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Outline 
 

It is now becoming clear that proteins interact with each other in a highly 

specific and regular manner determining the outcome of most cell processes, such 

as replication, transcription, translation, signal transduction and others. Distortion of 

normal protein-protein interfaces lead to the development of many known diseases. 

Therefore the study of protein-protein interactions is essential for understanding the 

mechanisms of biological processes, for elucidating the nature of various human 

diseases and can provide the clues to cure and prevent them. Protein-protein 

interactions are remarkably diverse making it very difficult to formulate general 

principles of formation and to develop reliable methods for prediction.  In this review 

we attempt to classify and systemize the array of experimental and theoretical data 

on the identification and prediction of protein-protein interactions and their networks. 
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Introduction 
Protein-protein interactions are remarkably diverse making it very difficult to 

formulate general principles of formation and to develop reliable methods for 

prediction.  In this review we attempt to classify and systemize the array of 

experimental and theoretical data on the identification and prediction of protein-

protein interactions and their networks. 

Protein-protein recognition is determined by structural and physico-chemical 

properties of two interacting proteins and their interacting interfaces. It was reported 

earlier that the majority of protein complexes have a buried surface area of about 

1600±400 Ǻ2 (a “standard size” patch) and association does not involve large 

conformational changes of interacting proteins (Lo Conte et al. 1999). Large 

complexes with interfaces larger than the “standard size”, on the contrary, involve 

major conformational changes which are especially important in signal transduction. 

Moreover, in the following paper from the same group, the authors showed that large 

interfaces  involve more than one interaction patch and multipatch interfaces usually 

contain two patches of at least “standard size” (Chakrabarti and Janin 2002). The 

authors (Bogan and Thorn 1998; Chakrabarti and Janin 2002) proposed a model of a 

protein recognition site which consists of a completely buried core and partially 

accessible rim. The amino acid composition of cores differs considerably from that of 

rims with some common features observed by various methods (Jones and Thornton 

1997a; Bogan and Thorn 1998; Chakrabarti and Janin 2002). For example, amino 

acids Trp and Tyr (and also Met, Cys and Phe to much less extent) are abundant in 

the core, but Ser and Thr, Lys and Glu are particularly disfavored.  

Protein-protein interactions can be categorized into different types depending 

on their strength (permanent and transient), the location of interacting partners within 

one or between two polypeptide chains and the similarity between interacting 

subunits (homo- and hetero-oligomers). It has been shown that different interface 

types are significantly different in amino acid composition so that it is possible to 

predict the type of interaction interface from amino acid composition alone with 63-

100% accuracy (Ofran and Rost 2003). In addition to this, interactions formed by 

hydrophobic residues are more frequent in permanent interactions than in transient 

ones. Moreover, the same authors showed that disulfide bridges are observed very 

often on all types of interfaces, but salt bridges are not commonly found for homo-

oligomers. Interestingly enough, the homo-oligomers have a significant excess of 

residue contacts involving identical residues which can be explained by the fact that 
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non-identical residue contacts would require two beneficial compensatory mutations 

to preserve the binding interface between the same chains, rather than just one 

mutation in the case of identical residue contacts (Ofran and Rost 2003).  

Since proteins interact in a regular manner, there should be a certain degree 

of conservation in the interaction patterns between similar proteins and domains. 

Some previous studies pointed out that homodimer interface conservation is higher 

than expected by chance even for transient complexes (Valdar and Thornton 2001; 

Nooren and Thornton 2003), but nevertheless the conservation of protein interfaces 

is very weak compared to the rest of a protein (Grishin and Phillips 1994; Caffrey et 

al. 2004; Korkin et al. 2005). Poor conservation of interfaces can be the reason for 

low prediction accuracy of protein-protein interaction sites (Jones and Thornton 

1997b; Panchenko et al. 2004).  

A comprehensive analysis of interface conservation has been done on a test 

set including all protein domains from the Protein DataBank (PDB) (Aloy et al. 2003). 

The authors compared interactions by calculating root-mean-square-deviation 

between structure superpositions of two instances of domains on each other. They 

showed that if the measure of interaction similarity is plotted against the sequence 

identity between domains, the following pattern can be observed. Close homologs 

almost always interact the same way, while domains belonging to the same SCOP 

(Andreeva et al. 2004) fold but different superfamily categories have different 

interaction modes.  In another study the authors examined conserved binding modes 

in pairs of interacting domains (Shoemaker et al. 2006) and found that interfaces 

between different functional subfamilies of the globin family are poorly conserved 

while interfaces within the same subfamily are well conserved and thereby can be 

used in homology modeling. 

 

Experimental methods to identify protein-protein interactions 

  

Yeast two-hybrid experiments (Y2H) 

The yeast two-hybrid system was originally developed by Fields and Song 

(Fields and Song 1989) and later was advanced to analyse genome sequence data 

(Auerbach et al. 2002; Fields 2005) . It is based on the fact that many eukaryotic 

transcription activators (ex: Gal4 eukaryotic transcription factor or bacterial repressor 

protein LexA) have at least two distinct domains, one that directs binding to a 



 

 6

promoter DNA sequence (BD) and another that activates transcription (AD). Fields 

and Song demonstrated that the DNA-binding domain can not activate transcription 

at a promoter unless physically (not necessarily covalently) associated with an 

activating domain. A protein of interest is fused to a DNA-binding domain (bait), this 

chimeric protein is cloned in an expression plasmid and then is transfected into a 

yeast cell. A similar procedure is performed to create a chimeric sequence of another 

protein which is fused to AD (prey). If two proteins physically interact, this causes the 

activation of the reporter gene in vivo.  

One example of a Y2H system is the transcription activation system of the 

LacZ gene in yeast. Yeast promoters have TATA box regions and cis-regulatory 

elements (upstream activating sequences, UAS). UAS sequences are recognized by 

specific transcriptional activators, for example, by proteins GAL4. GAL4 proteins 

control in yeast the expression of proteins which participate in galactose metabolism, 

in particular, the expression of LacZ gene which codes for the beta-galactosidase. 

Target protein sequences are fused with the binding and activation domains of GAL4 

proteins. If there is no galactose, GAL80 binds to GAL4 and blocks the transcription. 

When galactose is present GAL80 is removed from GAL4 activation domain and 

GAL4 can activate the transcription of beta-galactosidase. Expression is detected by 

turning cell colonies blue after exposing to 5-bromo-4-chloro-3-indolyl beta-D-

galactoside. To avoid the interference by the natural GAL4 proteins, yeast host cells 

used in Y2H carry deletions of the GAL4 and GAL80 genes.  

 

Developments and variations of Y2H system 

 - Yeast strains are developed to carry several reporter genes (lacZ, HIS3, LEU2 …) 

 - Haploid yeast strains are developed with opposite mating type. Baits are 

transformed into yeast cells with one mating type, preys are transformed into another 

mating type, then the diploid cells are produced by mating these cells containing both 

baits and preys. 

 - One-hybrid system detects interactions between a prey protein and known DNA 

sequence (bait). 

 - RNA yeast three-hybrid system detects interactions between RNA and proteins. 

The bait RNA is a hybrid between the target RNA and MS2 RNA that can bind the 

MS2 coat protein. MS2 coat protein is fused into LexA BD. 
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 - Protein yeast three-hybrid system detects the formation of complexes between 

several proteins. 

 

Disadvantages of the Y2H method 

 - The interactions can not be tested if a protein under question can initiate 

transcription by itself.  

 - Fusion of a protein into another protein (chimeras) can change the structure of a 

test protein and effect its folding. 

 - Some cDNAs are fractional and do not represent the full length sequence of a 

target protein. In some cases a fragment of a protein might interact with another 

protein while the whole protein does not. 

 - Posttranslational modifications (formation of disulfide bridges, phosphorylation, 

glycosylation) which can alter interaction interfaces can occur differently in yeast and 

other organisms (but yeast is used as a host). 

 - Since two-hybrid reactions occur in the yeast nucleus, it is difficult to target 

extracellular proteins. 

 - A third protein can bridge the interactions between the bait and the prey. 

 - Proteins which can in general interact in Y2H experiments, may never interact in a 

cell due to different cell localizations or different expression times. 

 

Advantages of Y2H 

 - This is an in vivo technique, so it is closer to the processes which occur in living 

cells of higher eukaryotes, compared to the techniques based on bacterial 

expression. 

 - Transient interactions between proteins can be detected due to the amplification of 

a signal by the reporter gene expression, Y2H can predict the affinity of an 

interaction. 

 - Fast and efficient. 

 

Two approaches have been used for genome-wide analysis by Y2H: matrix-based 

and library-based: 

- matrix approach: a matrix of prey clones is created, each yeast clone expressing 

each Y-AD protein in one well of a plate. Then this matrix of prey clones is added to 

the matrix of clones expressing a particular X-BD protein. Those diploids where X 
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and Y interact are selected based on the expression of a reporter gene (ex: 

producing blue color for beta-galactosidase).  

- library approach: one bait X is screened against an entire library (library can contain 

random cDNA fragments or ORFs). Diploid positives are selected based on their 

ability to grow on specific substrates, sequences of interacting proteins are 

determined by DNA-sequencing. Since protein interactions very often can be 

detected by using protein fragments rather than the full-length proteins (if proteins 

are misfolded for example), the library-based approach is more sensitive than the 

matrix-based approach. 

Two major genome-wide analyses of the yeast “interactome” revealed 692 and 841 

putative interactions involving about 800 proteins (Uetz et al. 2000; Ito et al. 2001). 

The overlap between these two experimental studies was not very large, both 

methods shared only 141 interactions which constitutes about 20% of all interaction 

data (Ito et al. 2001). 

 

Mass spectroscopy 

Mass spectroscopy (MS) used in conjunction with complex purification is a 

powerful method to study macromolecular interactions. The principle of the MS 

method is to produce ions which then can be detected based on their mass-to-charge 

ratio thereby allowing the identification of polypeptide sequences (Causier 2004; Di 

Tullio et al. 2005). First, proteins are degraded enzymatically to peptides. The sample 

is evaporated into a vacuum, then an electron beam is used to fragment the sample 

into a set of pieces and those carrying a net charge are detected and separated 

based on their mass-to charge ratio. The detector measures the number of ions with 

a given mass-to-charge ratio. The fragmentations occur primarily at peptide bonds 

and the mass-to-charge ratios can be measured with an accuracy of less than 1 

dalton per charge.  

