utoronto.ca/ophid/

- < w‘

24



Example 3

Online predicated human interaction database (OPHID)
http://ophid.utoronto.ca/ophid/

/.q\xé )
DN

A /

Example 3

Online predicated human interaction database (OPHID)
http://ophid.utoronto.ca/ophid/

Example 3

Online predicated human interaction database (OPHID)
http://ophid.utoronto.ca/ophid/

a )
~

Example 3

Online predicated human interaction database (OPHID)
http://ophid.utoronto.ca/ophid/
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Example 3

Online predicated human interaction database (OPHID)
http://ophid.utoronto.ca/ophid/

=1

Example 3

Online predicated human interaction database (OPHID)
http://ophid.utoronto.ca/ophid/

K'<]\XE
.‘}l\ -

.

s

/

Example 3

Online predicated human interaction database (OPHID)
http://ophid.utoronto.ca/ophid/

Example 3

26



Example 3

A/Mp >

from: Chen et al. Pacific Symposium on Biocomputing 11:367-378(2006)

Example 3

frequency

50

40

30

20

10

0.0

p-value=0.008

| -

01 02 03 04 05 06 07 08 Tﬂ.s 1.0
index of aggregation

from: Chen et al. Pacific Symposium on Biocomputing 11:367-378(2006)

Example 3

A/ MB>

Example 3

A/ MP.

27



Example 3

What information from structure?

If function is known...it can help us understanding

the underlying molecular mechanisms
(e.g. enzymatic reactions)

Using Structure

What information from structure?

If function is not known...we can use structural
similarity with proteins of known function
(if any) to annotate the protein

28



Structural biology

Know function @ Solve structure

Structural genomics

Solve structure @ Know function

Example 4

Target

*Sequence nT———"> < Template

ol <= Fungtion 1
.9 S — : lljunction N
e Structure pe—— - . Template

ol < . Funttion 1

o F
<———  «FunctionN

115

Example 4

Structure better than sequence

[ref] Keller JP, Smith PM, Benach J, Christendat D,
deTitta GT, and Hunt JF Structure 2002, 10:1475-87 114

Example 4
Target sequence

The MTO0146/CbiT sequence

1 MIPDDEF IKNPSVPGPTAMEVRCL IMCLAEPGKNDVAVDVGCGTGGVTLELAGRVRRVYA
IDRNPEAISTTEMNLQRHGLGDNVTLMEGDAPEALCKIPDIDIAVVGGSGGELQEILRI

KDKLKPGGR I IVTAILLETKFEAMECLRDLGFDVNITELNIARGRALDRGTMMVSRNPVA

192
LIYTGVSHENKD s

116

29



Example 4
Biosynthesis of cobalamin (vitamin B,,)

COOH COOH

=z

Example 4

Biosynthesis of cobalamin (vitamin B,,)

HN NH,
— HMB ——
117
Example 4
Known functional facts
Methylations

Precorrin-6y

Carboxylation

119

118

Example 4
Functional facts and hypothesis

Lower sequence similarity
with carboxylases

Methylations

Precorrin-6y

1 ]

strong sequence
similarity with other
B12 methyltransferase

Carboxylation

120

30



Example 4

Target

*Sequence nT————="> < Templates
!
o 1? <C——— e Precorrin-Carboxylase

e Structure

121

Example 4

CbiT structure

Keller JP, Smith PM, Benach J, Christendat D,
deTitta GT, and Hunt JF Structure 2002, 10:1475-87 122

Example 4

Some of the available programs for structural similarity searches:

DALL www.ebi.ac.uk/dali/
VAST: www.ncbi.nlm.nih.gov/Structure/VAST/vastsearch.html
GRATH: www.biochem.ucl.ac.uk/cgi-bin/cath/Grath.pl

CE: http://cl.sdsc.edu/ce.html

123

Example 4

Structural Comparisons

DALI output

SEQLENGTH 178
NALIGN 374
WARNING pairs with Z<2.0 are structurally dissimilar

## SUMMARY: PDB/chain identifiers and structural alignment statistics

NR. STRID1 STRID2 Z RMSD LALI LSEQ2 %IDE REVERS PERMUT NFRAG TOPO PROTEIN

1: 7768-A 1i9g-A 20.7 2.7 170 264 19 0 0 16 S Adomet-dependent methyltransfer

2: 7768-A 1ldus-A 17.7 2.6 157 194 21 0 0 12 S mjos8s2 - methyltransferase

3: 7768-A lvid 15.7 2.5 159 214 14 ] [ 14 s catechol o-methyltransferase

4: 7768-A 1méy-A 15.7 2.4 151 289 22 0 0 14 S s-adenosyl-methyltransferase

5: 7768-A 1im8-A 14.5 2.6 152 225 16 0 0 15 S yeco (methyltransferase)

