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For most biologists hands-on literature mining is currently limited to keyword

searches in PubMed. However, methods for extracting biomedical facts from

literature have improved considerably, and the associated tools will likely soon

be used by many researchers in bioinformatics as well as wet-lab biology. Ad-

vanced literature mining tools will be crucial to successfully analyze the deluge

of high-throughput experimental data sets in the context of the rapidly increas-

ing body of scientific text. New tools will need to that can automatically propose

new hypotheses and thereby catalyze the discovery process. This will require

that high-throughput data and literature become tightly integrated, which en-

courages close collaborations between biologists, bioinformaticians, and com-

putational linguists.

Introduction

The focus in biology is shifting from individual genes and proteins to entire biological

systems, and biologists must therefore be able to systematically compare large-scale

data sets with currently known, that is the scientific literature. As the numbers of

articles published each year is increasing exponentially, it is no longer possible for a

researcher to read all the relevant articles manually, not even on a single, specialized

topic such as the cell cycle (Figure 1).
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Figure 1: Growth of MEDLINE. The counts reflect the number of papers and journals published per year;

a running average of three years was calculated for the Cdc28 curve due to the much lower counts. The

number of new papers published each year continues to increase, especially on certain topics such as

the cell cycle, for which it is no longer possible to read all new papers that are published. In contrast,

specific proteins that are “hot” at one point in time tend to later lose their popularity, as exemplified by

Cdc28.
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Because of these changes, literature mining tools are becoming essential to re-

searchers in the fields of biology and bioinformatics. First, they enable researchers to

identify relevant papers (information retrieval, IR). They also allow the biological en-

tities (for example, genes and proteins) mentioned in these papers to be recognized

(entity recognition, ER) and enable specific facts from papers to be pulled out (infor-

mation extraction, IE). IR tools like PubMed have long been used on a regular basis by

most biologists to find papers of interest. In contrast, automatic methods for extracting

facts from text (IE) have only very recently become sufficiently accurate to be useful in

practice (Rebholz-Schuhmann, 2005). It is obvious how both IR and IE can be used

for curation efforts; however, they are often dismissed as being useless for discovery

purposes as they can only extract what has already been published.

More advanced tools based on these methods facilitate systematic searches of

the scientific literature for overlooked connections (text mining) and integration of the

literature with other data types to make new discoveries. Although some text mining

methods are indeed capable of making novel hypotheses by combining information

from multiple papers, we believe that the full discovery potential will only be realized

with data mining approaches that integrate literature and data from high-throughput

experiments such as genome sequencing, microarray expression studies, or protein–

protein interaction screens.

Here, we will briefly describe the aim of each field described above, give an

overview of the methods employed, and discuss what can currently be achieved. We

first give an overview the most important IR, ER and IE methodologies subsequently

give examples of how the results can be mined and integrated with other data types to

make new biological discoveries. For more details, the reader is referred to the numer-

ous reviews on these topics (Manning and Schütze, 1999; Andrade and Bork, 2000;

Hirschman et al., 2002; Yandell and Majoros, 2002; Krallinger and Valencia, 2005;

Scherf et al., 2005; Shatkay, 2005; Skusa et al., 2005; Cimiano et al., 2006; Jensen

et al., 2006).

To exemplify the goals of each sub-field within biomedical literature mining, we will

use the following example sentence: “Mitotic cyclin (Clb2)-bound Cdc28 (Cdk1 ho-

molog) directly phosphorylated Swe1 and this modification served as a priming step

to promote subsequent Cdc5-dependent Swe1 hyperphosphorylation and degrada-

tion” (Asano et al., 2005). Its context is the cell cycle of the yeast Saccharomyces

cerevisiae, and it allows us illustrate the powers and pitfalls of current literature mining

approaches.
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Information retrieval

Information retrieval (IR) systems aim to identify the text segments (be it full articles,

abstracts, paragraphs, or sentences) pertaining to a certain topic—in our example,

the yeast cell cycle. The topic can be defined in one of two ways: either by a user-

provided query (ad hoc IR) or by a set of papers that has been manually selected as

being relevant to the topic (text categorization). Both types of IR system should ideally

recognize our example sentence as being related to the yeast cell cycle, although

neither “yeast” nor “cell cycle” is explicitly mentioned.

The best known biomedical IR system, PubMed, is an ad hoc system that uses

two well established IR methodologies, the Boolean model and the vector model. The

former enables the user to retrieve all documents that contain certain combinations

of terms, for example “yeast AND cell cycle”. In contrast, the vector model represents

each document by a term vector, in which each term is assigned a value according to

a frequency-based weighting scheme. These document vectors can subsequently be

compared to a query vector that specifies the relative importance of each query term

(Wilbur and Yang, 1996). Alternatively, they can be compared to each other to calcu-

late document similarity, which is used by PubMed’s related articles function (Wilbur

and Coffee, 1994) and other document clustering methods (Renner and Aszodi, 2000;

Iliopoulos and Ouzounis, 2001; Glenisson et al., 2003). The vector representation is

also used as input for machine learning methods, which are trained to discriminate be-

tween known relevant (positive) and irrelevant (negative) papers based on their word

content (Usuzaka et al., 1998; Marcotte et al., 2001; Bhalotia et al., 2003; Donaldson

et al., 2003; Kayaalp et al., 2003; Aronson et al., 2004; Goetz and von der Lieth, 2005;

Shah et al., 2005; Suomela and Andrade, 2005). Such methods are able to learn

fairly complex rules; for example, a method trained to identify sentences related to the

yeast cell cycle would have learned that the word “Cdc28” in our example sentence is

a strong hint, whereas the words “Cdk1” and “Clb2” could be related to the cell cycle

of other organisms as well.

Ad hoc IR systems like PubMed generally have more difficulty than text catego-

rization systems in dealing with the many abbreviations, synonyms, and ambiguities

in the biomedical terminology, although blind assessments have shown that most of

the lessons learned from IR in other research fields carry over to biomedicine (Glenis-

son et al., 2003; Hersh and Bhuptiraju, 2003; Hersh et al., 2004a,b). These include

removing so-called stop words like “the” and “it”, which occur in almost every docu-

ment, and truncating common word endings like “-ing” and “-s” to allow different forms

of the same word to be matched, for example “yeast” and “yeasts” (Bhalotia et al.,

2003). PubMed and many other good biomedical IR systems also make use of the-

sauri to automatically expand the query with additional related terms (Bhalotia et al.,
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2003; Hersh and Bhuptiraju, 2003; Büttcher et al., 2004; Hersh et al., 2004b). For

example the Boolean query “yeast AND cell cycle” might be expanded to “(yeast OR

Saccharomyces cerevisiae) AND cell cycle”). Many advanced methods, such as Med-

Miner (Tanabe et al., 1999) and Textpresso (Muller et al., 2004), also use ER methods

(see below) to better identify documents that mention a certain gene or protein and/or

part-of-speech tagging to disambiguate whether a word such as “wingless” occurs as

a noun or an adjective. As many documents may be retrieved by a single query, sim-

ply presenting them as a long list gives poor overview. Alternative ways to present

and summarize IR results are thus being actively explored (Perez-Iratxeta et al., 2001,

2003; Hoffmann and Valencia, 2004; Doms and Schroeder, 2005; Hoffmann et al.,

2005).