Electrospray ionization MS (ESI-MS) (Whitehouse et al. 1985) has been 

developed to produce isolated ions in the gas phase of large biomolecules. 

According to this technique protein molecules in an acidic solution are sprayed into a 

mass spectrometer under a strong electrical field; the solvent evaporates rapidly in a 

vacuum and protein molecules with a net positive charge become ionized in the gas 

phase. Integral net charges are assigned to different peaks of spectra. ESI-MS has 

proven to be very useful for detecting molecular recognition via noncovalent bonding 
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and therefore can be applied to analyze protein-protein interactions and large protein 

complexes. Another method of ionization called MALDI (Matrix Assisted Laser 

Desorption Ionization) uses proteins embedded on matrix which is bombarded by the 

laser to produce ions (Pieles et al. 1993).  

Different algorithms have been developed to analyze a large number of 

peptide spectra to identify proteins by their sequence. Cross-correlation methods, for 

example, (Pevzner et al. 2000) find correlations between theoretical and 

experimental spectra while others using de novo algorithms infer peptide sequences 

from theoretical interpretation of the MS spectra (Taylor and Johnson 1997). Another 

group of algorithms for MS interpretation calculate the statistical significance of a 

match between the mass-to-charge ratios of experimentally produced peptides and 

the theoretical peptides produced by in silico digestion of a protein sequence library 

(Yates et al. 1995; Geer et al. 2004).  

MS is a powerful method to decipher protein-protein interactions, but it has 

been shown that the limiting step in complex characterization is not in protein 

identification, but rather in protein complex purification. In this connection a tandem 

affinity purification method (TAP) has been developed. 

 

TAP method of complex purification 

A TAP tag consists of two IgG binding domains of Staphylococcus protein A 

and a calmodulin binding peptide, separated by the tobacco etch virus protease 

cleavage site (Rigaut et al. 1999). A target protein ORF is fused with the DNA 

sequences encoding TAP tag. The tagged ORFs are expressed in yeast cells and 

form native complexes with other proteins in a cell. At the first step of the TAP 

purification, protein A binds tightly to an IgG matrix and after washing out the 

contaminants protease cleaves the link between protein A and IgG matrix. The eluate 

of this first step is then incubated with calmodulin-coated beads in the presence of 

Ca. After washing, the target protein complex is released and the components of 

each complex are found by polyacrylamide gel electrophoresis. Protein bands are 

excised and corresponding proteins are cleaved by proteases. The resulting 

fragments are analyzed by MS and identified by bioinformatics methods.  

In yeast several large-scale studies of protein complexes have been 

performed using TAP/MS methods (Gavin et al. 2002; Ho et al. 2002; Krogan et al. 

2006). Gavin et al, for example, identified 1440 interacting proteins from 232 
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multiprotein complexes, and proposed new cellular roles for 344 proteins (Gavin et 

al. 2002). Ho et al identified 1578 interacting proteins (Ho et al. 2002). A more recent 

analysis showed that 7123 protein-protein interactions identified with high confidence 

can be clustered into 547 protein complexes, with about half of them absent from 

MIPS (Krogan et al. 2006). Comparative analysis of human and yeast complexes 

showed that orthologous proteins interact with complexes enriched by orthologs; 

essential gene products are more likely to interact with essential rather than 

nonessential proteins (Gavin et al. 2002). 

 

Comparison between Y2H and TAP/MS 

    - Both methods generate a lot of false positives, both methods miss a lot of known 

interactions (false negatives). 

 - Y2H produces binary interactions, does not provide information about protein 

complexes, but can detect transient interactions.  

    - MS can detect large stable complexes and networks of interactions. 

 

Correlation between gene expression and protein interactions 

Since the function of a protein complex depends on the functionality of all 

subunits, the independent expression of each gene/subunit would not be efficient. 

Therefore, there should exist a relationship between gene expression levels of 

subunits in a complex. The large-scale study of whole-genome expression data in the 

context of protein-protein interactions has been performed (Jansen et al. 2002). The 

authors analyzed protein complexes from the MIPS catalog (Guldener et al. 2006) 

while expression profiles were taken from two different sources: cell cycle 

experiments and the Rosetta yeast compendium (Hughes et al. 2000). Cell cycle 

data comprised expression profiles obtained from synchronized cells in two cell 

cycles while Rosetta data contained expression ratios for the overall yeast genome 

for 300 stationary cell states. 

The relationship between gene expressions was calculated as the difference 

between absolute expression levels as: D=|Ei - Ej|/(Ei + Ej), where Ei and Ej are 

mRNA expression levels of protein subunits “i” and “j”. This quantity is calculated for 

all proteins in a complex and then the distribution of “D” is compared to the 

distribution of “D” for random gene/protein pairs. Another way to calculate the 

correlation between the expression profiles is to refer to their relative expression 
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levels rather than the absolute ones. In these cases the measure of similarity is 

chosen as a Pearson correlation coefficient between the two expression profiles. 

The coexpression method was tested on specific complexes: ribosome, 

proteasome, RNA Polymerase II Holoenzyme and replication complex. It was found 

that the subunits from the same complex with the most obvious coexpression come 

from permanent complexes such as ribosome and proteosome. Some transient 

complexes can be subdivided into smaller permanent complexes, which show strong 

correlation with gene expression. It was also shown that for genome-wide Y2H data, 

there is only a weak correlation with the gene expression. 

 

Verification of protein-protein interactions 

Several methods have been proposed for verification of protein-protein 

interaction data (Deane et al. 2002; Sprinzak et al. 2003; Bader et al. 2004). Some of 

them are described here. 

1.   Expression profile reliability method (EPR) is based on the observation that 

interacting proteins are coexpressed. The distance between expression profiles of 

two proteins, A and B, can be calculated as: 

 

 

 

 

 
Here each term in the sum is the log ratio of expression levels of a protein under 

condition “i”. Then the distributions of d2 for non-interacting (ρn) and interacting 
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these two distributions one can define a parameter α which would characterize the 

accuracy of a given data set (for example Y2H data), or correspond to the fraction of 

false positives: 

 

 

 

The parameter α can be obtained by fitting the expression protein interaction data 

distribution Pexp(d2).  

 

22 ))/log()/(log( B
ref

B
i

A
ref

i

A
iAB eeeed −= ∑

)()1()()( 222
exp ABnABiAB ddd ραραρ ⋅−+⋅=



 

 12

2.   Paralogous verification method (PVM) is based on the observation that if two 

proteins interact, their paralogs would most likely interact, it calculates the number of 

interactions between two families of paralogous proteins. This method identifies 

~40% of true interactions at 1% error rate. Using PVM and EPR methods about 50% 

of DIP interactions can be considered reliable. 

 

3. Protein localization method. True positives are defined as interacting proteins 

which are localized in the same cellular compartment and/or interacting proteins that 

are annotated to have a common cellular role (Sprinzak et al. 2003). The accuracy 

strongly depends on the method with up to 50% of true positives detected in Y2H 

experiments and up to 100% true positives detected in immunological experiments 

(coimmunoprecipitation is a method of detecting interacting proteins by removing 

them from solution after adding a specific antibody). 

 

Comparing protein-protein interaction data is difficult as various techniques 

and methods have different goals, the data are obtained under different conditions 

and for different organisms. For example, none of the methods cover more than 60% 

of proteins in the yeast genome (von Mering et al. 2002). The low coverage can be 

explained by different factors: 

       -    proteins form transient complexes in a cell which are difficult to identify;  

       -    proteins behave differently in different parts of the cell, genome-scale cellular 

location assays provide data on the protein location; 

- if two proteins separately interact on the same face of a third protein, the three 

proteins must not interact at the same time. 

- Ancient, evolutionary conserved proteins have much better coverage than the 

proteins restricted to a certain organism.  

 

Protein and domain interaction databases 

Protein interaction databases 

Database of Interacting Proteins (DIP) 
DIP contains experimentally-determined protein-protein interactions and 

includes a core subset of interactions which have passed a quality assessment 

(Salwinski et al. 2004).  Interaction data are obtained from literature; Protein 
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Databank (PDB); and high-throughput methods like Y2H, protein microarrays, and 

TAP / MS analysis of protein complexes.  Several methods are employed to assess 

the quality of interaction data and are offered as a service for query interactions.  DIP 

has links to a couple of related databases including LiveDIP, which records 

information about the state of a biological interaction, such as covalently modified, 

conformational or cellular location states (Duan et al. 2002). Another database 

related to DIP is Prolinks which brings together four methods of linking proteins: 

phylogenetic profiles, Rosetta Stone, gene neighbors and gene clusters (Bowers et 

al. 2004).  The database includes a Proteome Navigator tool to browse the linkages 

and view accompanying data.  DIP and related databases can be accessed at 

http://dip.doe-mbi.ucla.edu. 

Biomolecular Interaction Network Database (BIND) 
BIND includes high-throughput experimental datasets and protein complexes 

from PDB (Bader and Hogue 2000; Alfarano et al. 2005).  It contains a large variety 

of experimental interaction data curated by an in-house team of curators.  A 

generalized data specification was developed to handle not only various types of 

protein-protein interaction data, but also protein-small molecule interactions and 

protein-nucleic acid interactions.  An Interaction Viewer is provided to browse the 

interaction space.  BIND uses a grammar of unique icons to distinguish functional 

types of interactions in displays.  Web access (with user registration) is at 

http://www.bind.ca. 

 

Munich MPact/MIPS database 
MPact is a resource to access MIPS, which contains a manually curated 

yeast protein-protein interaction dataset (Guldener et al. 2006).  This set of 4,300 

different interactions from 1,500 proteins has been collected by curators from the 

literature.  The resource also includes high-throughput results for yeast, but keeps 

this data separate.  Web-based analysis and visualization tools are available at 

http://mips.gsf.de/services/ppi. 

