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1 Introduction

Definition

Chemoinformatics is a relatively young term, patterned after bioinformatics, still with
alternative spellings (“cheminformatics”) and declinations (“chemical informatics”).
Like bioinformatics, the boundaries of chemoinformatics are not well defined and
may vary depending on people, context, etc. The narrowest definitions tend to
emphasize drug discovery applications. For instance, in a recent book,
chemoinformatics is defined as “the set of computer algorithms and tools to store
and analyse chemical data in the context of drug discovery and design projects”. In
a similar vein (Brown 1998), chemoinformatics is defined as "the mixing of
information resources to transform data into information and information into
knowledge, for the intended purpose of making better decisions faster in the arena
of drug lead identification and optimizaton". While the emergence and expansion of
chemoinformatics is indeed largely driven by the vast quantity of data associated
with, or generate by, drug discovery projects (e.g. HTS, combinatorial chemistry), it
is probably counterproductive to use a narrow definition, and futile to try to precisely
carve the boundaries of chemoinformatics as a scientific discipline. In our view, it is
wiser to use more general and broadly encompassing definitions such as:
“chemoinformatics encompasses the design, creation, organisation, management,
retrieval, analysis, dissemination, visualization and use of chemical information", or
“the application of informatics methods to solve chemical problems”, or “the
intersection of the computational and chemical sciences”. In this broader sense that
goes well beyond drug discovery, computational chemistry, quantum mechanical
simulations, retrosynthesis, reaction discovery, molecular docking, compounds
databases, reaction databases are all examples of topics that fall within the scope of

chemoinformatics.

Historical Perspective and Comparisons with Bioinformatics

From an historical perspective, it is also informative to draw analogies between
chemoinformatics and bioinformatics. In spite of its central role between physics and
biology, chemistry has remained in a backward state of informatics development
compared to its two close relatives. Computers, public databases, and large
collaborative projects have become the pervasive hallmark of research in physics

and biology. The Human Genome Project, for instance, required collaboration



among dozens if not hundreds of scientists across the world. And the resulting
human DNA sequence, as well as a wealth of other biological information, are
available for anyone to download from public repositories on the Web such as
GenBank, Swissprot, the PDB, and PubMed. Virtually every biologist today uses
publicly available tools, such as BLAST, to search sequence databases and analyze
high-throughput data. Similar observations can be made in physics with large
collaborative efforts in, for instance astronomy or high-energy physics. The Web
itself was born at CERN, a European consortium with over half a century of history,
and the world largest particle physics laboratory. In stark contrast, large
collaborative efforts and public databases and software are comparatively absent

from chemical research.

This is not to say that chemists do not use computers or databases at all. Of course
they do and chemoinformatics has a long tradition (Gasteiger 2006), but these uses
have remained limited and somewhat peripheral to the chemical sciences. Suffice it
to say that to this date there is no publicly available repository of all known
molecules publicly available and downloadable over the Internet, and no large-scale
collaborative effort to annotate any significant portion of chemical space. The

equivalent of BLAST for chemistry remains to be created.

The underdeveloped state of chemical informatics is even more surprising when one
realizes that chemists were among the first to understand the importance of
annotated repositories. The Beilstein system was created more than two centuries
ago. However, most of these repositories have not kept pace with the explosion of
chemical information, the computer/Internet revolution, and movements toward

openness in other sciences.

This unfortunate state of affairs and the overall conservatism of the chemistry
community is unlikely to result from some intrinsic properties of chemistry as a
science. Rather, it is likely to be the product of complex historical and sociological
factors, that may include: (1) the origins of chemistry in, for instance, secretive
alchemy; (2) the early but large-scale industrial and commercial applications of
chemistry; in contrast with more recent applications of biology to biotechnology; (3)
related to (2) is the parallel development of modern computer and genomic
sciences, as opposed to the early start of chemistry. Finally, in modern times, the
American Chemical Society has certainly played a role in the current state of affairs

(Marris 2005a and b, Kaiser 2005a) by controlling and profiting from the
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dissemination of chemical information through journal and database ownership and

commercialization.

Development of new informatics methods and algorithms to search chemical space
requires having access to large corpus of data in order to compute statistical
properties and detect patterns that can then be used to develop search algorithms
and other modern datamining methods. In many ways, the state of
chemoinformatics today recalls the state of bioinformatics a few decades ago,
before the advent of Genbank and BLAST. The lessons learnt from bioinformatics’
exponential development over the last few decades strongly suggest that two
ingredients are essential to develop the chemistry cyberinfrastructure: (1) large

public data repositories; and (2) the tools to search them efficiently.

Data

Although the methods to be developed apply to other areas of chemistry, in this
tutorial we will focus on organic chemistry and small molecules for several reasons.
Small molecules, containing at most a few dozen atoms and the associated
chemical reactions, are very important for a variety of purposes in biology,
chemistry, and other areas. For instance, small molecules occur ubiquitously as
metabolites during biochemical reactions, and their study is important for
understanding biological systems (Camilli 2006). Small molecules are routinely used
as building blocks in chemical synthesis to build more complex molecules (Schreiber
2000, Agrafiotis 2002), including polymers. Natural and man-made polymers, from
DNA/RNA, to proteins, to silk and nylon, are made of small molecular building
blocks. In addition, most drugs consist of small molecules capable of selectively
interacting with specific proteins (Lipinski2004, Jonsdottir 205). More broadly,
identifying molecules that can selectively interact with and modify the behaviour of
particular proteins is fundamental not only for drug design, but also for chemical
genomics (Schreiber 2003, Stockwell 2004, Dobson 2004). Being able to selectively
perturb molecular pathways is key to systems biology (Ideker 2001) and our ability
to reverse engineer, model, and understand these pathways. Finally, huge arrays of
new small molecules can be produced in a relatively short time (Houghten 2000,
Schreiber 2000).

