
Genomes, Browsers and Databases

Peter Schattner

Department of Biomolecular Engineering

University of California

Santa Cruz, CA

2

 Outline

Why is this tutorial important?

The number of molecular biology databases continues to explode. Presently, few

problems in any area of genomic molecular biology can be addressed without

analyzing data stored in these databases. However, these databases are located in

many different locations and often use non-standard data formats requiring

specialized data parsers. As a result integrating and comparing data from multiple

biological databases is difficult and tedious.

The genome databases at UCSC, Ensembl and NCBI offer solutions to this problem

by integrating data from multiple databases in a uniform and standardized manner.

However, effectively using these databases also has a considerable learning curve,

especially if one wants to query multiple genomic regions in an automated manner

rather than simply analyzing individual genes via an interactive browser. This tutorial

is intended to help students and researchers climb this learning curve more

expeditiously.

The tutorial should be useful for both biology and bioinformatics students and

researchers. Biologists will learn how to extract a wider range of relevant

annotations for their genes of interest from the browsers. Bioinformaticians will learn

how to access the underlying browser databases to perform automated, large scale

queries across entire genomes. As important, both groups will gain an appreciation

for the methods by which the browsers and their databases are constructed so that

they are prepared to take advantage of new features and enhancements that are

continually being incorporated into these important tools.

3

What does the tutorial cover?

The tutorial discusses interactive, batch and automated querying of the three major

genome databases (UCSC, Ensembl and NCBI). For pedagogical and time

constraint reasons, most of the focus is on a single database, the UCSC genome

browser database.

The tutorial begins with a background section that provides motivation why browsers

have become essential tools for biologists and bioinformaticians. This section also

introduces the three major browsers, compares some of their specific strengths and

limitations and explains my motivation for focusing primarily on the UCSC Browser.

The second section describes using the browser in interactive web-based mode,

which is the most common, and easiest, method of accessing these resources.

Interactive mode for the UCSC Browser is described, including many of its features

and controls. This is done in the context of a simple biological example.

Part Three includes a more “behind the scenes” view of some of the tools used to

build the browser, the understanding of which is necessary to appreciate the

resources browsers offer, as well as their limitations. Topics include genome

assemblies and database builds and local and whole-genome sequence alignment

methodologies.

Part Four introduces batch querying of browser databases and why this can be an

important tool. Using the UCSC Browser as an example, batch querying using SQL,

the Table Browser and Galaxy are all introduced. Details of file and table formats

are discussed as well as potential pitfalls that can fool the novice. The previously

used biological query example is extended to a situation requiring batch querying.

Batch querying in Ensembl is also briefly described.

Finally in Part Five, automated program-based querying of the browser database is

described. Topics include when program-based querying is advantageous, tradeoffs

between remote login and mirror site development and installation issues. In the last

section a simple, but complete, working C program for automated querying is

presented.

4

CONTENTS

PART 1: INTRODUCTION TO GENOME BROWSERS……….………………5
PART 2: INTERACTIVE QUERYING ON THE UCSC BROWSER.............………...6
PART 3: ASSEMBLIES, ALIGNMENTS ETC. - A GLIMPSE INSIDE.........………...6
PART 4: BROWSER/DATABASE BATCH QUERYING..........……….………………8
PART 5: AUTOMATED QUERYING PROCEDURES..........……….……..…………12
SAMPLE DATABASE QUERYING PROGRAM...…........................……..…………15
FINDING MORE INFORMATION…........................……..………………………….…19
REFERENCES…........................……..…………………………………………………20

5

INTRODUCTION TO GENOME BROWSERS

Integrated genome browsers have become essential tools for the analysis of

genomic data. They offer the ability to visualize disparate annotations of genes and

other genomic locations from single or multiple species in ways that are a simply not

possible with previous tools. These tools have become especially important recently

because the number of individual biological databases is growing rapidly. Moreover,

many of these “databases” are downloadable as flat-files only, meaning that

searching them is slow or else local relational databases need to be set up. Also,

differing data formats are used, requiring the use of multiple data parsers. Finally

complex queries require integrating data from multiple databases.

As an example, say you found a synonymous codon polymorphism in a possible

disease gene and wanted to check its properties such as: is it in dbSNP? Does it

occur in any known EST? Is the site conserved in other vertebrates? It is possible to

answer these questions without an integrated browser but it would require finding

and using multiple different resources (dbSnp, Genbank, BLAST, etc) each with its

own idiosyncrasies and learning curves. With one of the browsers such queries can

be accomplished in a simple and straightforward manner.

There are three main browsers: Ensembl, NCBI MapViewer and UCSC. They have

more similarities than differences. Choosing one or the other is pretty subjective.

But it is probably most useful to pick one you like and stick mainly with that one,

since they each have their own learning curve. For this tutorial I focus primarily on

the UCSC Browser because it has several strengths:

• Strong comparative genomics capabilities

• Fast –especially when doing sequence searches with BLAT

• (Essentially) a single “view” from single base-pair to entire chromosome

• UCSC system is well suited for batch and automated querying.

• The UCSC Browser is comprehensive, especially for non-protein coding regions

• Frequent annotation updates (Genbank/Refseq daily / ESTs weekly).

And, in truth, probably the main reason for my choosing the UCSC Browser is that it

is the one with which I have by far the most experience.

6

INTERACTIVE QUERYING ON THE UCSC BROWSER

Interactive Querying on the UCSC Browser is straightforward and can be described

in four simple steps. First you need to go to: http://genome.ucsc.edu. Next choose a

genome and an assembly. Then pick a genomic region of interest. Finally specify

what annotations you want

Browser annotations are via “tracks” along the chromosome. Scores of annotation

tracks can be selected. To help the user navigate among them, they are divided into

“Groups”. Examples of track types include chromosome descriptions, gene

annotations, local paired alignments (mRNAs, ESTs), comparative genomics

annotations, annotations of species variations. New tracks are being added all the

time. Some recent tracks include ENCODE annotations, Retroposed genes,

snoRNAs / miRNAs, RNA fold predictions, segmental duplications, and Affymetrix

full chromosome transcriptional data. For a more detailed recent update see

Hinrichs et al in the References.

In addition to the track data there is a wealth of other data available in the UCSC

browser, which can be found in “Details” pages, the GeneSorter, the Proteome

Browser, VisiGene, BLAT and the isPCR tool. Examples of the use of these tools

and resources are given in the tutorial slides. For more detailed examples of

interactive browser use with the UCSC Browser see the Openhelix website

(www.openhelix.com).

ASSEMBLIES, ALIGNMENTS AND ALL THAT

Two fundamental issues that are important to understanding the data presented at

the UCSC Browser are how the database is “built” and how the alignments of

sequence tracks of differing sequence data from other species are carried out.

In contrast to some systems that describe genomic locations in terms of physical

“contig” locations, the UCSC browser uses actual chromosome coordinates. As a

result, each new assembly of a genome will change the positions of most features

(i.e. annotations). Consequently after a genome reassembly the entire database

needs to be rebuilt. A browser utility exists to convert coordinates between

assemblies.

7

One source of confusion is that new builds may not have all the tracks of a previous

build. This is partly because the “build” process is not completely automated and

because tracks that are no longer considered important may not be rebuilt in new

assemblies. Moreover many annotations are updated between builds (in some

cases nightly). This can be confusing when comparing with results obtained

previously from the same build.

Much of the power of the UCSC Browser comes from its comparative genomics

tools, which in turn are based on its powerful alignment tools. For speed purposes,

all alignments (except for those resulting from user-initiated BLAT queries) are

precomputed and stored. However, powerful as it is, the UCSC alignment-tool suite

has its limitations and those limitations will be reflected in the alignments presented

in the browser, and therefore need to be understood.

For local paired alignments, UCSC uses BLAT, translated BLAT and BLASTZ. BLAT

and translated BLAT tools are extremely fast but lower sensitivity than BLAST

especially for cross-species (i.e. xeno) alignments. BLASTZ is similar to BLASTn

with an optimised scoring algorithm for cross species comparisons. Local multiple

alignments are performed with MULTIZ (an extension of BLASTZ) and cross

species conservation of multiple alignments is scored with phastCons, a

phylogenetic Hidden Markov Model tool.

For paired genomic alignments, UCSC uses “chains and nets”. This approach has

the advantages of being not dependent on high quality gene annotations and having

support for segmental duplications and inversions. Nets and chains are described in

more detail in the paper by Kent (2003) in the References. Genomic multiple

alignments are generated by the “threaded blockset aligner” (TBA) tool. TBA starts

with local multiple alignment “seeds” generated by MULTIZ which are then linked

together (“threaded”) to form longer alignments. TBA currently cannot handle

segmental duplications and inversions. For more detail on TBA see the paper by

Blanchette in the references.

8

BROWSER/DATABASE BATCH QUERYING WITH THE UCSC BROWSER

Interactive querying is difficult if you want to study numerous “interesting” genomic

regions. Querying each region interactively is tedious, time-consuming and error

prone. For example, we can extend the example used in Part II and suppose you

have found hundreds of candidate polymorphisms and you want to know which of

them are in dbSNP or overlap known ESTs or are at sites conserved in other

vertebrates.

To answer such questions efficiently requires batch querying of the underlying

genome database(s). In the UCSC Browser, data for each assembly are typically

stored in a separate database and auxiliary data, e.g. gene ontology (GO) data, are

stored in yet other databases. These databases may have hundreds of tables, many

with millions of entries. The conventional way of querying a relational database is via

“Structured Query Language” (SQL). However with tools such as the Table Browser,

you can query the database without using SQL.

Nevertheless, even with the Table Browser, you need some understanding of the

underlying track, table and file formats. Table formats describe how data is stored in

the (relational) databases. Track formats describe how the data is presented on the

browser. File formats describe how the data is stored in “flat files” in conventional

computer files. Finally, for understanding the underlying the computer code you will

need to learn about the “C” structures which hold the data in the source code.

These classes of formats can be confusing because they are typically similar to one

another but may differ in subtle ways. However, at least in the case of the UCSC

Browser, the situation is simplified because there are utility programs available for

converting files to tracks to tables and to C- structures and back again. In some

cases the files are actually converted automatically between table (SQL) format and

code (C) format by a dedicated program called autoSQL. autoSQL is described in

detail at http://www.linuxjournal.com/article/5949.

