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 Outline 

 

Prediction of protein function is one of the major challenges of computational biology 

today. Some studies have attempted to predict function of individual proteins 

((Whisstock and Lesk 2003), while others have offered ideas, tools and methods for 

high throughput, automated function prediction (Rost, Liu et al. 2003). In this tutorial 

we will present some of these tools and ideas, and discuss many of the open 

challenges in the field.  

It is divided into two parts: First, we define ”function”, discuss the approaches used 

to study it in-silico and survey the available tools for function prediction. In this part 

we elaborate on open challenges and un-tackled research questions.  

In the second part (see the tutorial Slides), we use the recent literature to illustrate, 

using real-life examples, the power, as well as some of the pitfalls, of current 

function prediction methods.  
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Automatic prediction methods 

Gap between available and annotated sequences 
The relative simplicity with which researchers can obtain the sequences of biological 

macromolecule led to the launching of several large-scale genome-sequencing 

projects. Combined with thousands of individual sequencing laboratories all over the 

world, these projects supply tremendous number of sequences. The pace at which 

these sequences accumulate far exceeds the ability of experimental biologists to 

process them and decipher their biochemical traits and biological functions. This 

pace is so rapid that it outgrows even computer integrated circuits, often considered 

to be the most rapidly advancing technological frontier. However, traditional 

methods for analyzing protein function deal with a single protein at a time. 

Expressing and purifying a protein, and studying its activity in vitro and in vivo, is 

laborious and may take a long time.  Therefore, most new sequences remain 

without annotation. A tremendous effort is therefore invested in developing high 

throughput methods for the analysis and prediction of protein function. The goal of 

bioinformatics, in this context, is to devise computational tools that will help decipher 

the information that is encoded in these sequences, thus enabling the prediction of 

their structure and function. 

The pressing need to annotate large numbers of newly sequenced proteins is not 

the only raison d’etre of in silico function analysis. While exploring the molecular 

minutia of a single protein may reveal its function, comparing and analyzing 

thousands or even millions of proteins could sometimes be as, if not more, 

revealing. Large-scale analysis of this sort could arguably be performed only using 

computerized tools. In the next sections we will discuss some of the challenges of 

function prediction and survey the tools and approaches that were developed to 

explore protein function in silico. 

How is this gap treated for protein structures? 
A key notion of the Central Dogma of Molecular Biology is the hierarchical structure 

in which biological information flows. The DNA and RNA sequences include the 

information that is encoded into the sequence of proteins. This sequence largely 

determines to what three dimensional structure the protein will fold (Anfinsen 1973). 

The most successful approach in structure prediction is based on the simple notion 

of using a known structure to predict the structure of proteins with similar 

sequences. 
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The first entire genome (DNA) sequence of a free-living organism, Haemophilus 

influenzae, was published in 1995 (Fleischmann, Adams et al. 1995). Currently, we 

know the entire genomic sequence for over 100 organisms; for over 60 of these the 

data is publicly available and contributes about 250,000 protein sequences, i.e. 

about one fourth of all currently known protein sequences (Liu and Rost 2001; Liu 

and Rost 2002; Carter, Liu et al. 2003; Pruess, Fleischmann et al. 2003). Only for a 

small fraction of them is there an experimentally determined structure available. 

Computational biology plays a central role in bridging this gap (Fleischmann, Moller 

et al. 1999; Holm and Sander 1999; Luscombe, Laskowski et al. 2001; Thornton 

2001; Valencia 2002; Valencia and Pazos 2002): For about 40% of all sequences, 

we can deduce structure from homology to known structures (Gerstein and Levitt 

1997; Teichmann, Chothia et al. 1999; Wolf, Brenner et al. 1999; Moult and 

Melamud 2000; Liu and Rost 2001; Vitkup, Melamud et al. 2001; Liu and Rost 

2002).  

Protein sequence determines, to a large extent, where in the cell it will reside, with 

which other molecules it will interact, what biochemical and physiological tasks it will 

be able to carry out, and eventually when and how it will be broken down and 

reduced to its building blocks. In short - the function, or in the case of a disease, the 

malfunction, of every protein is encoded in its sequence of amino acids. Can we use 

annotation transfer between similar sequences to predict function, the same way 

this is done to predict structure? 

Structure prediction methods applicable to function?   
Annotation transfer - Sequence comparison 

For about 60% of all sequences from current genome projects sequence homology 

suggests some aspects of function (Bork, Ouzounis et al. 1992; Andrade, Brown et 

al. 1999; Iliopoulos, Tsoka et al. 2001; Koonin 2001). However, drawing a firm 

conclusion about function is not always possible. Various analyses have established 

that sequence similarity above a certain cutoff ascertains similarity in structure. Even 

though the opposites is not always true, and proteins of similar structure may 

sometime lack any detectable similarity, this relationship between sequence and 

structure makes structural homology modeling a reliable way to predict structure of 

newly sequenced proteins. However, the relationship between sequence and 

function, and even structure and function, is more complicated. It is rather simple to 

establish a sequence similarity cutoff that would ascertain that a pair of proteins 

folds into the same structure. It is not yet clear how to determine a similar cutoff for 

function. 
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Several studies have shown that the precise values for thresholds of significant 

sequence similarity (T) that would imply function similarities are specific to particular 

aspects of function and have to be re-established for any given task (Shah and 

Hunter 1997; Ouzounis, Perez-Irratxeta et al. 1998; Devos and Valencia 2000; 

Pawlowski, Jaroszewski et al. 2000; Wilson, Kreychman et al. 2000; Todd, Orengo 

et al. 2001; Nair and Rost 2002; Rost 2002; Wrzeszczynski and Rost 2003). The 

problem of annotating function was illustrated immediately after the release of the 

first genome: 148 amendments were published a few weeks after the original 

publication (Casari, Andrade et al. 1995). Similar amendments followed most papers 

presenting entirely sequenced genomes (Ouzounis, Casari et al. 1996; Kyrpides and 

Ouzounis 1998; Kyrpides and Ouzounis 1999). Several pitfalls in transferring 

annotations of function have been reported, e.g. inadequate knowledge of 

thresholds for 'significant sequence similarity', or using only the best database hit, or 

ignoring the domain organization of proteins (Galperin and Koonin 1998; Kyrpides 

and Ouzounis 1998; Brenner 1999; Kyrpides and Ouzounis 1999; Mushegian 2000; 

Devos and Valencia 2001; Tamames, Gonzalez-Moreno et al. 2001). However, 

Eugene Koonin and colleagues turned the issue of annotation transfer errors around 

by collecting a few examples for which subsequent experiments showed that 

theoretical predictions had been more accurate than previous experiments (Iyer, 

Aravind et al. 2001). 

What is function? 
Structural similarity is a measurable magnitude, making structure prediction and its 

assessment a fairly rigorous domain. It is easy to score a prediction according to its 

similarity to the experimentally determined structure, and it is relatively 

straightforward to group proteins according to their structure in order to create a 

training set for a machine learning algorithm. Function, however, is a fuzzy term. 

