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|. INTRODUCTION

The excitement in today’s biology is driven by the huge amounts of information
generated by high-throughput data-acquisition technologies, and by the expectation
that these datasets will soon provide detailed understanding of life’s processes.
Ultimately, these datasets have to be integrated into a system-theoretic framework
that should allow the study of the dynamics arising from networks of physico-
chemical interactions orchestrating the physiology of a biological cell. The
bioinformatics community is actively responding to this call for integration with the
creation of a wide array of pathways databases. This tutorial will first provide an
overview of these databases and existing graphical pathway representations. The
underlying objective of the tutorial is to motivate the development of methods for
extracting network models from databases. Models come at different resolutions,
and pathways databases often provide only information on the connectivity
(topology) of the interactions involved in a biological process. Thus, a unique
feature of the tutorial is a discussion of a method of qualitative network analysis that
the presenters think are appropriate for the treatment of uncertain or incomplete
pathway datasets. Also summarized in the tutorial are existing methods and tools
for network visualization, analysis, and simulation. Model extraction from databases
cannot be automated at this time; however, we will explain how a modelling-focused
utilization of pathways databases can be carried out. The modelling problem that is
treated in this tutorial involves a switching behaviour of an enzymatic activity at the

G1-S transition in the mammalian cell cycle.



. PATHWAYS DATABASES AND KNOWLEDGEBASES

.1 PATHGUIDE

PATHGUIDE provides a list of more than 210 web-accessible biological pathways

and networks databases. It is located at http://www.pathquide.org . The most

recent paper describing this resource is the following:

Bader GD, Cary MP, and Sander C. (2006) “Pathguide: A Pathway Resource
List,” Nucleic Acids Research 34: D504-D506 (Database Issue)

As of April 2006, the number of databases under the following categories used in

PATHGUIDE are as follows (some databases are in listed in more than one

category):
Categories Number of databases
1. Protein-protein interactions 86
2. Metabolic pathways 45
3. Signaling pathways 45
4. Pathway diagrams 23
5. Transcription factors/Gene regulatory networks 30
6. Protein-compound interactions 16
7. Genetic interaction networks 5
8. Protein-sequence focused 12
9. Other 13

Below are brief descriptions of the above categories as quoted from the reference

given above (Bader, Cary & Sander, 2006):

1. Protein-protein interaction databases “mainly store pairwise interactions or
complexes between proteins and sometimes other molecular interaction
types.”

2. Metabolic pathways databases “generally store a series of biochemical

reactions in pathways involved in metabolite conversions.”


http://www.pathguide.org/

3. Signaling pathways databases “generally collect sets of molecular
interactions and chemical modifications (such as post-translational protein
modifications) as regulatory pathways.”

4. Pathway diagrams databases “generally store hyperlinked pathways
images.”

5. Transcription factors/Gene regulatory networks databases “capture
transcription factors and the genes they regulate.”

6. Protein-compound interactions are interactions of proteins with non-protein
compounds.

7. Genetic interaction networks databases are “composed of genetic
interactions, such as epistasis and synthetic lethality, which occur when two
mutations have a combined phenotypic effect that is not simply the sum of
the effects caused by either mutation alone.”

8. Protein-sequence focused databases are “protein-sequence databases that
store pathway information as secondary information.”

9. ‘Other databases refer to those that are uncategorized.

According to its creators, PATHGUIDE was designed to be “complementary to
existing database link resources, such as Michael Galperin’s Molecular Database
Collection

http://www.oxfordjournals.org/nar/database/cap/

and the UBiC Bioinformatics Links Directory:”

http://bioinformatics.ubc.ca/resources/links directory

PATHGUIDE highlights databases that are “free to all users and can be downloaded
in a standard format such as the Proteomics Standards Initiative Molecular
Interaction (PSI-MI) and BioPAX pathway data exchange standards, and the
Systems Biology Markup Language (SBML) and CellML pathway simulations model
exchange standards.” (Bader, Cary & Sander, 2006)

Figure 1 shows the 40 largest databases in PATHGUIDE plotted in a database size-
popularity plane (Bader, Cary & Sander, 2006).
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Figure 1. (from Fig 1 of Bader, Cary & Sander, 2006)

1.2 PATHWAY DATA STANDARDS

A brief review of pathway data standards is given in the following reference:

Cary, M. P., Bader, G. D., and Sander, C. (2005) “Pathway information for
systems biology,” FEBS Letters 579: 1815-1820.

Shown in Fig. 3 of this reference (reproduced below) are the data coverage of the

following pathway data formats:

PSI-MI (Proteomics Standards Initiative’s Molecular Interaction) is “a data

exchange format for protein-protein interactions



(http://psidev.sourceforge.net/mi/xml/doc/user/)

SBML (Systems Biology Markup Language) is “a computer-readable format
for representing models of biochemical reaction networks. SBML is applicable to
metabolic networks, cell-signaling pathways, regulatory networks, and many others.”

(http://sbml.org/index.psp)

CellML (Cell Markup Language) : stores and exchange mathematical models

even if different model-building software were used. (http://www.cellml.org/)

BioPAX (Biological Pathways Exchange) (http://www.biopax.org) is “being

developed by various database groups...Because many less-detailed data types
that exist the pathway data space are difficult to represent in a highly detailed
format, the BioPAX ontology allows representation of multiple levels of data

resolution using an abstraction hierarchy.” (quoted from Cary et al., 2005).
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Figure 2. Coverage of pathway data formats (figure from Cary et al., 2005)

1.3 A MODELING-FOCUSED USE OF PATHWAYS DATABASES

Rather than enumerating and discussing a long list of pathways databases, we will
consider a specific modelling problem to illustrate how one can extract relevant

network information. The biological process we consider is the G1-S transition in
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the mammalian cell cycle, and the specific modelling problem is to account for the
switching behaviour of the kinase activity of Cyclin E/CDK2, a marker for entry into S

phase (see Fig. 3 below).
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Figure 3. The mammalian cell cycle showing the G1, S, G2, and M phases along with the
predominant cyclin-CDK activities associated with each phase (top panel). The lower panel
shows the position of the restriction point (R) which subdivides the G1 phase into G1-pm
(post-mitosis) and G1-ps (pre-S-phase). After R and a finite induction period, cyclin E/CDK2
activity increases (shown by the dashed curve labelled ‘E’) as reported in the reference given
below the graph (Ekholm et al., 2001).

We will discuss the mammalian cell cycle in more detail later (in the last section of
this tutorial). In this section, we will only show what databases are relevant and
what problems are encountered before arriving at a working network model that has

the potential to answer the biological question posed — i.e. What is the mechanistic



and kinetic origins of the switching behaviour associated with the restriction point? A

few of the useful relevant pathways databases are discussed next.

Gene Ontology (GO)
The omics revolution is providing a comprehensive parts list of biological cells.
The Gene Ontology (GO) project aims for a controlled vocabulary for describing

genes and gene products (http://www.geneontology.org). GO’s classification and

hierarchy of biological processes can be used as a starting point for identifying the
parts list of the G1-S molecular machinery. Figure 4 below illustrates the search
sequence used to generate a list of genes involved in the G1-S process.
Unfortunately, the GO hierarchy is not a tree, and a GO term (e.g. cell cycle) could

have many parents.