In addition to their scientific and technological appeal, small molecules offer also
technical advantages from an informatics standpoint. The space of small molecules

is vast and largely unexplored. The current estimates for the total number of small

5



molecules are in the range of 10%° Bohacek 1996). In contrast, only a few million
molecules are found in the best current databases. Computers are bound to become
an essential tool for exploring such chemical space (Baldi 2005). Finally, as we shall
see in this tutorial, small molecules have simple compact representations that are

suitable for developing fast search methods.

Over the past three years, a few groups have developed large, downloadable,
publicly accessible repositories of compounds including, UCSF’s ZINC (Irwin et al.
2005), NIH PubChem (http://pubchem.ncbi.nim.nih.gov}), Harvard's ChemBank
(Strausberg et al. 2003), and UCI's ChemDB (Chen et al. 2005
(http://cdb.ics.uci.edu). Aggregation and organization of datasets of chemical
information allows for massive in silico processing that would be impractical or even
impossible in a traditional experimental setting. In parallel with databases of
compounds, it is important to develop also databases of chemical reactions. Here
again the main databases (e.g.~Beilstein) are commercial, expensive, and of limited
use for developing large-scale methods, for instance in reaction discovery and
retrosynthesis. Needless to say, even with a small library of reactions, as reactions
are applied to a database of compounds, the number of new compounds generated
grows exponentially, raising important algorithmic challenges both from a database

and a datamining/datasearching standpoint.

Similarity, Search, and Prediction

The central notion to developing search methods is the notion of similarity between
molecules. Similarity is central not only for searching current databases, but also for
searching virtual compounds, and discovering new reactions and retrosynthetic
pathways. Similarity between molecules can be defined in many ways and based on
different representations, ranging from SMILES strings, to 2D graph of bonds, to
molecular surfaces, and 3 D structures. Creating efficient search tools for small
molecules is far from hopeless, particularly because to a first degree of
approximation, by breaking cycles in the 2D graph of bonds, molecules can be
viewed as small trees. The trees are small because both the number of vertices
(atoms) in a small molecule is relatively small, and the branching factor for organic
molecules is small. Efficient techniques for storing and rapidly searching such data
structures exist and can be further developed. Different kinds of similarities may be
appropriate in different situations, and may have different computational costs.
Efficient search requires combining multiple filters, with different resolutions and

speeds.



Computational methods in chemistry can be organized along a spectrum ranging
from Schrodinger equation, to molecular dynamics, to statistical machine learning
methods. Quantum mechanical methods, or even molecular dynamics methods, are
computationally intensive and do not scale well to very large datasets. These
methods are best applied to specific questions on focused small datasets. Statistical
and machine learning methods are more likely to yield successful approaches for
rapidly sifting through large datasets of chemical information. Similarity is also
essential, in the form of statistical machine learning kernels, for developing methods
that can predict the chemical, physical, and biological properties of molecules from
training examples. This is not too surprising since, given an annotated training set of
molecules (e.g. toxic/non-toxic), the properties of a new molecule ought to be
inferred from its similarities to the molecules in the training set. Good kernels can
be derived from different molecular representations (1D, 2D, 3D, etc). Spectral
kernels in particular, counting the number of occurrences of each possible
substructure, lead to efficient molecular ““fingerprints" and similarity measures that
are useful both in database searches and statistical machine learning applications
(Ralaivola et al. 2005, Swamidass et al. 2005).

In short, the notion of chemical similarity is complex and central to
chemoinformatics. Understanding, modelling, and measuring chemical similarity are
central computational tasks from which many applications can be derived. Thus in
logical order this tutorial is organized around: (1) molecular compound and reaction
data and representations; (2) similarity measures, search, and prediction; (3)

applications, including molecular docking and drug discovery/screening.



2 Molecular Models, Representations, and Annotations

Communicating Chemical Data

Like any scientific discipline, studying chemistry requires the ability to catalogue and
communicate large amounts of data. Unlike most disciplines however for which
such data is restricted primarily to text and numbers, chemistry has the additional
special challenge of modelling and representing molecules in a consistent manner,
amenable to communication (Gasteiger 2003). The standard valence-bond model
of chemistry with respective 2D depictions is the most commonly used and
understood representation with which non-informatics inclined chemists would
naturally communicate. This model accounts for discrete atoms with lines drawn
between them to represent bonds, which themselves are abstractions of shared
electron pairs. While these 2D sketch representations of molecules are convenient
and intuitive for chemists, communication and processing, particularly informatics
processing within a computer, requires the meaning in these graphical depictions to

be codified into a reproducible representation.

2D Graph of Atoms and Bonds

The graphical depiction maps very well to a labelled graph model with atoms
mapping to labelled nodes and bonds mapping to labelled edges. Note that it is
common shorthand when depicting organic structures (such as that shown in the
respective slide) to assume unlabeled nodes as carbon atoms and that hydrogen
atoms implicitly populate all atoms based on standard valence rules, which indicate
the expected number of connections (bonds) each type of atom has. For example,
the standard valences for common organic elements include 4 for carbon, 3 for

nitrogen, 2 for oxygen and 1 for all halides (fluorine, chlorine, bromine and iodine).

2D Data Formats

Assuming a molecule is modelled as such a labelled graph, there are two common
ways to encode these into a format fit for computer processing. The first is a graph
adjacency matrix, or bond matrix for molecules (Dugundji 1973). Such a matrix M
has one row and column for each atom in the molecule with each element M; equal
to the bond order between the ith and jth atoms or zero if the atoms are not bonded.
The respective slide shows the graphical depiction of acetamide with sequence
numbers labelling each atom, along with a respective bond matrix. Note that this is
more specifically an example of a bond-electron matrix because the diagonal

elements further specify the number of free electrons at the atom (2 pairs for

8



oxygen, 1 pair for nitrogen). This confers useful matrix properties, in particular that
the sum over a column or row equals the number of valence electrons for the
respective atom (assuming all hydrogens are also explicitly accounted for in the

matrix).

The adjacency matrix format is relatively simple and powerful, with some chemically
meaningful mathematical properties, but in general, it is a very sparse matrix (mostly
zeros) with size proportional to the square of the number of atoms. A more compact
representation would be a connection table that simply lists all of the atoms and then
only the bonds that exist, referencing the atoms by an index position. The size of
such tables will only grow linearly with respect to the number of atoms and bonds. A
couple of the most commonly accepted molecular file formats, SDF and Mol2, use
just such a representation. While these are very useful and the most widely used
formats for computer storage and transmission of molecular data, they would be too

complex to expect a human to systematically read and write.