When referring to protein function, different people mean different things. While 

biophysicists refer to physico-chemical characteristics of a protein as its function, 

biochemists are more likely refer to its biochemical traits or to the biosynthetic 

pathways in which it is instrumental. Molecular biologists may refer to its cellular 

role, and others, such as physiologists, developmental biologists or neurobiologists, 

may refer to its role in the context of the tissue or even the entire organism. 

Several groups and associations have ventured to solve this problem by introducing 

rigorous schemata to define function. One of the first attempts was the introduction 

of Enzyme Classification (EC (Webb 1992)); this classification uses four digits to 

classify enzymatic activity (Todd, Orengo et al. 1999). The MIPS database attempts 
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to extend this idea to a wider spectrum of more proteins and more roles through its 

classification catalogue (Mewes, Frishman et al. 2002). Another characterization of 

protein function originates from the Gene Ontology (GO) consortium (Ashburner, 

Ball et al. 2000). GO distinguishes three levels of protein function. (1) Molecular 

function: at the molecular level, the protein can, for example, catalyze a metabolic 

reaction or transmit a signal. (2) Biological process: a set of many co-operating 

proteins is responsible for achieving broad biological goals, for example, mitosis or 

purine metabolism, or signal transduction cascades (3) Cellular component: this 

category includes the structure of sub-cellular compartments, the localization of 

proteins, and macromolecular complexes. Examples include nucleus, telomere, and 

origin recognition complex. The sub-cellular localization of a protein is an essential 

attribute for this level. Although not complete, GO constitutes the best set of 

definitions available today. 

Problem: functional information not machine-readable 
Nearly all databases present the protein sequence and structures are in formats that 

are more or less straightforward to parse by computers. Thus, researchers can 

construct large data sets of protein structure and use them to train machine-learning 

algorithms and develop structure prediction tools. However, functional annotations 

are mostly written in free text using a rich biological vocabulary that often varies in 

different areas of research. Such annotations are primarily meant for the eyes of 

human experts, hence, they are not machine-readable (Eisenhaber and Bork 1998). 

Another problem that hampers automatic annotations is the quality of database 

annotations: only a few database groups attempt quality control of curated 

annotations (Tsoka and Ouzounis 2001). 

The reliability of transfer by homology depends on the particular feature of 

function/structure considered. In order to estimate the accuracy in transferring 

function given a particular threshold in sequence similarity, we have to complete the 

following three steps:  

1. Build data sets that have experimental annotations about the presence (true, 
e.g. all proteins experimentally known to be nuclear) and absence (false, e.g. 
all proteins experimentally known NOT to be nuclear) of a certain aspect of 
function.  

2. In order to avoid estimates that are incorrectly biased by the distribution of 
today's experimental information (Rost 2002), a representative sub-set of 
sequence-unique proteins from the true data has to be extracted and aligned 
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against all proteins in the true set (minus the representative sub-set) and false 
set.  

3. For all alignments, we then have to count how many true and false we find at 
every given threshold for sequence similarity.  

 

How should one measure sequence similarity? The most popular way is the level of 

pairwise sequence identity, i.e. the percentage of residues that are identical in an 

alignment of two proteins (R on R -> 1, R on K -> 0). The major problem with such a 

score in the context of automatic annotations is that it does not reflect the length of 

the alignment. For example, a stretch of 11 identical residues may differ in both 

function and structure (Rost 1999; Nair and Rost 2002; Rost 2002). On the other 

hand, levels of pairwise sequence identity of around 33% for alignments longer than 

100 residues, or 22% for alignments longer than 250 residues imply similarity in 

structure (Sander and Schneider 1991). This observation is used to compile an 

empirical threshold for significant sequence similarity as a function of alignment 

length (Nielsen, Engelbrecht et al. 1996). We refer to this threshold as the HSSP-

value; it is empirically chosen such that any pair of proteins A, B have similar 

structure if HSSP-value (A,B)>0. Another measure of sequence similarity is the 

expectation value built into the popular PSI-BLAST (Altschul, Madden et al. 1997) 

alignment program. An important point to realize for BLAST and PSI-BLAST users is 

that the expectation value depends on the database used to search for related 

proteins. This implies the following: assume we align proteins A and B by pairwise 

BLAST in two ways: (i) by searching with A against SWISS-PROT, and (ii) by 

searching with A against SWISS-PROT + PDB (Berman, Westbrook et al. 2000) . 

Even if the resulting alignments between A and B are identical, the expectation 

values may differ significantly due to the difference in size of the two databases.  

Using these measurements of sequence identify it is possible to determine whether 

two aligned proteins are likely to share the same structure. However, when it comes 

to functional annotation transfer things get more complicated. Unfortunately, the 

accuracy of transferring different aspects of function differs substantially. 

From sequence to structure, from structure to function 
The attempt to extract biologically important information from protein sequence has 

been dominated in the last few decades by structure prediction. Since sequence and 

structure are so tightly interconnected, high throughput function prediction can 

benefit from the automated methods for structure prediction. Two kinds of tools for 

structure prediction are of particular interest in this context: prediction of solvent 
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accessibility and prediction of transmembrane segments. Active sites in proteins are 

most often exposed to the solvent so as to enable the interaction between the 

protein and its target. Hence identifying the solvent accessible residues in a protein 

is an important step in zooming in on the functional residues.  

Solvent accessibility 
Most of the methods that predict solvent accessibility combine searches for 

sequence homologues, which are used to construct a sequence profile, and a 

machine learning algorithm, which uses the profile to predict the solvent accessibility 

of a residue. 

Prediction methods 
PHDacc and PROFacc: These two sister methods (Rost, Casadio et al. 1996), 

which are part of the PredictProtein service, are based on the same concept, the 

second being an improvement of the first. When a query sequence is submitted to 

the server the program perform a database search and constructs a sequence 

alignment using MaxHom (Sander and Schneider 1991). A neural network then 

assigns one of ten possible levels of exposure to each residue in the query 

sequence. These states could be translated into relative solvent accessibility, 

describing for each residue its accessibility to the solvent as a percentage of its 

surface area. Alternatively, the ten states could be grouped into a two state scheme: 

if more than 16% of the surface area is accessible to solvent it is defined as 

exposed; otherwise, the residue is considered to be buried. The 10-state scheme 

could also be used to predict solvent accessibility in terms of square Angstroms. 

Jpred: Jpred (Cuff and Barton 2000) is a prediction service that uses profiles that 

are produced by HMM and by PSI-BLAST. A neural network uses these profiles to 

predict one of three categories of exposure: 0%, 5% and 25%. The output of 

predictions from two different Networks is combined to give an average relative 

solvent accessibility. 

Transmembrane segments 
The communication between a cell and its surroundings, be it a unicellular cell 

sensing its medium, or an animal or plant cell interacting with other cells in its 

vicinity and in other tissues, is based almost exclusively on proteins that are 

embedded in the cell’s membrane and interact with molecules on both the inter-

cellular and the extra-cellular sides. Integral membrane proteins compose, 

according to some estimates, 25% of the proteomes sequenced thus far (Melen, 

Krogh et al. 2003). Identifying these transmembrane proteins and deciphering their 
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molecular mechanisms is, therefore, of high interest in many fields of biomedicine. 