Even with these improvements, current ad hoc IR systems are not able to retrieve

our example sentence given the query “yeast cell cycle”. This could be achieved by

realizing that “yeast” is a synonym for S. cerevisiae, that “cell cycle” is a Gene Ontology

term, that the word “Cdc28” refers to a S. cerevisiae protein, and finally looking up the

Gene Ontology terms of Cdc28 to connect the two. Although this will by no means be

easy to make work, we see this type of ontology-based reasoning as the next logical

step for ad hoc IR.



Literature mining for the biologist 7

Entity recognition and identification

The seemingly modest goal of ER is to find the biological entities mentioned within a

text, in particular the names of genes and proteins. This task is often divided into two

sub-tasks: i) the recognition of words that refer to entities and ii) the unique identifica-

tion of the entities in question. In our example sentence, the terms “Clb2”, “Cdc28”,

“Cdk1”, “Swe1”, and “Cdc5” should thus all be recognized as gene/protein names

and uniquely identified by, for example, their respective Saccharomyces Genome

Database (SGD) accession numbers.

While ER may at first glance appear neither challenging nor particularly useful,

it is possibly the most difficult task in biomedical text mining and is prerequisite for

constructing both IE and advanced IR systems. When used alone, ER is useful for

molecular biologists to search and structure the biomedical literature based on the

genes og interest (Hoffmann and Valencia, 2004).

The early ER methods relied on hand-crafted rules that look for typical features of

names, such as letters followed by numbers or the ending “-ase”, as well as contextual

information from nearby words like “gene” or “receptor” (Fukuda et al., 1998; Proux

et al., 1998; Franzen et al., 2002; Tanabe and Wilbur, 2002; Bhalotia et al., 2003;

Narayanaswamy et al., 2003; Tamames, 2005). As several corpora in which gene and

protein names have been tagged are now available for download (Kim et al., 2003;

Tanabe et al., 2005), this approach is no longer so attractive and most newer systems

instead rely on machine learning algorithms such as hidden Markov models (HMM),

support vector machines(SVM), or a mixture of both to recognize names based on their

characteristic features (Coller et al., 2000; Hatzivassiloglou et al., 2001; Collier et al.,

2002; Tanabe and Wilbur, 2002; Chang et al., 2004; Zhou et al., 2004; Hakenberg

et al., 2005; McDonald and Pereira, 2005; Settles, 2005; Zhou et al., 2005).

In contrast to these systems, a number of dictionary-based methods instead rely

on a comprehensive list of synonymous gene names that are matched against the doc-

uments using algorithms that allow variation in how the names are written, for example

“CDC28”, “Cdc28”, “Cdc28p”, or “cdc-28” (Krauthammer et al., 2000; Leonard et al.,

2002; Bhalotia et al., 2003; Hanisch et al., 2003; Chang et al., 2004; Mika and Rost,

2004; Finkel et al., 2005; Crim et al., 2005; Fundel et al., 2005; Hanisch et al., 2005).

These methods are aided by the availability of databases of synonymous gene/protein

names (Bussey et al., 2003; Pillet et al., 2005; Shi and Campagne, 2005) as well as

tools that can help in constructing these (Pustejovsky et al., 2001; Yoshida et al., 2000;

Yu and Agichtein, 2003). Many systems combine dictionary matching with either rule-

based or statistical methods to reduce the number of false positive hits caused by

homonyms (Leonard et al., 2002; Chang et al., 2004; Seki and Mostafa, 2005; Tsu-

ruoka and Tsujii, 2003; Mika and Rost, 2004; Finkel et al., 2005; Kou et al., 2005;
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Mitsumori et al., 2005).

The many different methods for doing named entity recognition were evaluated in

the blind assessment BioCreAtIvE task 1 (Colosimo et al., 2005; Hirschman et al.,

2005; Yeh et al., 2005). It revealed that best performing ER methods all rely on careful

curation of the gene name lists to remove aliases that cause many false positives (Fun-

del et al., 2005; Hanisch et al., 2005). In addition, dictionary-based approaches have

the crucial advantage over feature-based ones that they not only recognize names as

such, but also identify the accession number of the genes or proteins to which they

refer.

The major difficulty in ER arises from the lack of standardization of names.

Each gene or protein typically has several different names and abbreviations thereof

(“Cdc28” is also known as “Cyclin-dependent kinase 1” or just “Cdk1”), some of

are also common English words (“hairy”), biological terms (“SDS”), or names of

other genes (“Cdc2” refers to two completely unrelated genes in budding and fission

yeast) (Chen et al., 2005). The recent development of methods for disambiguating

gene/protein names is thus an important advance for ER as well as IR (Gaudan et al.,

2005; Hanisch et al., 2005; Schijvenaars et al., 2005).

Instead of focusing on this important problem, many methods have instead at-

tempted to recognize whether a particular mention of a name refers to a gene or

its protein product (Fukuda et al., 1998; Coller et al., 2000; Mika and Rost, 2004).

However, this distinction is not always clear as, for example, “Cdc5-dependent Swe1

hyperphosphorylation” depends on both the Cdc5 protein but also the gene that en-

codes it. Indeed, human annotators only agree with each other in 77% of cases when

asked to distinguish between genes, RNAs, and proteins (Tanabe et al., 2005). Fortu-

nately, the ability to discriminate between genes and proteins is of little consequence

for down-stream IE applications.
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Information extraction

In contrast to IR systems that identify texts concerning certain topics, IE systems aim

to extract pre-defined types of facts, in particular relations between biological entities.

From our example sequence, an IE system should deduce that i) Cdc28 binds Clb2, ii)

Swe1 is phosphorylated by the Cdc28–Clb2 complex, and iii) Cdc5 is involved in Swe1

phosphorylation. These facts can subsequently be stored in a database, with the

option of being verified by a curator reading the paper in question. Two fundamentally

different approaches to extracting relations from biological texts are currently being

used extensively, namely co-occurrence and natural language processing (NLP).

Statistical co-occurrence methods

The simplest approach is to identify entities that co-occur within abstracts or sen-

tences. As two entities might be mentioned together without being in any way related,

most systems use a frequency-based scoring scheme to rank the extracted relations

(Donaldson et al., 2003; Hoffmann and Valencia, 2004; Craven, 1999; Cooper and

Kershenbaum, 2005; Ramani et al., 2005; Stephens et al., 2001; Blaschke and Valen-

cia, 2002; Stapley and Benoit, 2000; Jenssen et al., 2001; Becker et al., 2003; Bowers

et al., 2003; Chen and Sharp, 2004; von Mering et al., 2005; Schlitt et al., 2003; Wren

and Garner, 2004; Alako et al., 2005; Maier et al., 2005; Tiffin et al., 2005). If two

entities are repeatedly mentioned together, it is highly likely that they are somehow

related, although the type of relation is not known (Jenssen et al., 2001; Stephens

et al., 2001). Co-occurrence methods tend to give better recall but worse precision

than NLP methods (Ding et al., 2002; Wren and Garner, 2004). Due to their ability to

identify relations of almost any type, co-occurrence methods are well suited as parts

of exploratory tools (Bowers et al., 2003; von Mering et al., 2005).