Gene Ontology : biological_process

cellular process G0:0009987 : cellular process ( 72351 )
deve|0pment GO0:0007155 : cell adhesion (1170 )
GO:0007154 : cell communication ( 10578 )

interaction between organisms G0:0008037 : cell recognition ( 57 )

: : GO0:0050875 : cellular physiological process ( 66156 )
physiological process GO:0006914 : autophagy ( 132 )

growth _ GO0:0030154 : cell differentiation ( 2913 )

pigmentation G0:0035212 : cell competition (sensu Metazoa) (2 )
regulation of biological process e GO:0007049 : cell cycle (2611)

ducti G0:0008219 : cell death (1773 )
lepIocuclionig G0:0051301 : cell division ( 862 )
response to stimulus G0:0016049 : cell growth ( 520 )

GO0:0019725 : cell homeostasis ( 738 )

G0:0006928 : cell motility ( 1376 )

G0:0016043 : cell organization and biogenesis ( 9371 )
G0:0008283 : cell proliferation ( 1331 )

viral life cycle

* GO0:0044237 : cellular metabolism (41769 )
GO0:0043482 : cellular pigment accumulation (0 )
GO:0007049 : cell cycle (2611 ) GO0:0007349 : cellularization ( 60 )
_ G0:0030037 : actin filament reorganization during cell cycle G0:0007059 : chromosome segregation (584 )
G0:0051606 : detection of stimulus ( 1485 )

GO0:0007098 : centrosome cycle
G0:0007113 : endomitotic cell cycle
G0:0051325 : interphase
G0:0000279 : M phase

GO0:0051321 : meiotic cell cycle
G0:0000278 : mitotic cell cycle
GO0:0051726 : regulation of cell cycle
_ G0:0016330 : second mitotic wave (sensu

G0:0051726 : regulation of cell cycle (1280)

G0:0051727 : cell cycle switching, meiotic to mitotic cell cycle ( 0 )

G0:0051728 : cell cycle switching, mitotic to meiotic cell cycle (0 )

GO0:0000074 : regulation of progression through cell cycle (1274 )
G0:0000075 : cell cycle checkpoint (284 )
GO0:0008054 : cyclin catabolism ( 30 )

G0:0019055 : modification by virus of host cell cycle regulation ( 1)
G0:0045786 : negative regulation of progression through cell cycle (237 )
GO0:0045787 : positive regulation of progression through cell cycle (54 )
GO0:0000320 : re-entry into mitotic cell cycle (7))

G0:0031991 : regulation of contractile ring contraction during cytokinesis ( 20 )
G0:0000079 : regulation of cyclin dependent protein kinase activity ( 117 )
G0:0007088 : regulation of mitosis ( 239 )

G0:0051445 : regulation of progression through meiotic cell cycle ( 7 )
GO0:0007346 : regulation of progression through mitotic cell cycle ( 147

Figure 4. A search sequence to extract a list of genes involved in the regulatory network of

the G1-S transition in the mammalian cell cycle.


http://www.geneontology.org/

Kyoto Encyclopedia of Genes and Genomes (KEGG)

The preceding GO search will not give information on the structure of the G1-S
network. One can begin to learn about the network by visiting pathways databases
such as KEGG. Its URL is http://www.genome.jp/kega/ . There are 4 constituent
databases in KEGG, but we will only mention two of them: PATHWAY and BRITE.
KEGG PATHWAY is a collection of manually drawn pathway maps on

Metabolism

Genetic Information Processing
Environmental Information Processing
Cellular Processes

Human Diseases

I T o

Drug Development (drug structure maps)

Items 1-5 represent the first level of the KEGG Orthology (KO), a pathway-based
classification of orthologous genes. ‘Drug Development’ (item 6 above) includes
chronology of drug development, target-based structure classification, and skeleton-

based structure classification.

KEGG BRITE is “a collection of hierarchical classifications representing our
knowledge on various aspects of biological systems. In contrast to KEGG
PATHWAY, which is limited to molecular interactions and reactions, KEGG BRITE
incorporates many different types of relationships. Thus, the mapping of genomic
and molecular data to KEGG BRITE (by the KO system) supplements the KEGG
PATHWAY mapping for inferring higher-order functions....The KEGG Orthology
(KO) system is the backbone of KEGG BRITE. It is a pathway-based classification
of orthologous genes, including orthologous relationships of paralogous gene
groups. The KO identifier, or the K number, is a common identifier for linking the
gene and the pathway node, enabling automatic generation of organism-specific

pathways.” (quotes from http://www.genome.jp/kegg/brite.html ).

Figures 5A & 5B illustrate what pathway information on the cell cycle is obtained
from KEGG.
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NETWORK HIERARCHY IN KEGG
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01400 Cellular Processes

_ 01410 Cell Motility

~ 01420 Cell Growth and Death
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_ 04420 Sporulation [GO:0030435 0030436]
_ 04430 Germination [GO:0009847]
_ 04110 Cell cycle [PATH:ko04110hsa] =—————)p CLICK TO SEE PATHWAY
_ 04210 Apoptosis [PATH:ko04210] [GO:0006915]

Figure 5A. Finding a cell cycle pathway map from the network hierarchy link in BRITE.
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Figure 5B. Pathway diagram of the cell cycle (H. sapiens) from KEGG.
The boxes in the pathway map are clickable if there is information stored in them in
the database. Clicking on other processes or modules (e.g. ‘MAPK signalling

pathway’ or ‘Apoptosis’) will open up the corresponding pathway map. Clicking on
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the ‘Help’ button located at the top right of the map will show the legend for the
graphical objects (boxes and edges) used. Beyond this legend, no links are
provided for further information on the interactions (edges). More detailed
information on a particular interaction may be found in binary interaction databases
such as BIND and DIP (go to the PATHGUIDE list to link to these protein-protein
interaction databases). An unsatisfactory feature of the map given in Fig. 5B is the
assignment of parts of the network to the G1, S, G2, and M phases of the cell cycle
(see bottom of map). One must always remember that, at least at this point in time,
pathway maps such as those in KEGG embody the curators’ interpretation of

available literature information and are tentative.

Reactome

Reactome is a curated knowledgebase of human biological pathways which
operates like a scientific journal in the sense that specialists in particular biological
topics (i.e. biological processes selected by the editors) are invited to provide
experts’ reviews which are subsequently substantiated with bioinformatic weblinks

by in-house curators. The URL is http://www.reactome.org. Reactome is a

collaborative project among the Cold Spring Harbor Laboratory (USA), European

Bioinformatics Institute, and the Gene Ontology Consortium.

The Table of Contents (TOC on the main menu bar) and the Pathway Topics List on
the home page of Reactome give listings of the curated biological pathways. For
our G1-S modelling problem, clicking on Cell Cycle, Mitotic Hs leads to another link
called G1/S transition [homo sapiens] which can be perused to learn more about the
process. A useful Reactome tool is Pathfinder which can be used to identify or
discover pathways between a starting molecule, gene, or event and a terminating

molecule, gene, or event.

GenMAPP
Unfortunately, Reactome does not provide good pathway maps that integrate
the interactions described in detail under each biological process. GenMAPP

(http://genmapp.org) contains a database of pathway maps contributed by users,

including some that are translated from Reactome (see Fig. 6). A clickable listing of
human pathway maps could be found at
http://genmapp.org/HTML _MAPPs/Human/MAPPIndex Hs_Contributed.htm

12


http://www.reactome.org/
http://genmapp.org/
http://genmapp.org/HTML_MAPPs/Human/MAPPIndex_Hs_Contributed.htm

G1Phase |CoRaD COKMIC] G to S cell cycle control GUS transition Phase
G1 Cvclin Cyclin Ds CORNZA COXNID
Dependent Kinases = T S e GUS wanaition Cyclin
- cont - coRNzC — Dopendast Kinasws  OYEIM E5
[oom ] [comz] 1 (owas] / \ o] ot
3 oG :_f,- '.e ] CONEZ
] u y
_— b \ /
1 [#c] / \ 2 i Inactive WEF1 Py
CydlinD [Cyelind ] f . [E]  — ; iE‘
%‘WP" L’::k 4 (e | LB | (e OCHEL| | comen
: LA —~ e o] OB P Tk
CCNH 1 Y /o G1IS Cell Cyele Degredation L
MNATY f GADDIAA Checkpolnt N~ ,,-'
cak p! N TT——— [CocaA] -
f B, T — __| phosphorylation of proteins
b, Involved In G1/5 transition
ey _\__—_“———-_\___h.'
™. Sm—
~ —
PCHA | 4 ™

~—= DNA replication
origen recognition [cocist ]

complex  DNA Doh’merases

s
i [GREIL POLEZ |
Fif ORCHL POLE HO%
TFBM| = Cell cycle DNA replication genes | ORGEL POLAZ | el
TTTCCGOGC ORCIL ]
ORGL S
G2 Phase-M phase o Pz Cdcta
RPA1
[ Cica | conGz |
[ccam
[cent P
h PRIMIA

Figure 6. The Hs_G1_to_S cell_cycle_Reactome.mapp from GenMAPP (see URL

preceding this figure). This map was translated from Reactome by A. C. Zambon.