1D Line Notations

Line notations, which can describe a molecule’'s complete constitution and
connectivity with a single line of text, are desirable to facilitate rapid communication
of molecular structures, especially in this age over the Internet. Furthermore, a
notation that is human readable and writeable would greatly facilitate human

interaction with any chemistry information system.

A few of the most important such chemical line notations include nomenclature
systems to assign names to molecular structures (systematic and common),
SMILES strings that were originally proprietary but have since become the de facto
standard for much chemical communication, as well as the more recently developed
InChi standard (http://www.iupac.org/inchi) officially supported by IUPAC (though
not yet as widely accepted). The accompanying slide shows a molecular structure

and the respective line notations for each of the mentioned schemes.

IUPAC Nomenclature

The International Union of Pure and Applied Chemistry (IUPAC) is an organization
of chemists that developed a systematic naming scheme for molecules. The
accompanying slide depicts the IUPAC standard names for a series of incrementally
more complex molecules from propane to 2-amino-3-hydroxy-propanoic acid. This

is a fairly well established system that should produce unambiguous chemical



names, though not necessarily unique names due to inconsistent application by
different parties. The more significant problem with the system however is simply
the extensive and complex nature of all of the naming rules, which makes both the
composition and the actual length of names for larger complex molecules quite
unwieldy. Alternatively, many structures or substructures are known by common /
trivial names such as the slide example of 2-amino-3-hydroxy-propanoic acid which
is much more commonly known as the amino acid serine. Such common names are
extensively used in communicating chemical and biological information, but
obviously these do not lend themselves to systematic name translation methods,

particularly for novel compounds.

SMILES Basics

SMILES is a chemical line notation in widespread use for communicating structure

information with chemical informatics services and databases with a relatively
simple set of construction rules.
1. Each atom is represented by it's atomic symbol
2. Bonds are represented by special characters, distinct by bond order
a. Single bond: - (dash, implicit, need not be specified)
b. Double bond: = (equals)
c. Triple bond: # (hash)
Parentheses indicate a structure branch
Matching numerical annotations indicate atoms connected in a cycle
Hydrogens are implicitly assumed based on standard valence rules, though
they may be specified for non-standard cases such as charged species
The accompanying slides include several examples demonstrating these simple
rules. Additional extensions to the SMILES grammar allows for the specification of
additional properties such as formal charges, stereochemistry, aromaticity,

composite molecules and reactions.

Canonical Representations

Most of the representations discussed so far produce an unambiguous encoding of
the molecular structure. That is, given the encoding, we can reliably reproduce the
molecule that it came from. However, these have also been non-unique encodings,
meaning a single structure can produce many different but equivalent encodings. A
unique encoding with a one-to-one mapping between structure and encoding would

be much more desirable when we wish to address questions such as verifying the
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uniqueness of a molecule amongst a pool of molecules or performing a rapid

database lookup for a molecule record.

Coming up with such a unique encoding, such as the so-called "canonical SMILES"
(D Weininger 1989) essentially comes down to finding a unique and consistent
manner to sequentially order the atoms of a molecule. For N atoms, there are N!
such orders (~3.6 million for 10 atoms) out of which a single one must be selected
consistently. One important algorithm for accomplishing this effect is the Morgan
graph algorithm that iteratively labels nodes (atoms) based on their connectivity and
the connectivity of their neighbors to establish an extended connectivity (EC) value
for each node. The nodes can then be sequentially numbered, essentially based on
their EC ranking, with tie-breaking by atom and bond distinctions. The algorithm
works very well in general, though it can be broken by some confounding structures
with high structurally symmetry. For practical purposes, the point is that a one-to-

one mapping between molecular structure and computational representation exists.

Stereochemistry / Isomers

In our discussions of molecular structure thus far, we have really only considered
the topological connectivity of the molecules, specifying which atoms are bonded to
which. In actuality however, atoms will have topographical spatial relationships with
respect to each other. This brings us to the issue of stereochemistry regarding
molecules that have identical connectivity but are not super-imposable in real space

due to distinct spatial configurations, conferring a "handedness" to molecules.

This primarily occurs in two instances for organic chemicals. Atoms with at least 4
distinct connections (typically carbon with a tetrahedral geometry) are not super-
imposable with its mirror image. Double bonds that have distinct components on
both ends are not super-imposable on the equivalent structure with constituents on
one side of the bond flipped. Note that this is because double bonds resist rotation

and will normally maintain a fixed planar configuration.

Note that it is very common for chemicals that are otherwise identical except for
stereochemical configuration to have completely distinct biochemical effects,
generally because biological receptor structures themselves have non-symmetric
spatial configurations. To fully specify a molecule's configuration then, we must also
label stereospecific atoms and double bonds such as in the isomeric SMILES strings

found in the accompanying slide.

11



3D Atomic Coordinates

Beyond even stereochemical configuration, a more complete molecular
representation would indicate the complete 3D spatial coordinates of the atoms.
Unfortunately, such complete 3D structures are only known for a small fraction of
the millions of known molecules with about 300,000 available in the Cambridge
Structure Database (http://www.ccdc.cam.ac.uk/). Such coordinates are essential
for more advanced analysis of physical, chemical and biological properties of
chemicals however, so many structure prediction packages have been developed to
fill this gap such as CORINA (J. Sadowski 1994).

4D Conformers

With respect to bond lengths and angles, molecules are fairly rigid structures.
However, with respect to torsion angles around single bonds, molecules are quite
free to rotate. Different conformations of such torsion angles for a single molecule
specify different conformers of that molecule. Specifying any single rigid 3D
structure for a molecule is thus misleading as it discounts the flexibility of the
molecule, only accounting for a single conformer. A more complete representation
would account for all conformations, but this would be an unmanageable number, so
a more common approach is to sample several low energy conformations for a

single molecule.