Co-occurrence methods can also be used to extract only relations of a certain type,

such as physical protein–protein interactions, by combining them with a customized

text categorization system to identify the relevant abstracts or sentences (Craven,

1999; Stephens et al., 2001; Blaschke and Valencia, 2002; Donaldson et al., 2003;

Cooper and Kershenbaum, 2005; Ramani et al., 2005; Ray and Craven, 2005). This

setup is particularly attractive for database curation as the custom-made text cate-

gorization system can also be used on its own, and because high coverage can be

attained (Donaldson et al., 2003; Ramani et al., 2005). However, complex sentences

that contain multiple relations give rise to additional, erroneous relations (our example

sentence might link Cdc5 to Clb2). This approach is also unable extract directional

relations (is Cdc5 involved in Swe1 phosphorylation or vice versa) and has difficulty

distinguishing between direct and indirect relations, for example whether or not Swe1
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is directly phosphorylated by Cdc5).

Natural language processing (NLP)

These issues can all be addressed by NLP methods that combine analysis of syntax

and semantics. The text is first tokenized to identify sentence and word boundaries,

and a part-of-speech tag (noun, verb, etc.) is assigned to each word. A syntax tree is

then derived for each sentence to delineate noun phrases (for example, “Mitotic cyclin

(Clb2)-bound Cdc28 (Cdk1 homolog)”) and represent their interrelations. ER meth-

ods and simple dictionaries are subsequently used to semantically tag the relevant

biological entities (genes, proteins, etc.) and other keywords (activation, repression,

phosphorylation, etc.). Finally, a rule set is used to extract relations based on the syn-

tax tree and the semantic labels. Very few NLP systems attempt to resolve anaphoric

relations and most systems are thus unable to extract relations that span multiple sen-

tences (Narayanaswamy et al., 2005). This is not as big a limitation as it might seem

since most relations are in fact mentioned within a single sentence (Ding et al., 2002;

Cooper and Kershenbaum, 2005).

Several programs exist for tokenization and part-of-speech tagging of English texts,

most of which are easily adapted to biomedical texts by retraining them on a manually

tagged corpus such as GENIA or PennBioIE (Saric et al., 2004a,b, 2006; Finkel et al.,

2005). Semantic tagging is more complicated, but it can be greatly simplified by using

existing ER methods. In contrast, development of grammars and extraction rules that

can correctly parse the sentences and extract the facts remains challenging.

The idealized workflow described above suggests that syntactic parsing of the sen-

tences and their semantic interpretation is performed as two separate steps (Rind-

flesch et al., 2000; Proux et al., 2000; Yakushiji et al., 2001; Novichkova et al., 2003;

Daraselia et al., 2004). However, most generic English parsers perform poorly if ap-

plied directly to biomedical texts due to the technical terminology, and particularly the

use of long complex noun phrases. Better results can be obtained by first tagging the

noun phrases (Yakushiji et al., 2001). However, many biomedical NLP systems have

merged the syntactic parser and the semantic extraction rules in a customized partial

parser that specifically targets only the relevant parts of sentences and directly extracts

the facts (Blaschke et al., 1999; Friedman et al., 2001; Ono et al., 2001; Wong, 2001;

Leroy and Chen, 2002; Pustejovsky et al., 2002; Gaizauskas et al., 2003; Koike and

Takagi, 2004; Rzhetsky et al., 2004; Saric et al., 2004a,b, 2006; Temkin and Gilder,

2003). The major drawback of this approach is that a large number of extraction rules

is needed to cover the many slightly different ways of expressing a certain on. These

rules may be either developed manually (Blaschke et al., 1999; Friedman et al., 2001;

Ono et al., 2001; Wong, 2001; Leroy and Chen, 2002; Gaizauskas et al., 2003; Huang
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et al., 2004; Koike and Takagi, 2004; Rzhetsky et al., 2004; Temkin and Gilder, 2003;

Saric et al., 2004a,b, 2006) or learned automatically from a corpus (Craven, 1999; Hao

et al., 2005). Both approaches are very labor intensive as the latter requires the prior

manual tagging of a large training corpus.

An example NLP system

To give a more detailed idea of how an NLP-based IE system works, we here show by

examples how relations are extracted by our own system (Saric et al., 2004a,b, 2006).

The system is organized in cascaded modules where the output of one module is the

input of the next module. The input text is first segmented into a sentences and tokens

using a tokenizer developed by Helmut Schmid. Each token is subsequently assigned

a part-of-speech tag using TreeTagger, which correctly tagged 96.4% of tokes after be-

ing retrained on a corrected/revised version of the GENIA corpus (Saric et al., 2004a).

Terms of particular interest (for example, kinase or phosphorylates) were subsequently

assigned semantic tags based on a lookup table.

To be able to recognize gene/protein names as such, and to associate them with

the appropriate database identifiers, a synonyms list was compiled from UniProt

(Bairoch et al., 2005) and SGD (Christie et al., 2004). The name lists is expanded

to include orthographic variants of each name and is then matched against the text.

Noun-phrases containing one or more named entities are subsequently identified

using finite state automata in the form of a CASS grammar (Abney, 1996). The

following simplified example shows how we recognize and semantically categorize a

complex, nested noun chunk:

[nx expr

[expr expression] [of of]

[nx geneprod

[nx gene

[dt the] [nnpg argF] [gene gene]]

[prod product]]]

Various type of relations between genes and proteins are subsequently extracted

using separate grammar modules, which work on top of the entity recognition mod-

ule just described. The following series of examples illustrates how the rules operate

to extract the relations shown in Figure 2. All examples show a simplified bracketed

structure illustrating the major principles of our rules; the internal structure is highly

complex and derives from a pass through a number of cascading finite state transduc-

ers. Within the following examples the first line always indicates the type of relation
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that we extract, which is either phosphorylation, dephosphorylation, or regulation of

expression.

The first example shows a phosphorylation relation phrased in active voice. The

participating proteins are shown in bold-faced letters, the relational word is underlined,

and the selective negation is also marked by the negation-bracket. The NLP system

correctly extracts that Lyn phosphorylates CrkL from the following example:

[phosphorylation active

Lyn, [negation but not Jak2 ]

phosphorylated

CrkL ]

This active-voice phosphorylation construct below is detected through the rela-

tional noun phosphorylation as argument of participates. The phosphorylation bracket

is triggered through the key word phosphorylation, enabling the system to extract that

IL-2
IL-13

IL-18

IL-10

IL-6

Btk

SHP-1
Syk

Shc

Lyn

CrkL

Activates
expression

Represses
expression

Phosphorylates

Regulates
expression

Dephosphorylates

Activates
expression

Represses
expression

Phosphorylates

Dephosphorylates

Phosphorylates

Phospho-
rylates

Figure 2: An example network for mouse proteins. The network exemplifies the multiple types of

relations extracted by our rule based approach; the phrases from which these relations were extracted

are discussed in the main text.
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Lyn phosphorylates syk:

[phosphorylation active

Lyn

also participates in

[phosphorylation the tyrosine phosphorylation

and activation of syk ]]