Biocarta
The company BioCarta is a “developer, supplier and distributor of uniquely
sourced and characterized reagents and assays for biopharmaceutical and

academic research” (quoted from Biocarta’s URL : http://biocarta.com). This

website contains maps of pathways that are subjects of active research. For the
subject on G1-S cell cycle transition, one finds at least 6 relevant pathway modules,
namely

Cyclins and Cell regulation

Cell Cycle: G1/S checkpoint (see Figure 7 below)

Regulation of p27 phosphorylation

CDK regulation of DNA replication

Cyclin E destruction pathway

o 0 kW N =

Influence of Ras and Rho proteins on G1 to S transition
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Figure 7. The pathway module called Cell Cycle: G1/S checkpoint in Biocarta (contributed
by Cell Signaling Technology). A legend for the meaning of the symbols (edges and
molecules) is provided on the same page. The genes/proteins can also be clicked to open

windows of information on genes, proteins, Biocarta products, references, etc.

Pathguide lists other sources of pathway maps which should be consulted for more
detailed information. The small number of pathways databases discussed above
already provides a good start for sketching a network model focusing on the
regulation of cyclin E/CDK2 which we assume to be the primary marker for the G1-S
transition. Admittedly, the extraction of the G1-S network model discussed in the
last section of this tutorial was largely guided by published review papers on the
subject ; one can carry out a Pubmed search to search for these papers at:

http://www.ncbi.nim.nih.gov
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.4 REPOSITORIES OF MODELS

Mathematical and computational modelling of biological pathways is, of course, not
new but this activity has recently been stimulated by the availability of large amounts
of data generated by omics technologies. The recent creation of online repositories
of models is a welcome development because they promise to gather and
standardize model representation so that models can be conveniently shared and
interpreted by members of the modelling community. The URLs of these model

repositories are given below.

Biomodels Database at EBI: http://www.ebi.ac.uk/biomodels/

CellML at the Univ Auckland: http://www.cellml.org

The Biomodels Database is a “free, centralized database of curated, published,
quantitative kinetic models of biochemical and cellular systems” (quote from the
Biomodels URL above). CellML aims to “store and exchange computer-based
mathematical models” (quote from the CellML URL above). An example of a model
graph from the Biomodels Database is the cell cycle model shown in Fig. 8. This
model (kinetic equations and parameters) can be downloaded from the website
using various formats such as SBML, CellML, SciLab, and XPP.

Figure 8. Graph view of model Tyson1991_CellCycle_6var from Biomodels Database.
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Figure 9 below is a G1-S model network from CellML.
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Figure 9. The Hatzimanikatis model of the G1-S network in the mammalian cell cycle

(downloaded from the CellML database).
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lIl. NETWORK VISUALIZATION AND ANALYSIS

By ‘network visualization’ we mean the graphical representation of networks of
molecular processes and interactions. Ideally, a network graph would contain all the
details (or at least clickable links to them) of the individual interactions and
processes comprising the network. Beyond these local details, a network graph is
essential in understanding the associated biological process because the graph as a
whole embodies system-level properties emerging from the coupling (or topology) of
the interactions among the network components. It is these non-intuitive emergent
global properties that are often the object of computer-based mathematical
modeling. In this section, we summarize the activities in the systems biology
community that are geared towards the development of standards of graphical
representation of networks; we also survey existing methods and tools of network
analysis and computer simulation of models.

With the view of developing a kinetic model, a network graph is used to extract
the two essential model components, namely, a set of dynamical variables and a set
of interaction functions corresponding to the network topology.

Every kinetic model assumes a set of dynamical variables that sufficiently
describes the state of the system. A network graph is composed of nodes and
edges where the nodes correspond to entities (molecules, genes, proteins,
complexes, even pathway modules) that are connected by edges (often directed to
signify causality of the interaction). In other graphs, interactions themselves are
considered nodes and an edge between an entity node and an interaction node
could mean either ‘the entity is a substrate or reactant of the interaction’ or ‘the
interaction gives rise to or affects the entity’. Only entity nodes may correspond to
dynamical variables in kinetic models. Depending on the resolution of the model, a
dynamical variable may correspond to one entity node or a set of nodes (modules).

A directed interaction edge signifies that the state of the target node is a
function of the state of the source node. In a dynamical model, the instantaneous
state of a given target node would be equal to the algebraic sum of the interaction
functions associated with all source nodes. These interaction functions are referred

to as the ‘kinetics’ or ‘rate expressions’ of the interactions.
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1.1 SOME EXAMPLES OF NETWORK GRAPHS

Qualitative network (QNET) graphs

In the primary literature, most molecular biologists and geneticists present
pictures of pathways by using what we call qualitative network graphs where only
arrows and hammerheads are shown (see, for example, Fig 7 above). These gNET
graphs are directed binary interactions where arrows could mean any of the
following: ‘activates’, ‘induces’, or some positive influence that increases the level of
the target node; and hammerheads could mean ‘inhibits’ or some other negative
influence that decreases the level of the target node. Admittedly, the meaning of
these arrows and hammerheads is not well defined. In the last section of this
tutorial, we will give clear definitions and say more about the utility of these qNET
graphs in assessing network stability. Majority of the available information on
biological pathways and networks is at the gNET level — this is really the motivation
why we must find ways to analyze qNET graphs to generate valid conclusions

despite the incompleteness and uncertainty of the data.

Metabolic network (MBN) graphs

Sample graphs of metabolic networks from the two most popular databases
KEGG and EcoCyc are shown in Fig 10 below. The nodes are low molecular
metabolites and the reactions are characterized by functional classes of enzymes
which are abstracted to standardized EC numbers. The MBN graph has a clear and
simple semantics that is easily amenable to mathematical analysis and, in fact, co-
evolved with a number of analytical methods and tools, such as metabolic control

analysis and stoichiometric network analysis.
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Figure 10. Top panel: a portion of the pentose phosphate pathway from KEGG. Bottom

panel: tryptophan synthesis pathway from EcoCyc.

Gene regulatory network (GRN) graphs

Gene Regulatory Network (GRN) notation is another example of a specialized
representation developed to capture regulatory relationships specifically within gene
networks, or even more precisely, among various transcription factors. The notation,
originally developed in Davidson’s group at Caltech (Yuh et al., 1998), is centered
on cis-regulatory elements of genes and their positive or negative regulation by
other genes. Several extensions of the GRN notation were provided by Bolouri
(Longabaugh et al., 2005) and Arkin (McAdams and Arkin, 1997) to include
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description of proteins and their interactions. However, the GRN notation is a DNA-
centric approach which does not cover signal transduction or metabolic networks.
Presently the GRN notation is supported by the BioTapestry software being
developed by the Bolouri group (Longabaugh et al., 2005).

e
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Figure 11. An example of a GRN graph from (Davidson and Erwin, 2006).

Towards a general graphical network representation

MIM. Molecular Interaction Maps (Kohn, 1999; Kohn, 2001) represent one of
the first attempts to develop a general graphical notation suitable for description of
any molecular network but specifically geared towards signaling networks. MIMs are
also based on nodes and edges; however complexes are denoted differently from
“single” molecules (see Figure 12 for an example). The semantics of notation is rich
and allows representation of enzymatic activity, molecular modifications, formation
of large molecular complexes, etc. The set of notations was designed to represent
both qualitative and detailed mechanistic interactions. The development of the MIM
notation also uncovered issues and pitfalls that are blocking the way to a universal
network notation. Thus, to provide representational richness the notations become
relatively complex and their correct and unambiguous interpretation may require
prior domain knowledge which, in turn, aggravates the problem of being machine

readable and writable.
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Figure 12. A fragment of a large MIM (Kohn and Aladjem, 2006).