Typically, the transmembrane segments are classified into one of two classes 

according to their secondary structures: helix or strands. It is reasonable to assume 

that all transmembrane segments share common biophysical features. These 

common features are probably reflected in the protein sequence, and hence many 

bioinformaticians are attempting to develop methods that identify transmembrane 

segments in-silico. The basic biophysical requirement for a residue to be buried in 

the membrane is hydrophobicity. High hydrophobicity is what enables most of the 

transmembrane segments to remain in the membrane and avoid the solvent on 

either of its sides. Hence, the first and most basic methods focused on a search for 

long hydrophobic stretches of sequence. In 1982 Kyte and Doolittle (Kyte and 

Doolittle 1982) proposed a simple method to identify transmembrane segments of 

proteins, based on the analysis of hydropathy. Since that pioneering work, many 

groups have suggested improvements to Kyte and Doolittle’s idea, as well as novel 

approaches to the problem. Some of them also offer prediction of the overall 

topology of the transmembrane protein. The fact that it is difficult to decipher the 

structure of trnasmembrane segments experimentally makes in-silico prediction both 

a greater challenge and a more valuable tool. 

Prediction methods 
TopPred: Combining hydrophobicity analysis with the analysis of electrical charges, 

TopPred (von Heijne 1992) was one of the first methods for the prediction of 

transmembrane segments and the topology of transmembrane proteins. When a 

protein sequence is submitted to TopPred, the program calculates a hydrophobicity 

profile for it. Sequence stretches that are found to be rich in hydrophobic residues 

are marked as transmembrane helices. Stretches that are hydrophobic but fail to 

surmount a predefined cutoff of hydrophobicity are considered “putative 

transmembrane helices”. Finally, based on various rules, the predominant of which 

is the distribution of positive residues between the transmembrane helices, the 

overall topology of the protein is predicted, with and without the putative helices. 

PHDhtm: PHDhtm (Rost, Casadio et al. 1996) is the part of the PredictProtein 

service dedicated to prediction of transmembrane helices. As in the cases of 

secondary structure and solvent accessibility prediction, the method first constructs 

a profile based on a database search and a multiple sequence alignment. Then, a 

neural network predicts for each residue whether it is likely to be part of a 

transmembrane helix. Another neural network is then used to decide whether the 

protein as a whole is a helix bundle integral membrane protein. Finally, the system 
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predicts the topology of the protein based on its similarity to known topologies of 

transmembrane proteins. 

ProfTMB: Specializing in β-strands, this method (Bigelow, Petery et al. 2004) uses 

multiple sequence alignments to produce a profile that is fed to an HMM. The HMM 

is trained on examples from one group of membrane proteins known as beta-barrels 

- proteins that reside in the outer membrane of gram-negative bacteria, mitochondria 

and chloroplasts - thus is particularly potent in finding sequences that belong to this 

family. The service predicts whether the query sequence belongs to this class, and 

identifies the transmembrane β-strands. 

SOSUI: This server (Hirokawa, Boon-Chieng et al. 1998) bases its predictions on 

four parameters: First it calculates the hydropathy based on the Kyte-Doolittle index. 

Then it calculates charges of the residues and the amphiphilicity, namely the 

distribution of electric charges around the helix. Finally, the length of the sequence 

is incorporated into the calculation. The output of the program includes a graph with 

the hydropathy profile of the query sequence, and a helical wheel diagram of the 

predicted transmembrane segments. This representation shows the different 

features of the helix residues and enables the visualizations of the biophysical traits 

of the helix as a whole. 

TMHMM: TMHMM (Krogh, Larsson et al. 2001) uses hidden Markov models (HMM) 

to predict transmembrane segments and the topology of the transmembrane 

proteins. Many machine learning algorithms are designed to identify patterns in 

ostensibly irregular sequences. Among these, HMM is particularly useful in matching 

a sequence to a predefined “grammar”. Transmembrane proteins tend to obey a 

relatively strict “grammar” – with alternating segments of membrane and non-

membrane segments and a well-defined organization of positively charged residues. 

Using HMM, TMHMM tries to match the query sequence to this “grammar”, derived 

from a set of well-characterized transmemrane proteins. By searching a known 

transmembrane “grammars” to which the query protein obeys, TMHMM predicts the 

segments that are most likely to be transmembrane and the most likely topology of 

the whole protein. 

DAS: The Dense Alignment Surface (DAS) method (Cserzo, Wallin et al. 1997) 

assesses the sequence similarities between segments of the query proteins and 

known transmembrane segments. Thus, it identifies those sequence stretches in the 

query sequence that are likely to be transmembrane by virtue of their biophysical 

similarity to stretches that were shown experimentally to be integrated in the 

membrane. 
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Functional residues, active sites and interaction sites 
The attempt to develop automated tools for function prediction includes the 

development of various methods to identify functionally important residues based on 

their conservation throughout evolution (Casari, Sander et al. 1995). If a residue is 

highly conserved it is likely to be functionally important. Several methods offer tools 

that vary from identifying residues that have functional importance (such as 

SequnceSpace, ConSurf and ISIS, see slides for details) to the identification of 

highly specialized functional elements such as DNA or protein binding sites, or 

regulatory elements in DNA sequence.  

Motifs and Patterns 
Another way to identify functional elements, or sequence signatures that are 

associated with a certain function, is through sequence motifs and patterns. 

Sometimes, the divergence between the sequence of a newly discovered protein 

and any other annotated protein is too wide to establish relatedness based on 

simple pairwise sequence alignment. But the existence of a relatively short 

sequence motif that is highly conserved evolutionarily and highly specific functionally 

within this newly discovered sequence might surrender the function of this protein. 

For example, if we find in a newly-sequenced protein a sequence element that 

appears in many known DNA binding sites, we can predict that the function of our 

new protein involves an interaction with DNA. A few databases are dedicated to this 

idea. They offer a large library of sequence motifs that have been collected either 

manually by experts, or automatically by pattern-searching algorithms. Many of 

these libraries include a searching tool. When a query sequence is submitted to 

these tools, it is compared with all the known motifs in search of a match. Finding 

one of these well-characterized motifs in a newly discovered sequence could offer 

some insights into its structure, function and even mechanisms of action. 

Prediction methods 
PROSITE: Developed and maintained by the team that maintains SWISS-PROT, 

PROSITE (Falquet, Pagni et al. 2002) is a large collection of biologically important 

motifs that is curated manually. The database contains three types of motifs: 

patterns, rules and profiles; each represents a different automated method of 

searching for motifs. These methods were applied to SWISS-PROT to construct a 

large database of motifs. Every entry in PROSITE includes a description of the 

proteins that it is designed to detect and the reason for including it in the database. 