Domain interaction databases 

InterDom database 
InterDom collects evidence for predicting protein domain interactions from a 

number of sources (Ng et al. 2003b).  These sources include PDB, literature, protein 
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interactions stored in DIP and BIND as well as instances of domain fusion. The 

reliability of domain interactions is scored depending on the number/type of 

experimental evidence for each interaction. Web access can be found at 

http://interdom.lit.org.sg. 

PIBASE database 
PIBASE is a database of domain interactions from the protein structure data 

(Davis and Sali 2005).  It uses SCOP and CATH domain definitions to find putative 

domain-domain interactions.  Structural comparisons of interfaces are made for the 

same domain pair within one structure to remove redundancy.  The database 

combines physicochemical properties of protein binding sites and has a link to 

MODBASE (Pieper et al. 2006) containing modeled three-dimensional structures 

which allows one to model putative interacting domain interfaces.  Web access is at 

http://alto.compbio.ucsf.edu/pibase. 

3did database 
3did allows one to explore the details of domain interactions from protein 

structure data (Stein et al. 2005).  For a particular domain an overview is given of all 

domain interactions, showing whether each occurs inter-chain, intra-chain, or both.  A 

more detailed view is shown for a particular structure with lines connecting domains 

in different chains.  Tables for a given domain list structures and domain information.  

In some cases dot plots of structural comparisons show the variance of the 

interactions between pairs of families.  GO-based functional annotations and yeast 

interactions are also present in the database. 

InterPreTS is a web-based service to predict domain interactions based on sequence 

homology of query proteins to a database of interacting domains (DBID) associated 

with the 3did database (Aloy and Russell 2003).  Web access for 3did and 

InterPreTS can be found at http://3did.embl.de. 

Conserved Binding Mode (CBM) database 
The Conserved Binding Mode (CBM) database is a collection of domain-

domain interactions from the structure data grouped by geometry into conserved 

interaction modes for each pair of domain families across all PDB structures 

(Shoemaker et al. 2006).  Structural superpositions are used to infer CBMs from 

different  members of interacting domain families docking in the same way.  Such 

domain interactions with recurring structural themes have greater significance to be 

biologically relevant, unlike spurious crystal packing interactions.  CBMs highlight the 
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commonalities and variation of a domain pair’s interactions from all structural 

examples.  Types of interacting domain pairs range from 1,000 (conserved) to 2,000 

(all).  Currently the CBM database is available by ftp download from the NCBI ftp site: 

ftp://ftp.ncbi.nlm.nih.gov/pub/cbm. 

iPfam database 
iPfam displays the interactions of Pfam domains from the PDB (Finn et al. 

2005).  The system is integrated into the Pfam website and allows for interactive 

browsing of all Pfam-Pfam domain interactions detected on PDB structures at the 

family and individual structure levels.  Web access is at 

http://www.sanger.ac.uk/Software/Pfam/iPfam. 

Domain Interaction Map (DIMA) database 
DIMA is a domain interaction map derived from phylogenetic profiling Pfam 

domains (Pagel et al. 2006).  Instead of looking at entire protein sequences, the 

algorithm compares the occurrences of domains across genomes and associates 

them for interaction with similar patterns of conservation.  The method works well for 

domains with moderate information content which have distinct phylogenetic profiles. 

Web access is at http://mips.gsf.de/genre/proj/dima/index.html. 

 

Methods of prediction of protein-protein interactions 

Phylogenetic profile method 

Pioneered by the work by (Pellegrini et al. 1999) the phylogenetic profile 

method is based on the hypothesis that functionally linked and possibly interacting 

proteins have orthologs in the same subset of fully sequenced organisms. Indeed, for 

many pathways and complexes all components should be present simultaneously in 

order to perform its function. A phylogenetic profile is constructed for each protein, 

using a vector of N elements, where N is the number of genomes. The 

presence/absence of a given protein in a given genome is indicated as “1” or “0” at 

each position of a profile. Proteins or their profiles are then clustered using bit-

distance and those proteins from the same cluster are considered functionally related 

or interacting. One drawback of this method is that it is computationally expensive 

and ubiquitous proteins present in all genomes (profiles will have all “1”s) have very 

small distances between profiles which would result in a large number of false 

positives. The same is true for proteins which are specific to a given genome (the 
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profiles will have all but one “0”s). Function of genes and genetic map can be also 

identified by phylogenetic profiling of nonessential gene deletions. The method of 

synthetic lethality, for example, describes the genetic interaction when two non-lethal 

mutations results in lethality when combined at the same time (Bender and Pringle 

1991; Brown et al. 2006; Ooi et al. 2006). 

The idea of phylogenetic profiles can be applied to protein domains instead of 

entire proteins. In this case a profile is constructed for each domain (PFAM, SMART) 

and the presence/absence of this domain in different genomes is recorded (Pagel et 

al. 2004). This results in a domain interaction map (DIMA). This method can avoid 

computationally expensive all versus all sequence searches and can give information 

about domain-domain interactions. The method utilizes entropy filtering; and profiles 

with low information content are excluded. Performance is assessed by comparing 

the profile distance distribution for protein pairs known to interact to the distance 

distribution of random protein pairs. Limitation of DIMA is that domain databases are 

not complete and no predictions can be made for almost half of proteins. Another 

problem includes the presence of specialized domains which are found only in a few 

genomes. Major drawbacks of all phylogenetic profile approaches are that they can 

not make reliable predictions for low information profiles and that they rely on 

homology detection between distant organisms. 

 

Rosetta Stone approach 

The Rosetta Stone approach infers protein interactions from protein 

sequences in different genomes (Marcotte et al. 1999). It is based on the observation 

that some pairs of interacting domains have homologs which are fused into one 

protein chain, a so called Rosetta Stone protein. In E.coli, for example, this method 

found 6809 potentially interacting pairs of non-homologous proteins, both proteins 

from each pair had significant sequence similarity to a single protein from some other 

genome. Analysis of pairs found by this approach revealed that for more than half of 

them both members of a pair are functionally related and therefore this method can 

be used for inferring functional similarity. Comparison with the experimental data on 

protein-protein interactions from DIP database showed that about 6.4% of all 

experimental interactions can be linked by Rosetta Stone sequences. 
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Gene neighbor and gene cluster methods 

Bacterial genes with closely related functions are often transcribed as a single 

unit – an operon. Different methods try to predict operon structures based on 

intergenic distances (Ermolaeva et al. 2001; Bowers et al. 2004). A systematic 

comparison of bacterial and archaeal genomes reveals some conservation of gene-

order and operon structure (Dandekar et al. 1998; Overbeek et al. 1999; Galperin 

and Koonin 2000; Bowers et al. 2004). Gene pairs from conserved gene clusters 

appear to encode proteins which physically interact in a cell. It has been shown that 

gene order between the prokaryotic and archaeal species is conserved if the 

sequence identity shared by orthologs in two genomes is higher than 50%. 

Conservation of gene order can also be used to predict gene function by inferring its 

function from the functions of neighboring genes.  

 

Co-evolution of interacting proteins and correlated mutations methods 

Interacting protein or domain pairs very often coevolve and in these cases the 

phylogenetic trees of interacting partners show some degree of similarity. The 

similarity between phylogenetic trees can be quantified by calculating the correlation 

coefficient between the distance matrices used to construct the trees (Goh et al. 

2000; Pazos and Valencia 2001). For example, the active site of phosphoglycerate 

kinase is formed by two domains and therefore the working enzyme required  these 

two domains to coevolve. In other words, any changes in one domain which would 

lead to the loss of activity should be compensated by the correlated changes in 

another domain. To quantify co-evolution, first, the pairwise evolutionary distances 

between all members of each family of interacting proteins are calculated. For 

example, Xij is a pairwise distance between sequences si and sj from a family of one 

potentially interacting partner and Yij is the distance between sequences hi and hj of 

another interacting protein family, where sequences si and hi are taken from the same 

species. Next, the correlation coefficient is calculated between two matrices Xij and 

Yij and its large values indicate the coevolution between two proteins. 

In order to compare phylogenetic trees one needs to know the corresponding 

branches of the two trees, but such information is not always available. Several 

computational methods have been developed to identify specific interaction partners 

between two interacting families (Gertz et al. 2003; Ramani and Marcotte 2003; Jothi 

et al. 2005). This is especially useful when both families contain paralogs with 
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different binding specificities. According to these methods, given a pair of proteins 

known to interact, their similarity matrices are aligned using simulated  annealing 

algorithm to minimize the root mean square difference between the elements of two 

matrices. Then interactions are predicted between proteins corresponding to the 

aligned columns of two matrices. It has been shown that the prediction accuracy 

strongly depends on the phylogenetic tree complexity (measures how close is the 

tree to the radial one): as the tree complexity increases, the accuracy increases 

(Ramani and Marcotte 2003). A more formal measure of tree complexity was 

introduced in another paper (Jothi et al. 2005) 

Gertz et al (Gertz et al. 2003) implemented similar Monte Carlo schemes to 

align two matrices with the preliminary clustering of proteins within the matrices. 

Protein clustering using the UPGMA method allowed to compare matrices with 

different dimensions and helped find biologically relevant one-to-many 

correspondence between proteins from two families. It should be mentioned, that all 

previously described methods can not perform the search successfully if the size of 

families is large (more than 30 proteins in a family as noted by Ramani and 

Marcotte). One way to reduce the search space is to use the information encoded in 

the phylogenetic tree (Jothi et al. 2005). In this case local minima can be avoided by 

swapping the whole isomorphic subtrees in a single move instead of a single column 

in the course of the Monte Carlo algorithm. 

The similarity between two phylogenetic trees is influenced by the speciation 

process and therefore there is a certain “background” similarity between trees of any 

proteins, no matter if they interact or not. The following methods have been 

introduced to account for this background similarity (Pazos et al. 2005; Sato et al. 

2005). According to the first method (Pazos et al. 2005) multiple alignments of 

orthologous sequences are constructed for all proteins under interest. At the next 

step the phylogenetic trees are made from the multiple sequence alignments and the 

evolutionary distances between the proteins in the alignment are calculated by 

summing up the branch lengths separating each pair of sequences. The 

“background” tree is constructed from the 16S rRNA sequences and is considered to 

be a canonical tree of life. The distance matrices used in the study are obtained by 

subtracting the normalized ans rescaled rRNA based distances from the distances 

obtained for the original phylogenetic trees. Finally, the corrected distance matrices 

of two proteins are compared by calculating correlation coefficients or interaction 

scores. It has been shown that the method finds half of real interacting proteins at 
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6.4% false positive rate which is a higher accuracy than with the 16.5% false positive 

rate obtained using methods which compare phylogenetic trees without taking into 

account explicit evolutionary distances and “background” canonical tree (Goh et al. 