PDN. Process Diagram notation was developed in Japan’s Systems Biology
Institute by Kitano and colleagues (Oda and Kitano, 2006; Kitano et al., 2005). The
notation builds on the earlier work of Kohn and co-workers on MIMs but is based on
a different philosophy. The notation is graphically rich and appeals to human image
processing capabilities. The notation explicitly introduces notions of “process” and
“state”. Each state of the molecule (e.g., receptor — ligated receptor, inactive —
active protein) is represented separately and the transition between them
(“process”) is shown explicitly. This representational convention makes PDN highly
intuitive and easy to read for biologists. PDN is fully supported by the CellDesigner
software (being developed in the same institute) which was initially conceived to be
a pathway and network editor, but is now being extended to become a computer

simulation platform.

EPN. The Edinburgh Pathway Notation (EPN) was recently proposed by
Goryanin, Ghazal and co-workers (Sorokin et al., 2006) to alleviate problems
discovered during the development of PDN. EPN can “hide” many detailed
mechanistic blocks behind convenient high-level notation such as “logical gates” and
“protein expression”. The notation is based on the concept of “state” with a specific
notation abstracted from a similar notation in PDN. In general, each protein,

complex and biomolecular entity has to have at least one state, but they can also
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have multiple states. To conserve graphical space, all states of the biomolecule
contained in the same object. EPN is also meant to provide a more convenient
interface for machine readability and writability. Less human-readable but more
compact EPN can be developed into the more human-readable but much more
verbose PDN on the per-module basis to enable both perception and efficiency of
information presentation. At the moment this notation is developed and supported by
the Edinburgh Pathway Editor.

PATIKA. The acronym stands for Pathway Analysis Tools for Integration and
Knowledge Acquisition (Demir et al., 2004; Demir et al., 2002). Patika represents
another example of a conceptual platform and graphical notation that provides
modularization, encapsulation and hierarchical representation of interaction
networks. The primary semantic elements are “state”, “complex”, “transition”,
“‘compartment” and “abstraction”. “Abstractions” of states and transitions serve to
implement modularization of networks as well as to incorporate the uncertainty of

biological data.

SBGN. Presently, the need to develop a standard notation for representing
biomolecular networks became well appreciated by the systems biology and
bioinformatics community. The Systems Biology Graphical Notation (SBGN)
consortium was formed to discuss problems, identify contradictions in notation and
find solutions. A pathbreaking first workshop of SBGN took place in Tokyo in
February 2006 to set the course for the much-anticipated unification of various
graphical notations. A complementary effort is currently being undertaken by the
XML language communities represented by SBML, CellML and BioPAX projects
(Gauges et al., 2006). The goal of this effort is to enable a next-generation of SBML
and other exchange standards for graphical representation of networks in a clear
and unambiguous format, independent of particular platforms and graphical
notations. Convergence of the SBGN and the SBML-CellML-BioPAX efforts, long
awaited by the systems biology community, should result in a free and effortless
sharing of pathway and network information among scientists from multiple

disciplines and heterogeneous backgrounds.

22



1.2 METHODS AND TOOLS FOR NETWORK ANALYSIS AND MODELLING

Once the elements of the network have been identified and the relationships
between them have been established, the dynamical behavior of the network can be
analyzed by various methods through the construction of a network model.
Typically, “simulation” of the model implies some computational process that
attempts to imitate the temporal (and sometimes spatial) dynamics of the actual
network. Simulation is often conceptually straightforward, and multiple tools are
available. In contrast, “analysis” usually implies that some qualitative conclusions
are derived about the behavior of the network without explicitly simulating its
dynamics. In this part of the tutorial we start by surveying the space of modeling
methods and exploring this space beginning with the conventional simulation
methods to the more qualitative, symbolic, and analytic techniques. We briefly
cover foundations of the formalism of stoichiometric network analysis and metabolic
control analysis, with emphasis on available tools and potential applications rather

than on the details of their mathematical formalism.

The choice of method or approach for analyzing a network depends on the
levels of certainty and detail on network data, as well as on one’s research
objective. Two complementary approaches can be formulated as follows. The more
“brute force” approach relies on numerical simulation to arrive at a qualitative
insight. Typically one would begin by formulating a detailed mechanistic
mathematical model that is equipped with kinetic parameter values. The model is
then numerically simulated over a wide range of parameters. These computer
simulations sometimes suggest ways to reduce the model to smaller, more
manageable size through, for example, elimination of fast and slow variables.
Qualitative insights can be also obtained from numerically computed bifurcation and
phase diagrams. Alternatively, one can start by applying methods of qualitative
analysis to reduce the complexity of the model prior to embarking on numerical
simulations. For example, one may analyze the topology of the network to identify
the “elementary” or “principal” fluxes, and identify which among these are
responsible for a particular qualitative phenomenon, such as bistability. A reduced
or minimal model can sometimes be generated by identifying the smallest number of

these fluxes that could still retain the qualitative behavior being modeled.

A large variety of modeling methods is presently available for researchers

interested in biological pathways and networks (Alves et al., 2006; Pettinen et al.,
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2005). Before delving into the details of some of these methods, we first give an
overview of the full spectrum of methods. An early approach to modeling biological
systems - dating back to the works of Jacob, Monod, Volterra and Lotka - are almost
entirely based on the use of ordinary and partial differential equations. This
approach is deterministic. More recently, significant interest has been paid to the
use and development of stochastic methods which allow the investigation of noise in

biological systems.

In the past decade, significant efforts have also been put toward the
development of qualitative and symbolic methods of modeling. In the early 1970s
Kaufmann and Glass developed the formalism of Boolean networks to predict
qualitative behaviors of gene networks. Later, several methods borrowed from
computer science, such as Petri Nets and Bayesian networks, were adopted for the
analysis of biological systems. Process calculi is a more recent addition to this

collection (see Fig 13).

continuous < discrete

Figure 13. Space of modeling methods
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Stoichiometric Kinetic Modeling (SKN)

To perform a stoichiometric or chemical kinetic modeling, a network should be
“translated” into the stoichiometric kinetic notation. Many modern simulation
packages allow the user to enter diagrammatic information while some older
packages require direct inputs of equations. To define a model, the user needs to
supply connectivity information (graphically), define the compartments (volume),
species (names, concentrations or copy numbers) and reactions (kinetic law,
reaction rate constants). Once the model is fully defined, its simulation can be
performed either deterministically or stochastically and the simulation output will be
generated usually as a time series of variable concentrations or molecule copy
numbers. It should be kept in mind that for stochastic simulations, the steps in the
mechanism must be elementary steps (usually first or second order reactions) that
correspond to mass-action rate laws, as opposed to composite rate expressions
such as Michaelis-Menten or Hill-type functions. The example given on the slide
represents the classical Michaelis-Menten kinetic diagram for the transformation of
substrate S into product P catalyzed by an enzyme E. The mechanism, as defined
here consists of only mass-action rate laws so it can be simulated either

deterministically or stochastically.

A
BioSpice
CellX/Karyote
,
w
o SBToolbox
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Figure 14. Various software tools used to simulate kinetic models.



Petri Nets (PNs)

The Petri Net formalism was initially introduced as an analytical tool for testing
concurrent processes in computer engineering in the early 1960s. Only recently
was it realized that this formalism can also be used for modeling biological systems
(Goss and Peccoud, 1998). In their basic formulation, PNs are equivalent to the
SKNs with “places” equal to “species” and “transitions” equal to “reactions”;
however, PNs assume discrete values for species numbers (“marking’ , ‘tokens”).
This concept was extended in hybrid functional Petri nets (HFPNs) to admit both
discrete and continuous values for place markings. This flavor also introduced ‘test’
and ‘inhibitory’ arcs to represent closer feature found in signaling networks. To
achieve more quantitative approximation of chemical kinetics, the formalism of
stochastic Petri Nets can be applied to essentially mimic the behavior of the
Gillespie algorithm (Peleg et al., 2002). More recently, colored Petri Nets (CPNs)
(Mandel et al., 2004) have been applied to introduce hierarchical representation of
biological systems with increasingly more fine-grained description. A variety of
computational tools exist for the three major flavors described; however, none of
these has been designed specifically to model biological networks and pathways.
Thus expert-level knowledge in the PN domain is generally needed to operate these

tools.