The close relationship between SWISS-PROT and PROSITE, is most beneficial 

when it comes to annotations. The wealth of information included in each database 
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also benefits the annotations of its sister database as they are often updated 

together by their developers. It is possible to search PROSITE using free text to 

mine the annotation, or using a SWISS-PROT / TrEMBL ID. It is also possible to use 

ScanPro, a search tool for scanning a sequence against PROSITE. 

Blocks: Blocks (Pietrokovski, Henikoff et al. 1996) is a database of motifs that has 

been produced automatically, from an ungapped multiple sequence alignment of the 

most conserved regions of proteins. Blocks offer a large database of motifs that 

have been gleaned from InterPro (Apweiler, Attwood et al. 2000) - a database of 

protein families, domains and functional sites, that is an integration of many motif 

libraries. The Blocks that are produced from InterPro can be searched using a 

search tool called Blocks searcher. Blocks maker, the tool that was used to produce 

the Blocks database, is offered to the users who want to produce their own Blocks 

from a dataset they have constructed. 

Pfam: Using hidden Markov models (HMM) Pfam (Sonnhammer, Eddy et al. 1997), 

offers a powerful tool for producing motifs from alignments and for finding them in a 

query sequence. Based on this tool the developers built a manually curated 

database of protein families. Pfam was used by several genome projects (including 

the human and the fly) for high throughput annotation of the function of newly 

discovered genes (Bateman, Birney et al. 2002). Each protein family is represented 

in Pfam by a set of well-characterized proteins, that are used to train the HMM, and 

additional sequences that are obtained when the trained model is used to search for 

new members of the family. The annotation in Pfam includes a description of each 

family and links to other resources and literature references. 

Sub-cellular localization 
The methods we covered so far have all been based on the notion of annotation 

transfer. That is, finding similarities between a query sequence and other proteins 

that have been thoroughly characterized experimentally. However, in recent years 

attempts have been made to develop tools that will decipher the function of a protein 

from its sequence even when the most sophisticated tools for annotation transfer 

yield no results.  

When the pioneers of structure prediction launched their enterprise, one of their first 

steps was to break down the somewhat fuzzy concept of “structure”, into well-

defined structural features like “secondary structures” or “topologies”, which we 

discussed above, and other concepts like “structural family” or “fold” which will be 

discussed in the next chapter. If “structure” is a fuzzy concept that requires a 

meticulous set of subcategories, then “function”, as we explained above, is even 
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more so. What we usually refer to as the “function” of a protein could be purely 

biochemical (such as “phosphorylation”), cellular (e.g. “cytoskeletal protein”), 

physiological or pertaining to the organism as a whole (e.g. “developmental”). Each 

of these implications of “function” depends on different biophysical and biochemical 

features of the proteins, and hence is probably encoded differently in its sequence. 

Therefore, if we want to predict function from sequence, a first step would be to 

define which aspect of function we attempt to predict. The eukaryotic cell has many 

compartments, each of which host very different biochemical and biological 

processes, carried out by different proteins. Identifying the sub-cellular localization 

of a newly discovered sequence is a crucial step in finding the process in which it 

partakes and what its function may be. A few groundbreaking works in recent years 

have shown that, in many cases, it is possible to predict the sub-cellular localization 

of a protein from its sequence. 

Prediction methods 
SUBLOC: Using the amino acid composition alone, SUBLOC (Hua and Sun 2001) 

applies Support Vector Machine (SVM) to predict in which sub-cellular locale a 

protein resides. It offers one of three localizations for prokaryotes (extracellular, 

periplasmic, cytoplasmic) and four for eukaryotes (extracellular, mitochondrial, 

cytoplasmic, nuclear).  

PSORT: PSORT (Nakai and Horton 1999) receives as an input the amino acid 

sequence of a protein and the type of organism from which it was obtained (gram 

positive bacteria, gram-negative bacteria, yeast, animal or plant). Based on the 

origin of the protein the system checks for a few sub-cellular localizations (e.g. 

chloroplast for plant cells). The program then searches for several features that may 

reflect the sub-cellular localization of the protein. For instance, it has been found that 

the trafficking of proteins to some sub-cellular compartments is dictated by short 

signal peptides at the N or C terminal of the protein. PSORT employs a library of the 

known signals peptides and searches for them in the query sequence. It also checks 

predicted structural features (such as topology that may indicate that protein is 

transmembrane, amino acid composition, and PROSITE motifs.    

TargetP: TargtP (Emanuelsson, Nielsen et al. 2000) focuses on signal peptides at 

the N-terminal end of a protein. It uses a series of machine learning algorithms 

including neural networks and SVM to identify signal peptides of three types: 

chloroplast transit peptides, mitochondrial targeting peptides and secretory pathway 

signal peptides. The interface of TargetP enables the user to define the desired 

specificity of the prediction. 
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LOC3D: LOC3D (Nair and Rost 2003) is a database of predicted sub-cellular 

localization for eukaryotic proteins of known 3-D structure. It uses three methods: 

predicNLS, which searches for a known nuclear localization signal, LOChom, which 

uses homology to determine localization, and LOC3D, which is a neural network 

based prediction method. LOCkey, a related service uses keywords in SWISS-

PROT annotation to predict the sub-cellular localization. Altogether, this suite offers 

comprehensive coverage of the methods and approaches suggested and 

implemented so far for prediction of sub-cellular localization. 

Functional class 
Monica Riley introduced the most widely used schema for classes of cellular 

function to annotate E. coli (Riley 1993). TIGR (The Institute for Genome Research) 

and many other genome centers have adopted this schema with minor 

modifications. Transferring annotations of cellular function by homology has for long 

been almost the only field in which methods were developed. In fact, many 

researchers exclusively consider such methods when referring to the prediction of 

protein function. However, recently groups have begun developing methods that 

predict functional classes in the absence of experimental annotations. 

Functional classes can be predicted from sequence. An interesting hybrid system uses 

inductive logic programming to predict functional classes with and without homology 

to experimentally annotated proteins (Clare and King 2002). While it is not clear how 

successful the system is in ab initio prediction, the levels of accuracy published on 

average appear promising. Genes located in a close neighborhood on the genome 

may have some functional commonalities. While such neighborhood relations 

sometimes enable prediction of aspects such as classes of cellular function, the 

average signal is very weak, i.e. most often neighbors are not related in function 

(Tamames, Casari et al. 1997; Overbeek, Fonstein et al. 1999; Galperin and Koonin 

2000). The most recent breakthrough in the field of predicting protein function came 

through a collaboration of the groups from Soren Brunak (CBS Copenhagen) and 

Alfonso Valencia (CNB Madrid). Their ends are to predict cellular function from 

sequence alone. Their means are complex, elaborate, and hierarchical systems of 

neural networks (Jensen, Gupta et al. 2002). A first group of networks is used to 

identify 'sequence features' (like protein length or amino acid composition) that 

optimally separate between any two types of functional classes. These basic 

predictions are then combined into a final prediction step, again through neural 

networks. The authors applied their method to annotating functional classes for all 

human proteins. For example, the prion protein is predicted to belong to the 
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'transport and binding category' and to 'not have enzymatic activity'. This appears 

compatible with the observation that the prion binds and transports copper while no 

catalytic activity has ever been observed (Brown 2002). Recently, the Brunak group 

have applied their new concepts to identifying novel enzymes in archae (Jensen, 

Skovgaard et al. 2002) and to predicting the functional type of all human proteins 

according to the GO classification (Jensen, Gupta et al. 2003). The most impressive 

news from these ground-breaking methods is that aspects of function can be 

predicted without homology, i.e. for completely uncharacterised proteins. 