The following two examples illustrate nominalization for phosphorylation. The

arguments are attached through the of and by prepositional phrases, where the latter

identifies the agent role:

[phosphorylation nominal

the phosphorylation of

the adapter protein SHC

by the Src-related kinase Lyn ]

[phosphorylation nominal

phosphorylation of Shc by

the hematopoietic cell-specific

tyrosine kinase Syk ]

The system is also able to identify dephosphorylation relations, as exemplified by

the following nominalisation example, from which we extract that both Syk and Btk

are dephosphorylated by SHP-1:

[dephosphorylation nominal

Dephosphorylation of

Syk and Btk

mediated by

SHP-1 ]

The following examples shows gene expression relations. The first of these

illustrates the ability of our system to deal with passive voice. Based on the verb

(“induce”) and the relational noun (“expression”) we conclude that IL-2 and IL-18

activate expression of IL-13:
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[expression activation passive

[expression IL-13 expression ]

induced by

IL-2 + IL-18 ]

Repression of gene expression relation be the next example, where one protein

(IL-10) represses the expression of two other genes (IL-2 and IL-6):

[expression repression active

IL-10

also decreased

[expression mRNA expression of

IL-2 and IL-6 cytokine receptors ]]

In the final example, it is only possible to extract that Btk regulates the expression

of the IL-2 gene, not whether it activates or represses it:

[expression regulation active

Btk

regulates

[expression the transcription of

the IL-2 gene ]]

Applications of IE

Most studies so far have focused on extracting very few types of relations. These in-

clude physical protein–protein interactions (Blaschke et al., 1999; Thomas et al., 2000;

Friedman et al., 2001; Ono et al., 2001; Stephens et al., 2001; Yakushiji et al., 2001;

Donaldson et al., 2003; Temkin and Gilder, 2003; Novichkova et al., 2003; Daraselia

et al., 2004; Huang et al., 2004; Rzhetsky et al., 2004; Cooper and Kershenbaum,

2005; Hao et al., 2005; Ramani et al., 2005) and interactions that involve unspeci-

fied molecular mechanisms among proteins (Sekimizu et al., 1998; Blaschke et al.,

1999; Proux et al., 2000; Stapley and Benoit, 2000; Friedman et al., 2001; Jenssen

et al., 2001; Stephens et al., 2001; Yakushiji et al., 2001; Blaschke and Valencia, 2002;

Pustejovsky et al., 2002; Novichkova et al., 2003; Schlitt et al., 2003; Bowers et al.,

2003; Chen and Sharp, 2004; Chiang et al., 2004; Daraselia et al., 2004; Hoffmann

and Valencia, 2004; Koike and Takagi, 2004; Rzhetsky et al., 2004; Domedel-Puig

and Wernisch, 2005; von Mering et al., 2005). Relations have also been extracted for

concepts such as disease names, Gene Ontology terms or nouns in general (Craven,
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0

GAP1

1

GDH1

Msn2
Ssn3

Hsp104

Ume6

Ino2

Erg9

Rim11

A

B C

B

C

Figure 3: A literature derived network for yeast. A) The complete yeast network. The protein network

was derived from MEDLINE using both a statistical co-occurence method (von Mering et al., 2005) and

an NLP-based one (Saric et al., 2004a,b, 2006). Functional associations derived from co-occurrence are

shown in shades of gray according to the level of confidence. The NLP method extracts four types of

relations: stable physical interactions (green), regulation of expression (red), phosphorylation (dark blue),

and dephosphorylation (light blue). The proteins (circles) are colored according to their functional anno-

tation: (co-)regulators of expression (red), kinases and cyclins (dark blue), phosphatases (light blue), and

other proteins (gray). A version of this figure that includes all protein names is available as supplementary

information. B+C) Examples of unpublished relations that can be inferred from the network. From the

network we can infer that Ssn3 likely influences Hsp104 expression through phosphorylation of Msn2,

that Ume6 likely regulates Erg9 expression, and that Rim11 regulates the expression of both Ino2 and

Erg9. None of these hypotheses have been tested experimentally.
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1999; Humphreys et al., 2000; Rindflesch et al., 2000; Hahn et al., 2002; Leroy and

Chen, 2002; Raychaudhuri et al., 2002a; Becker et al., 2003; Chen and Sharp, 2004;

Wren and Garner, 2004; Alako et al., 2005; Bajdik et al., 2005; Couto et al., 2005;

Ehrler et al., 2005; Krallinger et al., 2005; Maier et al., 2005; Ray and Craven, 2005;

Rice et al., 2005; Tiffin et al., 2005; Verspoor et al., 2005). Recently, NLP meth-

ods have been developed for extracting information on gene regulation (Saric et al.,

2004a,b, 2006), protein phosphorylation (Friedman et al., 2001; Rzhetsky et al., 2004;

Hu et al., 2005; Narayanaswamy et al., 2005; Saric et al., 2006), and tissue specificity

of alternative transcripts (Shah et al., 2005). Probably because of the inherent com-

plexity of the task, only a few systems have been designed that are able to extract

multiple types of relations (Friedman et al., 2001; Novichkova et al., 2003; Daraselia

et al., 2004; Rzhetsky et al., 2004; Saric et al., 2006).

Using the NLP-based system described in the previous section, all the relations

mentioned in our example sentence can be correctly extracted (Saric et al., 2006).

To illustrate how IE can be used at a larger scale, we have applied this method to all

MEDLINE abstracts, extracting more than 5000 binary relations (which may each be

mentioned multiple times) of which 370 are among yeast proteins. These are shown

as a network in Figure 3A along with the interactions identified by co-occurrence (von

Mering et al., 2005). The latter method identifies almost 3000 interactions among

these proteins, however, only 150 are of comparable reliability to those obtained by

NLP. With the growing interest in systems biology, IE will likely become a mainstream

tool for biologists in the near future, as it is one of the only ways to identify diverse

types of relations on a large scale.
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Text mining

Often used as a catch-all term for computational text analysis, text mining is more

strictly defined as “the discovery by computer of new, previously unknown information,

by automatically extracting information from different written resources” (M. Hearst,

personal communication; see also Ref. (Hearst, 1999)). IE methods do thus not qualify

as text mining tools themselves since they can only extract what has already been

published; rather, they form the basis for text mining much like ER does for IE (Hearst,

1999).

Mining text for overlooked “golden nuggets”

It may at first seem impossible to have a computer make discoveries based on litera-

ture alone; afterall, IE is only able to extract the facts that have already been published.

The trick is to use facts extracted from several different publications (A leads to B, B

leads to C) to infer new, indirect relations (A leads to C). Since the literature is so vast

that each researcher can only read a small subset, it may well be that no person is

aware of all the facts required to make this logical inference. This is plausible espe-

cially if the facts were published within two disconnected research areas (Swanson,

1986b,a; Hearst, 1999) or if an overwhelming number of papers is published on a

single topic (Blagosklonny and Pardee, 2002).