2000; Pazos and Valencia 2001).  

 

Classification methods 

Different classification methods have been proposed for the prediction of 

protein interactions (Jansen et al. 2003; Chen and Liu 2005; Qi et al. 2005). These 

methods use different biological data sources including direct experimental data and 

indirect data (for example protein coexpression data) on protein interactions to train a 

classifier to distinguish between positive examples of truly interacting protein pairs 

from the negative examples of non-interacting pairs. Each protein or protein 

sequence is encoded as a feature vector where features may represent different 

information sources on protein-protein interactions such as gene coexpression of two 

proteins, domain-domain interactions and evidence coming from various 

experimental methods. As a result of a comparison of different classifiers, it has been 

shown that Random Forest classifiers outperform other methods with the Support 

Vector Machine being in second place (Qi et al. 2006). Moreover, by examining 

different feature combinations the same authors found that the importance of 

features in correct classification depends on the type of prediction problem. Namely, 

if it is a prediction of physically interacting proteins, co-complex interactions or 

pathway co-membership, gene expression was one of the most important features 

for all prediction tasks.  

One of the Random Decision Forest methods introduced recently builds 

decision trees based on the domain composition of interacting and non-interacting 

proteins, explores all possible combinations of interacting domains and predicts at 

the end if a given pair of proteins interact (Chen and Liu 2005). Each protein pair is 

represented as a vector of length N, where N is the number of different domain types 

(features), where each feature can have values 2, 1 or 0 depending if this domain is 

found in both proteins, in one of them or not found in the protein pair. Given a training 

set of interacting protein pairs taken from the experimental data, the method 

constructs a decision tree (or many trees) which defines the best splitting feature at 

each node from a randomly selected feature subspace. The best feature is selected 

based on the measure of “goodness of fit” which estimates how well this feature can 
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discriminate between two classes of interacting and non-interacting pairs. The 

method stops growing the tree as soon as all pairs at a given node are well 

separated into two classes providing a classification for an unknown protein pair.  

 

Predicting domain interactions from protein interactions 

By far the most coverage of experimental data describing protein interaction 

networks comes from high-throughput experiments giving us the identity of protein 

pairs detected to interact. Unfortunately, these experiments reveal no structural 

details about the interaction interfaces and the formation of protein complexes. To 

deal with these limitations several approaches have been developed to predict 

domain-domain interactions given a set of experimental protein-protein interactions. 

The following section gives an overview of the approaches. Most methods begin with 

protein sequence searches of domains defined by Pfam, SCOP, CDD or other 

domain databases (Marchler-Bauer et al. 2002; Andreeva et al. 2004; Finn et al. 

2006). The methods are trained on protein-protein interactions, typically high-

throughput results from yeast or multi-genome data.  Predicted domain-domain 

interactions are evaluated using structural data or by higher quality interaction sets 

such as MIPS (Guldener et al. 2006). Accounting for domains in proteins can also 

help in predicting protein interactions. For example it was shown that domain 

interactions in one organism can be successfully used to predict domain and protein 

interactions in another organism (Wojcik and Schachter 2001). Treating a protein as 

a collection of domains allows one to assign different probability values for different 

protein interactions depending on domain frequency and allows one to use such 

domain networks with weighted edges to predict protein interactions (Gomez and 

Rzhetsky 2002). 

Association method 

The association method was one of the first methods which looked for the 

characteristic sequence-signatures in a pair of interacting proteins (Sprinzak and 

Margalit 2001). Correlated sequence-signatures that are found together more often 

than expected by chance can be used as markers to indicate/predict a new type of 

protein-protein interaction. The authors used three sets of yeast protein-protein 

interaction data (including MIPS and DIP) to compute log-odds scores and to find 

correlated sequence-signatures. Sequence-signatures were defined using InterPro 

(we refer to them as “domains”).  The log-odds score was computed as: log2(Pij/PiPj), 



 

 21

where Pij is the observed frequency of domains i and j occurring in one protein pair; 

Pi and Pj are the background frequencies of domains i and j in the data. The average 

mutual information content calculated per domain was pretty high (2.48 bits) 

indicating a significant correlation between interacting proteins and predicted domain 

pairs.  Domain-domain interactions were defined as those having positive log-odds 

scores (greater than 2) and having several instances of occurrence of a given 

domain pair in the database (more than 5 counts).  

Maximum likelihood estimation method (MLE) 
The association method proposed earlier considered each pair of interacting 

domains separately, ignoring other domains in a given pair of interacting proteins. 

Moreover, the association method did not incorporate the experimental errors of Y2H 

data into the scoring scheme. To account for this a new Maximum Likelihood 

Estimation method (MLE) has been developed (Deng et al. 2002) . According to this 

method domain-domain interactions are considered to be independent and proteins 

interact using at least one pair of domains. The likelihood function is a function of 

parameters θ=(λmn, fp, fn), where λmn is the probability that domains m and n interact, 

fp is the false positive rate and fn is the false negative rate derived from the 

experimental Y2H data (which are fixed to 2.85E-4 and 0.64 respectively). It is 

difficult to maximize the likelihood function directly because of the large number of 

parameters (large number of different types of interacting domains). To solve this 

problem the iterative Expectation Maximization algorithm is used which finds 

estimates of unknown parameters θ using the complete data (the observed data 

together with the missing data). This procedure has two steps, expectation and 

maximization. The first step involves finding the expectation of the complete dataset, 

given the observed dataset and a set of parameters, θ. In the second step the 

maximum likelihood estimation of the parameters θ is obtained.  Step one starts with 

initial parameter values and the two recursive steps are iterated until convergence.   

The method has been analyzed in several indirect ways.  First the accuracy of 

the method is assessed by predicting protein-protein interactions from the inferred 

domain-domain interactions and is compared with the experimental Y2H protein 

interaction data. Using two sets of Y2H data and excluding training data, the authors 

achieved accuracy with 42.5% specificity and 77.6% sensitivity. When the protein 

interaction predictions were compared with data derived from the MIPS database, the 

accuracy was reported to be nearly 100 times better than the accuracy of random 

predictions. The limitation, however, was that at this level of significance only 0.68% 
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of the MIPS interactions were predicted correctly, which is very low and might not be 

useful in practice.  The predictions were also compared to pairwise correlation 

coefficients of gene expression profiles and it was found that the best predictions had 

higher correlation coefficients than random protein pairs. 

Domain pair exclusion analysis (DPEA) 

The DPEA method extends the previously described MLE method and can 

detect specific domain interactions which are hard to detect using MLE (Riley et al. 

2005). MLE and other methods emphasize non-specific promiscuous domain 

interactions which are detected as those having large θ values. On the contrary, 

specific, rare interactions between certain members of two domain families would be 

neglected as they would have low values of θ. The DPEA method accounts for this 

by estimating an E score which is computed as a ratio of the probability that proteins 

m and n interact given that two domains i and j interact, and the probability that 

proteins m and n interact given that domains i and j do not interact. The Expectation 

Maximization procedure, similar to the one described in the previous section, is used 

to compute E-scores. The major difference between the two implementations of the 

EM algorithm is that in DPEA an additional step is performed when all instances of 

interacting domains i and j are excluded by fixing the interaction probability between 

domains i and j to zero and by allowing the competing domains to maximize θij. The 

change in the likelihood (pointing to the confidence that domains i and j interact) is 

evaluated and expressed as an E-score. 

A high E-score value shows the high propensity of two domains to interact 

while a low value indicates that competing domains from the same protein pair are 

more likely to be responsible for this interaction. Therefore, specific domain-domain 

interactions can be found by screening for low θ values and high E-scores. This 

model incorporates the protein interaction data from many organisms as present in 

DIP but does not account for false positives and negatives in the experimental data. 

The E-score is compared to a log-odds score and θ in terms of correct 

ranking/predicting physically interacting domains (PFAM-A) in PDB. It was shown 

that the E-score finds 71 times more true positive domain-domain interactions 

compared to the random assignments in 100 top predictions. When non-modular 

domains are excluded, E-scores considerably outperform other scores in predicting 

structurally interacting domains.  
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Calculating P-values to predict domain interactions 

Another method has proposed a statistical framework to calculate p-values of 

domain pairs being responsible for protein-protein interactions (Nye et al. 2005).  The 

authors test the null hypothesis that the presence of a particular domain pair in a 

protein pair has no effect on whether two proteins interact. To test this hypothesis a 

statistic is calculated for each domain pair which takes into account experimental 

error (fraction of false positives estimated for each experimental dataset) and 

incompleteness of the dataset (fraction of false negatives). The reference distribution 

is simulated by shuffling domains in proteins so that the network of protein 

interactions remains fixed. P-values show the reliability of domain-domain 

interactions given that two proteins interact and the domain pair with the lowest p-

value is most likely to interact compared to other domain pairs within the interacting 

proteins. In this approach domains are defined using SCOP superfamily categories 

and the p-value simulation is performed on the three sets of yeast interaction data.  

Predictions are tested with domain interactions obtained from the Protein Quaternary 

Structure (PQS) database, which uses symmetry operations to make PDB protein 

assemblies more biologically meaningful.   

The method has been compared to the Sprinzak association method, to the 

Deng MLE method and to random domain prediction.  The results reveal that the 

method does better than the others when there are many domains found on a protein 

pair.  Interestingly enough, for the majority of test cases, however, the random 

domain prediction outperforms all other methods, pointing to the low accuracy of all 

prediction methods of domain-domain interactions. The major limitations of these 

methods are: 

- domains are assumed to interact independently, although their interactions can 

depend on other domains in a protein pair; 

- if a protein contains several domains of the same type, the scoring schemes 

can not distinguish between their contacts; 

- the gaps between domain assignments can contain another interacting 

domains and ignoring these gaps can lead to false positive and false negative 

predictions; 

- many proteins can not be assigned any domains; 

- methods are based on the assumption that the interacting domains make only 

one contact which is not true for many multidomain complexes; 

- protein interaction data are not complete. 
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Integrative method 

This method used by the web service Interdom combines the contribution of 

three different sources of data to rank the domain interaction predictions (Ng et al. 