The principle file and table formats are: BED (“Browser extensible data”) – for gene

and chromosome annotations, PSL (“Pattern space layout”) – for pair-wise

alignments, MAF (“Multiple alignment format”) – for multiple alignments and WIG

(“Wiggle format”) - for numerical data. Although the design of these structures is

9

quite logical, they do have some subtleties (especially for representing negative

strand data) that can create pitfalls for those not used to them. More detailed

descriptions of database tables can be found at:

 http://genome.ucsc.edu/goldenPath/gdbDescriptions.html

In most cases, using SQL is not necessary to obtain the information you need from

the Browser Database. The Table Browser can accomplish this task for you.

Retrieving specific subsets of data can be accomplished with the table filtering and

intersection tools. Moreover the data can be retrieved in a variety of useful output

formats. A particularly useful output format is as a custom track, which then can be

displayed on the browser or intersected with other tables. Direct SQL querying of the

UCSC databases is also supported. This can be accomplished either via the Table

Browser itself, through the public UCSC mirror database at genome-

mysql.cse.ucsc.edu or by setting up one’s own mirror database.

GALAXY

The Galaxy Website (http://g2.bx.psu.edu) was developed for several reasons.

Ultimately its intent is to provide an easy interface to sequence and data

manipulation tools (a la SRS or the UCSD Biology Workbench) that are capable of

being applied to genomic data. It offers varied output formats and is intended to

work with data from multiple browsers / databases.

First released in 2005, Galaxy is still somewhat of a “work in progress”. To date, it

supports the UCSC Table Browser, EBI EnSmart and NHGRI databases and offers

only a few sequence manipulation tools (e.g. GC%, Ka/ Ks calculations). However,

Galaxy does already offer an interface to the UCSC Table Browser that is arguably

more “user friendly” than UCSC’s, especially in cases where table intersection,

union or similar manipulations need to be performed.

Galaxy is likely to add more useful tools in the near future and is probably worth

monitoring as an alternative entry point to the browser databases for batch querying.

More details on Galaxy can be found in the paper by Giardine et al in the

references.

10

BROWSER “GOTCHAS”

Although the UCSC Databases are generally configured in a very straightforward

and logical manner there are situations where the system interface works in an

unexpected manner to those inexperienced with it. Some of these situations reflect

intrinsic difficulties or ambiguities in describing genomic sequence data. Others are

specific to the conventions used in the UCSC system.

General pitfalls in interpreting stored genomic data include the fact that a gap in an

alignment of an mRNA to the genome may not be intron, but rather an insertion in

the genome sequence or a deletion in the mRNA. Also sequence differences

between an mRNA and the genome may not represent polymorphisms, but rather

sequencing artifacts. Another potential source of confusion is that the number of

blocks in an alignment between an mRNA and the genome may not be the same as

the number of “blocks” (i.e. exons) in the gene that is predicted to be represented by

that mRNA.

Subtleties to watch out for that are relatively specific to the UCSC data

representation include the fact that UCSC uses a “half open” numbering system and

that the data is stored internally starting at position “0” while it is displayed as if it

started at position “1”. Issues of speed cause the database to use various indexing

fields, including “bin” fields and MAF index fields for searching in external files that

can cause confusion if one is not expecting to see them. Also, block (e.g. exon) and

strand data is stored in different ways in different kinds of tables. Although these

varying kinds of representations all make sense once they are brought to one’s

attention, they can be quite puzzling if one is not prepared for them.

To find out more information about these aspects of the UCSC data representation

as well as to find several other examples of possibly unexpected behavior within the

browser database, a good place to look are the “Frequently Asked Questions”

section of the browser documentation located at: http://www.genome.ucsc/FAQ/

ENSEMBL’S APPROACH TO BATCH QUERIES AND CUSTOM TRACKS

Performing batch queries and creating custom tracks is also possible in Ensembl.

Specifically Ensembl’s version of the UCSC Table Browser is called “BioMart”. It is

11

more “gene oriented” than the Table Browser with somewhat different features. In

particular, BioMart offers a tight interface with the R/Bioconductor project for the

analysis of microarray data.

The Ensembl track display system uses “DAS” (Distributed Annotation System) a

widely used system for using multiple remotely located servers for displaying

genomic annotation information. Local DAS client software integrates the results

from the various servers. DAS is intended to be more scalable, since maintaining

tracks is not responsibility of single group. To find out what annotations are available

from the Ensembl DAS system, the user can check the DAS registry at:

http://das.sanger.ac.uk/registry

12

AUTOMATED QUERYING PROCEDURES

Using the Table Browser or Galaxy or BioMart is still a partly interactive process.

Consequently, when performing multiple, large scale queries this approach

becomes time-consuming and error prone. Moreover, complex data analyses often

require performing data manipulation in software, anyway, and it may be more

efficient to integrate this analysis with the data retrieval. In such cases, it is often

desirable to be able to perform database querying in a fully automated manner.

A typical case arises by modifying our polymorphism-analysis example. Specifically,

assume that instead of experimental data, we have a computer algorithm to predict

candidate disease polymorphisms and we want to know whether the predicted

polymorphisms are in dbSNP or in known ESTs or at vertebrate conserved sites.

Furthermore, let’s assume that our computer algorithm has several adjustable

parameters and each time we change them we would get a new list of putative

biological polymorphisms. We will NOT want to interactively perform all the Table

Browser table-intersections every time we modify a parameter. Although this specific

example is made-up, it is not unlike more realistic ones, such as characterizing the

introns of genes that host snoRNAs (see Schattner et. al in the References) or

characterizing regions of extreme codon conservation (see Schattner and Diekhans)

Although fully automated database querying is very powerful, it does require certain

prerequisites not needed by the interactive and batch-querying methods described

so far. Specifically you’ll need: general programming skills, database programming

skills, and direct (SQL) access to a browser database.

In principle automated database querying is feasible with any of the three major

browser databases. The choice of which to use is likely to be largely motivated by

which computer and database languages you are most comfortable with. Although

for commercial users, licensing considerations may also be of importance.

In this tutorial, I discuss automated querying of the UCSC database, which uses the

C language and the mySQL database architecture. My reasons for focusing on the

UCSC database are (besides that it is the one with which I am most familiar) the

availability of an extraordinary code base on which to build writing ones own

13

programs, the comprehensive nature of the database and the fact that “C” code is

fast.

Without question, for me the biggest advantage of using the UCSC database is the

availability of the code in the kent source tree. The code is clearly written,

extensively tested and fast. It is also open source so you can learn from it and

modify it for your own use and free for academic, government and personal use

(core routines are even free for commercial use).

With the kent source code, many important utilities are usable “right out of the box”.

Built-in library functions provide almost any sequence and data manipulation

capability you might want. These library functions are located primarily in the “lib”

and “hg/lib” subdirectories of kent/src/. Plenty of code examples illustrate exactly

how to use the library effectively. There are CGI-based programs to perform all the

sequence and data manipulations performed by the browser. In general, if the

browser performs some data manipulation, with a little detective work, you can find

the code to insert in your program. Sometimes the appropriate program can be

identified by simply looking after the “cgi-bin” in the web address as in

genome.ucsc.edu/cgi-bin/hgTracks. Moreover, many browser cgi-programs can be

run in stand-alone mode. You just need to give it the proper arguments, which are

stored in the “CART”. Current CART arguments can be examined by running:

http://genome.cse.ucsc.edu/cgi-bin/cartDump.

The browser code is largely object oriented. A “C” structure is defined for each type

of track and table. Associated functions (i.e. methods) are defined to implement the

various manipulations that can be performed on the data in the structure. In addition,

functions are available for loading and writing data to and from the database.

However, before you can run automated queries on the UCSC database you need a

database-copy on which to run them. This can be either the public UCSC database

at genome-mysql.cse.ucsc.edu or one’s own mirror database. The advantages of

using the public database are that it does not require up to 1.2 Tbyte or more of disk

space and there is no database installation or maintenance required. (You will need

to modify the .hg.conf files and the library routine sqlConn.c because the public

database does not use a password whereas the routines in the library do.) In

contrast, having your own mirror has the advantages of not being a shared

resource. Consequently, you can run it as heavily as you like. Performance doesn’t

14

depend on usage by others. And the database can be modified / customized to meet

your specific needs.

Detailed instructions for setting up a mirror of the UCSC database and browser can

be found at: http://genome.ucsc.edu/admin/mirror.html. If you have more than 1.2

TBytes of free space then simply following the instructions there should work fine.

However, if you have less available space, it is works perfectly well to only install the

databases for the species you need to work on. In fact, you may well choose to only

install a subset of the tables and files of a database. Also you do not need to install

Apache or any CGI or HTML files if you are only doing database querying.

In any case you will need to download and compile the kent source code. It’s a good

idea to compile the kent code with the “debug” option enabled (not the default). This

is not because the kent code is buggy (it is not) but rather because it makes it easier

to track problems in your own code later using an interactive debugger such as gdb.

Once you are configured for remote access to the public database or have installed

a local mirror of the databases you will be querying, writing programs to actually do

the database querying is straightforward. In the next section is a “toy” program,

demonstrating both approaches. The program is pretty simple, but it illustrates the

main ideas, is complete and does work (tested under Mac OS X and linux). The

source and input data files can be found at: http://www.soe.ucsc.edu/~schattner/ (Or

if you want to try them by cutting and pasting them, be careful of “line breaks” that

might have been introduced during reformatting).