Molecular Surfaces

When considering intermolecular interactions, one final representation discussed
here, the molecular surface, can be especially important. For intermolecular
interactions, the "interior" of a molecule is relatively unimportant since the solvent
and other molecules can never "see" the interior. Instead, only the solvent-
accessible molecular surface (Richards 1977) and physicochemical properties there

should be primarily relevant.

Of course, molecules and atoms have no real hard surface in the macroscopic
sense. In the microscopic sense, at best they have electron probability density
isocontours or Van der Waals radii where atomic attraction forces are overtaken by
repulsion forces. The accompanying slide demonstrates conceptually how a
solvent-accessible molecular surface can be constructed. To begin with, the Van
der Waals radii for each of the three atoms are traced out in red. Probe spheres in
blue representing the standard radius of the solvent (usually a water molecule) are

used to trace out the surface of the atom Van der Waals radii. This will mostly
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correspond to the atomic radii themselves where the probe sphere can contact the
atoms, but at certain concave areas of the structure, the probe sphere cannot
completely contact as shown. Tracing out the border of the probe sphere in these
regions yields a completed and smooth molecular surface, all of whose points are

accessible by the solvent.

Valence Model Limitations

All of the models discussed thus far have been based on the valence-bond model of
chemistry with atoms connected by one or more bonds. However, bonds are only
models for shared electrons across molecular orbitals and as a result valence-bond
based models have inherent difficulty modelling certain concepts such as
aromaticity, resonance and tautomers. The accompanying slide illustrates several
pairs of molecules or atoms that are chemically equivalent, despite the fact that the
valence-bond model suggests they are distinct. The Representation Architecture for
Molecular Structures by Electron Systems (RAMSES) (S. Bauerschmidt 1997) is at
least one computational representation that has been developed to address many of
these shortcomings by more directly modelling the molecular orbital systems.
Unfortunately, these have yet to see widespread use and acceptance, probably in
large part due to the entrenchment of the valence-bond model in chemical

communication in general, let alone chemical informatics.
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3 Chemical Similarity and Searching

The Similarity Problem

Assessing similarity between chemicals is a fundamental operation in chemical
informatics. Good measures of similarity allow us to construct meaningful database
indexes, predict properties of molecules, cluster groups of related compounds, and
even de-noise screening datasets (Klon, Glick et al. 2004; Camastra and Verri 2005;
Swamidass, Chen et al. 2005).

Similar chemicals have similar properties. Chemicals similar to estrogen are
more likely to bind estrogen receptor (ER) than other chemicals. We can imagine
computing similarity between chemicals along several different dimensions with
varied importance for given applications. We could, for example, measure similarity
in terms of the size, the shape, the polar surface area, or atom composition.
Different similarities will have higher correlation with different properties. For
example, compounds with similar polar surface areas will have similar logP, and
compounds with similar shapes will tend to bind similar protein pockets.

So the question now becomes: what are fast ways to compute meaningful

similarity between chemicals?

The Historical Progression

Database searching naturally introduces basic algorithms in computing chemical
similarity. The earliest similarity measures where directed at just this application
(Daylight Chemical Information Systems 1992).

One of the earliest ways chemical similarity was the size of Maximum Common
Substructure (MCS) of the atom-bond graphs of the two chemicals. MCS reduces to
the subgraph isomorphism problem which is known to be NP-complete in the
general case. On chemical graphs, this algorithm normally works in polynomial
time: tolerable for small datasets. As databases grew in size, a new method,
structural keys, was used to pre-filter a database before running MCS.

Structural keys are bitmaps, vectors of ones and zeros. Each bit position in the
key corresponds with a predetermined structure. If the structure is in the chemical its
key'’s bit corresponding to that structure will be set to one. For example, if the first bit
corresponds to a benzene ring, this first bit of the corresponding key will be set to
one. We can now do fast, linear-time comparisons between molecules by assessing
the similarity between these fixed-length, pre-computed keys. Subset searches on
well constructed keys correspond well with exact substructure queries. Structural
keys have the useful the property that the key of molecule A is a subset of the key of

molecule B if and only if A is a subset of B.
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Structural keys require us to choose before knowing the application a set of
structures to look for in chemicals. This is a problem. In some applications certain
structures are important while in others they are irrelevant. We manually choose the
structures in the key with our goals in sight. Our key, however, has limited utility for
other applications. How do we create a general structural key which can be used for
many different applications?

Fingerprints were designed be more broadly useful than structural keys. Rather
than only searching for structures in a predetermined list, chemical fingerprints are
constructed by enumerating all substructures of a certain size in a given molecule.
We once again set a bit to one for each substructure observed in a molecule.
However, rather than finding the bits position from a lookup table as we did for
structural keys, we compute the corresponding bit's position by calculating the hash
value of a canonical representation of the structural key. While improving the
generality of structural keys, fingerprints still have the useful the property that the
key of molecule A is a subset of the key of molecule B if and only if A is a subset of
B. Fingerprints are the current standard in large molecular database searches.

Most fingerprint systems sequentially scan all fingerprints in a database to
answer queries. Newer methods are being developed which can prune these scans
using bounds on similarity (Swamidass and Baldi 2006). Additionally, Locality
Sensitive Hashing (LSH) may be the next advance, allowing for O(log n) complexity

searches of large datasets (Dutta, Guha et al. 2006).

Venn Similarity

How do we compute similarity between fingerprints? There are many different
formula which can be used to compute similarity between two fixed length bitmaps,
Euclidian distance, hamming distance, cosine angle, and more. Two measures of
similarity for comparing chemical fingerprints arose early on and tend to produce the
most useful measures of similarity.

These two standard formulas, Tanimoto and Tversky, can best be rationalized
with a Venn diagram. The area in common corresponds with the number of features
found both in chemical A and B, and the area not in common corresponds to the
features observed in A alone and B alone, then Tanimoto similarity is the
percentage overlap between the two Venn circles. It is computed as the area in

common over the total area covered: i.e. the percentage overlap.
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Superstructure and Substructure Searches

A molecule is a substructure of another if it is exactly contained inside the other. A
superstructure is the opposite. If molecule B is a substructure of A, then A is a
superstructure of A. Tversky similarity reduces to Tanimoto similarity alpha and
beta are set equal to one. Choosing alpha and beta correctly allows us to penalize
the mismatched bits asymmetrically, allowing us to search for substructures or

superstructures of our query.