Prediction methods 
EUCLID: This method (Tamames, Ouzounis et al. 1998) uses the keywords in 

SWISS-PROT to assign a protein to one of Reily’s functional classes. The algorithm 

at the heart of this method is a basic Machine learning algorithm that learns, based 

on a manually curated training-set, which composition of keywords is most likely to 

indicate that the protein belongs to a certain functional type. The developers report 

that in more than 90% of the cases the functional type that was determine by the 

automated method was identical to the one that was assigned to it by a human 

experts. However, EUCLID requires that some annotation, namely SWISS-PROT 

keywords, would already be assigned to the sequence. Thus, it is not really a 

method for prediction from sequence. Having only the sequence of a newly 

discovered protein would not allow one to use EUCLID. 

ProtFun: ProtFun (Jensen, Gupta et al. 2003) represents a recent and promising 

step towards the prediction of function from sequence. To define a functional type, 

ProtFun uses Gene Ontology (GO). Each protein could be assigned to a certain 

molecular function, a certain biological process and certain cellular component. GO 

is attempting to assign a number to each protein that will represent these three 

types of functional description. Currently there are many hundreds of GO categories. 

ProtFun focuses on 347 of them and uses complex systems of neural networks to 

predict the GO functional classification of a protein from its sequence. The 

developers report an impressive accuracy – in most cases more then 90% of their 

predictions are correct. However, currently, their coverage is only partial, and many 

of the query proteins are returned without any prediction. Yet, when it does give a 

prediction, in most cases it is correct.  

Conclusion 
The ability to analyze large amounts of data simultaneously enables computational 

biologists to compile large datasets of functionally similar proteins and use them to 

predict function. By comparing many proteins of a similar function one could identify 
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typical characteristics in the sequence or the structure of these proteins. The 

characteristics features could then be used to search among vast numbers of 

unannotated sequences for other proteins that may have the same function. A large 

number of methods, some of them surveyed above, already offer predictions based 

on this concept. However, the field is still in its infancy and each of the stages in this 

process could be enhanced and improved.  

Sub-cellular localization and some functional sites can be predicted with high 

accuracy from sequence. One challenge in the field is to define other functional 

aspects that could be predicted from sequence or structure.   

Thousands of sequence motifs and patterns are available in different databases and 

could be used for prediction. Improving the methods for finding motifs and patterns 

automatically and associating them with functions remains a major challenge. 

Structural motifs and patterns are hard to identify in annotated proteins and harder 

to search for in unannotated ones. Improved tools that will combine structural 

alignment with biophysical and spatial analysis may constitute a breakthrough in this 

arena.  

Finally determining the sequence similarity threshold for each function is a 

continuous effort that requires a wise choice of sequence alignment parameters and 

a cautious utilization of available sequences. 

Almost all of these methods depend on large veritable datasets for training. Better 

methods for data mining that would lead to larger and cleaner datasets are one of 

the major keys for the progress of the field. Tools that are based on the conceptual 

approach we described can automatically predict function, or some aspects of it, for 

a large number of proteins in a relatively short time. Hence they are very useful for a 

high throughput annotation of whole genomes or large datasets. The results of these 

tools could also be used for the analysis of single proteins by theoreticians or 

experimentalists. These points are illustrated in the tutorial second part (Part II: 

Practical Examples, see the tutorial Slides). 
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• Proteolytic cleavage, proteosome

cleavage
• Phosphorylation
• Lipid modification
• N- and O-glycosylations

For review see: Rost et al. (2003)  CMLS 60:2637-2650

Aspects of Function

Post translational modifications

54Glaser et al. (2003)  Bioinformatics 19:163-164

Aspects of Function

Functionally important residues

55Ofran & Rost (2003)  FEBS Letters 544:236-239

Kwong PD et al. (1998), Nature 393, 648-659

..QIKILGNA.

..--PP--PP.

Aspects of Function

Functionally important residues - interactions 
sites

56Ofran & Rost (2004)  submitted

..LNDRA.
..LNDRA.
..---P-.

Aspects of Function

Functionally important residues - interactions 
sites
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57

• DNA binding 
• Antigenic sites
• Metal binding
• Ion binding
• Improve coverage and 

accuracy 

Aspects of Function

Functionally important residues - open challenges

58

Sequence Phenotype Structure Homology Expression

MIP Class

Clare & King (2003)  Bioinformatics 19:ii42-ii49

Functional Type

Functional Type - Data Mining

59
Pal & Eisenberg (2005)  Structure 13(1):121-30 

Functional Type

From Structure: ProKnow

60Jensen et al. (2002) J. Mol. Biol. 319:1257-1265

KKVVLGKKGDTVELTCTASQKKSIQFHWKNSNQIKILGNQG

GO class

Functional Type

Functional Type - ProtFun: Ab initio from 
sequence
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61

Predict Predict 
functional functional 
class from class from 
sequence sequence 

alone alone 

Jensen et al. (2002) J. Mol. Biol. 319:1257-1265

Functional Type

62

Automated Function PredictionAutomated Function Prediction

Large scale 
functional analysis

Comparative 
analysis

Genomic 
annotation

High throughput predictions

63

MetaMeta--ServerServer

Σ

64

Data  
Algorithms 
Defining the problem
Choice of relevant features 
Preparation of data
Assessment of performance 

X

X

Conclusion

Open Challenges
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Computing Biological Function: Computing Biological Function: 
Bioinformatics approach to the analysis and prediction of proteiBioinformatics approach to the analysis and prediction of protein functionn function

Yanay Ofran & Marco Punta 
Columbia University, New York

(Part 2)

66

Using Homology Transfer

67

Structure Subcellular localization

68

Trusted dataset of
annotated proteins

ER and Golgi
(true positives)

676-312

Other
(true negatives)

8417

PSI-BLAST

SI HSSP E-value

Wrzeszczynski KO and Rost B - CMLS (2004), 61:1341-1353                 

Example 1
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69
Wrzeszczynski KO and Rost B - CMLS (2004), 61:1341-1353                 

Example 1
Golgi proteins alignments

Golgi proteins

70
Wrzeszczynski KO and Rost B - CMLS (2004), 61:1341-1353                 

Example 1
Golgi proteins alignments

Golgi proteins >50% SI

71
Wrzeszczynski KO and Rost B - CMLS (2004), 61:1341-1353                 

Example 1
Golgi proteins alignments

Golgi proteins TP FP

72

C
overage

C
overage

A
cc

ur
ac

y
A

cc
ur

ac
y

Percentage sequence identity HSSP value Log(BLAST/PSI-BLAST E-value)