15

/* gbdExample - illustrates accessing data from public UCSC

 * database or a locally installed mirror or downloaded file */

#include "common.h"

#include "options.h"

#include "jksql.h"

#include "bed.h"

#include "binRange.h"

#include "genePred.h"

#include "genePredReader.h"

#include "hdb.h"

/**********Globals************/

struct slDouble *overlapList = NULL;

struct slDouble *otherList = NULL;

/**********Globals************/

void usage()

/* Explain usage and exit. */

{

errAbort(

 "gbdExample - find median length of introns overlapping ranges in

input file\n"

 "usage:\n"

 " gbdExample db dbTable myBedFile method\n"

 " where db is the database name \n"

 " where dbTable is tableFileName in 'file' mode or else\n"

 " name of table to use in 'public' or 'localDb' modes

\n"

 " where myBedFile is a bed file of genomic ranges \n"

 " where method is either 'public' or 'localDb' or 'file' \n"

 "\n");

}

/**/

void binKeeperGpHashFree(struct hash **hash)

/* adapted from binKeeperPslHashFree in pslPseudo.c */

{

if (*hash != NULL)

 {

 struct hashEl *hashEl = NULL;

 struct hashCookie cookie = hashFirst(*hash);

 while ((hashEl = hashNext(&cookie)) != NULL)

 {

 struct binKeeper *bk = hashEl->val;

 struct binElement *elist = NULL, *el = NULL;;

 elist = binKeeperFindAll(bk) ;

16

 for (el = elist; el != NULL ; el = el->next)

 {

 struct genePred *gp = el->val;

 genePredFree(&gp);

 }

 binKeeperFree(&bk);

 }

 hashFree(hash);

 }

}

/**/

struct hash *readGpToBinKeeper(char *gpFileName)

/* adapted from readPslToBinKeeper in psl.c */

{

#define MAX_CHROM_SIZE 400000000

struct binKeeper *bk;

struct genePred *gp;

struct lineFile *pf = lineFileOpen(gpFileName , TRUE);

struct hash *hash = newHash(0);

char *row[21] ;

int genePredLineCtMin = 10;

while (lineFileNextRow(pf, row, genePredLineCtMin))

 {

 gp = genePredLoad(row);

 if (hashLookup(hash, gp->chrom) == NULL)

 {

 bk = binKeeperNew(0, MAX_CHROM_SIZE);

 hashAdd(hash, gp->chrom, bk);

 }

 bk = hashMustFindVal(hash, gp->chrom);

 binKeeperAdd(bk, gp->txStart, gp->txEnd, gp);

 }

lineFileClose(&pf);

return hash;

}

/**/

struct genePred *bkToGenePreds(struct hash *gpHash, char *chrom, int

start, int end)

/* */

{

struct genePred *gpList = NULL;

struct genePred *gp;

struct binKeeper *bk = hashFindVal(gpHash, chrom);

struct binElement *el, *elist = binKeeperFind(bk, start, end) ;

17

for (el = elist; el != NULL ; el = el->next)

 {

 gp = el->val;

 if (gp != NULL)

 {

 slSafeAddHead(&gpList, gp);

 }

 }

slFreeList(&elist);

return gpList;

}

/**/

struct sqlConnection *getHgdbtestConn(char *db)

/* Read .hg.conf and return connection. */

{

char *host = "genome-mysql.cse.ucsc.edu";

char *user = "genome";

char *password = NULL;

hSetDbConnect(host,db,user,password);

return sqlConnectRemote(host, user,password, db);

}

/**/

int genePredLongestCmp(const void *va, const void *vb)

/* Compare to sort based sizes of txEnd - txStart, largest first. */

{

const struct genePred *a = *((struct genePred **)va);

const struct genePred *b = *((struct genePred **)vb);

int lengthA = a->txEnd - a->txStart;

int lengthB = b->txEnd - b->txStart;

int dif = lengthB - lengthA;

return dif;

}

/**/

void doOneGene(struct genePred *gp, int qStart, int qEnd)

/* get intron statistics for longest gene in range */

{

int i, intronStart, intronEnd;

for (i=1; i< gp->exonCount; ++i)

 {

 intronStart = gp->exonEnds[i - 1];

 intronEnd = gp->exonStarts[i];

 double intronLength = (double) (intronEnd - intronStart);

 struct slDouble *slIntronLength = slDoubleNew(intronLength);

 if (positiveRangeIntersection(qStart, qEnd, intronStart,

intronEnd))

18

 {

 slSafeAddHead(&overlapList, slIntronLength);

 }

 else

 {

 slSafeAddHead(&otherList, slIntronLength);

 }

 }

}

/**/

void doOneBed(struct bed *bed, struct sqlConnection *conn,

 char *geneTable, struct hash *gpHash)

/* get intron statistics for longest gene in range */

{

int bStart = bed->chromStart;

int bEnd = bed->chromEnd;

struct genePred *gp = NULL;

if (gpHash == NULL)

 gp = genePredReaderLoadRangeQuery(conn, geneTable, bed->chrom,

bStart, bEnd, NULL);

else

 gp = bkToGenePreds(gpHash, bed->chrom, bStart, bEnd);

slSort(&gp, genePredLongestCmp);

if (gp == NULL)

 {

 errAbort("No gene found in %s overlapping %s:%d-%d\n",

 geneTable, bed->chrom, bStart, bEnd);

 }

doOneGene(gp, bStart, bEnd);

if (gpHash == NULL)

 genePredFreeList(&gp);

}

/**/

void processBedFile(char *bedFile, struct sqlConnection *conn,

 char *geneTable, struct hash *gpHash)

/* Read file and process */

{

struct bed *bedList=NULL, *bed=NULL;

bedList = bedLoadAll(bedFile);

for(bed = bedList; bed != NULL; bed = bed->next)

 {

 doOneBed(bed, conn, geneTable, gpHash);

 }

19

printf("Median value of lengths of overlapping introns = %f\n",

slDoubleMedian(overlapList));

printf("Median value of lengths of other introns = %f\n",

slDoubleMedian(otherList));

bedFreeList(&bedList);

}

/**/

/* gbdExample.c */

int main(int argc, char *argv[])

/* Find median value of lengths of introns overlapping ranges in

input file

 * and compare with lengths of other introns in those genes

 * Program reads 'bed fileÕ of genomic regions and

 * extracts longest gene overlapping each region. For each

 * gene, lengths of introns overlapping the region as well

 * as those not overlapping the region are computed. Medians

 * of each set of intron lengths is printed out.

 * Program is compiled with:

gcc -g -Wall -Werror -I${KENTSRC}/inc -I${KENTSRC}/hg/inc -o

gbdExample gbdExample.c $KENTSRC/lib/$MACHTYPE/jkhgap.a

$KENTSRC/lib/$MACHTYPE/jkweb.a $MYSQLLIBS •lm

 * where $KENTSRC is the local location of the kent source

 * tree, $MYSQLLIBS is location of the local mySQL libraries

 * and $MACHTYPE is the machine type environmental variable

 * Once compiled and linked, the program is run as e.g.:

./gbdExample sacCer1 sgdGene myYeastBedFile localDb

 * or

./gbdExample hg17 refGene myHumanBedFile public

* or

./gbdExample sacCer1 sgdGene.txt myYeastBedFile file

 * where the first argument is the db to use (this parameter is

 * ignored in 'file' mode, the second argument is the name of

 * the db or file gene table, third program argument is the location

 * file of (bed) locations to be screened for intron lengths,

 * and the fourth argument indicates whether to use

 * the public UCSC database at genome-mysql.cse.ucsc.edu

 * or a locally installed mirror or a downloaded file.

 */

{

char *db = argv[1];

char *geneTable = argv[2];

char *bedFile = argv[3];

char *method = argv[4];

if (argc != 5)

 usage();

20

struct sqlConnection *conn = NULL;

struct hash *gpHash = NULL;

if (sameWord(method, "file"))

 gpHash = readGpToBinKeeper(geneTable);

else

 {

 conn = sameWord(method, "public") ?

 getHgdbtestConn(db) : sqlConnect(db);

 }

processBedFile(bedFile,conn, geneTable, gpHash);

slFreeList(&overlapList);

slFreeList(&otherList);

sqlDisconnect(&conn);

binKeeperGpHashFree(&gpHash);

return 0;

}

21

FINDING MORE INFORMATION

There are numerous excellent sources of additional material describing the three

browsers and their underlying databases. Unfortunately much of this material is

distributed in numerous articles and web pages that are located in different places.

A good place to start is Openhelix at www.openhelix.com. They have excellent free

on-line tutorials and powerpoint presentations that cover much of the material from

Part II of the present tutorial (i.e. on interactive browsing with the UCSC browser) in

more detail than I do.

Additional tutorials, userguides and FAQs can be found at the respective browser

websites:

genome.cse.ucsc.edu/goldenPath/help/hgTracksHelp.html

www.ensembl.orgs/Docs

www.ncbi.nlm.nih.gov/mapview/static/MapViewerHelp.html

To understand the methods underlying the design and development of the browsers

themselves, one needs to go to the original research literature and subsequent

reviews. Recent articles that I have found most helpful in understanding the

workings of the browsers are listed in the References section.

To really understand the detailed workings of the browsers, it is often necessary to

go to the code itself. This code is typically open source and relatively well

documented. For the UCSC Browser, all the code is in the kent “source tree” which

can be freely downloaded at http://www.soe.ucsc.edu/~kent/src/. If you want to see

in detail how a large database, like hg17, is built, look at makeHg17.doc in

kent/src/hg/makeDb/.

Finally, you may want to join a mailing list where you can ask questions. The UCSC

Browser mailing list is at: http://www.cse.ucsc.edu/mailman/listinfo/genome

ACKNOWLEDGEMENTS

I am indebted to Mark Diekhans and Hiram Clawson for having spent large amounts

of time patiently explaining the workings of the UCSC Browser to me. I thank Ewan

Birney, Deanna Church, Xose Fernandez, Fan Hsu, Bob Kuhn, Daryl Thomas and

22

David Wheeler for answering questions about the features of the various browsers

and databases and to Daryl Thomas and Fan Hsu for assistance in developing

some of the slide presentation material. And finally I am of course grateful to the

three browser teams for creating such outstanding and useful tools in the first place.

REFERENCES

Browser Comparisons
Baxevanis, A.D. (2003) Using genomic databases for sequence-based biological

discovery. Mol Med, 9, 185-192.

Furey, T.S. (2006) Comparison of human (and other) genome browsers. Hum

Genomics, 2, 266-270.

Ensembl
Birney, E. (2003) Ensembl: a genome infrastructure. Cold Spring Harb Symp Quant

Biol, 68, 213-215.

Birney, E., Andrews, D., Caccamo, M., Chen, Y., Clarke, L., Coates, G., Cox, T.,

Cunningham, F., Curwen, V., Cutts, T. et al. (2006) Ensembl 2006. Nucleic Acids

Res, 34, D556-561.

Birney, E., Andrews, T.D., Bevan, P., Caccamo, M., Chen, Y., Clarke, L., Coates,

G., Cuff, J., Curwen, V., Cutts, T. et al. (2004) An overview of Ensembl. Genome

Res, 14, 925-928.

Curwen, V., Eyras, E., Andrews, T.D., Clarke, L., Mongin, E., Searle, S.M. and

Clamp, M. (2004) The Ensembl automatic gene annotation system. Genome Res,

14, 942-950.