2D Graph Substructures

How are all substructures enumerated? This is an implementation detail. Most
systems use something like a depth-first search to enumerate all paths of a
particular length. We can of course, imagine other types of substructures which
maybe suited for certain applications.

There are polynomial time algorithms for enumerating all paths if the
connectivity of a graph is bounded. In the case of chemicals, the branching factor is
relatively low so we can safely apply exhaustive, exact, algorithms. Even though the
space of all possible paths is quite large and difficult to count, the number of paths in
a single molecule is manageable. Fingerprints are all pre-computed and stored in

the database, so once the index is created, comparisons are linear and rapid.

Mapping Structures to Bits

For fingerprints, how do we map substructures to particular bit positions? The
algorithm is simple: 1) find a canonical representation of the substructure, 2)
compute a good hash value of this representation, and 3) compute the bit position
by calculating the modulus of the hash value and the length of the fingerprint. So, to
construct a fingerprint, we set the bits corresponding with every substructure we
enumerate.

An obvious concern with this algorithm is that sometimes different
substructures will be mapped to the same bit position. We refer to this conflict as a
clash. If two substructures we observe clash, we set there bit position equal to one
(1+1=1). This amounts to a sort of lossy compression of data. Each bit position

corresponds to a family of unrelated structures.

The Fingerprint Approximation

So fingerprints can be thought of as a compressed representation of a very long
structural key. Within certain limits, Tanimoto similarity computed between

fingerprints approximates similarity computed on this longer structural key. What
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makes this approximation fall apart? The more clashes the more error. The higher
the density of ones in a fingerprint, the more error in computing its similarity with

other fingerprints.

2D MinMax

Fingerprints as described do not consider the frequency/counts of substructures. So
no distinction is made between molecules with one benzene ring vs. two benzene
rings other than a unique path which might cross over both rings in one molecule but
not the other. It has been shown that measures that appropriately consider the
counts of substructures correspond more directly with molecular properties. MinMax
is one of the best performing measures. MinMax is a generalization of Tanimoto
similarity which incorporates information about the counts of substructures

(Ralaivola, Swamidass et al. 2005).

Fingerprint Similarity is a Spectral Similarity/Kernel

Computing similarity between objects is a fundamental operation in Machine
Learning as well as Chemical Informatics. Kernel methods have been established as
a powerful method of solving classification, regression, visualization and clustering
problems (Camastra and Verri 2005; Swamidass, Chen et al. 2005).

It is important to note that Tanimoto, Tversky (when alpha=beta) and MinMax
similarity computed between either fingerprints or chemicals are examples of
spectral kernels. Spectral kernels are a type of similarity computed by 1)
enumerating all substructures of an object and 2) comparing these enumerations.
Tanimoto and MinMax similarity are Mercer kernels, therefore they can be used as

the core of any general kernel methods in order to solve chemical problems.

Normal Distribution of Fingerprints

What are the statistical properties of fingerprints? What is there distribution?
Lessons from sequence analysis have shown us that these questions can help us
design more efficient powerful algorithms.

Using a set of 50K random chemicals and plotting the distribution of the
number of bits sets to one, we can see that fingerprint bit counts are distributed

approximately normally.

Pruning Search Space Using Bounds

We can bound the similarity of a given database molecule using a simple formula.

This bound is dependent on bit count of the query and the bit count of the database
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fingerprint. If we are only interested in molecules of a 0.9 or greater similarity to our
query, we can prune most of the database by using the bounds formula. This can
dramatically accelerate database searches, on average as much as an 8x

improvement in speed.

Speedup from Pruning

This speedup depends on the similarity threshold we choose and the bit count of the
query. The speedup can range from 100-fold to 2-fold speedup. It will never be

worse than a sequential scan.

Aggregate Queries

We can imagine situations where we would like to search a database use a group of
chemicals as the query. For example, we may want to search for all molecules
which bind ER by querying by all known binders of ER. There are many ways to
think of constructing this sort of aggregate query. This is an active area of research

which will hopefully lead to new sorts of more accurate searches.
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4 Chemical Reactions

Basic Principles

Reactions represent the dynamic nature of chemistry whereby different compounds
can interconvert between one another, perhaps yielding energy for biological
pathways or for constructing an industrial polymer under regulated conditions. At a
minimum, specifying a chemical reaction requires identification of the chemical
structures of the reactants and subsequent products. Supplementary information
such as any catalysts used in the reaction, solvent and temperature conditions, etc.
are not strictly necessary to understand the chemical structural changes that occur
in the reaction, but can be very useful for building and understanding reaction

knowledge bases and for practical application.

Given the reactants and products for a reaction, the reaction center is the specific
substructure of atoms and bonds that are actually rearranged. More generally, it
refers to the functional groups of the reactants and how they are rearranged to form

the products.

Needed Information

For chemical informatics, a complete reaction specification must include more than
just the reactant and product structures. A complete specification must also include
a mapping between the reactant and product atoms, at least at the reaction center.
Without this, ambiguous mechanistic pathways for transforming the reactants into
products could be inferred such as the slide example either showing the hydroxyl
group directly substituting the bromide or indirectly by adding to the double-bonded

carbon on the other end.

Furthermore, a complete and correct reaction specification must respect
conservation of mass in the universe by fully specifying a stoichiometrically
balanced reaction equation. That is, over the course of a reaction, no atoms or
electrons can be created or destroyed. Unfortunately, "trivial* reactants and
products such as a water molecule in condensation reactions are often neglected in

reaction specifications, making it much harder to systematically process them.