For almost two decades, Don Swanson has argued along these lines and used

a simple semi-automated method (ARROWSMITH (Smalheiser and Swanson, 1998;

Swanson and Smalheiser, 1999)) to infer the following novel relations: fish oil can help

patients suffering from Reynaud’s disease (Swanson, 1986a), magnesium deficiency

plays a role in migraine headache (Swanson, 1988b), arginine intake has an effect

on somatomedin C blood levels (Swanson, 1990), and that estrogen protects against

Alzheimer’s disease (Smalheiser and Swanson, 1996). These predictions have since

then been re-examined by others (Gordon and Lindsay, 1996; Lindsay and Gordon,

1999) and the two first have both been experimentally confirmed (Swanson, 1988a;

Smalheiser and Swanson, 1994). However, these early predictions were all made

using a “closed” framework where the user provides the hypothesis (A is related to C),

which is then tested by a computational search for shared, related words (B) that could

support the hypothesis; it can thus be argued that the computer did not actually make

the discovery.

The corresponding “open” discovery problem is more challenging, but also poten-

tially more rewarding, as one starts from only a single entity (A, for example a disease)

and attempts to find indirect, undiscovered relations to other entities (C, for example

chemicals or genes). Several different methods exist that all rely on the same strat-
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egy: i) identify the terms B that co-occur with A, ii) identify the terms C that co-occur

with B but not with A (Weeber et al., 2000; Hristovski et al., 2001; Srinivasan and

Libbus, 2004; Wren, 2004; Wren et al., 2004; Hristovski et al., 2005). More recently,

alternative methods based on latent semantic indexing (Homayouni et al., 2005) or

cross-subspace analysis (Matsunaga and Muramatsu, 2005) have been proposed.

The major problem with all of these approaches is that inferences are made from

undirected relations of unknown type, for which reason causality cannot be taken for

granted. For example, many Cdc28 cooccurs with many of its substrates in MEDLINE

abstracts, which would cause most existing methods to propose novel but incorrect

relations between unrelated Cdc28 substrates.

To our knowledge, no published studies have made use of NLP-based IE as the

basis for text mining, although this could ensure that the novel relations are inferred

from causal chains of relations. A likely reason is that very few NLP systems are

able to accurately extract a sufficiently large number of directed relations to enable

this approach. By using the yeast network of phosphorylation and gene expression

that we derived using IE (Figure 3A) to indirectly link 64 pairs of proteins that do not

co-occur in MEDLINE abstracts, we here show the feasibility of using NLP-based text

mining to discover novel relations. Manual inspection of the literature suggests that

over 90% of the inferred relations are correct. For example, the network suggests

that the cyclin-dependent kinase Ssn3 (also known as Srb10) influences expression

of the stress response protein Hsp104 through phosphorylation of Msn2 (Figure 3B).

It is known that Hsp104 expression is activated by the zinc finger protein Msn2 (Grably

et al., 2002) and that Msn2 is phosphorylated by Ssn3 (Chi et al., 2001). Ssn3 was

recently shown to be a repressor of general stress response, however, it remains

controversial if and how this is mediated by Msn2 phosphorylation (Figure 3B) (Bose

et al., 2005; Lenssen et al., 2005). It is thus likely that Ssn3 regulates Hsp104 ex-

pression, although it has not been experimentally verified. Similarly, it is known that

Rim11 phosphorylates Ume6 (Xiao and Mitchell, 2000) that regulates the expression

of another transcription factor, Ino2 (Eiznhamer et al., 2001), which in turn regulates

Erg9 expression (Kennedy et al., 1999). It can thus be inferred that Ume6 likely regu-

lates Erg9 expression and that Rim11 regulates the expression of both Ino2 and Erg9.

Remarkably, however, neither of these relations appear to have been described in the

published literature (Figure 3C).

While correct, the vast majority of the inferred relations in our study of yeast inter-

actions turn out to be well known, despite the proteins never having been mentioned

together in any abstract. Without full text access to all published papers, it is unfor-

tunately impossible to rule out that an inferred relation has already been published.

Also, some relations are likely considered to be so trivial that no one ever published

them. To avoid flooding the user with trivial hypotheses, text mining methods need
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to integrate other data sources than the text itself, in particular databases of curated

knowledge.

Discovery of global correlations from literature

An established data mining methodology, which has not previously been utilized in text

mining, is to search for correlated events as exemplified by Amazon’s “Customers who

bought this item also bought . . . ” function. In the field of biology, this can be used to

discover fundamental properties of, for example, regulatory networks.

To test the feasibility of this approach, we compared the lists of yeast proteins

shown in Figure 3 that are regulated through expression and those that are regulated

through phosphorylation. The overlap between the two sets is over four-fold larger

than expected by chance (P < 5 · 10−4), suggesting that phosphorylation and reg-

ulation of expression tend to target the same proteins, as was recently proposed by

de Lichtenberg et al. through integration of several large-scale experimental data sets

(de Lichtenberg et al., 2005). Similarly, data mining of the relations in Figure 3 reveals

that protein kinases preferentially phosphorylate each other (P < 9 · 10−9) and that

transcription factors regulate the expression of each other (P < 2 ·10−7), reflecting the

existence of signaling cascades and transcriptional networks, respectively.

The individual pieces of information required for making other such discoveries are

likely to be present in the literature, and could be combined using a similar systematic,

computational method. A drawback of this methodology is that statistically significant

correlations can arise easily due to study biases; however, this can be overcome by

correlating IE results with genome-wide data sets. We believe that the latter type of

data mining will likely play an important role in unveiling systems-level properties.
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Text/data integration

Although text mining can be used to uncover hitherto overlooked relations, data mining

approaches that integrate literature with other data types have much greater potential

for making biological discoveries. An illustrative example of how this could be achieved

is to use sequence similarity searches to transfer the relations extracted from text

to orthologous proteins (Yandell and Majoros, 2002). Text mining methods can then

be used to make inferences based on relations from multiple model organisms, and

hence bridge communities of researchers who work on different model organisms.

To test this approach, we combined the fruit fly and mouse equivalents of Figure 3

(Saric et al., 2004a,b, 2006) using orthology assignments from the STRING database

(von Mering et al., 2005), whereby we discovered the following indirect relation. In

fruit fly, Suppressor of Hairless (Su(H)) has been shown to be a direct transcriptional

repressor of single-minded (Morel and Schweisguth, 2000). Since the mouse Single-

Minded 1 protein is a transcriptional activator of EPO (Woods and Witelaw, 2002), we

make the hypothesis that one or more of the mural Su(H) orthologs down-regulate

EPO expression, although none of them co-occur with EPO in MEDLINE abstracts.

The power of such approaches will only improve with the growth of both the literature

and the availability of large-scale dataset.

Very early on, researchers attempted to augment sequence similarity searches

with literature mining in order to improve the detection of homologous proteins (Liu

and Rost, 2000; Chang et al., 2001); despite fairly promosing results, however, this

methodology never really took off. The reason for this is likely that these methods

fail to deliver novel results since homologies that are also supported by literature are

precisely the ones that are already known. Recently, literature mining has instead

been proposed as a means to help researches get an overview of the results of a

sequence similarity search (Dieterich et al., 2005).