Durinck, S., Moreau, Y., Kasprzyk, A., Davis, S., De Moor, B., Brazma, A. and

Huber, W. (2005) BioMart and Bioconductor: a powerful link between biological

databases and microarray data analysis. Bioinformatics, 21, 3439-3440.

Hammond, M.P. and Birney, E. (2004) Genome information resources -

developments at Ensembl. Trends Genet, 20, 268-272.

Kasprzyk, A., Keefe, D., Smedley, D., London, D., Spooner, W., Melsopp, C.,

Hammond, M., Rocca-Serra, P., Cox, T. and Birney, E. (2004) EnsMart: a generic

system for fast and flexible access to biological data. Genome Res, 14, 160-169.

MapViewer
Wheeler, D.L., Barrett, T., Benson, D.A., Bryant, S.H., Canese, K., Chetvernin, V.,

23

Church, D.M., DiCuccio, M., Edgar, R., Federhen, S. et al. (2006) Database

resources of the National Center for Biotechnology Information. Nucleic Acids Res,

34, D173-180.

Wheeler, D.L., Barrett, T., Benson, D.A., Bryant, S.H., Canese, K., Church, D.M.,

DiCuccio, M., Edgar, R., Federhen, S., Helmberg, W. et al. (2005) Database

resources of the National Center for Biotechnology Information. Nucleic Acids Res,

33, D39-45.

UCSC
Blanchette, M., Kent, W.J., Riemer, C., Elnitski, L., Smit, A.F., Roskin, K.M.,

Baertsch, R., Rosenbloom, K., Clawson, H., Green, E.D. et al. (2004) Aligning

multiple genomic sequences with the threaded blockset aligner. Genome Res, 14,
708-715.

Hinrichs, A.S., Karolchik, D., Baertsch, R., Barber, G.P., Bejerano, G., Clawson, H.,

Diekhans, M., Furey, T.S., Harte, R.A., Hsu, F. et al. (2006) The UCSC Genome

Browser Database: update 2006. Nucleic Acids Res, 34, D590-598.

Hsu, F., Kent, W.J., Clawson, H., Kuhn, R.M., Diekhans, M. and Haussler, D. (2006)

The UCSC Known Genes. Bioinformatics, 22, 1036-1046.

Hsu, F., Pringle, T.H., Kuhn, R.M., Karolchik, D., Diekhans, M., Haussler, D. and

Kent, W.J. (2005) The UCSC Proteome Browser. Nucleic Acids Res, 33, D454-458.

Karolchik, D., Hinrichs, A.S., Furey, T.S., Roskin, K.M., Sugnet, C.W., Haussler, D.

and Kent, W.J. (2004) The UCSC Table Browser data retrieval tool. Nucleic Acids

Res, 32, D493-496.

Kent, W.J., Baertsch, R., Hinrichs, A., Miller, W. and Haussler, D. (2003) Evolution's

cauldron: duplication, deletion, and rearrangement in the mouse and human

genomes. Proc Natl Acad Sci U S A, 100, 11484-11489.

Kent, W.J., Hsu, F., Karolchik, D., Kuhn, R.M., Clawson, H., Trumbower, H. and

Haussler, D. (2005) Exploring relationships and mining data with the UCSC Gene

Sorter. Genome Res, 15, 737-741.

Galaxy
Giardine B., Riemer C., Hardison R.C., et al. (2005) Galaxy: a platform for

interactive large-scale genome analysis. Genome Res, 15, 1451-1455.

Applications
Schattner, P. and Diekhans, M . (2006) Regions of extreme synonymous codon

selection in mammalian genes. Nucleic Acids Res, 34, 1700-1710.

24

Schattner P., Barberan-Soler S. and Lowe T.M. (2006) A computational screen for

mammalian pseudouridylation guide H/ACA RNAs. RNA, 12, 15-25.

25

Genomes, Browsers and Databases: Genomes, Browsers and Databases:
Tools for Automated Data Integration Tools for Automated Data Integration

Across Multiple GenomesAcross Multiple Genomes

Peter Schattner
University of California, Santa Cruz

schattner@cse.ucsc.edu
98

Overview

• Introduction to Genome Browsers
• Basics of the UCSC Browser
• Assemblies, Alignments and all that
• Batch Browser/Database Querying
• Automated Procedures for Database

Querying

99

“Disclaimer”
• I have tried to be fair in my descriptions of

browser and database tools and capabilities,
but any evaluation of features like ease of use
or tool utility are inherently subjective.

• All opinions are solely mine, from the
perspective of an “end user”, and may well not
be those of the UCSC Browser Team (of which
I am not a member.)

100

Part I - Introduction to
Genome Browsers

26

101

What browsers provide
• Data visualization
• Annotation of genes and genomic locations
• Comparisons / alignments of genes and

genomic locations
• Interactive and automated access to

integrated databases

102

Why integrated browsers are
important

• Visualizing data from multiple sources simultaneously can
be critical to understanding.

• The number of databases is growing rapidly.
• Many “databases” are downloadable as flat-files only.

– Searching is slow or
– Local relational databases need to be set up

• Differing data formats are used.
– Consequently, multiple data parsers are often required.

• Complex queries require integrating data from multiple
databases.

103

A simple example

You have found a synonymous codon polymorphism in a
possible disease gene and you want to know:

– Is the polymorphism in dbSNP?
– Does it occur in any known EST?
– Is the site conserved in other vertebrates?
– Is it near any “LINE” repeat sequences?
– Is the exon involved alternatively spliced?

104

What we might do without a
browser

– Go to dbSNP & search for SNPs at that location.
– Blast Genbank and retrieve ESTs and parse for

polymorphism.
– Blast Genbank and cross-species (xeno) MRNAs and parse

for conservation.
– Retrieve sequence near location and check for presence of

LINEs (eg with BLAST).
– Go to ASDB (Alternatively Spliced Database) and check for

evidence of alternative splicing.
This approach is slow and tedious. Browsers enable a much
better way…

27

105

An introduction to the
browsers and their relative
strengths and limitations

106

The three genome browsers
• There are three main browsers:

– Ensembl
– NCBI MapViewer
– UCSC

• At first glance their main distinguishing features
are:
– MapViewer is arranged vertically.
– Ensembl has multiple (22) different “Views”.
– UCSC has a single “View” for (almost)

everything.

107

Choosing a browser
• In general, the browsers have more

similarities than differences.
• Also, the development teams are competitive

(in a cooperative way); if a site doesn’t have a
feature now, it may have it soon.

• But the browsers do have different strengths.
In particular, some species are covered by
only one browser.

• It’s probably best to find one browser you like
and stick with it for most tasks.

108

NCBI MapViewer

28

109

MapViewer
Home

http://www.ncbi.nlm.nih.gov/mapview/ 110

MapViewer Master Map

111

Selecting tracks on MapViewer

112

MapViewer strengths
• Good coverage of plant and fungal genomes.
• Close integration with other NCBI tools and

databases, such as Model Maker, trace archives
or Celera assemblies.

• Vertical view enables convenient overview of
regional gene descriptions.

• Discontiguous MEGABLAST is probably the
most sensitive tool available for cross-species
sequence queries.

• Ability to view multiple assemblies (e.g. Celera
and reference) simultaneously.

29

113

MapViewer limitations
• Little cross-species conservation or alignment

data.
• Inability to upload custom annotations and data.
• Limited capability for batch data access.
• Limited support for automated database

querying.
• Vertical view makes base-pair level annotation

cumbersome.

114

Ensembl

115

Ensembl Home

http://www.ensembl.org/

Ensembl ContigView

30

Ensembl ContigView
Detail and
Basepair

view

119

Changing tracks in Ensembl

120

Ensembl strengths (I)
• Multiple view levels shows genomic context.

• Some annotations are more complete and/or
are more clearly presented (e.g. snpView of
multiple mouse strain data.)

• Possible to create query over more than one
genome database at a time (with BioMart).

31

121

Ensembl
snpView

122

Ensembl strengths (II)
• Batch and automated querying well

supported and documented (especially for
perl and java).

• API (programmer interface) is designed to be
identical for all databases in a release.

• Ensembl tends to be more “community
oriented” - using standard, widely used tools
and data formats.

• All data and code are completely free to all.

123

Ensembl is “community oriented”

• Close alliances with Wormbase, Flybase, SGD
• “support for easy integration with third party data and/or

programs” – BioMart
• Close integration with R/ Bioconductor software
• More use of community standard formats and programs, e.g.

DAS, GFF/GTF, Bioperl

(Note: UCSC also supports GFF/GTF and is compatible with
R/Bioconductor and DAS, but UCSC tends to use more
“homegrown” formats, e.g. BED, PSL, and tools.)

124

Ensembl limitations

• Limited data quantifying cross-species
sequence conservation.

• Batch queries for intergenic regions
with BioMart are difficult.

• BioMart offers less complete access to
database than UCSC Table Browser.
(However, the user interface to
BioMart is easier.)

32

125

UCSC Genome Browser

126

http://genome.ucsc.edu/

127

UCSC Genome Browser

128

Strengths of the UCSC Browser (I)
For this course I will be focusing primarily on the
UCSC Browser for several reasons:

• Strong comparative genomics capabilities.
• Fast response

– sequence searches performed with BLAT.
– code is written in speed-optimized C.
– Multiple indexing and non-normalized tables for fast

database retrieval.
• (Essentially) single “view” from single base-pair to

entire chromosome.
• Easiest interface for loading custom annotations.

33

129

UCSC Browser Strengths (II)

• Well suited for batch and automated querying of
both gene and intergenic regions.

• Comprehensive: tends to have the most
species, genes and annotations.

• Annotations frequently updated
(Genbank/Refseq daily / ESTs weekly).

• Able to find “similar” genes easily with
GeneSorter.

• Rapid access to in situ images with VisiGene.

130

UCSC browser limitations
• Lack of “overview” mode can make it harder to see

genomic context.
• Syntenic regions cannot be viewed simultaneously.
• Cross species sequence queries with BLAT are

often insensitive.
• Comprehensiveness of database can make user

interface intimidating.
• Code access for commercial users requires

licensing.