2003a). Domain interactions supported by different sources are more reliable and as 

a consequence should have a higher score compared to the domain interactions 

supported by one data source. An additive scoring scheme was used which 

integrated scores from three different data sources. The first score was calculated for 

domain-domain interactions derived from protein-protein interactions as defined by 

the DIP database. In this case a scoring scheme was based on odd-ratios and was 

calculated as a ratio of the observed weighted frequency of domain pairs and the 

background frequency of domain pair occurrence by chance. The second score was 

derived from protein complexes (Cellzome yeast protein complexes and PDB 

complexes) using a similar scoring scheme. The third source of data represented 

domain fusion events as found by searching SWISS-PROT for a pair of domains 

which are fused in one organism and are on separate chains in another organism. A 

probabilistic score could not be calculated in this case so a constant is assigned to 

the instances of fused domains. 

The method was evaluated by looking at the number of protein-protein 

interactions matching predicted domain interactions in a 20-fold cross validation. It 

was found that the major improvement in the prediction was made when two sources 

were used (compared to the case when only protein interaction data were used), 

namely, the fraction of correctly predicted true positives increased from 39% to 58%, 

while the error rate did not change considerably (8% to 12%).  

Homology modeling 
Experimental techniques for protein structure determination have improved to 

the point that for single proteins, structures are solved quickly and decent coverage 

of major genomes can be expected in the near future (Aloy et al. 2005).  Structure 

prediction can typically be handled by finding a homologous template to a query in 

the structure database and making a query model based on this template.  The next 

challenge for protein structure prediction is the prediction of protein-protein 

interactions and making high-quality models of protein complexes with the ultimate 

goal of creating representative coverage of all genome protein-protein interactions.  It 

has been estimated that roughly 2,000 out of 10,000 interaction types are known so 
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far from high-throughput methods (Aloy and Russell 2004).  Unfortunately, there are 

a limited number of protein-protein complexes present in PDB and solving the 

structures of large complexes meets difficult technical challenges not readily 

overcome in general (Russell et al. 2004). The most likely path to protein interface 

characterization of large complexes would therefore involve multiple experimental 

methods together with homology modeling and docking of structural subunits. 

To build a protein complex model, one can start with a set of protein 

interaction data from high-throughput identification methods such as yeast two-hybrid 

or affinity purification screens.  Protein pairs tagged to interact are searched for 

homologous domains and evaluated for likely domain-domain interactions. For these 

proteins or more specifically for the predicted interacting domains, homology 

searches are made against structure data.  In rare cases entire structural complexes 

of homologous proteins may be found, but sometimes only interacting domain dimers 

or, more often, single domains can be identified.  At the next step, the pieces should 

be put together while avoiding steric hindrance and maximizing complementarity 

between interacting domains. In this case the docking potentials can be used to 

score different orientations between two interacting domains. The success of docking 

strongly depends on the similarity between the target protein and homologous 

proteins as well as on the presence of homologous multidomain complexes in the 

structure database.  

Automated complex modeling methods 

There are several automated methods available for modeling of protein-protein 

interactions between proteins X and Y. 

-   Interprets first matches Pfam domains to target sequences and constructs 

complexes from structures matching the same type of Pfam domains (Aloy and 

Russell 2002).  The method uses empirical pair potentials from 3did to score 

putative interactions. It has been shown that the method yields good results for 

most classes of complexes, but poor predictions for peptidase/inhibitors.   

-   Multiprospector first threads sequences X and Y separately against a structure 

database of dimers to find single chains matching target protein sequences (Lu et 

al. 2003; Grimm et al. 2006). For those template structures which form a complex 

between X and Y, the method performs additional threading cycle for both 

proteins X and Y together by fixing the alignment of X to its single chain template 

and finding an optimal alignment of Y to its template in a complex and vice versa.  
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The fitness of target sequences into a protein complex is estimated using the 

conventional threading potential together with a separate score for the interfaces 

which is derived from the structural dimer database. This method was applied to 

the yeast genome and predicted 7,321 interactions from 304 complexes.  The 

method was ranked third among large-scale methods of protein interaction 

prediction, and it has been found it did not bias towards abundant proteins while 

giving atomic detail of interaction surfaces.   

 

CAPRI docking contest 

The contest to critically assess protein interaction predictions (CAPRI) was 

designed in the spirit of CASP, the protein structure prediction contest, to make blind 

predictions before a crystal structure of the complex is released.  In the CAPRI 

rounds, predictors build atomic models of complexes given structures of the unbound 

proteins.  In some cases when two proteins bind, their conformations do not change 

and the prediction accuracy of the complex is very high as was shown in one of the 

CAPRI experiments (Mendez et al. 2005).  However, the backbone of the bound form 

can significantly deviate from the unbound form and in this case it is difficult to make 

a correct prediction. For example, for homodimer docking of the PTS regulation 

domain from LicT (Wodak and Mendez 2004) the conformational changes upon 

binding two domains were as large as 12Ǻ RMSD per domain.   

The CAPRI experiment demonstrated that docking methods have a number 

of limitations (Wodak and Mendez 2004) which can also restrict the homology 

modeling methods described earlier: 

- proteins can undergo significant conformational changes upon binding; 

- docking potentials are not accurate enough; 

- specific and non-specific types of protein interactions are not adequately 

distinguished between each other; 

 

Designed interfaces 

It should be mentioned that one area of research related to the prediction of 

protein interfaces is that of computational interface design.  By modifying protein 

sequences, such as with point mutations and linkers, and subsequently expressing 

them researchers are able to explore a range of biological activity not found in 
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nature.  For homology modeling of protein interfaces, additional information becomes 

available for refining potentials and for acceptable domain combinations. 

One review of the research (Kortemme and Baker 2004) describes a range of 

examples from the alteration of oligomeric state in helical bundles (Harbury et al. 

1998), to the creation of chimeric proteins through the linking of domains from 

different functional pathways (Howard et al. 2003).  Design methods have increased 

the specificity of promiscuous domains (Shifman and Mayo 2002), have created 

novel interactions (Reina et al. 2002), and have automated the process (Havranek 

and Harbury 2003). 

 

Properties of protein interaction networks 

 

Scale-free behavior of protein interaction networks 

For the past five years the scale-free behavior of complex networks has 

attracted a lot of attention. Many empirical studies indeed showed that the structure 

of metabolic and protein interaction networks can not be explained by the classical 

random network model (Barabasi and Albert 1999; Jeong et al. 2000; Wolf et al. 

2002). According to the latter, the nodes are connected randomly, leading to the 

homogeneous network where most nodes have the same number of edges. The 

degree distribution or connectivity of such a network follows a Poisson distribution  

and the probability of finding a highly connected node decays exponentially. On the 

contrary, scale-free networks are highly heterogeneous with a few highly connected 

nodes (hubs) and a large number of poorly connected nodes. This structure can be 

explained by the preferential attachment of new vertices to the highly connected 

node in the network’s expansion (Barabasi and Albert 1999). The degree distribution 

of these networks follows a power-law: P(k)~e-k reflecting their self-similarity under 

scale transformation. Other important properties of the scale-free networks include: 

small diameter (calculated as an average number of edges in the shortest path 

connecting two nodes), high tolerance to errors and high susceptibility to attacks. 

Random errors and removal of random nodes do not affect the diameter of a scale-

free network, this property is very important for maintaining the integrity of biological 

networks upon external changes or errors. On the other hand, if the few, highly 

connected hubs are removed from the network, the network diameter increases 
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sharply which leads to the disruption of the network disintegrating it into many 

isolated clusters. 

Indeed, mutagenesis experiments proved that yeast can tolerate 

mutations/deletions of a large number of proteins from its proteome (Winzeler et al. 

1999; Jeong et al. 2001). This in turn implies that less connected proteins should be 

less essential for a cell compared to highly connected proteins. To answer this 

question, the yeast protein interaction network has been investigated and shown that 

proteins characterized by high connectivity are three times more likely to be essential 

than proteins with few connections (Jeong et al. 2001).  Many models have been 

proposed describing the mechanisms reproducing scale-free protein interaction 

networks (Qian et al. 2001; Rzhetsky and Gomez 2001; Middendorf et al. 2005; 

Deeds et al. 2006). For example, according to the duplication-mutation-

complementation model (DMC), gene duplication is followed by mutations and 

diversification, but gene functional complementarity is conserved (if one copy of a 

gene becomes dysfunctional, another copy can carry its function) (Middendorf et al. 

2005). Another model emphasizes the role of desolvation in forming the protein-

protein interaction interfaces and  predicts the correlation between the number of 

interactions which a protein makes and the fraction of hydrophobic residues on its 

surface (Deeds et al. 2006).  

 

Conservation and alignment of protein interaction networks 

The fast development of experimental techniques for protein-protein 

interactions has enabled the construction and systematic analysis of interaction 

networks or maps of interacting proteins. Interaction maps obtained for one species 

can be used to predict interaction networks in other species, to predict function of 

unknown proteins and to get insight into the evolution of protein interaction patterns. 

The interaction map analyses and comparisons are based on the 

assumption/observation that many interactions are conserved among species and 

form so called “interologs” (Walhout et al. 2000). Sequence-based searches for 

conserved “interologs” were able to identify 16%-31% of true “interologs” (tested 

using two-hybrid system) even between remotely related species such as yeast and 

worm (Matthews et al. 2001). Analysis of gene-coexpression networks revealed 

22,163 gene pairs coexpressed in humans, flies, worms and yeast (Stuart et al. 

2003). The conservation of co-expression patterns among diverse organisms 
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suggests that these gene pairs correspond to the functionally related genes 

responsible for core biological processes. Moreover, a multiple-species network has 

been constructed by identifying pairs of genes with correlated expression in different 

organisms. It was shown that a multiple-species network performs better than a 

single-species network in linking together functionally related genes. 