Boolean Networks (BNs)

Boolean networks were proposed by Kauffman and Glass as a ‘simple’ model
for gene interaction networks (see e.g., (Kauffman, 2004; Perkins et al., 2006) and
references therein). An advantage of Boolean networks is that they offered a
biologically plausible and computationally tractable model when virtually nothing is
known about the details of gene expression control. BNs are cellular automata with
simple transition rules and are close relatives of neural networks. Original BNs,
heavily influenced by cybernetics, had only Boolean variables (0,1) and logical
transition rules. Later transition rules have been generalized, e.g., as shown on the
slide, and variables were allowed to take a finite range of values. Another recent
development in the area is the introduction of probabilistic Boolean networks (PBN)
that allow many transition functions for each node of the network which are chosen
at random with a given probability (Shmulevich et al., 2002). The main proposed

use of various BNs is the inference of gene regulation networks from genomic data.
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Bayesian Networks (BaNs)

In Bayesian networks (BaN) the edges represent causality between the nodes
through the statistical dependence. Usually, many networks will fit the experimental
data. Further analysis is required to narrow down the selection of potential
networks. As such, BaN have been used as an analytical (Friedman et al., 2000)

rather than simulation tool.

Analysis of network topology

Graph-theoretic Analysis. Application of graph-theoretic approaches to
large-scale networks, regardless of the nature of the component interactions,
resulted in the modern theory of “network biology” mainly developed by Barabasi
and colleagues (Barabasi and Oltvai, 2004; Ravasz et al., 2002). The main
topological characteristics of the networks are the distributions of connectivity P(k)
and modularity C(k) or clustering coefficient. The majority of biological networks
show scale-free distribution characterized by exponential dependence of P and C on
k. While scale-free networks are not necessarily modular, many natural networks
also show modularity which requires that C(k) drops with k, for hierarchical networks
C~1/k. The scale-free property of biological networks, which has been
demonstrated for some networks, such as metabolic and protein-protein interaction,
endows them with some structural robustness properties but also leaves them open
to catastrophes upon removal of the “hubs”, the highly connected nodes that are
responsible for the connectivity of the network. Biological networks with exponent 2
<y < 3 are also ultrasmall in a sense that their average node connecting path scales
as L~log log N while for random networks it is only log N. Perhaps the most popular
general-purpose tool specifically to work with large networks, such as protein-protein
interaction networks, is Cytoscape from Ideker’s group. Among many “plug-ins” that
extend the functionality of this tool is Network Analyzer which computes a number of

network topology statistics and probability distributions.

SNA. This is the acronym that Bruce Clarke gave for the formalism he
developed and called stoichiometric network analysis (Clarke, 1988). Central to the
use of stoichiometric methods is the concept of the stoichiometric matrix (SM) N
which describes connectivity and stoichiometry of the reaction network. The power
of the approaches based on the analysis of the SM lies in the fact that a number of

qualitative conclusions can be made regarding the properties of the network
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regardless of the detailed definition of reaction fluxes which are usually complex
nonlinear functions of the species concentrations. Introduction of the SM results in a
linear relationship between the time derivative of the vector of m species
concentrations and the vector of n reaction fluxes. To ensure that all reaction fluxes
are non-negative, reversible reactions are often represented as two opposite
reaction fluxes following the work of Clarke.

In the stationary state, the vector of fluxes satisfies a very simple equation. If
the rank of the SM is r then all possible stationary flux vectors are found within the
so-called null space of the SM with dimension n - r. It is convenient to introduce a
so-called kernel matrix K with dimensions n x n - r that consists of the null-space
basis vectors. Incidentally, the kernel matrix allows to express all reaction fluxes
through the independent reaction fluxes as shown on the slide. However, arbitrarily
chosen basis vectors of the null-space are not unique and do not have any
biochemical meaning. Fortunately, using convex analysis it is possible to overcome
this problem. It can be shown that all admissible flux vectors lie within a (n —r )-
dimensional convex cone within the positive orthant of the n-dimensional flux space.
The edges of this cone are so-called “extreme currents” and their number is
generally higher than the dimension of the null-space. Interestingly, although this
means that algebraically they are dependent, biochemically they are still
independent because they cannot be expressed through each other using only non-
negative coefficients. On the network diagram, such extreme currents correspond
to characteristic pathways with none of them being a subset of another. Schuster
and co-workers relaxed the requirement for non-negativity of fluxes introducing
‘elementary modes’ as the cone edges in this situation (see for review (Papin et al.,
2003)). Finally, Schilling (Schilling et al., 1999) and colleagues introduced an
intermediate concept of ‘extreme pathways’ by assuming non-negativity for internal
fluxes and arbitrary sign for the exchange reactions with the ‘environment’ of the

system. This concept is illustrated in Fig 15.
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Extreme pathways: An example
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Figure 15. An example of how to determine the extreme pathways in a network.

Mathematical analysis of stoichiometric matrices and especially extraction of
the extreme currents, elementary modes and pathways is a nontrivial task and
should be performed with dedicated tools. Publicly available software for SNA has
become available since the end of 1990s. The most recent developments are
CellNetAnalyser and SNA toolbox which are toolboxes for Matlab and Mathematica
respectively.

What can be done once the extreme currents are computed? Originally SNA
was developed by Clarke specifically to analyze the stability of stationary states of
large reactions networks. The mathematical apparatus of this approach is beyond
the scope of this tutorial. Importantly, SNA was applied to derive a reduced model
of a complex network so that it preserves certain characteristic behavior. Thus
Aguda and Clarke (Aguda and Clarke, 1987) used SNA to derive a reduced model
for the bistability behavior exhibited by the peroxidase-oxidase reaction. This
approach involved identification of those extreme currents that are necessary to
preserve the bistable behavior of the whole system. More recently SNA was applied
to identify criteria for the emergence of calcium oscillations in olfactory cilia (Reidl et

al., 2006). Papin and Palsson (Papin and Palsson, 2004) presented an example of
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how SNA can be used to analyze the structure and properties of a generic signal

transduction pathway on the example of JAK-STAT pathway.

Metabolic Control Analysis (MCA). MCA (Hofmeyr et al., 2002) is another
theoretical approach based on the analysis of the stoichiometric matrix. The main
question addressed by MCA is how the stationary state of the network described by
the set of all stationary concentrations S and reaction fluxes J is influenced by the
perturbation introduced into the system parameters. In the classical metabolic
context, these parameter perturbations are normally achieved by altering
concentrations or molecular properties of the enzymes that catalyze the
corresponding reactions. To reach its goal, MCA introduces a number of differential
characteristics which define sensitivities of stationary quantities to the change in
concentrations and parameters. “Local’ properties that describe how the individual
reaction rates v depend on the reactants and parameters that are directly involved in
these reactions are called elasticities and are expected to be experimentally
measured. Indeed for a great number of biochemical systems these parameters
can be relatively easily measured in vitro. Of interest, however, are the “global’
characteristics, response and control coefficients that represent systemic properties
of the entire network. Experimental measurements of these characteristics would
require in vivo experiments which are normally difficult. The main advantage of the
MCA is the derivation of the algebraic relationships between hard to obtain
coefficients and elasticities based only on the topology of the network as encoded in
the stoichiometric matrix.

MCA relates global properties to local properties through the so-called
summation and connectivity theorems that relate matrices of control coefficients with
the stoichiometric matrix through the kernel matrix K and link matrix L. These
matrices describe the linear dependence between the network fluxes (columns of N)
and the species (rows of N). In the example shown on the slide a simple system of
3 species S is connected by 4 reactions. Four additional “boundary” species X are
assumed to be kept constant by external processes are thus the parameters of the
system together with the reaction rate constants. The final outcome of the MCA
analysis here is the system of linear equations that relates all control coefficients
with the stationary fluxes, concentrations and elasticities which are assumed to be
measured experimentally. For the systems of practical size, all the above
calculations, of course, are performed using software tools.