131

Human, mouse,rat synteny in
MapViewer

132

Part II – Interactive
Querying on the UCSC

Browser

34

133

Getting data from the UCSC
browser

• You first need to go to:
http://genome.ucsc.edu

• Next choose a genome and an assembly.
• Then pick a region.
• Finally specify what annotations you want.

134

135 136

Ways to specify location
• Directly (chr5:1000000-2000000)

• Via name or term (e.g. BRCA1)
– Many, more complex query terms are possible
– See the Genome “Gateway” page for examples.

• Via BLAT query

35

137 138

139

Genome Browser Navigation

Track Descriptions and Controls

Navigation, Species, and Assembly

Zoom and Position

Mapping and Sequence
Base Position, Chromosome Band, STS markers, Gap

Genes and Gene Predicitons
Known Genes, RefSeq, Ensembl, Acembly, Genscan

mRNAs and ESTs
Human mRNAs from GenBank, Human ESTs that have been spliced

Gene Expression and Regulation
GNF Ratios on Affymetrix GeneChips

Comparative Genomics
Multiple Alignments, Conservation Scores, Chain / Net

Variation and Repeats
Start / End Position Adjustment

Reset / Hide / Refresh
Color Key for Chain / Net / Self tracks

Modified from D. Thomas, IEEE CSB Tutorial (2004) 140

Track overview
• Annotations are via “tracks” along the chromosome.

• Annotations are divided in track “Groups.”

• Track availability will vary depending on the organism
and assembly.

• Scores of tracks exist and new tracks are being
added all the time (see Hinrichs, NAR 2006 for a
recent update).

36

141

Track types:
• Chromosome descriptions
• Genes & gene predictions
• Gene annotations
• Local paired alignments (mRNAs, ESTs)
• Comparative genomics

– Genomic paired alignments
– Genomic multiple alignments

• Sequence variations

142

Recently added tracks
– ENCODE annotations
– Consensus CDS annotations
– Retroposed genes
– snoRNAs / miRNAs
– RNA fold predictions
– Segmental duplications
– Copy number polymorphisms
– Affymetrix full chromosome transcriptional data
– Mammalian Gene Consortium data

143 144

37

145

Annotation “Details”
• Every annotation has an associated

“Details” page.
• What is included depends on:

– Genome
– Assembly
– Track type
– Data available

146

Genome Browser Navigation

Navigation, Species, and Assembly

Zoom and Position

Mapping and Sequence
Base Position, Chromosome Band, STS markers, Gap

Genes and Gene Predicitons
Known Genes, RefSeq, Ensembl, Acembly, Genscan

mRNAs and ESTs
Human mRNAs from GenBank, Human ESTs that have been spliced

Gene Expression and Regulation
GNF Ratios on Affymetrix GeneChips

Comparative Genomics
Multiple Alignments, Conservation Scores, Chain / Net

Variation and Repeats
Start / End Position Adjustment

Reset / Hide / Refresh
Color Key for Chain / Net / Self tracks

Modified from D. Thomas, IEEE CSB Tutorial (2004)

147

Details Page of a Known Gene

148

Known Gene Details (continued)

38

149

Known Gene Details (continued)

150

Known Gene Details (continued)

151

Quick look at other features of
the UCSC browser

• GeneSorter
• Protein Browser
• VisiGene
• isPCR

152

The Gene Sorter
• Finds genes that are “closely related” to

specified gene.
• “Closeness” can be specified by:

– Protein homology
– Expression patterns
– Chromosome location
– Gene function (GO annotations) etc.

• The gene properties displayed by the Gene
Sorter are also highly configurable.

39

153

Gene Sorter Interface

154

Typical Gene Sorter Results

155

Proteome Browser

• The Proteome Browser displays
annotations that are protein specific.

• Its format is analagous to Ensembl’s gene-
and protein-oriented “Views”.

156

Proteome Browser -
amino acid structure

Modified from F. Hsu, NAR (2005)

40

157

Proteome Browser -
physical / chemical properties

Modified from F. Hsu, NAR (2005) 158

Protein structure and links

Modified from F. Hsu, NAR (2005)

159

VisiGene

160

41

161

In-Silico PCR Input

162

Back to our example:

• We now return to our example of using the browser to
characterize the region around the putative disease
polymorphism.

• We need to:
– Find the specific region with BLAT
– Set up the tracks to display SNPs, ESTs, repeats,

alternative splicing patterns and alignments with other
vertebrates

– Download EST sequences or view with browser
– View the results

163 164

42

165

snp, repeat and conservation
results at polymorphism site

166

Part III
Assemblies, alignments and
all that - a glimpse inside the

browsers

167

Part III - overview

• Assemblies, builds and tracks
• Local alignment tools
• Genomic alignment tools
• Preview, Auxiliary and Development

Browsers

168

Assemblies, builds and tracks

• The UCSC browser uses chromosome
coordinates.

• As a result, each new assembly of a
genome will change the positions of
most features (i.e. annotations).

• Consequently after a genome
reassembly the entire database needs
to be rebuilt.

43

169

Assemblies, builds and tracks
• A browser utility exists to convert coordinates

between assemblies.
• One source of confusion is that new builds

may not have all the tracks of a previous build.
• Moreover many annotations are updated

between builds (in some cases daily). This
can be confusing when comparing with results
obtained previously from the same build.

170

171

UCSC Alignment Algorithms
• Much of the power of the UCSC Browser

comes from its comparative genomics
tools.

• These in turn come from its alignment tools,
including tools for:
– Paired and multiple sequence alignment
– Local and genomic alignment

• Except for user-initiated BLAT queries, all
alignments are precomputed and stored.

172

Local alignment tools
UCSC Tools for local paired alignments are:

• BLAT / translated BLAT
– Very fast
– Lower sensitivity than BLASTZ/ Discontiguous

MegaBLAST for xeno sequences

• BLASTZ - similar to BLASTn with different
scoring

44

173

Local alignment (continued)
• Local paired alignments are used for:

– mRNA /EST annotations (BLAT)
– Seeds for genomic alignments (BLASTZ)
– Initial clusterings for multiple alignments (BLASTZ)

• Multiple-species local alignments are performed with
MULTIZ (an extension of BLASTZ).

• Cross species conservation of multiple alignments is
scored with phastCons.

174

Genomic alignment tools

• Importance – chromosomal evolution, homolog
identification

• Synteny – traditional method, gene order
• For paired genomic alignments, UCSC uses “chains

and nets”
– Not dependent on high quality gene annotations
– Important for genomes with limited annotation
– Support for segmental duplications and inversions

175

Chains
• A chain is an alignment assembled from smaller, local

alignments that have been linked (“chained”)
together.

• Chains tolerate larger gaps than conventional
alignments.

• Chains are created with the axtChain program from
BLASTZ alignments.

176

Nets
• Nets are generated by filtering chains such that

each nucleotide is covered by at most one
chain.

• chainNet program picks the “best” set of chains
created by axtChain program to create the net
track.

• Nets and chains are described in more detail in
Kent PNAS v100 (2003).

45

177

Chains and nets - example

178

Genomic Multiple Alignments

• Genomic multiple alignments are generated by the
“threaded blockset aligner” (TBA) tool (Blanchette
Genome Research 2004).

• TBA starts with local multiple alignment “seeds”
generated by MULTIZ which are then linked
together (“threaded”) to form longer alignments.

• TBA currently can not handle segmental
duplications and inversions.

179

Chains, nets and
MULTIZ alignments

180

Preview, Auxiliary and
Development Browsers

46

181

Ensembl’s Pre! and Genome
Reviews browsers

• Ensembl’s “Pre!” browsers provide previews,
with limited annotations, of genomes being
added to the Ensembl site.

• Ensembl’s “Genome Reviews” Auxiliary
Browser provides access to Ensembl’s
bacterial and archaeal browsers.

• Both Pre! And Genome Reviews browsers are
accessible from the Ensembl home page.

182

The UCSC development
browser and why NOT to use it

• http://genome-test.cse.ucsc.edu is the development
site for the UCSC browser.

• Superficially, the site looks quite similar to the main
UCSC genome browser.

• Moreover, in function, the site seems similar to the
Ensembl Pre! Browser.

• However, the site is slow, can be confusing, is not well
documented and is not supported for the external
user.

183

The UCSC development browser
and why NOT to use it (continued)

• Moreover, data and features have been
much less tested, and data can disappear
from the browser without any notice.

• Indeed, a leading UCSC developer has
said that “everything on genome-test
should be considered broken unless proven
otherwise.”

184

…except in very special
circumstances

• However, the test site often covers species and
assemblies not yet available on the main site, for
example:
– As of March 2006, UCSC main site covered 34 species.

Test site had 80.
– In particular, the test site had 40 bacterial and archaeal

genomes. The main site had none.
– Test site had ancestral “Boreoeutherian” genome.
– Most recent human assembly on main site was from May

2004. Test site had the build from March 2006 (which has
since been added to the main UCSC browser).

47

185

…except in very special
circumstances (continued)

– genome-test has more annotation tracks.
– Although most are experimental and of little

outside interest, occasionally interesting
annotation tracks can be found on genome-test
before they appear on the main browser.

The “bottom line” is that if your species is not
available or you want a “sneak peek” at future
annotations, genome-test may be useful. Just
remember that the data may be transient, and the
site is unsupported and has limited server
resources so access it “gently”.

186

Part IV – Browser/Database
Batch Querying

187

Batch querying overview
• Introduction / motivation
• UCSC table browser
• Custom tracks and frames
• Galaxy and direct SQL database querying
• A batch query example
• UCSC Database “gotchas”
• Batch querying on Ensembl

188

Why batch querying

• Interactive querying is difficult if you want
to study numerous “interesting” genomic
regions.

• Querying each region interactively is:
– Tedious
– Time-consuming
– Error prone

48

189

Batch querying examples

• As an example, say you have found one hundred
candidate polymorphisms and you want to know:
– Are they in dbSNP?
– Do they occur in any known ESTs?
– Are the sites conserved in other vertebrates?
– Are they near any ”LINE” repeat sequences?

Of course you could repeat the procedures described in
Part II one hundred times but that would get “old” very
fast…

190

Other examples

• Other examples include characterizing
multiple:
– Non-coding RNA candidates
– ultra-conserved regions
– introns hosting snoRNA genes

191

Browsers and databases
• Each of the genome browsers is built on top of

multiple relational databases.

• Typically data for each genome assembly are
stored in a separate database and auxiliary data,
e.g. gene ontology (GO) data, are stored in yet
other databases.