To measure the evolutionary distance at the level of network connectivity, a 

new algorithm of aligning two networks has been developed, called PATHBLAST 

(Kelley et al. 2003). The method searches for high-scoring pathway alignments 

between two networks, where proteins are paired based on their sequence similarity. 

Pathway alignments can allow gaps occurring when one path passes over a protein 

in another path and can accommodate misalignments occurring between two aligned 

proteins with low sequence similarity. The network alignment between  worm, fly and 

yeast detected 71  network regions that were conserved between all three species 

(Sharan et al. 2005). Among these, 94% of the clusters contained at least 50% of 

proteins sharing the same annotation. Single network analysis of yeast resulted in 

much lower accuracy of 83%. 

Instead of aligning two protein networks, the network topologies also can be 

compared by calculating the difference between the number of connections of 

identical proteins from two networks (Hoffmann and Valencia 2003). In this case the 

correlation coefficients between the protein connectivities of two networks is 

estimated which in turn quantifies the agreement between the networks obtained by 

different methods. Although the method can perform only pairwise comparisons, it is 

not restricted to only conserved interactions but rather can encompass all proteins 

covered by both methods. Applying this approach to networks obtained by different 

experimental and in silico methods showed that there exists statistically significant 

correlations between different experimental and theoretical methods, while the gene 

neighborhood method correlates with both experimental and in silico methods. 
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Importance of protein-protein 
interactions.

• Many cellular processes are regulated 
by multiprotein complexes.

• Distortions of protein interactions can 
cause diseases.

• Protein function can be predicted by 
knowing functions of interacting 
partners (“guilt by association”).

Adapted from S. Fields, FEBS, 2005

A comparison of sequence 
(GenBank) and protein-protein 
interaction data (DIP database)
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Example: interaction of guanine-
nucleotide binding domain with different 

effectors.

Adapted from Vetter & Wittinghofer, Science 2001 
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Common properties of protein-
protein interactions.

• Majority of protein complexes have a buried 
surface area of about 1600±400 Ǻ2 (“standard 
size” patch). 

• Complexes of “standard size” do not involve 
large conformational changes of interacting 
proteins while large complexes do.

• Protein recognition site consists of completely 
buried core and a partially accessible rim.

• Trp and Tyr  are abundant in the core, but Ser 
and Thr, Lys and Glu are particularly disfavored. 

Top molecule

Bottom molecule

rim

core
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Different types of protein-protein 
interactions.

• Permanent and transient depending on their strength.

• External are between different chains; internal are within the same 
chain.

• Homo- and hetero-oligomers depending on the similarity between 
interacting subunits.

• Different interface types differ in amino acid composition; can predict 
interface type from amino acid composition with 63-100% accuracy 
(Ofran and Rost 2003).     
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Conservation of protein-protein 
interactions.

• Conservation of protein interfaces is weak 
compared to the rest of a protein low 
accuracy of prediction of protein-protein 
interaction sites.

• Conservation of domain-domain 
interactions: at SCOP Family level (red) 
interactions are conserved, at Fold level 
(blue) are not conserved.

Adapted from Aloy et al, J. Mol. Biol., 2003
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Experimental methods for identifying 
protein-protein interactions.

• Yeast two hybrid 

• Mass spectroscopy

• TAP purification

• Gene expression
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Yeast two-hybrid experiments.

• Many transcription factors have two 
domains; one that binds to a promoter 
DNA sequence (BD) and another that 
activates transcription (AD). 

• DNA-binding domain can not activate 
transcription at a promoter unless 
physically (not necessarily covalently) 
associated with an activating domain 
(Fields and Song,1989) . 

Adapted from B. Causier, Mass Spectroscopy Reviews, 2004
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Gal4/LacZ Y2H system

Adapted from A. Traven et al, EMBO Reports, 2006

• Target proteins are fused with binding 
and activation domains of GAL4 protein 
which activate LacZ gene.

• If there is no galactose, GAL80 binds 
to GAL4 and blocks the transcription.

• When galactose is present GAL4 can 
activate the transcription of beta-
galactosidase. 
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Development and variations of Y2H 
system.

• Developing yeast strains that 
carry several reporter genes.

• Developing of haploid yeast 
strains of opposite mating type. 
Diploid cells are produced by 
mating containing both baits and 
preys.

• One-hybrid system detects 
interactions between a prey 
protein and a known DNA 
sequence (bait).

Adapted from B. Causier, Mass Spectroscopy Reviews, 2004
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Development and variations of Y2H 
system.

• RNA yeast three-hybrid system 
detects interactions between 
RNAs and proteins. 

• Protein yeast three-hybrid 
system detects the formation of 
complexes between several 
proteins.

Adapted from B. Causier, Mass Spectroscopy Reviews, 2004
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Genome-wide analysis by YTH.

• Matrix approach: a matrix of prey clones 
is added to the matrix of bait clones. 
Diploids where X and Y interact are 
selected based on the expression of a 
reporter gene.

• Library approach: one bait X is screened 
against an entire library. Positives are 
selected based on their ability to grow 
on specific substrates.

---------------------------------------------------------
Uetz et al 2000, Ito et al 2001: 
692-840 interactions detected using 
library-based approach in yeast

Adapted from B. Causier, Mass Spectroscopy Reviews, 2004
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Disadvantages of Y2H.
• The interactions can not be tested if a target protein can initiate 

transcription. 

• Fusion of a protein into another domain (chimeras) can change the 
structure of a target protein.

• Protein interactions and posttranslational modifications can be 
different in yeast and other organisms.

• It is difficult to target extracellular proteins.

• Some cDNAs are fractional and do not represent the full length 
sequence of a target protein.

• Proteins which can in general interact in two-hybrid experiments, 
can never interact in a cell.
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Advantages of Y2H.

• This is in vivo technique, good approximation of processes which 
occur in a living cells of higher eukaryotes.

• Transient interactions between proteins can be determined due to
the amplification of a signal by the reporter gene expression, can 
predict the affinity of an interaction.

• Fast and efficient.
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Mass spectroscopy.
1. Ionization (Ex: Electrospray ionization)

the solvent evaporates rapidly in a vacuum and protein 
molecules with a net positive charge become ionized;

• Detection and recording of sample ions
integral net charges are assigned to different peaks of 
spectra;

• Analysis of MS spectra, protein identification
search sequence database with mass fingerprint,
find correlations between theoretical and experimental 
spectra.
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Ionization.

- Electrospray ionization, John 
Fenn, 2002)
The solvent evaporates rapidly in a 
vacuum and protein molecules with 
a net positive charge become 
ionized;

- Matrix Assisted Laser 
Desorption, K. Tanaka, 2002)
The laser ionizes protein molecules 
embedded on the matrix

From www.nobelprize.org
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Detection.
• Peptide fragments are separated based on mass-to-

charge ratios;
• Accuracy of 0.01% of the total molecular mass of the 

sample i.e. within a 4 Daltons;
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Differences and similarities 
between Y2H and MS.

• Both methods generate a lot of false positives, only 
~50% interactions are biologically significant. Both miss 
a lot of known interactions.

• Y2H produces binary interactions, lack of information 
about protein complexes, but can detect transient 
interactions. 

• MS can detect large stable complexes and networks of 
interactions.
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Tandem affinity purification method (TAP).

• Target protein ORF is fused with the DNA sequences 
encoding TAP tag;

• tagged ORFs are expressed in yeast cells and form 
native complexes;

• the complexes are purified by TAP method;
• components of each complex are found by gel 

electrophoresis, MS and bioinformatics methods.
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Tandem affinity purification method (TAP).

TAP tag consists of two 
IgG binding domains of 
Staphylococcus protein A 
and calmodulin binding 
peptide;

O. Puig et al, Methods, 2001
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Correlation between gene expression 
and protein interactions.

• There should exist a relationship between gene 
expression levels of subunits in a complex. protein-
protein interactions can be deduced from coexpression 
data.

• Methods are tested on specific protein complexes: 
ribosome, proteasome, RNA Polymerase II Holoenzyme
and replication complexes. 
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Correlation between gene expression 
and protein interactions.

Jansen, Greenbaum & Gerstein, Genome Research, 2002

• Expression profiles were taken from two different sources:  cell cycle 
experiments and expression ratios for overall yeast genome for 300 
stationary cell states.

• Difference between absolute expression levels can be calculated as

where Ei and Ej are mRNA expression levels of subunits “i” and “j”. 
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Results of gene coexpression analysis.
Jansen, Greenbaum & Gerstein, 

Genome Research, 2002

• Subunits from the same complex 
show coexpression, expression 
correlation is strong for permanent 
complexes.

• Transient complexes subdivided into 
smaller permanent complexes show 
strong correlation with gene 
expression.

• For genome-wide Y2H data, there is 
only a weak correlation with the gene 
expression.
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Verification of experimental protein-
protein interactions.

• Protein localization method.

• Expresion profile reliability method.

• Paralogous verification method.
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Protein localization method.

Sprinzak, Sattath, Margalit, J Mol Biol, 2003

A – A3: Y2H
B: physical methods
C: genetics
E: immunological

True positives:
- Proteins which are localized in the same 

cellular compartment
- Proteins with a common cellular role
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Deane, C. M.  (2002)    Mol. Cell. Proteomics 1: 349-356

Expression profile reliability method.
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Expression profile reliability method.

Deane et al, Molecular & Cellular Proteomics, 2002

EPR method is based on observation that interacting proteins 
are coexpressed. The distance between expression profiles of 
two proteins:

Parameter α characterizes the accuracy of given data, or 
correspond to the fraction of false positives.
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Deane, C. M.  (2002)    Mol. Cell. Proteomics 1: 349-356

Paralogous verification method.

PVM method is based on 
observation that if two proteins 
interact, their paralogs would 
interact. Calculates the number 
of interactions between two 
families of paralogous proteins.
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Comparing large scale data of protein-
protein interactions.

C. Von Mering et al, Nature, 2002:
• All methods except for Y2H and synthetic lethality technique are

biased toward abundant proteins. 
• PPI are biased toward certain cellular localizations. 
• Evolutionary conserved proteins have much better coverage than 

the proteins restricted to a certain organism. 
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Functional organization of yeast proteome.