6: 7768-A 1fbn-A 14.2 2.9 148 230 17 0 o 13 s mj fibrillarin homologue

7: 7768-A 1nv8-A 14.0 2.9 151 271 17 0 o 16 S hemk protein

8: 7768-A 1lkhh-A 13.9 3.4 151 193 13 0 0 14 S guanidinoacetate methyltrans

9: 7768-A lixk-A 13.5 2.6 148 298 19 o o 16 S methyltransferase

10: 7768-A 1jq3-A 13.3 2.9 153 295 12 0 0 14 S spermidine synthase (putrescine

11: 7768-A 1kr5-A 13.2 2.5 139 218 23 0 0 15 S I-isoaspartateo-methyltransf

12: 7768-A 1kp9-B 13.1 3.3 156 270 15 0 0 16 S cyclopropane-fatty-acyl-phosphol

13: 7768-A 1ejO-A 13.1 3.0 144 180 17 0 0 14 s ftsj (ftsj methyltransferase)

14: 7768-A 2erc-A 12.9 3.2 145 235 21 0 0 16 S rrna methyl transferase fragment

15: 7768-A 1ril-A 12.9 3.0 151 252 19 0 0 15 S mrna capping enzyme - methyltrans
| DALL http://www.cbi.ac.uk/dali/ -

31



Example 4
Visual comparison between target and template structures

Graphic visualization program: VMD, Humphrey W, Dalke A

and Schulten K. J. Molec. Graphics 1996, 14:33-38. 125
Example 4
Target
*Sequence T—————"> e« Templates
!
o 1? P * Precorrin-Carboxylase
o Structure T—————>>  «Template
!
* Adomet-binding
127

Example 4
Visual comparison with other known precorrin methyltransferases

precorrin
methyltransferases

DNA/RNA
methyltransferases

Graphic visualization program: VMD, Humphrey W, Dalke A 20
and Schulten K. J. Molec. Graphics 1996, 14:33-38.

Example 4
SAM binding site analysis
Motif M.Hhal M.Taql COMT role
1 AGxGG PSxAxGP GAxxG H-bonds
II E40 E7 1 E90 ;“l‘:g:edhv;liitll']oxyls
W41 172 MI1 V:W with
I D60 D89 S119 Ht-bonds toN
A L100 L142 W143 VAW contacts with
F18 F146 H142 adenine
N 1 Schluckebier G, O’Gara M, Saenger W, and Chencg X JMB 1995, 247:16-20
\‘E‘Mb 200 6 | 128 ‘

32



Example 4

Motif

SAM binding site analysis

Example 4

Example 4

SAM binding site analysis

130

CbiT-SAM crystal structure

Graphic visualization program: VMD, Humphrey W, Dalke A
and Schulten K. J. Molec. Graphics 1996, 14:33-38.

Example 4
CbiT-SAM crystal structure

Graphic visualization program: VMD, Humphrey W, Dalke A
and Schulten K. J. Molec. Graphics 1996, 14:33-38.

132




Example 4

SAM binding site analysis

Graphic visualization program: VMD, Humphrey W, Dalke A
and Schulten K. J. Molec. Graphics 1996, 14:33-38.

133

Example 4
Functional annotation of the target

Target

*Sequence ————"> «Templates

!
o 1? <——— e Precorrin-Carboxylase

o Structure  ©—————>>  « Template

1
o !l <=7+ Adomet-binding

* Precorrin-Methyltransferase

135

Example 4
Functional annotation of the target

Target

*Sequence nT————">  «Templates

!
o 1? <——— e Precorrin-Carboxylase

e Structure — Template

1
Ll <=7  « Adomet-binding

134
Example 4 | |
Precorrin binding site analysis
‘ GRASP: http://trantor.bioc.columbia.edu/grasp/ ‘
* From Keller JP, Smith PM, Benach J, Christendat D, deTitta GT,
and Hunt JF Structure 2002, 10:1475-87 136

34



Example 4
Functional annotation of the target

Target

*Sequence nT—————"> < Templates

!
o 1?2 <——— e Precorrin-Carboxylase

e Structure  E————=>  « Template
L]