A number of software tools provides support for MCA analysis, usually by

calculating elasticities, response and control coefficients numerically. The majority
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of these tools are also kinetic modeling/simulation engines. Among the available
tools the most prominent are PySCeS (Olivier et al., 2005) which evolved from the
first MCA tool MetaMod, JDesigner/Jarnac and Copasi (the latest, and improved
version of Gepasi). Importantly, Jarnac can be run as a module of the broker
applications SBW and BioSpice, providing additional functionality and application
data exchange. Some other tools like BioSens and MetaFluxNet are not MCA tools
in the strict sense but provide additional and complimentary functionality such as
sensitivity analysis and metabolic flux balance analysis, respectively.

Sensitivity coefficients computed using MCA can be useful for the
understanding of the organization of the network. An example (Goryachev et al.,
2005) shown on the slide presents a bacterial quorum sensing network which
operates as a bistable switch that is flipped by accumulation of the communication
molecule, termed autoinducer, in the extracellular environment. Calculation of
sensitivity of the transcription factor concentration to variation in the reaction rates
revealed parts and submodules of the network which are responsible for the
maintenance of the transcription factor in the “on” and “off” states. Interestingly, the
analysis showed that most of the submodules have non-overlapping functions as
they control either “on” or “off” states and rarely both. While in a relatively small
network, as in this example, the function of network components can be inferred
directly from the simulations, in larger networks, analytical approaches, such as

MCA, could potentially offer an advantage over brute force simulation approaches.

Network stability through circuit analysis

Further generalization of the network topology analysis assumes that only the
signs of relationships between the network nodes are known in the qualitative
“activates” — “inhibits” terms. Since this method is considered in detail in the next
section of our tutorial, only a brief exposition of the early results is given here. The
approach is based on the qualitative analysis of the system’s Jacobian matrix. The
major observation mentioned in works of Clarke (Clarke, 1988), Thomas (Thomas et
al., 1995) and others is that only the network cycles contribute to the characteristic
equation and therefore only cyclic paths influence the network stability. Defining
closed feedback loops in the network and classifying them as “positive” or “negative”
it is often possible to make conclusions about the potential instability of a stationary
state of the network without knowing the kinetic details. Thus, it has been shown
that a positive circuit is a necessary condition for multistationarity and a negative
circuit is a necessary condition for stable oscillations. In the examples shown on the

lecture slides (borrowed from Tyson’s paper (Tyson, 1975)) two mutually repressing
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pathways are characterized by the Jacobian with both positive and negative circuits.
Indeed, at various values of network parameters it exhibits oscillations and
bistability.
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V. EXTRACTING AND ANALYZING A BIOLOGICAL MODEL

In this section, we give a detailed example of a biological model to illustrate the use
of pathways databases and, more importantly, to show what valid conclusions can
be generated despite the incompleteness and uncertainties of the information
currently available; it is this latter aim that we believe is crucial in exploiting the

current state of pathway information in databases.

IV.1 THE G1-S TRANSITION IN THE MAMMALIAN CELL CYCLE

The modelling process usually begins with a question that focuses on specific
phenomenon. We already stated our biological question in Section 11.3 : What is the
mechanistic and kinetic origins of the switching behaviour associated with the
restriction point? The different phases of the eukaryotic cell cycle are shown in
Figure 3. The restriction (R) point is ‘located’ in mid- to late G1 phase, and is often
described as a commitment point for another round of DNA replication. The
significance of studying R point regulation is underlined by the fact that almost all
human cancers involve dysregulation of this G1 checkpoint (it is considered a
checkpoint in the sense that if there is something wrong, such as DNA damage,
then the cell cycle is arrested to give time for some DNA damage repair machinery

to operate).

From consulting literature reviews and pathways databases (such as Biocarta,
see Figure 7), a consensus qualitative network for G1-S regulation can be drawn, as
shown in Figure 16. A brief description of this network is given in this figure’'s
caption. Since the G1-S marker to be used for our model is cyclin E/CDK2, we
focus on the interactions involving this kinase and find out how the switching
behaviour of its activity is generated. Very often, such switches originate from some
intrinsic instability of the network. We will make the assumption that a network
instability causes the cyclin E/CDK2 switching behaviour, and then identify from Fig
16 a core subnetwork that exhibits this instability. We summarize in the next
subsection the theoretical basis for the method we used in identifying this

subnetwork.
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Figure 16. The regulatory network of the G1-S transition in the mammalian cell cycle.

Growth factors (GFs) trigger certain signalling cascades that lead to the activation of cyclin
D/CDK4 complexes and to the inhibition of CDK inhibitors such as p27. Active CDK4
phosphorylates (thereby deactivating) the retinoblastoma protein (pRb) which inhibits entry
into S phase due mainly to inhibitory binding with E2F transcription factors; these factors
induce many of the genes required for S phase (such as members of the pre-replication
complex, cyclin E, cyclin A, Cdc25A, etc.). The dashed arrows signify gene expression.
Synthesis of cyclins E and A leads to activation of CDK2 which further phosphorylates
(thereby deactivates) pRb. Another transcription factor, namely Myc, also contributes to the
G1-S ftransition but this protein’s regulation is not shown in the figure. Arrows mean

‘activate’ and hammerheads mean ‘inhibit’.

IV.2 FROM A QUALITATIVE NETWORK TO A KINETIC MODEL

The major steps we take in arriving at a kinetic model for R point regulation are the
following:

1. Start with a qualitative network (QNET) that contains the core subnetwork

you are interested in; this requires that you know a set of markers and

processes that describes the phenomenon you are modelling. We have

done this in Figure 16. The marker would be cyclin E/CDK2 and the
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process would be growth-factor stimulation that leads to the activation of
the marker.

2. ldentify destabilizing cycles that involve the set of markers and processes.
We will define what we mean by ‘destabilizing cycles’ below. This step is
required to find an instability that we assume (hypothesize) to cause the
switching behaviour in the activity of cyclin E/CDK2. If information on
mechanisms involved in these destabilizing cycles is available, one can
check what kind of instabilities are involved (as we will show below).

3. A minimal gNET model is formed from the destabilizing cycles involving the
marker and other interactions encompassing the process involved (this is
growth-factor stimulation in our example).

4. From the minimal gNET model a kinetic model is generated by using
available information on the mechanisms and rate expressions for the

interactions involved.

Destabilizing cycles in a gNET graph

A gNET graph is a directed binary interaction graph. A gNET graph
corresponds to the algebraic signs of the elements of the Jacobian matrix M
associated with the dynamical equations (which are assumed to be ODEs) that are
linearized about the steady state. The correspondence between the edges of a

gNET graph and the signs of a matrix element mjis as follows:

gNET edge meaning sign of m;
Xi 2> X X; ‘activates’ X; +
Xi - X X ‘inhibits’ X; -

X; ‘influences’ X; #0
Xj --e X

‘Activates’ in the table above should be generally interpreted as ‘increases the rate

of growth of while ‘inhibits’ would mean ‘decreases the rate of growth of’.

The local stability of the steady states is determined by the eigenvalues A of

the matrix M. These eigenvalues are the roots of the characteristic polynomial
A+ oA v At A+ a, =0,
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assuming that the size of M is nxn. The steady state is unstable if any of the

eigenvalues has a positive real part.

It turns out that the coefficients «; in the characteristic polynomial above can be

expressed as follows:

& = Y [-C, ()]
@, = Y [-CLMI-C,(N]+ L [-C, (pa)]

a; = 2 [-C,(OI-C,(DI-C, (k)] + X2 [-C, (DI[-C, (pa)]+ D [-C4 (vws)]

i,jk t,pq VWS

etc.
where Cy is a k-cycle in the gqNET graph examples of which are given below:

Cl (') =m;
CZ(pq) = mpqmqp
C3 (VWS) = mvwmwsmsv

etc.