• These databases may have hundreds of tables,
many with millions of entries.

192

The UCSC Table Browser
• For batch queries, you need to query the

browser databases.

• The conventional way of querying a relational
database is via “Structured Query Language”
(SQL).

• However with the Table Browser, you can
query the database without using SQL.

49

193

Browser Database Formats
Nevertheless, even with the Table Browser, you need
some understanding of the underlying track, table
and file formats.
– Table formats describe how data is stored in the (relational)

databases.
– Track formats describe how the data is presented on the

browser.
– File formats describe how the data is stored in “flat files” in

conventional computer files.
– Finally, for understanding the underlying the computer code

(as we will do in the last part of this tutorial) you will need to
learn about the “C” structures which hold the data in the
source code.

194

Database formats and autoSQL
• Programs in the kent source tree make converting

among table,file,track and “C” formats easier.
• In particular, the autoSQL program takes a general

specification to automatically create C and SQL
code to convert between C structures and SQL
tables.

• autoSQL is described in detail at:
http://www.linuxjournal.com/article/5949

195

Main UCSC Data Formats
• GFF/GTF
• BED (Browser Extensible Data)

– lists of genomic blocks
• PSL

– RNA/DNA alignments
• .chain

– pair-wise cross species alignments
• .maf

– multiple genome alignments
• .wig

– numerical data

196

Basic BED (in autoSQL format)

• BED4 is the basic BED format and consists of:

string chrom; “Reference sequence chromosome or scaffold”
uintchromStart; “Start position in chromosome”
uintchromEnd; “End position in chromosome”
string name; “Name of item”

50

197

BED6 format

string chrom; “Reference sequence chromosome or scaffold”

uintchromStart; “Start position in chromosome”

uintchromEnd; “End position in chromosome”

string name; “Name of item”

uintscore; “Score from 0 -1000”

Char[1] strand; “+ or -”

198

BED12 format
• BED12 consists of the six fields of BED6 plus:

uintthickStart; “Start of where display is thick (start codon)”
uintthickEnd; “End of where display is thick (stop codon)”

uintreserved; “used for RGB”

int blockCount; “Number of blocks”

int[blockCount] blockSizes; “Com ma separated list of block sizes”
int[blockCount] chromStarts; “Start positions relative to chromStart”

199

PSL in table format

200

PSL format subtleties
• PSL format effectively represents an alignment as

a set of “blocks” that are gapless in both
sequences.

• However,PSL format does have some subtleties:
– Much of the confusion in PSL stems from the fact that

two coordinate systems are used:
• Some fields (eg tStart and tEnd) are always

measured in cpordinates of the positive strand
• Other fields (eg tStarts and qStarts) are measured in

“strand” coordinates that start at the 3’ end of the
molecule if it is on the negative strand.

51

201

More PSL format subtleties
• Strand annotation is also a bit tricky:

– For nucleotide (usually same-species) alignments, the PSL strand
parameter is a single character (‘+’ or ‘-’).

– However, for translated alignments (e.g. xeno alignments), the PSL
strand parameter is two characters (e.g.‘+-’) indicating whether the
query and/or the target had to be reverse complemented in order to
perform the protein alignment.

• Finally, insertions usually have different interpretations
depending on whether they are in the “target” (chromosome)
or the “query” (mRNA/EST)
– “tBaseInsert” typically is the total length of the mRNA introns.
– In contrast, “qBaseInsert” (if not = 0) represents insertions in the mRNA

sequence relative to the genome (or artifacts).

202

MAF in table format
Note that maf tables really are
index tables.

Actual mafs are stored in
external files.

If you obtain the alignments via
the Table Browser, you don’t
need to worry about this.

Later, we’ll discuss how to
download the actual maf files if
you need them.

203

Actual maf alignment (partial)

a score=704.000000
s hg17.chr17 38452979 73 + 78774742 CTCCC-ACCCCATGGAAACAGTTCATGTATTACT
s panTro1.chr19 41637592 73 + 82489036 CTCCC-ACCCCATGGAAACAGTTCATGTATTACT
s rheMac2.chr16 53181258 73 + 78773432 ctCCC-ACCCTATGGAAACAGTTCATGTCTTACTT
s oryCun1.scaffold_206706 93753 66 + 100734 TACTC---TCCATAGAAAAAACTCATGCACTACT
s bosTau2.scaffold1581 188850 73 + 226018 CCGTCCCCCCCGGGGAAACAATTCAGGCACTACT
s canFam2.chr9 41077976 69 - 64418924 CAGGCACATGCCCATGGCCCTCTGAAGCCCTA--
s echTel1.scaffold_310439 57140 63 + 174032 CTCTT-GCACCATGGAAGGAGCTCATGCGTTGTT
s rn3.chr10 90528483 27 + 110733352 -------------------ACCTC----------
s dasNov1.scaffold_1531 48946 45 + 190156 ----------------------TCATGCATTATT

##maf version=1
a score=-13469.000000
s hg17.chr1 67108775 249 + 245522847 TTCCAAATCAAGGCTACCTAT---CT
s panTro1.chr1 65472086 249 + 229575298 TTCCAAATCAAGGCTGCCTAT---CT
s rheMac2.chr1 69709327 241 + 228252215 TTCCAAATCAAGGCTACCTA--------TTCTTT---CT
s rn3.chr5 124059293 300 + 173106704 TTCCAAGTCAAAGGTGCCTG----TTATTTATTT---AC
s mm7.chr4 102496518 305 + 155175443 TTACAAATCAAAGGTGCCTG-----TAATTATTT---AC
s oryCun1.scaffold_210784 55797 281 + 212082 TACCAAGTCAAAA------------CTTTTTTTT---CC
s bosTau2.scaffold231 595046 351 + 614762 TTGCGAATCGAGGCTTTCTATTCCTGTCTTTCT---TT
s canFam2.chr5 45390541 241 - 91976430 TTGAATATTAAGGCTACCTATTATTGTCTT---TT
s loxAfr1.scaffold_17369 51679 235 - 60659 TTCCAAATCATTACTAACGACTCTAGTCTC---CT
s echTel1.scaffold_313458 6068 210 - 179910 TCCTAGACCACAGCTA---ACTATAATCTTTTTTAAA

204

Browser Table Descriptions
• Detailed descriptions of database tables at:

http://genome.ucsc.edu/goldenPath/gdbDe
scriptions.html

• However, often you can obtain a sufficient
table description from the Table Browser
itself.

52

205

Table browser input form

206

Known Genes table description

207

Filter, intersect and correlate tables

208

Filtering,intersecting and
correlating tables

• You can restrict which table entries you retrieve by:
– Filtering on values of specific fields in the table and/or in

other tables to which it is linked.
– Retrieving only the records in the intersection of two tables.

• You can also quickly calculate the amount of overlap
or correlation between two tracks using the correlation
output.

53

209 210

Table Intersect Menu

211

Specifying table query output format

212

Table Browser Fasta Output
• Capable of extracting sequence data from

multiple genomic region
• Can extract only intron or exons or
• UTRs or upstream / downstream regions

54

213

Gene fasta output options

214

Custom Tracks
• Custom tracks are essentially BED, PSL or GTF files

with formatting lines so they can be displayed on the
browser.

• A custom track file can contain multiple tracks, which
may be in different formats.

• Custom tracks are useful for:
– Display of regions of interest on the browser.
– Sharing custom data with others.
– Input of multiple, arbitrary regions for annotation by the

Table Browser.

• Custom tracks can be made by the Table Browser, or
you can make them easily yourself.

215

Selecting custom track output

216

Sending custom track to browser

55

217

Adding a custom track

218

Adding a custom track (II)

219

Custom track example
browser position chr22:10000000-10020000
browser hide all
track name=clones description="Clones” visibility=3
color=0,128,0 useScore=1
chr22 10000000 10004000 cloneA 960
chr22 10002000 10006000 cloneB 200
chr22 10005000 10009000 cloneC 700
chr22 10006000 10010000 cloneD 600
chr22 10011000 10015000 cloneE 300
chr22 10012000 10017000 cloneF 100

220

Limitations of the table browser
• Can be difficult to create more complex queries.
• With hundreds of tables, finding the one(s) you

want can be confusing.
• Getting intersections or unions of genomic

regions is often a multi-step process and can be
tedious or error prone.

• May be slower than direct SQL query.
• Not designed for fully automated operation.

56

221

The Galaxy Website
• Galaxy website: http://g2.bx.psu.edu

• Galaxy objective: Provide sequence and data
manipulation tools (a la SRS or the UCSD Biology
Workbench) that are capable of being applied to
genomic data.

• The intent is to provide an easy interface to numerous
analysis tools with varied output formats that can work
on data from multiple browsers / databases.

222

223

Galaxy - current status
• Galaxy is a new site, still a “work in progress”.
• So far, supports UCSC Table Browser, EBI EnSmart

and NHGRI EncodeDB.
• As yet, few sequence manipulation tools are available,

e.g.
– GC%
– Ka/ Ks calculations

• Galaxy does already provide an effective query and
result “history” system which makes the Table
Browser interface more “user friendly”.

224

Direct SQL queries of the
underlying databases

• If you are familiar with SQL, direct
queries can be:
–much more flexible
–and sometimes easier or faster than

using the Table Browser or Galaxy

57

225

SQL code can access the UCSC
databases via any of:

• Table browser interface

• The public UCSC browser database

• Your own mirror site

226

Table Browser SQL Interface

227

The public UCSC genome
database

• UCSC has recently made a mirror of its
genomic databases available for (limited) direct
SQL queries.

• Access information:
– host=genome-mysql.cse.ucsc.edu
– user=genome
– No password

228

The public UCSC genome
database (II)

• More details on the public database can be found at:
http://genome.ucsc.edu/FAQ/FAQdownloads/download29#download29

• In particular the instructions note:
– “Avoid heavy queries that may impact the server

performance.
– “If you plan a query that may be excessive, contact UCSC

first to avoid the possibility of blocked access.
– “Bot access and excessive program-driven use are not

permitted.”

58

229

Custom frames
• “Custom frames” are a useful tool for navigating among a

set of regions of interest.

• A list of all the regions is shown on one side of the screen,
with a standard genome browser image in the other.

• Writing code to convert a bed file to a custom frame is
straightforward – or you can use bedToFrame from the
kent code source tree (described later).