Note that for practical chemistry, even more information is necessary including
reaction catalysts, solvent and temperature conditions, yield, rate and other factors

that are necessary to reproduce the reaction in a laboratory.
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Reaction Databases

While small molecule databases are becoming more common and available today,
databases cataloguing reaction information are still generally in a poor state. Most
repositories consist only of thousands of records, perhaps millions, but in general
the data has poor consistency. In particular, the data is often incomplete with
respect to balanced stoichiometry and reaction conditions (Gasteiger 2006). Well-
developed, publicly available reaction databases have not been identified by this
group, though some privately licensed ones are referenced in the literature such as
the CASREACT and Cheminform RX systems.

To search through reaction databases, at least for the structural component of the
data, we can reuse many of the same search techniques for simple chemicals.
Searching for reactions by reactant or product structure is fundamentally no different
than a simple chemical search. Alternatively, one can search based on just those
atoms and bonds which change over the course of a reaction to focus in on reaction

centers and thus find reactions of similar class.

Virtual Chemical Space

Once a collection of reaction profiles is known and available in a computational
representation, this offers us the power to address such problems as exploring
virtual chemical space. Searching for chemicals in a database similar to a query
molecule has already been well established, but consider the target structure
molecule in the accompanying slide. No structure in the UCI ChemDB (Jonathan
Chen 2005) is found to be directly similar to it. If this were theoretically a very
important compound however, we could instead search for it in virtual chemical
space that is just one reaction away from the directly available chemical space
represented by the database of available chemicals. We can accomplish this by
applying the retro form of one of our reactions (Diels-Alder in this case) to produce a
pair of precursor molecules. Searching for similar chemicals to each precursor
independently does yield several similar results. Reapplying the normal forward
version of the reaction to each pair of similar results yields theoretical compounds
that are not directly available in the database, but should be indirectly accessible by

applying one reaction to pairs of readily available compounds

Knowledge Based Reactions

Exploring a virtual space of chemicals is one example of the power and utility of

having these reactions. The most common way of working with reactions
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computationally is what we refer to as “knowledge based reactions.” These
explicitly specify what functional groups can react with one another and precisely
how to rearrange the atoms and bonds to form the product. This specific and

discrete representation can be convenient for many uses, but has its limitations.

Knowledge Based Limitations

Even if reaction databases were better developed and curated, a knowledge based
method requires manual pre-specification of many different reaction profiles to
achieve any level of generality. The accompanying slide illustrates 3 example
reactions, all of which would require a separate reaction profile specification for the

computer to understand how to process them.

Reaction Discovery

One reaction research area then is to discover reaction profiles by more general
principles, with the virtue that this would not be limited to existing knowledge bases.
Furthermore, if doing so allowed us to discover wholly new and novel reaction
schemes that chemists haven't already discovered, this would already be inherently
useful as a chemist’s tool and could even suggest leads for targeting biologically
relevant functional groups. For example, the post-translational modification of nitro-
tyrosine is a known marker for diseases such as coronary artery disease, so if we
could find a reaction scheme that uniquely reacts with the nitro-tyrosine functionality,
that could be used to probe that disease system, determine if it is a causative agent,
and maybe even offer a therapeutic lead if the reaction product alters the disease

process.

This problem of predicting how two arbitrary chemicals will react is essentially
solvable with quantum chemical methods, but this is too demanding computationally
to be done on a large scale. Systems developed to predict chemical reactions using
more approximate theoretical concepts such as partial charge and frontier molecular
orbitals include CAMEO (Julia Schmidt Burnier 1984) and EROS (Robert Hollering
2000).

We present here a simplified approach to reaction discovery, touching on several
concepts used in such systems. To discover reaction profiles from more general
principles, consider that the very simple reaction profile in the accompanying slide
involving any four atoms where the bonds just exchange positions already accounts

for all of the reactions in the previous slides, and in fact about 50% of organic
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reactions (Johann Gasteiger 2003). The accompanying slide includes the concrete
example of an amide bond formation. Here the carbon, chlorine, nitrogen and
hydrogen are the four atoms A, B, C and D. Removing the 2 original bonds and
exchanging them for bonds in the other direction yields the expected amide product.
This simple approach has already covered 50% of all reactions, but of course this

general pprofile has issues.

Generic Reaction Profile Issues

Allowing any four atoms to exchange bonds in this generic pattern yields many
unreasonable products like those shown in the accompanying slide. Furthermore,
there are many reactions with more sophisticated profiles not covered by this
scheme such as the Diels-Alder and azide + alkyne aromatic cyclization reactions,
and others where the reaction involves more than 4 atoms. As is, these will not be
covered unless we manually specify more knowledge-based profiles, perhaps

involving 6 atoms.

Reaction Favorability Scoring

To address the first issue of unreasonable reaction predictions, we need some
scoring system to suggest reaction favourability. One such mechanism based on
thermodynamic favourability is illustrated in the accompanying slide by estimating
the change in enthalpy of proposed reactions, and only taking those with
energetically favourable changes. A simple additive method to do so is to simply
look up bond-dissociation energies for all of the bonds in the reactants and products
and assess which side of the reaction is more stable in that respect. For additional
robustness, this scoring method can offer stability bonuses and penalties for
aromatic compounds and compounds with ring strain. Other schemes that consider
additional effects beyond thermodynamics such as reaction kinetics provide greater

accuracy, but quantitative data is much less available.

Pseudo-Mechanistic Reactions

To address the issue of modelling reactions with reaction centers more
sophisticated than 4 atoms, we can try a more formal “pseudo-mechanistic”
approach. The main addition is introducing the concept of intermediates into the
reaction predictor. For example in the accompanying slide, using the same basic 4
atom reaction profile, instead of directly exchanging the bonds, we first model the

shifting of the bond electrons to the attached atoms by just applying formal positive
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and negative charges. In that case, closing the intermediates to produce the

product is just a matter of matching + and — charges and closing the bonds.

Thus far, we added an extra intermediate step but still have the same 4 atom bond
rearrangement profile. The difference is that we can now allow these intermediates
to rearrange themselves based on general electron-shifting rules before reclosing
into products. The accompanying slide shows an enol with its OH bond opened to
create an intermediate. Rather than allowing it to immediately react with another
intermediate to create a product, we can apply basic electron shifting rules to yield
an equivalent intermediate since it now has a negative charge (representative of a
lone pair of electrons) adjacent to an atom with a = orbital double bond. Putting all
of these pieces together, many known reactions can be discovered by basic
principles, including the Diels-Alder and azide+alkyne aromatic cyclization reactions

depicted in the slides.