We sometime also refer to the Cy expressions above as the ‘strengths’ of the cycles
determined by the magnitudes of the m;’s. Since the eigenvalues depend on the
coefficients &’'s which in turn depend on the cycles, we conclude that only cycles in
the gNET graph can influence the local stability of the network. We say that a cycle
is destabilizing if any eigenvalue increases towards a more positive direction when
the strength of the cycle is increased. The following theorem is useful for linear

stability analysis:

Routh-Hurwitz Theorem. The number of eigenvalues 4; with Re 4 > 0 is equal to the

sum of the number of changes of sign in the sequences
{1, A4, Az, As, } and {1, Ao, A4, A6, }

The A/'s are called Hurwitz determinants; they come from the Hurwitz array which is

defined below:
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Hurwitz array

a O; O
1 o «a
0 o a
Hurwitz determinants
A1 = oy

Az = 0O 02 =03

A3 O3 Az - OL1(OL1 Oy~ Ots)

etc.

The stability analysis presented in Fig 17 is an example of how to use the Routh-
Hurwitz Theorem. This figure also illustrates that the mere topology of the gNET

could already allow some conclusions on the stability of steady states.

[ T
X, —= X, l-cycle S=mg

2-cycle D=m,, m,,

sufficient instability conditions

[1] S>0
[2] T<O0
[3] SD<T when T >0

Figure 17. A 3-node gNET with the strengths of the component 1-, 2-, and 3- cycles
labeled as S, D, and T, respectively. Application of the Routh-Hurwitz Theorem gives the

sufficient instability conditions listed.
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A minimal gNET model

From Fig 16, one can then extract a minimal gNET model that includes
destabilizing cycles that directly involve cyclin E/CDK2 and interactions that link
these cycles to growth-factor stimulation. This minimal gNET model is shown in Fig
18.

Model Subnetwork for the Initiation of S phase

GFs

\

Cyclin-D/cdk4

®-,
T

)

|:| cdk2/Cyclin-E :

Figure 18. The proposed minimal gNET model for the initiation of S phase from which the

control machinery of the R point is analyzed (see text).

The nature of the instability

Two of the destabilizing cycles that involve cyclin E/CDK2 are shown in Fig 19.
This mutual-activation-mutual-inhibition topology is expected to generate a sharp
switch (as was shown by Aguda & Tang, 1999). CDK2 and Cdc25A are locked in a
pair of positively coupled phosphorylation-dephosphorylation (PD) cycles which
exhibits transcritical bifurcation (see Fig 20, and Aguda, 1999).
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A SHARP SWITCH

I CDK2

p27 | Cdc25A

p27/CycE/CDK2

iCycE/CDK2

14 ------ ..'
v 4

iCdc25A aCdc25A

Figure 19. A sharp switch is expected from the mutual-activation and mutual-inhibition
topology involving CDK2. Also shown are the known detailed mechanistic steps

corresponding to the gNET. “a” refers to active, and “i” to inactive.

Transcritical Bifurcation in
Positively Coupled Cycles

[Yalss

S
u
m [Yz]ss
Yz\_/xz /

Y, & Y, turned ‘on’ only if

Er*Ey > (Ky/Kye)*(Kor/Ky) [ss

mass-action kinetics in graphs shown; Y2
similar for Michaelis-Menten kinetics

Figure 20. The instability (transcritical bifurcation) involved in positively coupled cycles.
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The kinetic model

From the minimal gNET model (Fig 18) and known details of the molecular
mechanism, one can then set up a kinetic model with the associated ODEs. A
summary of the kinetic model is shown in Fig 21 (see Aguda & Tang (1999) for

details).

CycD/CDK4/p27 p27/CycE/CDK2

\\

CycD/CDK4

pRB/E2F

Figure 21. The kinetic model of the R point based on the minimal gNET shown in Fig 18.
See Aguda & Tang (1999) for details.

IV.3 COMPUTER SIMULATION OF THE KINETIC MODEL

Experimentally, the operational definition of the restriction (R) point is the following:
for a quiescent (non-dividing) cell exposed to growth-factor stimulation, the R point
is the point in time after which withdrawal of growth factors does not prevent entry
into S phase (in our model, this would correspond to the activation of cyclinE/CDK2).
The computer simulation shown in Fig 22 shows different times at which growth-
factors are cut off (this is implemented by setting the synthesis/activation of cyclin D
—i.e. the left-most arrow pointing towards cyclin D/CDK4 in Fig 21). Qualitatively,

the results of this set of simulations agree well with the experimental observation
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shown in the lower panel of Fig 3, including a conspicuous lag period prior to
activation of cyclin E/CDK2. The conclusion of this work is that, within the known
regulatory network of the G1-S transition, one can identify a subnetwork that

reproduces the behaviour of the R point (at least qualitatively).

Simulation of CDK2 activation

sustained
t off =80
t off =50
t_off =30
t off =29
t off =28

Cyclin D/CDK4

BD Aguda & Y Tang (1999) Cell Prolif. 32: 321.

Figure 22. Simulation of R point behaviour using the kinetic model given in Fig 21. The
red arrow indicates the point in time after which cutting off growth factor stimulation can be

done without preventing the activation of CDK2. See Aguda & Tang (1999) for details.
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Network visualization and analysis
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Graphical Representation of Pathways and Networks

Problem definition and challenges

Math perspective : General kinetic notation

“Metabocentric” view :  Biochemical/metabolic notation

“Genecentric” view : “Caltech” notation

Signalling views : Molecular Interaction Maps
Process Diagram Notation
Edinburgh Pathway Notation

Modular perspective :  Patika

Future: unification and standardization
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Graphical Notation: a necessity for the
conceptual representation of biopathways

Qualitative Mechanistic

TOPBR Jagged: |

various degrei
detail, mixed |
of presentatiol

Aladjem et al., Science STKE

Th|ery&SIeeman Nat. Rev. Mol. pe8 (2004)
Cell. Biol 7:131 (2006)
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Stoichiometric Kinetic notation: language of
mathematical models (almost standard)

Species: k )
molecule, molecular A——B 5{
complex, process, etc ODEs: e

— [aajdt=— L
®—n— \dB/dt: kA o
Stochastic .
Reaction: algorithms E‘%
constants, kinetic law, AP s
stoichiometry O Peti Nets i
3

R

R site

Mandel et al, Brief. Bioinf4 5:270
(2004)

JDesigner (H. Sauro)

Used in many simulators: JDesigner, Copasi, etc. ..

Notations accepted in the field of metabolic
biochemical pathways

KEGG -
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Gene Regulatory Network notation
(E. Davidson, H. Bolouri, A. Arkin, H. MacAdams)

actlvatlon in trans” _activati
gene transcription self activation

el f

indirect Tbr  Blimp1/Krox

X . N
activation \

»— l
Delta v ¥

Bra Gatae

Davidson & Erwin, Science 311:796 (2006)
self-inhibition

X )_/‘Mb 20061 Supported and extended by BioTapestry (H. Bolouri)
e ! oy
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Molecular Interaction Maps
(K. Kohn, M. Aladjem)

e—e—(®) 42 45 @D
X ES [ £
{E) et TR
1
- L
®—2—® b
S
Phtase @ °
Cytosel n
S RasGAP
—
Kohn, Chaos 11:84 (2001) |

Process Diagram Notation
(H. Kitano et al.)

E—
Knewn transitien
omitted —
Unknown ransition  s-secaceecaaead| 3

Bidirectional transition  ff——— g

Translocation _—D
Truncation K
Promate

t o -

Inhibit

Kitano et al., Nat. Biotech. 23:961 (2005)

Supported by CellDesigner (SBI)
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Aladjem et al., Science STKE pe8 (2004 ),
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Edinburgh Pathway Notation
(I.Goryanin, P. Ghazal et al.)