230

ENCODE custom frame

231

Batch query example
• Recall our example, where we have one

hundred candidate polymorphisms and
you want to know:
– Are they in dbSNP?
– Do they occur in any known ESTs?
– Are the sites conserved in other vertebrates?
– Are they near any “LINE” repeat sequences?

232

Batch query example in the
Table Browser

To answer these questions with the Table Browser
we could:
– Run BLAT to find the polymorphism locations in the

genome.
– Convert BLAT psl output to custom track (manually or

with a simple script).
– Intersect the custom track with tables in the Table

Browser.

59

233

Batch query example continued

Specifically in the Table Browser we would need to:
• Intersect the custom track with SNP track
• Intersect the custom track with EST track, outputting the

sequence and writing a program (or manually checking)
to see if the mutated bases occur.

• Intersect the track with the multiz17way table to
determine if the site is conserved.

• Extend the range of the custom track and intersect the
modified track with the repeat-element table (rmsk),
filtering on LINE elements.

234

Browser “gotchas”

• Browser “gotchas” are not bugs but rather situations
where the system interface works in an unexpected
manner (at least unexpected, to me!)

• Some gotchas are the result of intrinsic difficulties in
describing genomic sequence data.

• Other gotchas are specific to the conventions used in
the UCSC browser and database systems.

235

Subtleties inherent to genomic
data representation

• A gap in an mRNA alignment to the genome may not be an
intron, but rather an insertion in the genome sequence or a
deletion in the mRNA.

• A sequence difference between an mRNA and the genome
may not be a polymorphism or post-transcriptional editing,
but rather a sequencing artifact (especially if the mRNA
record is old).

• The number of blocks in an alignment between an mRNA
and the genome may not be the same as the number of
“blocks” (i.e. exons) in the the gene that is predicted to be
represented by that mRNA.

236

Gotchas specific to the UCSC
data representation

• UCSC uses a [1,n) numbering system.
– That is, the region 1000-2000 includes base

1000 but not base 2000.
• Database tables use a nucleotide numbering

system that is 0-based. But the browser display
uses genomic numbering that is 1-based.

• Many tables can be accessed in Table Browser
only by using “all tables”.

60

237

UCSC data representation
gotchas (II)

• Multiple alignments (MAF records) are stored in
separate files.

• Block start surprises:
– In BED the block start is relative to the start location of the

bed (chromStart)
– in genePred, the exon start/end are absolute chromosome

locations.
• Many tables have an extra “bin” field, used for fast

indexing. This field must be stripped away (e.g. using
the Unix “cut” utility) before the data can be input to
C-code from the kent source tree.

238

UCSC data representation
gotchas (III)

• Translated BLAT has difficulty with intron-exon
boundaries in xeno alignments, which are sometimes
less accurate than those found by other approaches.

• As described earlier, interpreting PSL negative strand
data can be tricky. In fact, even on the browser,
negative strand genes may appear incorrect if you
are not careful (example on next page).

• These “gotcha” examples are just those that have
personally tripped me up. To find more, look at the
UCSC FAQ pages: http://www.genome.ucsc/FAQ/

239

Apparent inconsistency with
negative strand genes

240

Apparent inconsistency
resolved

61

241

Custom tracks in Ensembl

• In Ensembl, custom tracks are implemented using
either a variant of UCSC’s custom track system or
using the “Distributed Annotation System” (DAS).

• However using the UCSC syntax on Ensembl
requires access to a local webserver.

• The DAS approach does not require a server (but
does require an understanding of DAS syntax).

242

BioMart
• BioMart - the Ensembl “Table browser”
• Similar to the Table Browser and Galaxy tools.
• Previous version was called EnsMart.
• Fewer tables can be accessed with BioMart than

with UCSC Table Browser. In particular, non-
gene oriented queries may be difficult.

• However, the user interface is simpler.
• Tight interface with Bioconductor project for

annotation of microarray genes.

243

DAS

• DAS stands for “Distributed Annotation
System”

• DAS consists of:
– a single “sequence server”
– Multiple “annotation servers”
– DAS client software to integrate results

244

DAS - pros and cons
• DAS is intended to be scalable in the face of

hundreds of annotation tracks.
• Maintaining tracks is not responsibility of single

group (as with UCSC’s or NCBI’s browsers).
• However, response time may be slow since data

must be retrieved from multiple servers.
• Also. It may be difficult to keep track of what’s

available, so there is a DAS “registry” where user
can find annotation availability:
http://das.sanger.ac.uk/registry

62

245

Part V – Automated Querying
Procedures

246

Automated querying overview
• Introduction / motivation
• What you’ll need to get started
• Choice of languages and databases
• Using the kent code tree to access the

UCSC database
• Example

247

Introduction / motivation
• Using the table browser is still a partly interactive

process.
• Consequently, when performing multiple, large scale

queries this approach becomes time-consuming and
error prone.

• More complex data analyses usually require
developing data manipulation software, anyway,

• It is usually more efficient to develop this software
using tools and routines already developed by the
genome-browser teams.

248

An example
• Let’s imagine that, instead of experimental data, we have a

computer algorithm to predict candidate disease
polymorphisms and we want to know:
– Are they in dbSNP?
– Do they occur in any known ESTs?
– Are the sites conserved in other vertebrates?
– Are they near any “LINE” repeat sequences?

• In addition, we want to test our algorithm with many different
parameters and options.

• We will NOT want to interactively perform all the Table Browser
table-intersections every time we modify a parameter.

63

249

More examples
Although the previous example is a bit contrived, it is not unlike
more realistic ones, e.g.:

– Characterizing the introns of genes that host snoRNAs and
determining whether the host genes of homologous
snoRNAs are homologous themselves (Schattner et. al,
RNA, 2006).

– Characterizing regions of extreme codon conservation
among mammalian genes in terms of SNPs, conserved
alternative splicing, exon splicing enhance motifs, etc.
(Schattner and Diekhans, NAR, 2006).

250

What you’ll need to get started
• General programming skills
• Database querying skills
• Access to the data files used by one

of the browsers.

251

Design Choices
• Before developing data querying software, one

needs to choose which language, databases and
data-retrieval strategy to use.

• Criteria include:
– Ease of data access and/or installation

requirements.
– Your experience with relevant language and

database.
– Capabilities & features of language, database

and associated tools and software.

252

Main Supported Languages
Although, in principle, any of the databases
can be accessed by any computer language
the best supported interfaces (APIs) are:

• UCSC: Main API uses C
• Ensembl: Primary APIs use Perl and Java
• NCBI: API in C/C++ via the NCBI toolkit

64

253

Why I use the UCSC databases

• Library routines in the kent code base do
most of the work for me.

• The databases are comprehensive.
• C is fast.

254

Data access strategies
• Downloading one or more database

tables or files.

• Remote login to a public mirror.

• Mirroring all or part of an entire
database.

255

No bots!
• In principle, one can also access a genome

database using a “bot”, or web robot.
• A bot is a computer program which generates code

to “look like” a user to an interactive website (such
as a genome browser site.)

• However, interactive sites are typically not designed
to handle programmed “hits”. Consequently, you
will be denied site access if you use a bot.

• So, don’t do it. The methods described here are
easier ways of making automated database queries
than using bots, anyway.

256

Option 1:Downloading individual
database tables or files

• Generally simplest approach for limited
automated querying.

• You can download data with the Table Browser or
directly from:

http://hgdownload.cse.ucsc.edu/goldenPath/hg18/database/
(substitute the name of the database you are interested in for “hg18”)

• You can download both the table data files and
files with SQL code to load the data into a local
mySQL database.

65

257

Advantages of downloading individual
files and tables

• Simplest method.
• Limited disk space required.
• Can be quite fast (especially if you take

advantage of the kent code routines).
• Don’t need to set up SQL database.

258

Disadvantages of downloading
individual files and tables

• Limited to accessing small number of tables and
files.

• Need to repeat procedure if you need additional
tables.

• Need to separately download sequence and
genomic alignment files and understand how to
access them (if you need this data).

259

Finding external UCSC database files
For build hg18:
• Genome sequences are located at:
http://hgdownload.cse.ucsc.edu/goldenPath/hg18/chromosomes/
• Multiple genome alignments are located at:
http://hgdownload.cse.ucsc.edu/goldenPath/hg18/multiz17way/
• mRNA, EST, refseq and other large sequence data are at:
http://hgdownload.cse.ucsc.edu/goldenPath/hg18/bigZips/

Offsets to individual sequences within these files are found
in the database tables:
– multiz17way
– gbSeq

260

Loading Standard Formats
• If you do choose to build a small local mySQL database for

your downloaded files, there are command line tools in
src/hg/makeDb to load them:
– ldHgGene (GTF), hgLoadPsl, hgLoadBed, hgLoadChain,

hgLoadMaf, hgGenericMicroarray
• This directory also has source for 60 other database loaders

for more specialized situations.
• Typical database loader is about 200 lines, using SQL and

text parsing routines in src/lib.

66

261

Option 2: Remote login to the
UCSC or Ensembl databases

• UCSC site:
genome-mysql.cse.ucsc.edu

• Ensembl site:
ensembldb.ensembl.org

262

Advantages / disadvantages of
remote login to a public mirror

• Does not require local disk space allocation.
• No installation or database maintenance.
• Kent source code routines not requiring auxiliary

sequence files run without any modifications.
• The biggest disadvantage is that a public mirror is a

shared resource that may be slow, can’t be modified
and shouldn’t be overused by a single user.

263

Option 3:Setting up a mirror database

• A complete install of the UCSC genome database
requires 1.2+ terabytes, but you do not need to do a
complete install for automated database querying.

• You do not need Apache or any CGI or HTML files.
• You only need to download the species databases

you actually want to use.
– Human genome database requires ~ 200 - 250 GB
– Most other species databases are significantly smaller.

264

Advantages of setting up a mirror
database

• The database will not be a shared resource.
• You can run it as heavily as you like.
• Performance doesn’t depend on usage by

others.
• Accessing sequence and alignment datafiles

is significantly easier.
• You can be modify or customize the database

as desired.

67

265

Overview of mirror database
installation

• Install mysql if not already present.
• Download sequence and annotation data for

genomes of interest.
• Load annotation data into local mysql database.
• Download and compile kent source code.
• Detailed instructions at:

– http://genome.ucsc.edu/admin/mirror.html

• Note that these procedures may not work on
Windows machines (cygwin has worked).