Today, most attempts to integrate literature and biological data are instead directed

towards the annotation of data obtained from functional genomics studies as manual

in-depth analysis is not feasible due to the amount data (Andrade and Valencia, 1998;

Shatkay et al., 2000; Blaschke et al., 2001; Jenssen et al., 2001; Masys et al., 2001;

Masys, 2001; Chaussabel and Sher, 2002; Raychaudhuri et al., 2002b; Raychaudhuri

and Altman, 2003; Raychaudhuri et al., 2003; Glenisson et al., 2004; Djebbari et al.,

2005). Most approaches use ER methods or database cross-references to first re-

trieve the MEDLINE abstracts that are associated with one or more genes, for example

a protein family or a cluster of genes that are co-expressed in a microarray experiment.

These abstracts are subsequently used either i) to identify significant overrepresenta-

tion of keywords within the text (Andrade and Valencia, 1998; Shatkay et al., 2000;

Blaschke et al., 2001) or of annotated GO/MeSH terms that characterize the genes
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in question (Masys, 2001; Masys et al., 2001; Chaussabel and Sher, 2002; Djebbari

et al., 2005; ?), ii) to evaluate the cluster coherence (a measure of functional similarity

for a group of genes) (Raychaudhuri et al., 2002b; Raychaudhuri and Altman, 2003;

Raychaudhuri et al., 2003; Glenisson et al., 2004), or iii) to construct a functional as-

sociation network of the genes based on either co-occurrence (Jenssen et al., 2001;

Schlitt et al., 2003) or document similarity (Shatkay et al., 2000). Again, although these

methods may be useful tools, they have little to offer in terms of making biological dis-

coveries.

Through their ability to bring together many different types of dage, networks have

the potential to form the basis for text and data integration. Several web-based tools

exist that provide access to protein networks based on both IE and high-throughput

experiments (Bowers et al., 2003; Hoffmann and Valencia, 2004; von Mering et al.,

2005), which have proven valuable both as exploratory tools and as a basis onto

which, for example, expression data can be mapped to visualize how the synthesis

protein complexes is regulated at the transcript level (de Lichtenberg et al., 2005).

Such networks can also be combined with other types of data to provide insight into

the molecular basis of a disease. For example, literature-based protein networks have

been integrated with genetic linkage to identify candidate genes for Alzheimer’s dis-

ease from within a region, based on their interactions with genes that are already

known to have a causal role in the disease (Iossifov et al., 2004; Krauthammer et al.,

2004).

The types of networks described above only consider relations at the molecular

level; however, the possibility of making discoveries is greatly improved by integrat-

ing relations at multiple levels. This is exemplified by several literature mining tools

used to prioritize candidate genes with potential roles in inherited diseases for further

study. The first such system, G2D, was published in 2002 (Perez-Iratxeta et al., 2002).

It combines the MeSH annotation in MEDLINE with the Gene Ontology annotation in

RefSeq entries to infer logical chains of connections from disease names, via chem-

icals and drugs, to molecular functions. Combined with functional annotation inferred

from sequence similarity, this allows the genes within a mapped region to be ranked

based on their associations score with the disease in question. The BITOLA method

instead relies pure text mining to find candidate genes that are indirectly linked to a

given disease, and subsequently filters these based on chromosomal mapping data on

the disease (Hristovski et al., 2005). A third approach identifies co-occurring disease

and tissue names in MEDLINE and combines this with tissue expression annotation

from Ensembl to link the tissues to candidate disease genes (Tiffin et al., 2005). While

the original G2D method was limited to Mendelian diseases, these approaches have

recently been been shown to also work for complex genetic diseases (Perez-Iratxeta

et al., 2005; Tiffin et al., 2005).
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Figure 4: Correlating phenotypes with genotypes. Integration of gene occurrence in genomes and

keywords that are overrepresented in the literature in association with certain species (Korbel et al.,

2005). The two trees show the individual clustering of species profiles for genes and keywords, re-

spectively. The association scores between genes and keywords is visualized as a heat map. The insert

shows a cluster that contains 11 groups of orthologous genes with unknown function that are only present

in Staphylococci and certain other hospital bacteria. All these genes are strongly associated with words

that preferably occur in abstracts on those species such as osteomyelitis (a disease related to Staphylo-

cocci), cornea (a part of the eye that can be infected by Staphylocci), Cefazolin (an antibiotic often used

against Staphylococci), and Chlorhexidine (a disinfectant against which Staphylococci are resistant). As

both genes and words seem associated with this species subset, the genes are likely to be directly or

indirectly associated to the corresponding phenotypes. The genes might be directly involved in disease

phenotypes or might only indirectly be involved by contributing to the lifestyle. In any case, the specificity

of these genes to a limited set of infectious bacteria makes them candidates as drug targets.

Even broader in scope is a recent study that correlates text mining for phenotypic

information with gene occurrences across species (genotype information) to infer phe-

notypic roles for genes of unknown function (Korbel et al., 2005). MEDLINE was first

systematically searched for keywords associated with each prokaryote for which the

genome has been sequenced. The resulting species distributions of keywords were

then matched against the species distributions of genes in order to associate key-

words to genes (Figure 4). The set of keywords associated with a group of genes

can reveal the phenotypic characteristics caused by these genes. For example, genes

unique to Staphylococci and other hospital bacteria clusters together with descrip-

tive keywords such as “osteomyelitis” (a disease related to Staphylococci) and less
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obvious ones like “Chlorhexidine” (a disinfectant against which Staphylococci are re-

sistant) (Figure 4). This suggests putative roles for these genes of unknown function

and highlights them possible drug targets. When applied globally, the approach re-

captured many known genotype–phenotype relations and also predicted several novel

ones, such as enzymes involved in plant degradation and genomic determinants for

food poisoning (Korbel et al., 2005).
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Outlook

The peer reviewed scientific literature will continue to be a prime resource for access-

ing the worldwide scientific knowledge and its ongoing growth and diversification will

require tremendous systematic and automated efforts to utilize the information therein.

In the near future, tools for mining this knowledge base will likely play a pivotal role in

systems biology. So far, more than 90% of all biomedical literature mining has been

based on MEDLINE, mainly because it is freely availably in a convenient format. To

realize the full potential, future methods will need to work on full text papers, including

context such as the citation network. This will require some methodological improve-

ments as not all sections of a paper are equally relevant (Shah et al., 2003; Schuemie

et al., 2004) and because some information must be extracted from figures and ta-

bles. However, it is the restricted access to full text papers and citation information,

not the technology, that is currently the biggest limitation despite encouraging open ac-

cess initiatives like PubMed Central and Highwire Press (Yandell and Majoros, 2002;

Dickman, 2005).