Example 1

PSI-BLAST accuracy PSI-BLAST coverage

ER

Golgi

ER

Golgi

ER

Golgi
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73

C
overage

C
overage

A
cc

ur
ac

y
A

cc
ur

ac
y

Percentage sequence identity HSSP value Log(BLAST/PSI-BLAST E-value)

Example 1

PSI-BLAST accuracy PSI-BLAST coverage

ER

Golgi

ER

Golgi

ER

Golgi

C
overage

74

C
overage

C
overage

A
cc

ur
ac

y
A

cc
ur

ac
y

Percentage sequence identity HSSP value Log(BLAST/PSI-BLAST E-value)

Example 1

PSI-BLAST accuracy PSI-BLAST coverage

ER

Golgi

ER

Golgi

ER

Golgi

C
overage

C
overage

75

C
overage

C
overage

A
cc

ur
ac

y
A

cc
ur

ac
y

Percentage sequence identity HSSP value Log(BLAST/PSI-BLAST E-value)

Example 1

PSI-BLAST accuracy PSI-BLAST coverage

ER

Golgi

ER

Golgi

ER

Golgi

76

C
overage

C
overage

A
cc

ur
ac

y
A

cc
ur

ac
y

Percentage sequence identity HSSP value Log(BLAST/PSI-BLAST E-value)

Example 1

PSI-BLAST accuracy PSI-BLAST coverage

ER

Golgi

ER

Golgi

ER

Golgi
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77

16

7

4

1

1

1-2

1-2

estimate
d # of 
errors

40235565800All 6

074273347H.sapiens

050145195M.musculu
s

0324061D.melanog
aster

27342357C.elegans

5393170A.thaliana

8175370S.cerevisia
e

Hypothetic
al protein

Different 
Swiss-Prot
annotation

Annotated
as Golgi
in Swiss-

Prot

PredictedProteome

HSSP > 23 98% estimated accuracy
Example 1

78

estimate
d # of 
errors

S.cerevisia
e

Hypothetic
al protein

Different 
Swiss-Prot
annotation

Annotated
as Golgi
in Swiss-

Prot

PredictedProteome

HSSP > 23 98% estimated accuracy
Example 1

70 53 17 8 1-2

79

16

7

4

1

1

1-2

1-2

estimate
d # of 
errors

40235565800All 6

074273347H.sapiens

050145195M.musculu
s

0324061D.melanog
aster

27342357C.elegans

5393170A.thaliana

8175370S.cerevisia
e

Hypothetic
al protein

Different 
Swiss-Prot
annotation

Annotated
as Golgi
in Swiss-

Prot

PredictedProteome

HSSP > 23 98% estimated accuracy
Example 1

80

407

259

136

55

16

estimate
d # of 
errors

134102782618537 (78%)

12591481217268 (85%)

99630728135812 (90%)

66435675111016 (95%)

4023556580023 (98%)

Hypothetic
al protein

Different 
Swiss-

Prot
annotatio

n

Annotated
as Golgi
in Swiss-

Prot

PredictedProteome

Example 1
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81

Beyond homology transfer

Liu J and Rost B - Protein Science (2001), 10:1970-1979
82

Functional classification of genomes

QuickTime™ and a
TIFF (LZW) decompressor

are needed to see this picture.

Homology transfer with > 30% SI, ~70% accuracy for EUCLID classification 
Tamames…Valencia Bioinformatics 14 (1998)    

Homology Transfer?

Example 2

83

QuickTime™ and a
TIFF (LZW) decompressor

are needed to see this picture.

%mem %coils %sigp

0  5 10 15 20 25 30 35 2   4   6   8  10  12 5  10  15  20  25 30

Percentage of proteins in entire proteome

Eukaryotes

Bacteria

Archaea

% of different protein types in genomes

Liu J and Rost B - Protein Science (2001), 10:1970-1979
Methods used: PHDhtm, COILS, SignalP

Example 2

84

% of different protein types in genomes

QuickTime™ and a
TIFF (LZW) decompressor

are needed to see this picture.

%mem %coils %sigp

0  5 10 15 20 25 30 35 2   4   6   8  10  12 5  10  15  20  25 30

Percentage of proteins in entire proteome

Eukaryotes

Bacteria

Archaea

Example 2

Rost, B., Casadio, R. & Fariselli, P. (1996). Prot. Sci., 5, 1704-1718.
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85

aerpe bacsu yeast

caeelcamjearcfu

metja ecoli drome

pyrho haein human

1 3 5 7 9 11 13 15 17 1 3 5 7 9 11 13 15 17 1  3  5  7  9 11 13 15 17

% of membrane proteins in genomes
Example 2

86

aerpe bacsu yeast

caeelcamjearcfu

metja ecoli drome

pyrho haein human

1 3 5 7 9 11 13 15 17 1 3 5 7 9 11 13 15 17 1  3  5  7  9 11 13 15 17

% of membrane proteins in genomes
Example 2

87

aerpe bacsu yeast

caeelcamjearcfu

metja ecoli drome

pyrho haein human

1 3 5 7 9 11 13 15 17 1 3 5 7 9 11 13 15 17 1  3  5  7  9 11 13 15 17

% of membrane proteins in genomes
Example 2

88

QuickTime™ and a
TIFF (LZW) decompressor

are needed to see this picture.

%mem %coils %sigp

0  5 10 15 20 25 30 35 2   4   6   8  10  12 5  10  15  20  25 30

Percentage of proteins in entire proteome

% of different protein types in genomes

*From http://membranes.nbi.dk/article_coiled-coil/graphics/coiled-coil_proteins1.jpeg

*
Eukaryotes

Bacteria

Archaea

Example 2

Lupas, A. (1996). Meth. Enzymol., 266, 513-525
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89

QuickTime™ and a
TIFF (LZW) decompressor

are needed to see this picture.

%mem %coils %sigp*

0  5 10 15 20 25 30 35 2   4   6   8  10  12 5  10  15  20  25 30

Percentage of proteins in entire proteome

% of different protein types in genomes

*Nielsen, Brunak and von Heijne Prot. Eng. 12 (1999)

Eukaryotes

Bacteria

Archaea

Example 2

Nielsen, … & von Heijne, G. (1997). Prot. Engin., 10, 1-6
90

Using interaction maps

91

Experimental methods for detecting
protein-protein interactions

Two-hybrid systems Fields FEBS (2005) 262:5391-5399 - Review

Mass Spectrometry Mann et al. (2001) Rev Biochem. 70:437-473 -Review

Microarrays ESPEJO et al. (2002) Biochem. J. 367 (697–702)

92
from: Giot, Rothberg et al. Science 302, 1727-1136 (2003):
A Protein Interaction Map of Drosophila melanogaster

Extracellular
Extracellular Matrix
Plasma Membrane
Synaptic Vesicle
Mitochondria
Endoplasmic Reticulum
Golgi
Lysosome
Cytoplasm
Cytoskeleton
Peroxisome
Ribosome
Centrosome
Nucleus
Uknown

Nuclear Proteins
Cytoplasmic Proteins 
Membrane and
Extracellular Proteins

Interaction Ratings
0.9 - 1.0
0.8 - 0.9
0.65 - 0.8
< 0.65

Sub-Cellular Localization View
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93

Example 3

Chen et al. Pacific Symposium on Biocomputing 11:367-378(2006)

Online Mendelian Inheritance in Man (OMIM)
http://www.ncbi.nlm.nih.gov/omim/ 

Alzheimer

etc.

lymphoma

etc.

sclerosis

etc.