• Unix, Linux, OS X are all OK

266

Using the kent code base
…or why I no longer miss Perl and Bioperl!

Whatever data access method you use, you will want to take
advantage of the kent source code base…

• Code is clearly written, extensively tested and fast.
• Code is open source so you can learn from it and modify it

for your own use.
• Code is free for academic, government and personal use

(core routines are even free for commercial use).
• Even if you run Windows or never plan to set up a database

mirror, taking advantage of the kent code libraries can save
you hundreds of hours of time.

267

Using the kent code base
(continued)

• Many important utilities are usable “right out of the
box”.

• If you don’t immediately see what you want, using
“grep”, “find” or “tags” on the source tree will often
find it.

• Built-in library functions provide almost any
sequence and data manipulation capability you might
want.

• Plenty of code examples illustrate exactly how to
use the library effectively.

268

Built-in utilities
There are over 100 utility programs available for tasks such

as:
– Sorting, splitting, merging, counting and getting lengths of

fasta sequences.
– Record parsing and data conversion utilities for handling

genbank, fasta, nib, blast and other records.
– Programs for sequence alignment, motif searching,

hidden Markov models, etc.
– Programs for automatically generating SQL or XML code

from user specifications (AutoSQL and AutoXML).

68

269

Properties of the kent source
code

• In addition to stand-alone programs, there are CGI-
based programs to perform all the sequence and data
manipulations performed by the browser.

• In general, if the browser performs some data
manipulation, with a little detective work, you can find
the code to insert in your program.

• Sometimes the appropriate program can be identified
by simply looking after the “cgi-bin” in the web address
as in genome.ucsc.edu/cgi-bin/hgTracks

270

Using code from browser
routines

• To understand the functioning of browser cgi-
programs, it can be helpful to know what
arguments they are being passed.

• These CGI input arguments are stored in the
“CART”.

• Current CART arguments can be examined by
running:
– http://genome.cse.ucsc.edu/cgi-bin/cartDump

271

cartDump screenshot

272

kent library functions
There are many extremely useful routines including:

– Memory allocation and error handling
– String and array manipulation
– Data structures for singly and doubly linked lists,

balanced trees, directed graphs etc.
– Code for very fast hashing, indexing and data retrieval

using “binkeeper” and related programs
– Powerful code “wrappers” for SQL, CGI and HTML code

generation
– Sequence manipulation routines including:

• Reverse complementation
• Codon and amino acid lookup
• Sequence translation

69

273

UCSC Source Important Dirs
src -

inc - interface to general purpose routines.
lib - implementation of general purpose routines. Freeware.
hg - genome project specific code

inc - interface to shared genome code
lib - implementation of shared genome code
hgTracks - genome browser
hgTables - table browser
hgNear - for gene sorter
makeDb - database building

hgLoadBed - load bed files
makeHg18.doc - how to build latest human genome database
schema - contains all.joiner that describes table relationships

jkOwnLib - BLAT and other stuff Jim Kent personally owns
utils - stand alone utility programs

274

Databases and program objects
• The kent library and database code is largely

object oriented.
• Browser tracks and tables often have associated

C structures defined in a .h “include” file.
• Typically the .h file will describe the functions that

can be performed on the structure.
• Associated “.c” files describe their implementation.
• Much of this software is automatically generated

by the autoSql program.

275

Gene-prediction C- Structure
(slightly simplified)

struct genePred /* A gene prediction */
{
 struct genePred *next; /* Next in singly linked list. */
 char *name; /* Name of loci, transcript, mRNA, etc */
 char *chrom; /* Chromosome name */
 char strand[2]; /* + or - for strand */
 unsigned txStart; /* Transcription start position */
 unsigned txEnd; /* Transcription end position */
 unsigned cdsStart; /* Coding region start */
 unsigned cdsEnd; /* Coding region end */
 unsigned exonCount; /* Number of exons */
 unsigned *exonStarts; /* Exon start positions */
 unsigned *exonEnds; /* Exon end positions */
}

276

A simple C program illustrating
automated database querying

• Program objective: to determine whether specific introns (e.g.
those containing snoRNAs) have different median length than
other introns of the same genes.

• Approach:
– Read in list of snoRNA coordinates.
– Extract genes “hosting” these snoRNAs.
– Compute lengths of host introns and (for comparison) other

introns of the host genes.
(For more realistic code examples of automated UCSC
database querying see:
http://nar.oxfordjournals.org/cgi/data/34/6/1700/DC1/1X)

70

277

int main(int argc, char *argv[])
{
char *db = argv[1]; char *geneTable = argv[2];
char *bedFile = argv[3]; char *method = argv[4];
if (argc != 5) usage();
struct sqlConnection *conn = NULL;
struct hash *gpHash = NULL;
if (sameWord(method, "file"))

gpHash = readGpToBinKeeper(db, geneTable);
else

{
conn = sameWord(method, "public") ?

getHgdbtestConn(db) : sqlConnect(db);
}

processBedFile(bedFile,conn, geneTable, gpHash);
slFreeList(&overlapList); slFreeList(&otherList);
sqlDisconnect(&conn); binKeeperGpHashFree(&gpHash);
return 0;
}

278

struct slDouble *overlapList = NULL;
struct slDouble *otherList = NULL;

/**/
struct sqlConnection *getHgdbtestConn(char *db)
/* Read .hg.conf and return connection. */
{
char *host = "genome-mysql.cse.ucsc.edu";
char *user = "genome";
char *password = NULL;
hSetDbConnect(host,db,user,password);
return sqlConnectRemote(host, user,password,
db);
}

struct hash *readGpToBinKeeper(char *gpFileName)
{
#define MAX_CHROM_SIZE 400000000
struct binKeeper *bk; struct genePred *gp;
struct lineFile *pf = lineFileOpen(gpFileName , TRUE);
struct hash *hash = newHash(0);
char *row[21] ; int genePredLineCtMin = 10;
while (lineFileNextRow(pf, row, genePredLineCtMin))

{
gp = genePredLoad(row);
if (hashLookup(hash, gp->chrom) == NULL)

{
bk = binKeeperNew(0, MAX_CHROM_SIZE);
hashAdd(hash, gp->chrom, bk);
}

bk = hashMustFindVal(hash, gp->chrom);
binKeeperAdd(bk, gp->txStart, gp->txEnd, gp);
}

lineFileClose(&pf);
return hash;
}

280

void processBedFile(char *bedFile, struct
sqlConnection *conn, char *geneTable, struct hash
*gpHash)

/* Read file and process */
{
struct bed *bedList=NULL, *bed=NULL;
bedList = bedLoadAll(bedFile);
for(bed = bedList; bed != NULL; bed = bed->next)

{
doOneBed(bed, conn, geneTable, gpHash);
}

printf("Median value of lengths of overlapping
introns = %f\n", slDoubleMedian(overlapList));

printf("Median value of lengths of other introns =
%f\n", slDoubleMedian(otherList));

bedFreeList(&bedList);
}

71

281

void doOneBed(struct bed *bed, struct sqlConnection *conn,
char *geneTable, struct hash *gpHash)

{
int bStart = bed->chromStart;
int bEnd = bed->chromEnd;
struct genePred *gp = NULL;
if (gpHash == NULL)

gp = genePredReaderLoadRangeQuery(conn, geneTable,
bed->chrom, bStart, bEnd, NULL);

else
gp = bkToGenePreds(gpHash, bed->chrom, bStart, bEnd);

slSort(&gp, genePredLongestCmp);
if (gp == NULL)

{
errAbort("No gene found in %s overlapping %s:%d-%d\n",

geneTable, bed->chrom, bStart, bEnd);
}

doOneGene(gp, bStart, bEnd);
if (gpHash == NULL) genePredFreeList(&gp);
}

282

Sort comparison function

int genePredLongestCmp(const void *va, const void *vb)
/* Compare to sort based sizes of txEnd - txStart,
largest first. */
{
const struct genePred *a = *((struct genePred **)va);
const struct genePred *b = *((struct genePred **)vb);
int lengthA = a->txEnd - a->txStart;
int lengthB = b->txEnd - b->txStart;
int dif = lengthB - lengthA;
return dif;
}

283

void doOneGene(struct genePred *gp, int qStart, int qEnd)
/* get intron statistics for longest gene in range */
{
int i, intronStart, intronEnd;
for (i=0; i< gp->exonCount; ++i)

{
intronStart = gp->exonEnds[i];
intronEnd = gp->exonStarts[i + 1];
double intronLength = (double) (intronEnd -
intronStart);
struct slDouble *slIntronLength =
slDoubleNew(intronLength);
if (positiveRangeIntersection(qStart, qEnd,
intronStart, intronEnd))

slSafeAddHead(&overlapList, slIntronLength);
else

slSafeAddHead(&otherList, slIntronLength);

}
}

284

Downsides of automated
database querying

Although automated querying is very helpful when requiring
multiple complex queries, it does have disadvantages:

• Installation is a (one time) pain and requires significant disk
space.

• Conversely queries to the public database are restricted in
scope.

• Writing and testing code takes time.
• Data sets stored in external files (e.g. maf file alignments) may

be easier to obtain through the Table Browser.

72

285

Finding more information

• Articles in the literature: see handout
• Openhelix - excellent (introductory) on-line tutorials

at: www.openhelix.com
• Tutorials / userguides / FAQs at the browser websites

– www.ensembl.orgs/Docs
– genome.cse.ucsc.edu/goldenPath/help/hgTracksHelp.html
– www.ncbi.nlm.nih.gov/mapview/static/MapViewerHelp.html

286

Some UCSC Resources
• Home page genome.ucsc.edu
• Pre-release genome-test.cse.ucsc.edu
• Mailing list genome-www@soe.ucsc.edu
• Download hgdownload.cse.ucsc.edu
• Src CVS genome.ucsc.edu/admin/cvs.html
• MySQL DB genome-mysql.cse.ucsc.edu
• List of progs:

– http://genome-test.cse.ucsc.edu/eng/useMessageIndex.html

287

Acknowledgements

UCSC
Mark Diekhans
Hiram Clawson
Fan Hsu
Bob Kuhn
Daryl Thomas

EBI
Ewan Birney
Xose Fernandez

NCBI
Deanna Church
David Wheeler

And the three browser teams for creating such
outstanding and useful tools in the first place!