Chemical Synthesis

As a simplified concept, chemical reagents applied to appropriate chemical
reactants will result in a reaction. The accompanying slide illustrates a simple
chemical synthesis pathway, which is simply a chain (or tree) of several reactions
applied to starting reactants to reach a final product. An important reaction based

research problem is to reverse-engineer these synthesis pathways.

Synthesis Design Problem

A standard setup for chemical synthesis design problems is to be given a desired
target molecule (e.g., a natural product drug), a collection of readily available
starting reactants (e.g., a chemical vendor catalog), and known reagents that can
perform reactions on those reactants (i.e., a reaction database). The goal then is to
find a proper combination and sequence of reaction reagents to apply to the

reactants to generate the product.

Performing an exhaustive search to divine the synthesis pathway by recursively
applying all known reactions to all available starting material reactants would be
intractable. The starting material pool itself could consist of millions of chemicals.
Alternatively, a retro-synthetic approach (E.J. Corey 1985) starts from the product
and computationally applies retro-reactions (transforms) to generate precursors until
it can trace a path back to available starting materials. Existing packages such as
LHASA, SECS and SYNCHEM apply this basic methodology (Todd 2004), with the
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former two calling upon human interaction to guide the pathway search. Other
packages like SST and CHIRON attempt the forward direction of search in a sense,
though only in terms of looking for abstract structural pattern correlations between
the starting materials and products, not tracing out a specific reaction pathway.
Other packages like IGOR, EROS and SYNGEN use more formal methods to model
the reactivity of molecules, lending themselves well to extensions like CAMEO and
WODCA to predict whole new reaction schemes in manners similar to that

discussed earlier.

Retro-Synthesis Example

The accompanying slide illustrates the framework for the retro-synthetic search
strategy. Given a target molecule, we apply known reactions in reverse to produce
several possible precursors. If one of these precursors is found amongst the
available starting materials, the search is complete. If not, we can recursively
search for a retro-synthesis pathway for the best precursors. This is comparable to
a search space with a branching factor of P where P is the number of possible
precursors generated for each target product. For large numbers of known
reactions and large, complex target products, this branching factor can be quite
large, necessitating heuristic measures to guide the search. For example, one could
pursue only those precursor branches where the precursor has greater similarity to

compounds in the starting material reactant pool.
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5 Molecular Docking

The Docking Problem

In this section we consider Virtual Ligand Screening (VLS): the task of identifying
chemicals, i.e. ligands, in a database which fit into a protein’s binding pocket. There
are other types of docking, including protein-protein and protein database screening,
but we focus here on the task of screening a large database of chemicals for activity
by geometrically fitting them into a given protein cavity.

Small molecule-protein docking is distinct from molecular modelling. Molecular
modelling attempts to model feasible atomic trajectories as accurately as possible.
Current methods require hours, days, or weeks to simulate a single ligand'’s
trajectory into a binding pocket. Docking, on the other hand, can be rapidly
calculated in minutes for each ligand. This allows tens of thousands of chemicals to
be docked in just a few days on a cluster. This speed is achieved by simplifying the
molecular dynamics formulation. Instead of searching for feasible trajectories for the
whole system in dynamic motion, the ligand is allowed only to rotate bonds and the
protein is kept rigid. Instead of simulating a trajectory, docking algorithms search for
a single low energy geometric configuration, or pose.

There are two critical modules in any docking program: a search algorithm and
a scoring function. The search algorithm heuristically searches for the best scored
poses. The scoring function quickly computes how well a pose fits a ligand into the

protein’s cavity. These two modules work together to rapidly find low-energy poses.

Challenges
Screening databases by docking is a challenging task for a number of reasons. The

search algorithm must robustly find good minima in a high dimension, variable size
space full of local minima, singularities and sharp curvature. The scoring algorithm
must robustly and rapidly screen out false negatives and correlate well with
experimental binding affinity.

If we are screening a database for chemicals with activity in a biological
system, we face additional problems. Experimental binding affinity (pKd) does not
always correspond with biological activity. For example, but estrogen receptor
antagonists and agonists bind in the same pocket with high affinity. Each class
causes different structural shifts in the protein resulting in different biological

activities.
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Docking is designed to answer one question: which chemicals bind this
protein? If we find chemicals which bind our protein, we still have more questions to
answer: what is the absorption rate, the distribution, the metabolism, and excretion
of the chemical? These questions are collectively referred to as ADME concerns
and are left unresolved by docking studies.

Despite these challenges docking can be useful as a first pass screen for more
expensive, time-consuming experiments. Limiting experiments to compounds with
higher chance of binding a protein can reduce the time and cost of discovering new

drugs.

Scoring Function

Predicting binding affinity from a single pose is difficult. Many phenomenon are
simultaneously at play as a ligand binds a protein: electrostatics, hydrophobic
interactions, desolvation, loss of entropy as bonds are frozen in place, hydrogen
bonding, protein flexibility, alternate binding positions, cavity accessibility, inclusion
of precisely oriented active site waters, etc.

Docking programs do not model binding affinity from first principles. Their
scoring functions use simplified approximations which can be rapidly computed from
a single pose. For example, most programs use grid-based optimizations which
allow for linear computation of energy at the cost of holding the protein rigidly in
place.

Scoring functions must also screen out false positives with high efficiency.
Even a low false positive rate can rapidly allow a large number of false positives to

quickly overwhelm the small number of expected binders.

Search Algorithms

There are a large number of search algorithms used by docking programs to find
good binding configurations. Most of them are tuned to the specific details of
molecular energy functions. For example, many programs treat ligand flexibility
using ‘incremental construction,’ to first dock in one rigid segment of a molecule and
then grow out the rest(Ewing, Makino et al. 2001). Other methods include simulated

annealing and other forms of Monte Carlo simulation(Bursulaya, Totrov et al. 2003).