94

Online Mendelian Inheritance in Man (OMIM)
http://www.ncbi.nlm.nih.gov/omim/ 

Alzheimer

etc.

lymphoma

etc.

sclerosis

etc.

protein 1
protein 2
protein 3
…
…
…
…
…
…
…
…
protein 70

Example 3

95

Online predicated human interaction database (OPHID)
http://ophid.utoronto.ca/ophid/

Example 3

96

Online predicated human interaction database (OPHID)
http://ophid.utoronto.ca/ophid/

Example 3
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97

Online predicated human interaction database (OPHID)
http://ophid.utoronto.ca/ophid/

Alzheimer

protein 1
protein 2
protein 3
…
…
…
…
…
…
protein 70

Example 3

98

Online predicated human interaction database (OPHID)
http://ophid.utoronto.ca/ophid/

Alzheimer

protein 1
protein 2
protein 3
…
…
…
…
…
…
protein 70

Example 3

99

Online predicated human interaction database (OPHID)
http://ophid.utoronto.ca/ophid/

Alzheimer

protein 1
protein 2
protein 3
…
…
…
…
…
…
protein 70

Example 3

100

Online predicated human interaction database (OPHID)
http://ophid.utoronto.ca/ophid/

Alzheimer

protein 1
protein 2
protein 3
…
…
…
…
…
…
protein 70

Example 3
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101

Online predicated human interaction database (OPHID)
http://ophid.utoronto.ca/ophid/

Alzheimer

protein 1
protein 2
protein 3
…
…
…
…
…
…
protein 70

Example 3

102

Online predicated human interaction database (OPHID)
http://ophid.utoronto.ca/ophid/

Alzheimer

protein 1
protein 2
protein 3
…
…
…
…
…
…
protein 70

Example 3

103

Online predicated human interaction database (OPHID)
http://ophid.utoronto.ca/ophid/

Alzheimer

protein 1
protein 2
protein 3
…
…
…
…
…
…
protein 70

Example 3

104
from: Chen et al. Pacific Symposium on Biocomputing 11:367-378(2006)

Example 3
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105
from: Chen et al. Pacific Symposium on Biocomputing 11:367-378(2006)

~90%
Example 3

106
from: Chen et al. Pacific Symposium on Biocomputing 11:367-378(2006)

p-value=0.008

index of aggregation

Example 3

107
from: Chen et al. Pacific Symposium on Biocomputing 11:367-378(2006)

Example 3

108
from: Chen et al. Pacific Symposium on Biocomputing 11:367-378(2006)

Example 3
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109
from: Chen et al. Pacific Symposium on Biocomputing 11:367-378(2006)

Example 3

110

Using Structure

111

What information from structure?

If function is known…it can help us understanding 
the underlying molecular mechanisms 

(e.g. enzymatic reactions)

112

What information from structure?

If function is not known…we can use structural 
similarity with proteins of known function 

(if any) to annotate the protein 
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113

Know function Solve structure

Solve structure Know function

Structural biology

Structural genomics

114
[ref] Keller JP, Smith PM, Benach J, Christendat D, 
deTitta GT, and Hunt JF  Structure 2002, 10:1475-87

Structure better than sequence

Example 4

115

Target

• Template • Sequence

• Template 

• !!

• ??

• !!

• ??

• Function 1
• F
• Function N

• Function 1
• F
• Function N

• Structure

Example 4

116

The MT0146/CbiT sequence

1

192

MIPDDEFIKNPSVPGPTAMEVRCLIMCLAEPGKNDVAVDVGCGTGGVTLELAGRVRRVYA

IDRNPEAISTTEMNLQRHGLGDNVTLMEGDAPEALCKIPDIDIAVVGGSGGELQEILRII

KDKLKPGGRIIVTAILLETKFEAMECLRDLGFDVNITELNIARGRALDRGTMMVSRNPVA

LIYTGVSHENKD

Target sequence
Example 4
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117

Biosynthesis of cobalamin (vitamin B12)

ALA PBG HMB
HemB HemC HemD

O

COOH

H2N

COOH

NH2

N
H

A P

A

P

AP

A

OH

P

NH HN

HNNH

Example 4

118

Biosynthesis of cobalamin (vitamin B12)

From Scott AI,  and Roessner CA Biochem Soc Trans. 2002, 30:613-620 

*

Example 4

119

CbiE CbiT

Methylations

Carboxylation

Co2+
N N

N
N

P

A

H3C

CH3

5

15

P
A

H3C

H3C

A

H3C

P

A

P

12

Precorrin-6y

Known functional facts
Example 4

120

CbiE CbiT

Methylations

Co2+
N N

N
N

P

A

H3C

CH3

5

15

P
A

H3C

H3C

A

H3C

P

A

P

12

Precorrin-6y

Carboxylation

Functional facts and hypothesis

Lower sequence similarity
with carboxylases

strong  sequence 
similarity with other   
B12 methyltransferase

Example 4
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121

Target

• Templates • Sequence

• Precorrin-Carboxylase

• Structure

• !? 

Example 4

122

CbiT structure

Keller JP, Smith PM, Benach J, Christendat D, 
deTitta GT, and Hunt JF  Structure 2002, 10:1475-87

Example 4

123

Some of the available programs for structural similarity searches:

DALI: www.ebi.ac.uk/dali/

VAST: www.ncbi.nlm.nih.gov/Structure/VAST/vastsearch.html

GRATH: www.biochem.ucl.ac.uk/cgi-bin/cath/Grath.pl

CE: http://cl.sdsc.edu/ce.html

Example 4

124

SEQLENGTH   178                                                 
NALIGN      374                                                 
WARNING   pairs with Z<2.0 are structurally dissimilar          

## SUMMARY: PDB/chain identifiers and structural alignment statistics                                      
NR. STRID1 STRID2  Z   RMSD LALI LSEQ2 %IDE REVERS PERMUT NFRAG TOPO PROTEIN   