Bridging the gap between biologists and computational linguists will be crucial

to the success of biomedical literature mining in general its integration with high-

throughput experimental data in particular. The field is currently dominated by re-

searchers with a computational background, however, only biologists possess the

knowledge required to properly evaluate methods, to identify specific tasks for which

tools are needed, and to point out other data sources that would be valuable to in-

tegrate with literature. To bring more biologists into the field, tool developers need

to focus more on designing user interfaces that make the tools accessible to non-

specialists. Finally, both sides need to contribute to the diversity and novelty within

this field, where too many researchers currently use the same few methods to solve

the same few tasks. We hope that this review will make more biologists aware of the

importance of literature mining, and that it will inspire the development of new tools for

making the most of the growing bodies of both scientific literature and experimental

data.
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Online tools and resources

Web-based applications

Information retrieval (IR)

E-BioSci (http://www.e-biosci.org)

EBIMed (http://www.ebi.ac.uk/Rebholz-srv/ebimed/)

GeneInfoMiner (http://brainarray.mbni.med.umich.edu/GIM.asp)

Google Scholar (http://scholar.google.com)

GoPubMed (http://www.gopubmed.org)

MedMiner (http://discover.nci.nih.gov/textmining/)

PubMed (http://www.pubmed.org)

PubFinder (http://www.glycosciences.de/tools/PubFinder/)

Textpresso (http://www.textpresso.org)

XplorMed (http://www.ogic.ca/projects/xplormed/)

Entity recognition (ER)

iHOP (http://www.pdg.cnb.uam.es/UniPub/iHOP/)

Whatizit (http://www.ebi.ac.uk/Rebholz-srv/whatizit/)

Information extraction (IE)

BioIE (http://umber.sbs.man.ac.uk/dbbrowser/bioie/)

iProLINK (http://pir.georgetown.edu/iprolink/)

JournalMine (http://textmine.cu-genome.org)

MedLEE (http://lucid.cpmc.columbia.edu/medlee/)

PreBIND (http://prebind.bind.ca)

Protein Corral (http://www.ebi.ac.uk/Rebholz-srv/pcorral/)

PubGene (http://www.pubgene.org)

Text mining

ARROWSMITH (http://arrowsmith.psych.uic.edu)

Integration BITOLA (http://www.mf.uni-lj.si/bitola/)

G2D (http://www.ogic.ca/projects/g2d 2/)

ProLinks (http://dip.doe-mbi.ucla.edu/pronav/)

STRING (http://string.embl.de)
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Text collections

Full text corpora

HighWire Press (http://highwire.stanford.edu)

PubMed Central (http://www.pubmedcentral.org)

Tagged corpora

FetchProt (http://fetchprot.sics.se)

GENETAG (ftp://ftp.ncbi.nlm.nih.gov/pub/tanabe/)

GENIA (http://www-tsujii.is.s.u-tokyo.ac.jp/GENIA/)

PennBioIE (http://bioie.ldc.upenn.edu)

Yapex (http://www.sics.se/humle/projects/prothalt/)

IE modules

Entity taggers

ABNER (http://www.cs.wisc.edu/∼bsettles/abner/)

GAPSCORE (http://bionlp.stanford.edu/gapscore/)

Part-of-speech taggers

Brill Tagger (http://www.cs.jhu.edu/∼brill/)

TNT Tagger (http://www.coli.uni-saarland.de/∼thorsten/tnt/)

TreeTagger (http://www.ims.uni-stuttgart.de/∼schmid/)

Parsers

CASS (http://www.vinartus.net/spa/)

Collins Parser (http://people.csail.mit.edu/mcollins/)

LTG Software (http://www.ltg.ed.ac.uk/software)

SNoW (http://l2r.cs.uiuc.edu/∼cogcomp/software.php)

Stanford Parser (http://nlp.stanford.edu/software/)
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Why do we need it?

171

Overview
• Information retrieval and entity recognition

– Methodologies for finding and classifying texts
– Identification of gene/protein names in text

• Information extraction and text/data mining
– Statistical co-occurrence and NLP methods 

for relation extraction
– Making discoveries from text alone
– Integration of text and other data types

172

Status
• IR, ER, and simple IE 

methods are fairly well 
established

• NLP-based IE systems 
are rapidly improving

• Methods for text mining 
and text/data integration 
are still in their infancy
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Example
Mitotic cyclin (Clb2)-bound Cdc28 (Cdk1 
homolog) directly phosphorylated Swe1 and this 
modification served as a priming step to promote 
subsequent Cdc5-dependent Swe1 
hyperphosphorylation and degradation

Information Retrieval and
Entity Recognition

Lars Juhl Jensen
EMBL, Germany
jensen@embl.de
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Overview

• Ad hoc information retrieval
– The user enters a query
– The system attempts to retrieve the relevant 

texts from a large text corpus

• Text categorization
– A set of manually classified texts is created
– A machine learning methods is trained and 

subsequently used to classify other texts

176

Ad hoc IR

• Very flexible – any query can be entered
– Boolean queries (yeast AND cell cycle)
– A few systems instead allow the relative 

weight of each search term to be specified

• The goal is to find all the relevant papers
– Ideally our example sentence should be 

identified by the query “yeast cell cycle” 
although none of these words are mentioned
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Automatic query expansion

• The user will typically not provide all 
relevant words and variants thereof

• Query expansion can improve recall
– Stemming of the words (yeast / yeasts)
– Use of thesauri deal with synonyms and/or 

abbreviations (yeast / S. cerevisiae)
– The next step is to use ontologies to make 

complex inferences (yeast cell cycle / Cdc28 )

182
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Document similarity

• The similarity of two documents can be 
defined based on their word content
– Represent each document by a word vector
– Words should be weighted based on their 

frequency and background frequency

• Document similarity can be used in IR
– Include the k nearest neighbors when 

matching queries against documents

184

Document clustering

• Unsupervised clustering algorithms can be 
applied to a document similarity matrix
– Calculate all pairwise document similarities
– Apply a standard clustering algorithm

• Practical uses of document clustering
– The “related documents” function in PubMed
– Organizing the documents found by IR
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Text categorization

• These systems are less flexible than ad 
hoc systems but give better accuracy
– The document classes are pre-defined
– Needs manual classification of training data

• Methods
– Rules can be manually crafted
– Machine learning methods can be trained

186

Example
Mitotic cyclin (Clb2)-bound Cdc28 (Cdk1 
homolog) directly phosphorylated Swe1 and this 
modification served as a priming step to promote 
subsequent Cdc5-dependent Swe1 
hyperphosphorylation and degradation

Hints in the text
– Yeast cell cycle: Cdc28 and Swe1
– Cell cycle: mitotic cyclin, Clb2, and Cdk1

187

Machine learning

• Input features
– Word content or bi-/tri-grams
– Part-of-speech tags
– Filtering (stop words, part-of-speech)

• Training
– Support vector machines are best suited
– Separate training and evaluation sets

188

Entity recognition

• An important but boring problem
– Find the entities (genes/proteins) mentioned 

within a given text

• Recognition vs. identification
– Recognition: find the words that are names
– Identification: identify the entities they refer to
– Recognition alone is of limited use
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Example
Mitotic cyclin (Clb2)-bound Cdc28 (Cdk1 
homolog) directly phosphorylated Swe1 and this 
modification served as a priming step to promote 
subsequent Cdc5-dependent Swe1
hyperphosphorylation and degradation

Entities identified
Clb2 (YPR119W), Cdc28 (YBR160W), Swe1
(YJL187C), and Cdc5 (YMR001C)

190

Recognition

• Features
– Morphological: mixes letters and digits
– Context: followed by “protein” or “gene”
– Grammar: should occur as a noun

• Methodologies
– Manually crafted rule-based systems
– Machine learning (SVMs)

191

Identification
• A good synonyms list is the key

– Combine many sources
– Curate to eliminate stop words

• Orthographic variation
– Case variation: CDC28, Cdc28, and cdc28
– Prefixes and postfixes: c-myc and Cdc28p
– Spaces and hyphens: cdc28 and cdc-28
– Latin vs. Greek letters: TNF-alpha and TNFA