Gavin et al, Nature, 2002

• 589 protein assemblies, 
• 232 multiprotein 

complexes, 
• new cellular roles for 344 

proteins. 
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Functional organization of yeast 
proteome: network of protein complexes.

A. Gavin et al, Nature, 2002

• orthologous proteins interact 
with complexes enriched by 
orthologs;

• essential gene products are 
more likely to interact with 
essential rather than nonessential 
proteins 
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Interaction databases

• Protein-protein interactions from experiment 
(some pass quality assessment).
– DIP (LiveDIP, ProLinks), BIND, MIPS

• Domain-domain interactions inferred from crystal 
structure data.
– 3did, Pibase, CBM, iPfam
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DIP database

• Documents protein-
protein interactions from 
experiment
– Y2H, protein microarrays, 

TAP/MS, PDB

• 55,733 interactions 
between 19,053 proteins 
from 110 organisms.

74081831E. coli

40302638C. elegans

20,9887052Fruit fly

401985Others

18,2254921Yeast

1407916Human

1425710H. pylori

# interactions# proteinsOrganisms
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DIP database

Duan et al., Mol Cell Proteomics, 2002

• Assess quality
– Via proteins: PVM, EPR
– Via domains: DPV

• Search by BLAST or 
identifiers / text
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DIP database

Duan et al., Mol Cell Proteomics, 2002

• Assess quality
– Via proteins: PVM, EPR
– Via domains: DPV

• Search by BLAST or 
identifiers / text

• Map expression data
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LiveDIP

Duan et al., Mol Cell Proteomics, 2002

• Distinguish biological 
state
– Covalently modified
– Conformational
– Cellular location
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Prolinks database

• Gene neighbors
• Rosetta Stone
• Phylogenetic profiles
• Gene clusters
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BIND database

• Contains experimental 
interaction data

• 83,517 protein-protein 
interactions

• Developed specification 
to handle diverse data
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BIND

• 204,468 total 
interactions

• Includes small 
molecules, NAs, 
genes, complexes, 
photons
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BIND

• Interaction Viewer
• Unique icons of 

functional classes
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MPact/MIPS database

• Yeast protein-
protein interactions

• Curated set:
– 4,300 PPI
– 1,500 proteins

• High-throughput 
available

• Web tools
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InterDom database

• 30,037 predicted 
domain interactions 
from PPIs
– Domain fusions
– Protein interactions
– Complexes
– Literature

• Score interactions
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Pibase database

• Protein structures from PDB and PQS

• Domains defined with SCOP and CATH

• All inter-domain and inter-chain distances within 6.05 Ǻ
are considered interacting domains

• From interacting domain pairs, create list of interfaces 
with buried solvent accessible area > 300 Ǻ2
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PIBASE

• Query by PDB, 
domain, interface

• 1,946 interacting 
SCOP domains

• 2,387 unique 
interaction types
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PIBASE

• Redundancy removed 
within a structure

• Properties listed

190

PIBASE/ModBase

• Protein structure 
models

• Predict interfaces 
with Pibase

191

3did database

• Pfam domain-domain 
interactions

• Protein structure data
• 3,304 unique 

interaction types
• 2,247 interacting 

domains
• Display linkages and 

chain locations
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3did

• List structures
• Visualize 

interfaces
• View interface 

overlap 
distribution

• GO annotation
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3did

• Show domain 
linkages on a given 
structure

194

InterPReTS

Aloy & Russell, Bioinformatics, 2003

• Structure prediction of 
interfaces

• Uses 3did

195

Protein-protein interactions available 
from structure data: NCBI CBM database

• To retrieve interactions:
– Record interactions
– Use VAST structural alignments to 

compare binding surfaces
– Study recurring domain-domain 

interactions

• Currently available via FTP

Shoemaker et al., Protein Sci, 2006.

• CBM – database of interacting structural domains exhibiting 
Conserved Binding Modes

196

Definition of CBM

• Interacting domain pair – if at least 5 
residue-residue contacts between 
domains (contacts – distance of less 
than 8 Ǻ)

• Structure-structure alignments 
between all proteins corresponding to 
a given pair of interacting domains

• Clustering of interface similarity, 
those with >50% equivalently aligned 
positions are clustered together

• Clusters with more than 2 entries 
define conserved binding mode.
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Number of interacting pairs and binding 
modes

• 833 conserved interaction types
• 1,798 total domain interaction types
• Up to 24 CBMs per interaction type

Shoemaker et al., Protein Sci, 2006.

• Classify complicated domain 
pairs by CBMs

• Globin example:
– 630 pairs
– 2 CBMs account for majority

lamprey28

human27

Rice,soybeans26

V.stercoraria45

lamprey44

Clam,earthworm173

Jawed vertebrates1122

Jawed vertebrates1541

SpeciesStructuresCBM
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CBMs distinguish biologically relevant 
interactions

• Non-biological interactions (e.g. crystal packing) are not 
conserved among different structures.

• Interaction networks more clear

Shoemaker et al., Protein Sci, 2006.
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iPfam database

• View Pfam 
interactions on PDB 
structures

• View individual 
structures and 
sequence plots

200

DIMA database

• Phylogenetic 
profiles of Pfam 
domain pairs

• Uses structural info 
from iPfam

• Works well for 
moderate 
information content
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Phylogenetic profile method.

Pellegrini et al, PNAS 1999

Functionally linked and 
probably interacting 
proteins should have 
orthologs in the same 
subset of fully 
sequenced organisms 

202

Rosetta Stone approach.
Marcotte et al, Science, 1999

• Some pairs of interacting domains have 
homologs which are fused into one 
protein chain – “Rosetta Stone” protein.

• In E.coli method found 6809 pairs of 
non-homologous proteins, both proteins 
from each pair could be mapped to a 
single protein from some other genome. 
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Gene neighborhood method.
• Gene pairs from conserved gene 

clusters appear to encode proteins 
which are functionally related and 
possibly interact. 

• Gene order between the 
prokaryotic and archaeal species is 
conserved if sequence identity 
shared by orthologs in two 
genomes > 50%. 

• Conservation of gene order can be 
used to predict gene function.

Adapted from Bowers et al, Genome Biology, 2004
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Gene cluster method.

• Bacterial genes of related function are often transcribed 
simultaneously – operon.

• Identification of operons is based on intergenic 
distances.

Adapted from Bowers et al, Genome Biology, 2004
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Coevolution of interacting 
proteins/domains – “mirrortree” methods.
Goh et al. 2000; Pazos and Valencia 2001
• Interacting proteins very often co-evolve and their phylogenetic trees 

show some similarity. 

• The similarity between phylogenetic trees can be quantified by 
correlation coefficient between distance matrices used to construct 
trees. 

Adapted from Goh et al, J.Mol.Biol.,2000
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Predicting interacting partners from two 
interacting protein families.

Problem:
given interacting protein families A {a1,…,an} and 
B {b1,…,bm}:

- Find corresponding proteins ai and bi that interact.
- Predict interaction specificity of interaction, ex: families 

containing paralogs.
- Predict one-to-many correspondence between 

interacting partners.

207

Methods of predicting interacting partners.
Ramani & Marcotte, J. Mol. Biol., 2003, 
Gertz et al, Bioinformatics, 2003

• Proteins are clustered allowing to 
find one-to-many correspondence 
between proteins.

• Similarity matrices are aligned using 
simulated  annealing, optimizing the 
root mean square 
difference/correlation coefficient 
between elements of two matrices.

• Interactions are predicted between 
proteins corresponding to the aligned 
columns of two matrices. 

Adapted from Ramani & Marcotte, J. Mol. Biol., 2003 208

Problems of matrix permutations methods:

• N! – permutations (N – number of proteins 
in a family) – search space is big!

• maximal agreement between similarity 
matrices does not mean correct pairing of 
proteins on phylogenetic tree.
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Methods of predicting interacting partners.

MORPH method, Jothi et al, 
Bioinformatics, 2005

• To reduce the search space – by 
swapping whole isomorphic subtrees in 
a single move instead of a single column 
- avoid local minima.

• Uses information encoded in the 
phylogenetic trees themselves.
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Tree of life assists in prediction of 
protein-protein interactions.

Pazos et al, J. Mol. Biol., 2005
Sato et al, Bioinformatics, 2005

• There exists certain “background” 
similarity between trees of any 
proteins, no matter if they interact or 
not.

• The “background” tree is constructed 
from 16S rRNA sequences.

• rRNA-based distances are 
subtracted from distances for the 
original phylogenetic tree.  

Adapted from Pazos et al, J. Mol.Biol., 2005
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Performance of “mirrortree” methods.

Adapted from Pazos et al, J. Mol.Biol., 2005

Pazos et al, J. Mol. Biol. 2005

• Test set of 512 physically 
interacting proteins from E. coli

• “tol-mirrortree” method (blue) finds 
half of real interacting proteins at 
6.4% false positive rate compared to 
16.5% false positives rate with 
“mirrortree” method (black). 
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Classification methods: Random 
Decision Forest.

• Training set: interacting protein 
pairs + non-interacting pair;

• Each pair – vector of features 
(domain types) of dimension N.

• Values of vector: 
0, if protein pair does not contain 
feature;
1, if at least one protein in a pair 
contains feature;
2, if two proteins contain the 
feature.

D1 D2 D3 D4 D5

D1 D3

= { 1,0,2,1,0 }
D4 D3
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Classification methods: Random 
Decision Forest.

• Choose feature randomly 
(D20), get values of all 
pairs in a given position 
corresponding to this 
feature;

• Divide all pairs in three 
groups: those which both 
have this feature, only one 
protein has feature, no 
feature.

D20

D21

D26

D10 D30

D15 0 D22

1 D2
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Classification methods: Random 
Decision Forest.

• Repeat splitting at next 
node and stop when node 
impurity is small.