Meta-level notation

protein state complex

logical gate

protein expression

state transition
Sorokin et al., ?. in press (2006)
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PATIKA: Abstract Pathway Notation
(U. Dogrusoz, E. Demir et al.) complex
state @3@ @
_—
complex o
@ %u-
® T .2
—+ <
transition ¢
IDe -
“transition abstraction”
Demir et al., Bioinf. 20:349 (2004)

Supported by PATIKA (Bilkent University, Turkey)
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SBGN: towards the unified graphics standard

CellML SBML
BioPAX

SBGN

Graphic  Notation Standards

Methods and Tools for Network Analysis & Modelling

Simulation versus analysis: choice of strategy and methods
Multidimensional space of modeling techniques

Kinetic modeling with ODEs and stochastic methods

Petri Nets, Boolean and Bayesian Networks

Topological analysis of large networks based on graph
theory

Stoichiometric Network Analysis
Metabolic Control Analysis
Qualitative stability analysis
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Strategies: simulate or analyse?
(or rather what to do first)

obtain qualitative
understanding

through numerical

results and model

reduction

simulate model
behavior
numerically

convert diagram
into a quantitative
model

qualitatively
analyze network
topology, stability,
etc

identify
“elementary
modes”

build and
simulate a
reduced model
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Space of modellng methods

continuous « discrete
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Tools for simulation of kinetic models
8
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Kinetic Modeling: Deterministic & Stochastic

) ? S+E0 ES—>P+E
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Many Flavors of Petri Nets
inhibitory arc

CAP sits places Hybrid Functional Petri Nets:
W . / . Genomic Object Net

R site Stochastic Petri Nets:
' Mobius, TimeNET

Colored Petri Nets:
Design/CPN, CPN tools

transitions
Mandel et al, Brief. Bioinf. 5:270 (2004)

_ )l/‘M B 200 rfﬂ http://www.informatik.uni-hamburg.de/TGI/PetriNets/
S it
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Boolean networks

ijis} -
J

if F>0 = S™ =1
if F<0 =8/"=0

INPUTS OUTPUT
Cyclin CKI| edk
Rp @ cdk 0 0 0
Mandel et al, Brief. Bioinf. 5:270 @ @ [\ 1 0
1 0 1
(2004) 1 1 0
Kinast kinase kinase
inactive active inactive

Huang, Pharmacogenomics. 2: 203 (2001)
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Topological analysis of network connectivity

PK)DKk” 2<y<3

C=2 k1)

ck)n k9
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Bayesian Networks
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Pe’er, Sci. STKE. pl4 (2005) Sachs, Science. 308: 523 (2005)
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Stoichiometric Matrix
ATP ADP ATP ADF P
ds,/dt = v, —vs—vg Gl GEP. 3= PG ADP
ds,/dt = 2v,— 1y NADP‘-\é' ME:\':‘ D\j}(
dsi/dt = wvy— 1y Na\UPH-‘"_ Lae .:\-51/ P a7
6PG
dsy/dt = vy—v;
2 —
ds;/dt = v; — vy —{i}=s, {2}~ 5271‘\]“'53"\
dsg/dt = vi—vs 5] ss  Se [4]
v 5 s,
ds;/dt 1 -1 0o 0 0 =1 V)
ds [ dt o 2 -1 0 0 0 Us
cfs-_;fd! _ 0 0 1 -1 0 0 3
dsydt |=]o o o 1 -1 o/||wv | dS/dt=Nv
dss/dt 0 0 -1 0 1 0 Us
tf.\'z'\.fl‘.“ 0 0 1 0 -1 0 Vg
Hofmeyr et al., Kinetics, Control and Regulation of
Metabolic Systems. ICSB02. (2002) 212
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Stoichiometric Network Analysis

dimNul N+rank N=dimv=n V,

rank N=r= dimNul N=n-r 8
NK =0 nxn-r
" 1 1
1293 1 0
Uy _ 2 0 VZ
vy - 20 vV, Vl
. 6
Vs 20
Vs 01
Hofmeyr et al., ICSB02. (2002)
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Extreme pathways: An example

Stoichiometric Matrix

b — Exchange Flux
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SNA: Tools and Uses

* Network stability analysis

+ METATOOL Clarke, Adv. Chem. Phys. 43:1 (1980)
Pfeiffer et al. Bionf. 15:251 » Extraction of reduced
(1999)

models
Aguda & Clarke. J. Chem. Phys. 87:
3461 (1987)

* FluxAnalyzer
Klamt et al. Bionf. 19:261

(2003) e>;threme - Signal pathway analysis
i CeIINetAnaIyzer pathways Papin & Palsson. Bioph. J. 87: 37
Klamt et al. BMC Bionf. 7: 56 (2004)

(2006) + Analysis of Ca oscillations

» SNA toolbox

Urbanzcik. BMC Bionf. 7: 129
(2006)

Reidl et al. Bioph. J. 90:1147 (2006)
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Metabolic Control Analysis

Local properties:
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MCA-MFA enabled tools

MCA relates global to local properties
Summation theorems: | Connectivity theorems: | Control-matrix equation:
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MCA: understanding the network function

SBToolbox
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Analysis of circuits and network stability
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Tyson , J. Chem. Phys. 62: 1010 (1975) Thomas et al., Bul. Math. Biol. 57: 247 (1995)
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[ll. Extracting and analyzing a biological model
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GFs

\ Cyclin-D/cdk4 Cyclin-A/cdk2

5 TK,
p16, pz7 DHFR / \

- /MCMs
GFs ., CdeT/Dbis /

\/@th

m;= [0 o],

m; >0 X; activates X (X;— X )
m; <0 X, inhibits X (X, — %)
Cycle strength araph
1-cycle m;; Q
Xie X
2-cycle m;m;
3-cycle MMMy R /.Xj
s

STABILITY OF A STEADY STATE

stable unstable
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eigenvalues are functions of cycles only

n n-1 n-2 =
A+ oA+ o, A2+ o At o, =0

where o, = % [-C,(i)]
a, = I, FCMIFC,M + T, Oyl )
ay = %5 G ON-CLIC, 0] + 2y [-CoMIEC,GR] + Ty [Co(ijK)]
I\./Ivhere C,(iy=m; (1-cycles)
C,(ik) = mymy; (2-cycles)

C,(ijk) = MMMy (3-cycles)

Fortaleza, Br lul
August §-10 ]
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X, = X, l-cycle  S=myg,
2-cycle D=m;,, m,,
X3 —_
C/ 3-cycle T=m, m;,m,
sufficient instability conditions
(1] S>0
[2] T<0
[3] SD<T when T > 0
WA/ MP> 2000}

Hurwitz determinants A, = o,
A, = 0,0, - Oy
Ay = oAy - ay(040y-0i5)
etc

Routh-Hurwitz Theorem

The number of eigenvalues A, with Re A, > 0 equals the sum of the number of
changes of sign in the sequences {1,A, A;, A, ...} and {1,A,,A A, ...}.
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Model Subnetwork for the Initiation of S phase

GFs

Cyclin-D/cdk4

“

@i o] = o

: )bezoofﬂ

Fortaleza, Br lul
August §-10 ]
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Unstable couplings between cycles

p27 G ; CDK2 > Cde25A
Y.
p27/CycE/CDK2
1a 13
aCycE/CDK2 iCycE/CDK2 X, Y, X, Y,

l. ................... ] ? /—\

/\ ty, X,

iCdc25A » -
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CycD/CDKA4/p27 p27/CycE/CDK2

Transcritical Bifurcation in
Positively Coupled Cycles

[Yalss y
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LN M
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YSS
1
E*E; > (K /Ky * (Ky,/Kyp) [l
YSS
mass-action kinetics in graphs shown; 2
similar for Michaelis-Menten kinetics

E,

WA/ MP 2006)

gl Frieiera. Braxid
August 6-10, 2006
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Simulation of CDK2 activation

sustained
t_off =80
t_off =50
t_off =30
t_off =29
t off=28

BD Aguda & Y Tang (1999) Cell Prolif. 32: 321.
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	With the view of developing a kinetic model, a network graph is used to extract the two essential model components, namely, a set of dynamical variables and a set of interaction functions corresponding to the network topology.  
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	 Sample graphs of metabolic networks from the two most popular databases KEGG and EcoCyc are shown in Fig 10 below.  The nodes are low molecular metabolites and the reactions are characterized by functional classes of enzymes which are abstracted to standardized EC numbers. The MBN graph has a clear and simple semantics that is easily amenable to mathematical analysis and, in fact, co-evolved with a number of analytical methods and tools, such as metabolic control analysis and stoichiometric network analysis. 
	Gene regulatory network (GRN) graphs
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	Figure 11.  An example of a GRN graph from (Davidson and Erwin, 2006).
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