1: 7768-A 1i9g-A 20.7  2.7  170   264   19      0      0    16 S    Adomet-dependent methyltransfer
2: 7768-A 1dus-A 17.7  2.6  157   194   21      0      0    12 S    mj0882 - methyltransferase
3: 7768-A 1vid   15.7  2.5  159   214   14      0      0    14 S    catechol o-methyltransferase
4: 7768-A 1m6y-A 15.7  2.4  151   289   22      0      0    14 S    s-adenosyl-methyltransferase
5: 7768-A 1im8-A 14.5  2.6  152   225   16      0      0    15 S    yeco (methyltransferase) 
6: 7768-A 1fbn-A 14.2  2.9  148   230   17      0      0    13 S    mj fibrillarin homologue            
7: 7768-A 1nv8-A 14.0  2.9  151   271   17      0      0    16 S    hemk protein                        
8: 7768-A 1khh-A 13.9  3.4  151   193   13      0      0    14 S    guanidinoacetate methyltrans
9: 7768-A 1ixk-A 13.5  2.6  148   298   19      0      0    16 S    methyltransferase

10: 7768-A 1jq3-A 13.3  2.9  153   295   12      0      0    14 S    spermidine synthase (putrescine
11: 7768-A 1kr5-A 13.2  2.5  139   218   23      0      0    15 S    l-isoaspartateo-methyltransf
12: 7768-A 1kp9-B 13.1  3.3  156   270   15      0      0    16 S    cyclopropane-fatty-acyl-phosphol
13: 7768-A 1ej0-A 13.1  3.0  144   180   17      0      0    14 S    ftsj (ftsj methyltransferase)       
14: 7768-A 2erc-A 12.9  3.2  145   235   21      0      0    16 S    rrna methyl transferase fragment    
15: 7768-A 1ri1-A 12.9  3.0  151   252   19      0      0    15 S    mrna capping enzyme - methyltrans
.. .

DALI output

Structural Comparisons

DALI: http://www.ebi.ac.uk/dali/

Example 4
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125

Visual comparison between target and template structures

CbiT Template

Graphic visualization program: VMD, Humphrey W, Dalke A 
and Schulten K. J. Molec. Graphics 1996, 14:33-38.

Example 4

126

Visual comparison with other known precorrin methyltransferases

DNA/RNA
methyltransferases

CbiF

CysG

precorrin
methyltransferases

Graphic visualization program: VMD, Humphrey W, Dalke A 
and Schulten K. J. Molec. Graphics 1996, 14:33-38.

CbiT

AdoMet/SAM

20

Example 4

127

Target

• Templates • Sequence

• Precorrin-Carboxylase

• Structure • Template 

• Adomet-binding

• !? 

Example 4

128

SAM binding site analysis

Motif M.HhaI M.TaqI COMT role

I

II

III

V

AGxGG PSxAxGP GAxxG

E40 E71 E90
W41 I72 M91

D60 D89 S119

L100 L142 W143
F18 F146 H142

H-bond with
Ribose hydroxyls

VdW with 
adenine

H-bonds to N
atoms

VdW contacts with
adenine

H-bonds

Schluckebier G, O’Gara M, Saenger W, and Chencg X JMB 1995, 247:16-20

Example 4
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129

SAM binding site analysis

Motif M.HhaI M.TaqI COMT role

I

II

III

V

AGxGG PSxAxGP GAxxG

E40 E71 E90
W41 I72 M91

D60 D89 S119

L100 L142 W143
F18 F146 H142

H-bond with
Ribose hydroxyls

VdW with 
adenine

H-bonds to N
atoms

VdW contacts with
adenine

H-bonds

Example 4

130

SAM binding site analysis

CONSURF: http://consurf.tau.ac.il/

Example 4

131

CbiT-SAM crystal structure

Graphic visualization program: VMD, Humphrey W, Dalke A 
and Schulten K. J. Molec. Graphics 1996, 14:33-38.

Example 4

132

CbiT-SAM crystal structure

Graphic visualization program: VMD, Humphrey W, Dalke A 
and Schulten K. J. Molec. Graphics 1996, 14:33-38.

Example 4
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SAM binding site analysis

D62

R63 E112

GxGG

Graphic visualization program: VMD, Humphrey W, Dalke A 
and Schulten K. J. Molec. Graphics 1996, 14:33-38.

Example 4

134

Target

• Templates • Sequence

• Precorrin-Carboxylase

• Structure • Template 

• Adomet-binding

• !? 

• !! 

Functional annotation of the target
Example 4

135

Target

• Templates • Sequence

• Precorrin-Carboxylase

• Structure • Template 

• Adomet-binding
• Precorrin-Methyltransferase

• !? 

• !! 

Functional annotation of the target
Example 4

136

Precorrin binding site analysis

* From Keller JP, Smith PM, Benach J, Christendat D, deTitta GT, 
and Hunt JF  Structure 2002, 10:1475-87

*
GRASP: http://trantor.bioc.columbia.edu/grasp/

Example 4
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137

Target

• Templates • Sequence

• Precorrin-Carboxylase

• Structure • Template 

• Adomet-Methyltransferase
• Precorrin-Methyltransferase

• !? 

• !! 
• ! 

Functional annotation of the target
Example 4

138

Target

• Templates • Sequence

• Precorrin-Carboxylase

• Structure • Template 

• Adomet-Methyltransferase
• Precorrin-Methyltransferase

• ??

• !! 
• ! 

Functional annotation of the target
Example 4

139

CbiE CbiT

Methylations

Co2+
N N

N
N

P

A

H3C

CH3

5

15

P
A

H3C

H3C

A

H3C

P

A

P

12

Structural similarity
with methyltransferases

Precorrin-6y

Carboxylationstrong  sequence 
similarity with other   
B12 methyltransferase

Example 4

140

Hypothesis on precorrin carboxylation:

• Spontaneous after double methylation

• CbiT protein is also a carboxylase

Example 4
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141

Structural genomics

142

Structural genomics: clustering

143

Structural genomics: structure determination

144

Structural genomics: merging families
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Structural genomics: checking leverage

146

Many structures better than one (!)

Example 5

147
See also: Iyer LM, Burroughs AM, and Aravind L. Bioinformatics. 
2006; 22(3):257-63. 

Example 5

148
See also: Iyer LM, Burroughs AM, and Aravind L. Bioinformatics. 
2006; 22(3):257-63. 

Example 5
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149

Example 5

150

PUA domain

ATP-sulfurylase
N-terminal domain

Hypothetical protein 
EF3133

YggJ N-terminal 
domain-like

Fold:PUA domain-like

Superfamily:PUA domain-like

Example 5

151

PUA domain

ATP-sulfurylase
N-terminal domain

Hypothetical protein 
EF3133

YggJ N-terminal 
domain-like

Fold:PUA domain-like

Superfamily:PUA domain-like

Example 5

152

PUA domain

ATP-sulfurylase
N-terminal domain

Hypothetical protein 
EF3133

YggJ N-terminal 
domain-like

Fold:PUA domain-like

Superfamily:PUA domain-like

Example 5
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153

Hypothetical protein 
EF3133

ASCH-superfamily?
(RNA-binding - predicted)

Iyer LM, Burroughs AM, and Aravind L. Bioinformatics. 
2006; 22(3):257-63. 

Example 5

154

core

Example 5

155

structure elect. pot. elect. surf. cons.

GRASP: http://trantor.bioc.columbia.edu/grasp/

CONSURF: http://consurf.tau.ac.il/

Example 5