• To classify a new protein 
pair – traverse along the 
tree

D20

D21

D26

D10 D30

D15 0 D22

1 D2

Node impurity = # interacting 
proteins / # non-interacting proteins

215

Predicting domain interactions from 
protein interactions

• Association method
• Maximum likelihood estimation method
• Domain Pair Exclusion Analysis
• Random decision forests
• Calculating P-values
• Integrative method

216

Predicting domain interactions from 
protein interactions

• Protein sequence search of Pfam, SCOP or 
CDD domains

• Train on high-throughput experimental data

• Evaluate with structures or MIPS

• Assign probabilities to protein interactions for 
further prediction
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Association method

Sprinzak & Margalit, J Mol Biol, 2001

• Record domains
• List interacting protein 

pairs
• Tabulate domain pairs 

from protein pairs
• Compute log-odds 

values

218

Association method

Sprinzak & Margalit, J Mol Biol, 2001

• 2,286 domain pairs
• 1,141 pairs > 2 bits
• 40 pairs with > 2 bits & 

count of 5
• No experimental error

219

Association method

Sprinzak & Margalit, J Mol Biol, 2001

• Log-odds value: log2(Pij/PiPj)
• Pi is the frequency of domain i in the data
• Average mutual information content per 

domain pretty high (2.48 bits) – significant 
correlation between interacting proteins 
and predicted domain pairs
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Random decision forests

Chen and Liu, Bioinformatics, 2005
• Discussed earlier as protein interaction 

prediction method
• 3,000 domain pairs predicted
• No experimental error
• Doesn’t assume independency
• Accounts for non-interactions

– Riley et al. note that this makes it harder to find 
specific paralogous interactions
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Expectation Maximization

Deng et al., Genome Res, 2002

1. Use initial parameters to get Z, 
expectation of complete dataset

2. Get maximum likelihood estimator of 
parameter set, Θ.

3. Iterate until convergence

222

Expectation Maximization

Deng et al., Genome Res, 2002

• fn = 0.64, fp = 2.85E-4
• 43% specificity, 78% sensitivity
• MIPS best predicitors 100x > random
• But, only 0.68% predicted

223

Domain Pair Exclusion Analysis

Riley et al., Genome Biol, 2005.

1. Sij frequencies
2. MLE of Θij starting 

with Sij

3. Recalculate Θij with 
interaction probability 
ij fixed to zero. Get Eij
from difference.

Extend MLE method to detect specific, rare interactions

224

Promiscuous domains

Riley et al., Genome Biol, 2005.

• High E-score: high 
propensity to interact

• Low E-score: competing 
domains more likely 
responsible for interaction

• Screen for low θ and high 
E to find specific domain-
domain interactions
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Domain Pair Exclusion Analysis

Riley et al., Genome Biol, 2005.

• E discriminates 100 top predictions 71x random
• Θ and S are ineffectual particularly with modular 

domains

226

Calculating P-values to predict 
domain interactions

Nye et al., Bioinformatics, 2005.

• SCOP superfamilies
• P-values for domain 

pairs
• Shuffle domains on 

sequences for null 
hypothesis

• Domain architectures 
considered
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Calculating P-values to predict 
domain interactions

Nye et al., Bioinformatics, 2005.

• fn = 5.7E-4, fp = 0.1
• Contrast to Deng 

(0.64, 2.85E-4)
• Predicts better at 

higher number of 
interacting partners

• Random wins in 
largest group
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Integrative method

Ng et al., Bioinformatics, 2003

• Add scores from three sources:
– DIP – odds ratio score
– Protein complexes – odds ratio score
– Domain fusions – simple constant

• 20-fold cross validation
– Major change from DIP to DIP + complexes
– TPs: 39% to 58%, FPs: 8% to 12%
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Limitations of domain interaction 
prediction methods

• Assume domain pairs interact independently
• Repeated domains not scored to distinguish 

contacts
• Missing domain assignments give false 

negatives and positives
• Many proteins have no assignments
• Assume domain pairs, though may require 

higher order assemblies

230

Homology modeling of protein 
interactions

• Comparison to modeling single proteins
• General procedure
• Automated methods
• CAPRI docking contest
• Designed interfaces

231

Homology modeling of single proteins

• Structures solved quickly with current techniques

• Decent coverage of major genomes expected

• Structure prediction:
– Find homologous template to query
– Make query model based on template
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Homology modeling of protein 
interactions

• Elucidate interaction networks:  Roughly 2,000 out of 
10,000 interaction types known

• Limited protein-protein complexes in PDB

• Large complex structure determination has technical 
challenges not readily overcome in general

• Likely path involves multiple experimental methods with 
homology modeling and docking of structural subunits
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Support for modeling protein interactions

• Conservation of protein interfaces is weak 
compared to the rest of a protein low 
accuracy of prediction of protein-protein 
interaction sites.

• Conservation of domain-domain 
interactions: at SCOP Family level (red) 
interactions are conserved, at Fold level 
(blue) are not conserved.

Adapted from Aloy et al, J. Mol. Biol., 2003
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Support for modeling protein interactions

Shoemaker et al., Protein Sci, 2006.

Globin example:
• Interfaces between different 

functional subfamilies poorly 
conserved

• Within the same subfamily well 
conserved

• Supports homology modeling of 
interaction interfaces
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General procedure for homology 
modeling

• Start with high-throughput (Y2H, TAP/MS) protein 
interaction data

• Search proteins for homologous domains

• Evaluate likelihood of domain-domain interactions

• Search for homologous structures to query 
proteins/protein domains

236

General procedure for homology 
modeling

• Homologous structures might be
– Complete complexes (rare)
– Interacting domain dimers (sometimes)
– Single domains (most often)

• Put together structural pieces avoiding steric hindrance 
and maximize domain complementarity

• Docking potentials score orientations of two interacting 
domains

• Success depends strongly on similarity and 
completeness of homologous structures
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• Use data from:
– Multiple experimental 

methods
– Homology to structure

• Model interactions 
within and between 
complexes

Example: Modeling of yeast complexes
P. Aloy et al, Science, 2004

238

Example: Modeling of yeast complexes

• Found 42 (out of 102) 
“nearly complete” models

• 12 partial models of 
interacting subunits

• Structures fit onto 
electron microscopy 
grids (A,C,D)

• Complexes assembled 
from multiple smaller 
complexes (F)

P. Aloy et al, Science, 2004
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InterPReTS

Aloy & Russell, Bioinformatics, 2003

• Search for Pfam domains 
on target sequences

• Construct complexes 
matching the same Pfam 
types

• Score putative interactions 
with empirical pair 
potentials

• Good results except for 
peptidase / inhibitor class
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Multiprospector

Grimm et al., Proteins, 2006.

• Separately thread 
sequences X and Y 
against protein dimer 
database

• For X/Y matches to the 
same dimer, assess 
fitness by rethreading 
with an interface score 
derived from the dimer 
database
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Multiprospector

Grimm et al., Proteins, 2006.

• On yeast genome, 7,321 
interactions were 
predicted from 304 
complexes

• Ranked 3rd amongst 
large-scale prediction 
methods
– No bias towards abundant 

proteins
– Provides atomic detail of 

interaction surfaces

242

CAPRI contest

Mendez et al., Proteins, 2005.

• Build atomic models of 
complexes given 
structures of the unbound 
proteins

• Bound/unbound differ by 
up to 12Ǻ

• “Acceptable” to “highly 
accurate” predictions 
made

243

Limitations from CAPRI contest affecting 
homology modeling

• Proteins can undergo significant conformation 
changes upon binding

• Docking potentials require more accuracy
• Specific and non-specific protein interactions are 

not adequately distinguished

244

Interface design

Kortemme & Baker, Curr Opin
Chem Biol, 2005

• Computationally alter 
interface to modify 
function

• Create useful 
complexes

• Better understand 
prediction
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Interface design

Kortemme & Baker, Curr Opin
Chem Biol, 2005

• Alter oligomeric state 
in helical bundle

• Increase specificity of 
promiscuous domains

• Novel interactions
• Automated the 

process

246

Basic notions of networks.
Network (graph) – a set of vertices connected via 

edges.

The degree of a vertex – the total number of 
connections of a vertex.

Random networks – networks with a disordered 
arrangement of edges.

247

Characteristics of networks: degree 
distribution.

P(k,N) – degree distribution, k - degree of the vertex, 
N - number of vertices

K=2
K=2

K=3

K=1

If vertices are statistically independent and connections are random, the 
degree distribution completely determines the statistical properties of a 
network.

248

Different network models: Barabasi-
Alberts.

Barabasi & Albert, Science, 1999
Model of preferential attachment.
• At each step, a new vertex is added to the graph
• The new vertex is attached to one of old vertices with probability 

proportional to the degree of that old vertex.
ln(P(k))

ln(k)

γ−∝ kkp )(
Degree distribution – power law distribution.
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Power Law distribution
γ−kkp ~)(

)()()( kpkkp γγ ααα −− ==

Multiplying k by a constant, does not 
change the shape of the distribution –
scale free distribution.

From T. Przytycka
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Difference between scale-free and 
random networks.

Random networks are 
homogeneous, most nodes 
have the same number of 
links.

Scale-free networks have a 
few highly connected 
verteces.

Adapted from Jeong et al, Nature, 2000
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Multiple-species gene co-expression 
networks.

Stuart et al, Science, 2003

• Multiple-species network has been constructed by 
identifying pairs of genes with the correlated gene 
expression in different organisms.

• Multiple-species network performs better than single-
species network in linking together functionally related 
genes.
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Multiple-species gene co-expression 
networks.

Stuart et al, Science, 2003

True positives – links from the same KEGG functional category; 
accuracy - % links connecting two members of the same category; 
coverage - % metagenes connected to at least one metagene in the 
category.
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Aligning protein interaction networks.

PATHBLAST (Kelley et al. , PNAS, 2003, 
Sharan et al, PNAS, 2005).

• The method searches for high-scoring pathway 
alignments between two networks, where 
proteins are paired based on their sequence 
similarity. 

A

B

C

D

E

a

b

d

e
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Aligning protein interaction networks.
PATHBLAST (Kelley et al. , PNAS, 2003, 
Sharan et al, PNAS, 2005).

• The network alignment between worm, yeast 
and fly detected 71 network regions that were 
conserved between all three species.
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Comparing networks by their 
connectivities.

Hoffmann & Valencia, TRENDS in genetics, 2003

• Correlation coefficient between protein 
connectivities of two networks quantifies the 
agreement between the networks.

• Significant correlations between different 
experimental and theoretical methods: 
gene neighborhood method (GN) correlates 
with both experimental and in silico methods.  