192

Disambiguation
• The same word may mean different things

– Entity names may also be common English 
words (hairy), technical terms (SDS) or refer 
to unrelated proteins in other species (cdc2)

• The meaning can be found from the 
context
– ER can distinguish names from other words
– Disambiguation of non-unique names is a 

hard problem
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Summary
• Information retrieval

– Ad hoc IR methods are more flexible than text 
categorization methods

– Text categorization methods can generally 
provide better performance than ad hoc IR

• Entity recognition
– It is not sufficient to recognize names – the 

entities should also be identified
– The best methods use curated synonyms lists
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Overview
• Information extraction (IE)

– Simple statistical co-occurrence methods
– Combining co-occurrence and categorization
– Natural Language Processing (NLP)

• Text/data mining
– Making discoveries from text alone
– Augmenting text mining with other data types
– Annotation of high-throughput data

199

IE by co-occurrence
• Limitations of co-occurrence methods

– Relations are always symmetric
– The type of relation is not given

• Scoring the relations
– More co-occurrences ⇒ more significant
– Ubiquitous entities ⇒ less significant

• Simple, good recall, poor precision

200

Example

Mitotic cyclin (Clb2)-bound Cdc28 (Cdk1 
homolog) directly phosphorylated Swe1 and this 
modification served as a priming step to promote 
subsequent Cdc5-dependent Swe1
hyperphosphorylation and degradation

Relations extracted
Clb2–Cdc28, Clb2–Swe1, Cdc28–Swe1, 
Cdc5–Swe1, Clb2–Cdc5, and Cdc28–Cdc5
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Categorization

• Extracting specific types of relations
– Text categorization can be used to identify 

sentences that mention a certain type of 
relations

• Well suited for database curation
– Text categorization can be reused
– Recall is most important since curators can 

correct the false positives

203 204

NLP

• Information is extracted based on parsing 
and interpreting phrases or full sentences
– Good at extracting specific types of relations
– Handles directed relations

• Complex, good precision, poor recall
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Example
Mitotic cyclin (Clb2)-bound Cdc28 (Cdk1 
homolog) directly phosphorylated Swe1 and this 
modification served as a priming step to promote 
subsequent Cdc5-dependent Swe1
hyperphosphorylation and degradation

Relations:
– Complex: Clb2–Cdc28
– Phosphorylation: Clb2→Swe1, Cdc28→Swe1, and 

Cdc5→Swe1

206

An NLP architecture
• Tokenization

– Entity recognition with synonyms list
– Detection of multi words and sentence boundaries

• Part-of-speech tagging
– TreeTagger trained on GENIA

• Semantic labeling
– Dictionary of regular expressions

• Entity and relation chunking
– Rule-based system implemented in CASS

207

Semantic labeling
Gene and protein names
Words for entity recognition
Words for relation extraction

Named entity chunking
[nxgene The GAL4 gene]

Relation chunking
[nxexpr The expression of

[nxgene the cytochrome genes
[nxpg CYC1 and CYC7]]]

is controlled by
[nxpg HAP1]

208

[phosphorylation_active

Lyn, [negation but not Jak2]
phosphorylated
CrkL]

[phosphorylation_active

Lyn also participates in
[phosphorylation the tyrosine phosphorylation
and activation of syk]]

[phosphorylation_nominal

the phosphorylation of
the adapter protein SHC
by the Src-related kinase Lyn]

[phosphorylation_nominal

phosphorylation of Shc by
the hematopoietic cell-specific
tyrosine kinase Syk]

[dephosphorylation_nominal

Dephosphorylation of
Syk and Btk
mediated by
SHP-1]

[expression_activation_passive

[expression IL-13 expression]
induced by 
IL-2 + IL-18]

[expression_repression_active

IL-10
also decreased
[expression mRNA expression of 
IL-2 and IL-18 cytokine receptors]

[expression_repression_active

Btk
regulates
the IL-2 gene]
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Mining text for nuggets

• Inferring new relations from old ones
– This can lead to actual discoveries if no one 

knows all the facts required for the inference
– Combining facts from disconnected literatures

• Swanson’s pioneering work
– Fish oil and Reynaud's disease
– Magnesium and migraine

211 212
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Trends

• Similar to existing data mining approaches
– Although all the detailed data is in the text, 

people may have missed the big picture

• Temporal trends
– Historical summaries, forecasting

• Correlations
– Customers who bought this item also bought

214

Time

215

Successful genes

216

Buzzwords
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Correlations
• “Customers who 

bought this item also 
bought …”

• Protein networks
– “Proteins that regulate 

expression …”
– “Proteins that control 

phosphorylation …”
– “Proteins that are 

phosphorylated …”

218

Transcriptional networks

3279 83

3592

Regulates Regulated

P < 9⋅10-9

219

Signaling pathways

1127 44

3704

Phosphorylates Phosphorylated

P < 2⋅10-7

220

Multiple regulation

8107 47

3625

Expression Phosphorylation

P < 5⋅10-4
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Integration
• Annotation of high-throughput data

– Loads of fairly trivial methods

• Protein interaction networks
– Can unify many types of interaction data

• More creative strategies
– Identification of candidate disease genes
– Linking genotype to phenotype

222

223 224
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Disease candidate genes
• Rank the genes within a chromosomal region to 

which a disease has been mapped

• BITOLA
– Gene→Words→Disease (similar to ARROWSMITH)

• G2D
– Gene→Function→Chemical→Phenotype→Disease
– Uses MEDLINE but not the text

227

G2D

228
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Genotype–phenotype
• Genes and traits can be linked through 

similar phylogenetic profiles
– Mainly works for prokaryotes so far
– Traits are represented by keywords

• Finding the phylogenetic profiles
– Gene profiles stem from sequence similarity
– Keyword profiles are based co-occurrence 

with the species name in MEDLINE

232



59

233 234

Annotation

• Finding keywords for a group of genes
– ER is used to find associated abstracts
– The frequency of each word is counted
– Background frequencies are recorded
– A statistical test is used to rank the words

• The same strategy can be used to find 
MeSH terms related to a gene cluster
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Summary

• Information extraction
– Co-occurrence methods generally give better 

recall but worse accuracy than NLP methods
– Only NLP can handle directed interactions

• Text/data mining
– New relations can be found from text alone
– Methods that combine text and other data 

types have much better discovery potential

Outlook

Lars Juhl Jensen
EMBL, Germany
jensen@embl.de
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Necessity

• Literature mining will remain important
– Repositories are always made too late
– There will always be new types of relations
– Semantically tagged XML may replace ER
– But no one will ever tag everything!

• Specific IE problems will become obsolete
– Protein function and physical interactions
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Permission

• Open access
– Literature mining methods cannot work on 

text unless it is accessible
– Restricted access is now the limiting factor

• Standard formats
– Getting the text out of a PDF file is not trivial

• Where do I get all the patent text?!
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Innovation
• The tools are in place 

for IR, ER, and IE

• Text- and data-mining
– Biologists are needed
– Work with linguists

• Lack of innovation
– Combine text and data
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