* Adomet-Methyltransferase
* Precorrin-Methyltransferase

137

Example 4
Functional annotation of the target

Target

*Sequence nT————">  «Templates

!
7 <——— e Precorrin-Carboxylase

e Structure — Template
1

* Adomet-Methyltransferase
* Precorrin-Methyltransferase

Example 4

Structural similarity
with methyltransferases

Methylations

IR

P

Cot Precorrin-6y

A CH,

pEe I,

(] =TT

strong sequence Carboxylation

similarity with other
B12 methyltransferase

139

138

Example 4

Hypothesis on precorrin carboxylation:

* Spontaneous after double methylation

* CbiT protein is also a carboxylase

140

35



Structural genomics

Structural genomics: clustering




Structural genomics: checking leverage

Example 5

Strwrctural Classtfication of Pretens

2l

(@]

Search the scop database [scop 1.69]

You can use this search engme (o search the SCOP database usmg several access methods (ncluding sunid, sid, secs, PDD identifiers. and any
word that appears in any of the SCOF pages) as well as more sophisticated opions. Please read the oies for a detatled explanation and
examples, This kind of search iz imemal 10 a scor release and therefore will ays provide comple alts.

By checking the piss box, you can also search scor using the extemal MSTHite search engine for words that appear in several sexs ficlds in the

comesponding poB file (including header, author names, abstract, and MeSH terms from the primary citation), Please refer to MEDlite for more
details.

FUA

@ Scarch the scor database
. Scarch the ros database using ssnline.

Retrieve infarmation
Clear| the search form.

hi 19942005 The seop authers { scopiamee-finl, cam ok
July 2005

Example 5

Many structures better than one (!)

Example 5

Structural Classification of Proteins
el7]=A|=E]|
Fold: PUA domain-like

peesdabarrel; mived folded sheet of 3 strands; order 13432 strand [ and 3 are parallel 1o each other

Lineage:

Root: scop
2 Class: A lI beta proteins [48‘.'24
3. Foll: PUA domam-like [33696

peewdobarrel; mived folded sheet of 3 strands; order 13452; strand | and 3 are parallel to each other

Superfamilies:

1. PUA domain.like [RRE9T] ()
1. PUA domain [ssﬁm (15) e
RNA-hinding domain
2. ATP mlﬁmgv terminal domnmE sm|:41-
CONNGENS EXtra SIrnCiires; Ssome sim 'K beta-barrel domain
3. Ygu) N-terminal domain-like [£94 5II!2J-
4. Hypoihetical prodein L33 [110339] (1) e
DUFO84: Pfam 06171

See also: Iyer LM, Burroughs AM, and Aravind L. Bioinformatics.

2006; 22(3):257-63.

37



Example 5 Example 5

Strucmural Classification of Proteius Fold:PUA domain-like
8@ E]A]%[E]
Family: Hypothetical protein EF3133

DUF984: Plam 06171

PUA domain
YggJ N-terminal
domain-like

Lineage:

Root: scop
Class: Mvﬂw[ﬂ?ﬂl
. Fold: PUA domain-like [R8696]
,u:mluburm‘ mived folded sheet of 5 strands: order 13452; strand 1 and 3 are parallel io each other
Supa&mly PUA domain-like [88697)

PP e

[110339] ATP-sulfurylase
D B 417 N-terminal domain
Protein Domains: Hypothetical protein
I3 Hypoﬂm,al pmmn EF3133 [110340] EF3133
lis [110341] (1)
- SQQ&EZD! # ! Strwctural genomics targel

1- chaina [106541] .
2. chain b [106542] mm

Example 5 Example 5

Fold:PUA domain-like Fold:PUA domain-like

PUA domain PUA domain
YggJ N-terminal

domain-like

YggJ N-terminal
domain-like

ATP-sulfurylase
N-terminal domain

ATP-sulfurylase
N-terminal domain

Hypothetical protein
EF3133

Hypothetical protein
EF3133




Example 5

Hypothetical protein
EF3133

ASCH-superfamily?
(RNA-binding - predicted)

‘l/‘M 1 Iyer LM, Burroughs AM, and Aravind L. Bioinformatics.

Fortaleza, Brazil 2006; 22(3):257-63.
An .10, 1008

GRASP: http://trantor.bioc.columbia.edu/grasp/

CONSUREF: http://consurf.tau.ac.il/
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