Docking Programs

One of the oldest, and most affordable, docking programs is DOCK from Tack
Kuntz’'s lab in UCSF (Ewing, Makino et al. 2001). It is open source software which

can be run on large clusters of computers for very fast results.
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There are number of other programs, some of which seem produce more
accurate results than DOCK. However, most of them cost quite a bit for yearly
single-processor licensing and are prohibitively expensive for cluster computing.
Some of the best are ICM (Bursulaya, Totrov et al. 2003) and Glide (Halgren,
Murphy et al. 2004). Using DOCK on a cluster to rank a large database of
compounds and then rerunning the top few results on a slower, more accurate setup
has been a workable strategy for screening large databases on reasonable budgets.
Confirming the results of one docking program with the results of another controls

some types of systematic error (Clark, Strizhev et al. 2002).

Cluster Based Computing

Docking is trivially parallelized by dividing input files across a large number
computational nodes. Licensing costs are the typical barrier. For DOCK licensing is
not per-processor, so we have automated large database runs using a combination
of bash and python scripting. PVM and MPI are parallel computing standards which
can be used to parallelize code, however they prove to be much more complex to

use and less robust to equipment and software failures.

Visualization

Viewing docking results is surprisingly challenging. Common molecular viewers like
SwissPDB Viewer, RasMol, and VMD are not designed to flip through a large
number of molecules listed in one file. There are two good options: VIDA and
Chimera. VIDA is free for academics from Open Eyes and Chimera from UCSF is
free for everyone. Both these viewers have the ability to read a concatenated file of
molecules and scroll through them one by one. This allows researchers to manually

assess the quality of particular poses using familiar visualization tools.
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6 Applications: Drug Screening/Design-A Case Study

Tuberculosis (TB)
TB is still a real threat. Multi-drug resistant (MDR) TB is difficult to treat and has a

high morbidity and mortality rate. TB typically infects the lungs but can also cause
serious infections in bones and even the digestive track. Treatment includes a six-
month course of special antibiotics with undesirable side-effects. Additional drugs
targeting TB could reduce side-effects of treatment, shorten treatment time, and
provide physicians with additional therapeutic options for MDR TB. This results of

this work have been recently published (Lin, Melgar et al. 2006).

The Cell Wall: Key to Pathogen Survival

TB is difficult to treat because of its mycolic acid cell wall. This cell wall is both a
shield against most standard antibiotics and the target of effective drugs. Its cell wall
is especially waxy and densely packed with a number of fatty acids unique to this
family. Targeting the biosynthesis of these fatty acids kills TB and can cure the

disease.

AccD5
AccD5 is an enzyme necessary for the synthesis of the TB cell wall. It is part of a
family of Acyl-CoA-ases which elongate fatty acids. This particular enzyme is

sufficiently different from human enzymes that it could be used as a drug target.

AccD5 Protein Structures

One of our collaborators crystallized and solved three different isozymes in the AccD
family from TB. AccD forms a large halo-shaped hexamer. This structure was solved
using x-ray diffraction experiments. Each of these enzymes were characterized by in

vitro experiments showing activity and different specificities for different substrates.

Structure-Based Drug Design

We used an iterative method to prioritize compounds for experimental assays. For
the first pass we docked a representative set of molecules from the ChemDB (Chen,
Swamidass et al. 2005) using both ICM and DOCK into the active pocket of AccD5.
The top few were assayed. We then searched the ChemDB for compounds similar
with our confirmed positives and prioritized them based on further docking studies.

The top few from this iteration were assayed again.
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Two Strateqies

We used a combination of two strategies to search ChemDB, similarity searches
and docking simulations. Similarity searches produces compounds which look very
much like known binders. Docking yields much more diverse results. Combining the
two strategies heuristically explores the database and biases computation toward

experimental information about known binders.

Identified Inhibitor
From these two studies we identified two inhibitors of AccD5. One of which has

about 5 micro molar inhibition constant and kills about 50% of TB cells in culture at
about 50 micro molar concentration. Ideally, further iterations of searching will find
compounds with nano-molar inhibition constants and with favorable ADME. This
example shows how a combination of docking and similarity searching can be used

to find novel inhibitors of important protein targets.
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8 WEB RESOURCES

The following list provides a few pointers and is not meant to be comprehensive in

any way.

DATABASES, DATASETS, SEARCH:

Cambridge Crystallographic Data Centre
http://www.ccdc.cam.ac.uk/

DrugBank
http://redpoll.pharmacy.ualberta.ca/drugbank/cat_browse.htm
eMolecules (formerly Chmoogle)
http://www.emolecules.com/

ChemBank

http://chembank.broad.harvard.edu/

ChemDB and other datasets

http:/cdb.ics.uci.edu

IUPAC InChi Website

http://www.iupac.org/inchi

Ligand Info (PDB chemical info)

http://ligand.info/

MSD Ligand Chemistry (PDB chemical Info)
http://www.ebi.ac.uk/msd-srv/chempdb/cgi-bin/cgi.pl
NCI Data

http://dtp.nci.nih.gov/webdata.html

PubChem

http://pubchem.ncbi.nim.nih.gov/

Standard Datasets http://www.cheminformatics.org/datasets/index.shtml
http://www.cheminformatics.org/

ZINC

http://blaster.docking.org/zinc/
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TOOLKITS:

Chemistry Development Kit
http://www.chemistry-development-kit.org/

Frowns

http://frowns.sourceforge.net/

Jmol

jmol.sourceforge.net/

OEChem
http://www.eyesopen.com/products/toolkits/oechem.html
OpenBabel

http://openbabel.sourceforge.net/

VISUALIZATION:

Chimera
http://www.cgl.ucsf.edu/chimera/
VIDA

http://www.eyesopen.com/products/applications/vida.html

MISCELLANEOQOUS:

http://www.chemaxon.com/
http://www2.chemie.uni-erlangen.de/index.html
http://www.daylight.com/
http://www.daylight.com/dayhtml/doc/theory/index.html
http://www.eyesopen.com/

http://www.tripos.com/
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